101
|
Ferrero DS, Falqui M, Verdaguer N. Snapshots of a Non-Canonical RdRP in Action. Viruses 2021; 13:v13071260. [PMID: 34203380 PMCID: PMC8310298 DOI: 10.3390/v13071260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication and transcription. The closed “right hand” architecture of RdRPs encircles seven conserved structural motifs (A to G) that regulate the polymerization activity. The four palm motifs, arranged in the sequential order A to D, are common to all known template dependent polynucleotide polymerases, with motifs A and C containing the catalytic aspartic acid residues. Exceptions to this design have been reported in members of the Permutotetraviridae and Birnaviridae families of positive single stranded (+ss) and double-stranded (ds) RNA viruses, respectively. In these enzymes, motif C is located upstream of motif A, displaying a permuted C–A–B–D connectivity. Here we study the details of the replication elongation process in the non-canonical RdRP of the Thosea asigna virus (TaV), an insect virus from the Permutatetraviridae family. We report the X-ray structures of three replicative complexes of the TaV polymerase obtained with an RNA template-primer in the absence and in the presence of incoming rNTPs. The structures captured different replication events and allowed to define the critical interactions involved in: (i) the positioning of the acceptor base of the template strand, (ii) the positioning of the 3’-OH group of the primer nucleotide during RNA replication and (iii) the recognition and positioning of the incoming nucleotide. Structural comparisons unveiled a closure of the active site on the RNA template-primer binding, before rNTP entry. This conformational rearrangement that also includes the repositioning of the motif A aspartate for the catalytic reaction to take place is maintained on rNTP and metal ion binding and after nucleotide incorporation, before translocation.
Collapse
|
102
|
Long C, Romero ME, La Rocco D, Yu J. Dissecting nucleotide selectivity in viral RNA polymerases. Comput Struct Biotechnol J 2021; 19:3339-3348. [PMID: 34104356 PMCID: PMC8175102 DOI: 10.1016/j.csbj.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis. To do that, we first survey two well studied RdRps from Polio virus and hepatitis C virus in regard to structural motifs and key residues that have been identified for the nucleotide selectivity. Then we focus on related structural and biochemical characteristics discovered for the SARS-CoV-2 RdRp. To further compare, we summarize what we have learned computationally from phage T7 RNA polymerase (RNAP) on its stepwise nucleotide selectivity, and extend discussion to a structurally similar human mitochondria RNAP, which deserves special attention as it cannot be adversely affected by antiviral treatments. We also include viral phi29 DNA polymerase for comparison, which has both helicase and proofreading activities on top of nucleotide selectivity for replication fidelity control. The helicase and proofreading functions are achieved by protein components in addition to RdRp in the coronavirus replication-transcription machine, with the proofreading strategy important for the fidelity control in synthesizing a comparatively large viral genome.
Collapse
Affiliation(s)
- Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | | | - Daniel La Rocco
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| |
Collapse
|
103
|
Chowdhury T, Roymahapatra G, Mandal SM. In Silico Identification of a Potent Arsenic Based Approved Drug Darinaparsin against SARS-CoV-2: Inhibitor of RNA Dependent RNA polymerase (RdRp) and Essential Proteases. Infect Disord Drug Targets 2021; 21:608-618. [PMID: 32718300 DOI: 10.2174/1871526520666200727153643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 is a life-threatening novel corona viral infection to our civilization and spreading rapidly. Tremendousefforts have been made by the researchers to search for a drug to control SARS-CoV-2. METHODS Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2. All the optimized derivatives were blindly docked with RdRp of SARS-CoV-2 using iGEMDOCK v2.1. RESULTS Based on the lower idock score in the catalytic pocket of RdRp, darinaparsin (-82.52 kcal/- mol) was revealed to be the most effective among them. Darinaparsin strongly binds with both Nsp9 replicase protein (-8.77 kcal/mol) and Nsp15 endoribonuclease (-8.3 kcal/mol) of SARS-- CoV-2 as confirmed from the AutoDock analysis. During infection, the ssRNA of SARS-CoV-2 is translated into large polyproteins forming viral replication complex by specific proteases like 3CL protease and papain protease. This is also another target to control the virus infection where darinaparsin also performs the inhibitory role to proteases of 3CL protease (-7.69 kcal/mol) and papain protease (-8.43 kcal/mol). CONCLUSION In the host cell, the furin protease serves as a gateway to the viral entry and darinaparsin docked with furin protease, which revealed a strong binding affinity. Thus, screening of potential arsenic drugs would help in providing the fast in-vitro to in-vivo analysis towards the development of therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Trinath Chowdhury
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
104
|
Vulpetti A, Dalvit C. Hydrogen Bond Acceptor Propensity of Different Fluorine Atom Types: An Analysis of Experimentally and Computationally Derived Parameters. Chemistry 2021; 27:8764-8773. [PMID: 33949737 DOI: 10.1002/chem.202100301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/29/2022]
Abstract
The propensity of organic fluorine acting as a weak hydrogen bond acceptor (HBA) in intermolecular and intramolecular interactions has been the subject of many experimental and theoretical studies often reaching different conclusions. Over the last few years, new and stronger evidences have emerged for the direct involvement of fluorine in weak hydrogen bond (HB) formation. However, not all the fluorine atom types can act as weak HBA. In this work, the differential HBA propensity of various types of fluorine atoms was analyzed with a particular emphasis for the different types of alkyl fluorides. This was carried out by evaluating ab initio computed parameters, experimental 19 F NMR chemical shifts and small molecule crystallographic structures (extracted from the CSD database). According to this analysis, shielded (with reference to the 19 F NMR chemical shift) alkyl mono-fluorinated motifs display the highest HBA propensity in agreement with solution studies. Although much weaker than other well-characterized HB complexes, the fragile HBs formed by these fluorinated motifs have important implications for the chemical-physical and structural properties of the molecules, chemical reactions, and protein-ligand recognition.
Collapse
Affiliation(s)
- Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002, Basel, Switzerland
| | | |
Collapse
|
105
|
Barakat K, Ahmed M, Tabana Y, Ha M. A 'deep dive' into the SARS-Cov-2 polymerase assembly: identifying novel allosteric sites and analyzing the hydrogen bond networks and correlated dynamics. J Biomol Struct Dyn 2021; 40:9443-9463. [PMID: 34034620 DOI: 10.1080/07391102.2021.1930162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Replication of the SARS-CoV-2 genome is a fundamental step in the virus life cycle and inhibiting the SARS-CoV2 replicase machinery has been proven recently as a promising approach in combating the virus. Despite this recent success, there are still several aspects related to the structure, function and dynamics of the CoV-2 polymerase that still need to be addressed. This includes understanding the dynamicity of the various polymerase subdomains, analyzing the hydrogen bond networks at the active site and at the template entry in the presence of water, studying the binding modes of the nucleotides at the active site, highlighting positions for acceptable nucleotides' substitutions that can be tolerated at different positions within the nascent RNA strand, identifying possible allosteric sites within the polymerase structure and studying their correlated dynamics relative to the catalytic site. Here, we combined various cutting-edge modelling tools with the recently resolved SARS-CoV-2 cryo-EM polymerase structures to fill this gap in knowledge. Our findings provide a detailed analysis of the hydrogen bond networks at various parts of the polymerase structure and suggest possible nucleotides' substitutions that can be tolerated by the polymerase complex. We also report here three 'druggable' allosteric sites within the NSP12 RdRp that can be targeted by small molecule inhibitors. Our correlated motion analysis shows that the dynamics within one of the newly identified sites are linked to the active site, indicating that targeting this site can significantly impact the catalytic activity of the SARS-CoV-2 polymerase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Minwoo Ha
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
106
|
Koulgi S, Jani V, Uppuladinne V. N. M, Sonavane U, Joshi R. Natural plant products as potential inhibitors of RNA dependent RNA polymerase of Severe Acute Respiratory Syndrome Coronavirus-2. PLoS One 2021; 16:e0251801. [PMID: 33984041 PMCID: PMC8118514 DOI: 10.1371/journal.pone.0251801] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
Drug repurposing studies targeting inhibition of RNA dependent RNA polymerase (RdRP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have exhibited the potential effect of small molecules. In the present work a detailed interaction study between the phytochemicals from Indian medicinal plants and the RdRP of SARS-CoV-2 has been performed. The top four phytochemicals obtained through molecular docking were, swertiapuniside, cordifolide A, sitoindoside IX, and amarogentin belonging to Swertia chirayita, Tinospora cordifolia and Withania somnifera. These ligands bound to the RdRP were further studied using molecular dynamics simulations. The principal component analysis of these systems showed significant conformational changes in the finger and thumb subdomain of the RdRP. Hydrogen bonding, salt-bridge and water mediated interactions supported by MM-GBSA free energy of binding revealed strong binding of cordifolide A and sitoindoside IX to RdRP. The ligand-interacting residues belonged to either of the seven conserved motifs of the RdRP. These residues were polar and charged amino acids, namely, ARG 553, ARG 555, ASP 618, ASP 760, ASP 761, GLU 811, and SER 814. The glycosidic moieties of the phytochemicals were observed to form favourable interactions with these residues. Hence, these phytochemicals may hold the potential to act as RdRP inhibitors owing to their stability in binding to the druggable site.
Collapse
Affiliation(s)
- Shruti Koulgi
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| | - Vinod Jani
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| | | | - Uddhavesh Sonavane
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| | - Rajendra Joshi
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| |
Collapse
|
107
|
Zoghi S, Khamirani HJ, Dastgheib SA, Dianatpour M, Ghaffarieh A. An analysis of inhibition of the severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase by zinc ion: an in silico approach. Future Virol 2021. [PMCID: PMC8074572 DOI: 10.2217/fvl-2020-0369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Coronavirus disease 2019 is caused by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was reported that Zn2+ is an inhibitor of severe acute respiratory syndrome coronavirus (SARS-CoV). We hypothesize that the same applies to the newly discovered SARS-CoV-2. Material & methods: We compared the structure of RNA-dependent RNA polymerase between SARS-CoV and SARS-CoV-2. The RdRp’s binding to Zn2+ was studied by metal ion-binding site prediction and docking server. Results: Several regions containing key residues were detected. The functional aspartic acid residues RdRp, 618D, 760D and 761D were among the predicted Zn2+-binding residues. Conclusion: The most probable mechanism of inhibition of RdRp by Zn2+ is binding to the active aspartic acid triad while other binding sites can further destabilize the enzyme or interfere with the fidelity-check mechanism. The most probable mechanism of inhibition of RNA polymerase by Zn2+ is binding to the active aspartic acid triad while other binding sites can further destabilize the enzyme or interfere with the fidelity-check mechanism. #Zinc #SARS_CoV_2 #COVID_19.
Collapse
Affiliation(s)
- Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Jafari Khamirani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ghaffarieh
- Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
108
|
Polyakov IV, Grigorenko BL, Nemukhin AV. Model of the RNA Polymerase Complex of the SARS-CoV-2 Virus with Favipiravir. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [PMCID: PMC8064419 DOI: 10.1134/s1990793121010255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A model of a multidomain complex is constructed using molecular modeling methods to explain the mechanism of the inhibitory effect of favipiravir on RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 coronavirus. As the initial atomic coordinates, we use cryoelectron microscopy data for the apo form of RdRp of the SARS-CoV-2 virus and data on the structure of RdRp of the hepatitis C virus. After appropriate substitutions, an RdRp complex containing RNA chains and a potential enzyme inhibitor, favipiravir in the form of ribosatriphosphate, are constructed. The structure of the complex in aqueous shells, which includes more than 100 000 atoms, is optimized by molecular dynamics methods. Analysis of the active site with the incorporated favipiravir molecule makes it possible to explain the chemical reaction of the enzyme with the inhibitor.
Collapse
Affiliation(s)
- I. V. Polyakov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow State University, 119991 Moscow, Russia
| | - B. L. Grigorenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow State University, 119991 Moscow, Russia
| | - A. V. Nemukhin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
109
|
Wang W, Zhou Z, Xiao X, Tian Z, Dong X, Wang C, Li L, Ren L, Lei X, Xiang Z, Wang J. SARS-CoV-2 nsp12 attenuates type I interferon production by inhibiting IRF3 nuclear translocation. Cell Mol Immunol 2021; 18:945-953. [PMID: 33637958 PMCID: PMC7907794 DOI: 10.1038/s41423-020-00619-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 is the pathogenic agent of COVID-19, which has evolved into a global pandemic. Compared with some other respiratory RNA viruses, SARS-CoV-2 is a poor inducer of type I interferon (IFN). Here, we report that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses. SARS-CoV-2 nsp12 attenuated Sendai virus (SeV)- or poly(I:C)-induced IFN-β promoter activation in a dose-dependent manner. It also inhibited IFN promoter activation triggered by RIG-I, MDA5, MAVS, and IRF3 overexpression. Nsp12 did not impair IRF3 phosphorylation but suppressed the nuclear translocation of IRF3. Mutational analyses suggested that this suppression was not dependent on the polymerase activity of nsp12. Given these findings, our study reveals that SARS-CoV-2 RdRp can antagonize host antiviral innate immunity and thus provides insights into viral pathogenesis.
Collapse
Affiliation(s)
- Wenjing Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University Genome Editing Research Center, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Zhongqin Tian
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Conghui Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Li Li
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
110
|
Lu L, Su S, Yang H, Jiang S. Antivirals with common targets against highly pathogenic viruses. Cell 2021; 184:1604-1620. [PMID: 33740455 DOI: 10.1016/j.cell.2021.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Historically, emerging viruses appear constantly and have cost millions of human lives. Currently, climate change and intense globalization have created favorable conditions for viral transmission. Therefore, effective antivirals, especially those targeting the conserved protein in multiple unrelated viruses, such as the compounds targeting RNA-dependent RNA polymerase, are urgently needed to combat more emerging and re-emerging viruses in the future. Here we reviewed the development of antivirals with common targets, including those against the same protein across viruses, or the same viral function, to provide clues for development of antivirals for future epidemics.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
111
|
Li HC, Yang CH, Lo SY. Hepatitis C Viral Replication Complex. Viruses 2021; 13:v13030520. [PMID: 33809897 PMCID: PMC8004249 DOI: 10.3390/v13030520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
The life cycle of the hepatitis C virus (HCV) can be divided into several stages, including viral entry, protein translation, RNA replication, viral assembly, and release. HCV genomic RNA replication occurs in the replication organelles (RO) and is tightly linked to ER membrane alterations containing replication complexes (proteins NS3 to NS5B). The amplification of HCV genomic RNA could be regulated by the RO biogenesis, the viral RNA structure (i.e., cis-acting replication elements), and both viral and cellular proteins. Studies on HCV replication have led to the development of direct-acting antivirals (DAAs) targeting the replication complex. This review article summarizes the viral and cellular factors involved in regulating HCV genomic RNA replication and the DAAs that inhibit HCV replication.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2322)
| |
Collapse
|
112
|
Prussia AJ, Chennamadhavuni S. Biostructural Models for the Binding of Nucleoside Analogs to SARS-CoV-2 RNA-Dependent RNA Polymerase. J Chem Inf Model 2021; 61:1402-1411. [PMID: 33655751 PMCID: PMC7945588 DOI: 10.1021/acs.jcim.0c01277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is a positive-sense RNA virus that requires an RNA-dependent RNA polymerase (RdRp) for replication of its viral genome. Nucleoside analogs such as Remdesivir and β-d-N4-hydroxycytidine are antiviral candidates and may function as chain terminators or induce viral mutations, thus impairing RdRp function. Recently disclosed Cryo-EM structures of apo, RNA-bound, and inhibitor-bound SARS-CoV-2 RdRp provided insight into the inhibitor-bound structure by capturing the enzyme with its reaction product: Remdesivir covalently bound to the RNA primer strand. To gain a structural understanding of the binding of this and several other nucleoside analogs in the precatalytic state, molecular models were developed that predict the noncovalent interactions to a complex of SARS-CoV-2 RdRp, RNA, and catalytic metal cations. MM-GBSA evaluation of these interactions is consistent with resistance-conferring mutations and existing structure-activity relationship (SAR) data. Therefore, this approach may yield insights into antiviral mechanisms and guide the development of experimental drugs for COVID-19 treatment.
Collapse
|
113
|
Koulgi S, Jani V, V N MU, Sonavane U, Joshi R. Structural insight into the binding interactions of NTPs and nucleotide analogues to RNA dependent RNA polymerase of SARS-CoV-2. J Biomol Struct Dyn 2021; 40:7230-7244. [PMID: 33682633 DOI: 10.1080/07391102.2021.1894985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA dependent RNA polymerase (RdRP) from positive-stranded RNA viruses has always been a hot target for designing of new drugs. Major class of drugs that are targeted against RdRP are nucleotide analogues. Extensive docking and molecular dynamics study describing the binding of natural nucleotides (NTPs) and its analogues leading to significant structural variation in the RdRP has been presented here. RdRP simulations in its apo, NTP-bound, and analogue-bound form have been performed. Nucleotide analogues included in this study were, favipiravir, galidesivir, lamivudine, ribavirin, remdesivir and sofosbuvir. The conformational flexibility of the RdRP molecule has been explored using principal component (PCA) and Markov state modeling (MSM) analysis. PCA inferred the presence of correlated motions among the conserved motifs of RdRP. Inter-domain distances between the finger and thumb subdomain flanking the nascent RNA template entry site sampled open and closed conformations. The ligand and template binding motifs F and G showed negatively correlated motions. K551, R553, and R555, a part of motif F appear to form strong interactions with the ligand molecules. R836, a primer binding residue was observed to strongly bind to the analogues. MSM analysis helped to extract statistically distinct conformations explored by the RdRP. Ensemble docking of the ligands on the Markov states also suggested the involvement of the above residues in ligand interactions. Markov states obtained clearly demarcated the open/closed conformations of the template entry site. These observations on residues from the conserved motifs involved in binding to the ligands may provide an insight into designing new inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Koulgi
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| | - Vinod Jani
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| | - Mallikarjunachari Uppuladinne V N
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| | - Uddhavesh Sonavane
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| | - Rajendra Joshi
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| |
Collapse
|
114
|
Sofosbuvir Selects for Drug-Resistant Amino Acid Variants in the Zika Virus RNA-Dependent RNA-Polymerase Complex In Vitro. Int J Mol Sci 2021; 22:ijms22052670. [PMID: 33800884 PMCID: PMC7962015 DOI: 10.3390/ijms22052670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 01/02/2023] Open
Abstract
The nucleotide analog sofosbuvir, licensed for the treatment of hepatitis C, recently revealed activity against the Zika virus (ZIKV) in vitro and in animal models. However, the ZIKV genetic barrier to sofosbuvir has not yet been characterized. In this study, in vitro selection experiments were performed in infected human hepatoma cell lines. Increasing drug pressure significantly delayed viral breakthrough (p = 0.029). A double mutant in the NS5 gene (V360L/V607I) emerged in 3 independent experiments at 40–80 µM sofosbuvir resulting in a 3.9 ± 0.9-fold half- maximal inhibitory concentration (IC50) shift with respect to the wild type (WT) virus. A triple mutant (C269Y/V360L/V607I), detected in one experiment at 80 µM, conferred a 6.8-fold IC50 shift with respect to the WT. Molecular dynamics simulations confirmed that the double mutant V360L/V607I impacts the binding mode of sofosbuvir, supporting its role in sofosbuvir resistance. Due to the distance from the catalytic site and to the lack of reliable structural data, the contribution of C269Y was not investigated in silico. By a combination of sequence analysis, phenotypic susceptibility testing, and molecular modeling, we characterized a double ZIKV NS5 mutant with decreased sofosbuvir susceptibility. These data add important information to the profile of sofosbuvir as a possible lead for anti-ZIKV drug development.
Collapse
|
115
|
Yang J, Jing X, Yi W, Li XD, Yao C, Zhang B, Zheng Z, Wang H, Gong P. Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses. Nucleic Acids Res 2021; 49:1567-1580. [PMID: 33406260 PMCID: PMC7897508 DOI: 10.1093/nar/gkaa1250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023] Open
Abstract
The RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of nucleic acid polymerases. RdRPs are essential in virus life cycle due to their central role in viral genome replication/transcription processes. However, their contribution in host adaption has not been well documented. By solving the RdRP crystal structure of the tick-borne encephalitis virus (TBEV), a tick-borne flavivirus, and comparing the structural and sequence features with mosquito-borne flavivirus RdRPs, we found that a region between RdRP catalytic motifs B and C, namely region B-C, clearly bears host-related diversity. Inter-virus substitutions of region B-C sequence were designed in both TBEV and mosquito-borne Japanese encephalitis virus backbones. While region B-C substitutions only had little or moderate effect on RdRP catalytic activities, virus proliferation was not supported by these substitutions in both virus systems. Importantly, a TBEV replicon-derived viral RNA replication was significantly reduced but not abolished by the substitution, suggesting the involvement of region B-C in viral and/or host processes beyond RdRP catalysis. A systematic structural analysis of region B-C in viral RdRPs further emphasizes its high level of structure and length diversity, providing a basis to further refine its relevance in RNA virus-host interactions in a general context.
Collapse
Affiliation(s)
- Jieyu Yang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfu Yi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Xiao-Dan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Chen Yao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | | | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| |
Collapse
|
116
|
Arba M, Wahyudi ST, Brunt DJ, Paradis N, Wu C. Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-cov-2. Comput Biol Med 2021; 129:104156. [PMID: 33260103 PMCID: PMC7691827 DOI: 10.1016/j.compbiomed.2020.104156] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023]
Abstract
The RNA-dependent RNA polymerase (RdRp) is a key enzyme which regulates the viral replication of SARS-CoV-2. Remdesivir (RDV) is clinically used drug which targets RdRp, however its mechanism of action remains elusive. This study aims to find out the binding dynamics of active Remdesivir-triphosphate (RDV-TP) to RdRp by means of molecular dynamics (MD) simulation. We built a homology model of RdRp along with RNA and manganese ion using RdRp hepatitis C virus and recent SARS-CoV-2 structures. We determined that the model was stable during the 500 ns MD simulations. We then employed the model to study the binding of RDV-TP to RdRp during three independent 500 ns MD simulations. It was revealed that the interactions of protein and template-primer RNA were dominated by salt bridge interactions with phosphate groups of RNA, while interactions with base pairs of template-primer RNA were minimal. The binding of RDV-TP showed that the position of phosphate groups was at the entry of the NTP channel and it was stabilized by the interactions with K551, R553, and K621, while the adenosine group on RDV-TP was pairing with U2 of the template strand. The manganese ion was located close to D618, D760, and D761, and helps in stabilization of the phosphate groups of RDV-TP. Further we identified three hits from the natural product database that pose similar to RDV-TP while having lower binding energies than that of RDV-TP, and that SN00359915 had binding free energy about three times lower than that of RDV-TP.
Collapse
Affiliation(s)
- Muhammad Arba
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari, 93232, Indonesia.
| | | | - Dylan J Brunt
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, United States
| | - Nicholas Paradis
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, United States
| | - Chun Wu
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, United States.
| |
Collapse
|
117
|
Abstract
RNA-dependent RNA polymerase (RdRp), also called nsp12, is considered a promising but challenging drug target for inhibiting replication and hence, the growth of various RNA-viruses. In this report, a computational study is performed to offer insights on the binding of Remdesivir and Galidesivir with SARS-CoV2 RdRp with natural substrate, ATP, as the control. It was observed that Remdesivir and Galidesivir exhibited similar binding energies for their best docked poses, −6.6 kcal/mole and −6.2 kcal/mole, respectively. ATP also displayed comparative and strong binding free energy of −6.3 kcal/mole in the catalytic site of RdRp. However, their binding locations within the active site are distinct. Further, the interaction of catalytic site residues (Asp760, Asp761, and Asp618) with Remdesivir and Galidesivir is comprehensively examined. Conformational changes of RdRp and bound molecules are demonstrated using 100 ns explicit solvent simulation of the protein-ligand complex. Simulation suggests that Galidesivir binds at the non-catalytic location and its binding strength is relatively weaker than ATP and Remdesivir. Remdesivir also binds at the catalytic site and showed high potency to inhibit the function of RdRp. Binding of co-factor units nsp7 and nsp8 with RdRp (nsp12) complexed with Remdesivir and Galidesivir was also examined. MMPBSA binding energy for all three complexes has been computed across the 100 ns simulation trajectory. Overall, this study suggests, Remdesivir has anti-RdRp activity via binding at a catalytic site. In contrast, Galidesivir may not have direct anti-RdRp activity but it can induce a conformational change in the RNA polymerase.
Collapse
Affiliation(s)
- Avinash Mishra
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
118
|
Doharey PK, Singh V, Gedda MR, Sahoo AK, Varadwaj PK, Sharma B. In silico study indicates antimalarials as direct inhibitors of SARS-CoV-2-RNA dependent RNA polymerase. J Biomol Struct Dyn 2021; 40:5588-5605. [PMID: 33475021 PMCID: PMC7842134 DOI: 10.1080/07391102.2021.1871956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a global pandemic. RNA-dependent RNA polymerase (RdRp) is the key component of the replication or transcription machinery of coronavirus. Therefore SARS-CoV-2-RdRp has been chosen as an important target for the development of antiviral drug(s). During the early pandemic of the COVID-19, chloroquine and hydroxychloroquine were suggested by the researchers for the prevention or treatment of SARS-CoV-2. In our study, the antimalarial compounds have been screened and docked against SARS-CoV-2-RdRp (PDB ID: 7BTF), and it was observed that the antimalarials chloroquine, hydroxychloroquine, and amodiaquine exhibit good affinity. Since the crystal structure of SARS-CoV-2-RdRp with its substrate is not available, poliovirus-RdRp crystal structure co-crystallized with its substrate ATP (PDB ID: 2ILY) was used as a reference structure. The superimposition of SARS-CoV-2-RdRp and poliovirus-RdRp structures showed that the active sites of both of the RdRps superimposed very well. The amino acid residues involved in the binding of ATP in the case of poliovirus-RdRp and residues involved in binding with the antimalarial compounds with SARS-CoV-2-RdRp were compared. In both cases, the conserved residues were found to be involved in establishing the interactions. The MMGBSA and molecular dynamic simulation studies were performed to strengthen our docking results. Further residues involved in binding of antimalarials with SARS-CoV-2-RdRp were compared with the residues involved in the SARS-CoV-2-RdRp complexed with remdesivir [PDB ID: 7BV2]. It was observed that co-crystallized remdesivir and docked antimalarials bind in the same pocket of SARS-CoV-2 -RdRp. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, UP, India
| | - Mallikarjuna Rao Gedda
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, UP, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, UP, India
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad, UP, India
| |
Collapse
|
119
|
Peng Q, Peng R, Yuan B, Wang M, Zhao J, Fu L, Qi J, Shi Y. Structural Basis of SARS-CoV-2 Polymerase Inhibition by Favipiravir. ACTA ACUST UNITED AC 2021; 2:100080. [PMID: 33521757 PMCID: PMC7834001 DOI: 10.1016/j.xinn.2021.100080] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/11/2021] [Indexed: 01/18/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into an unprecedented global pandemic. Nucleoside analogs, such as Remdesivir and Favipiravir, can serve as the first-line broad-spectrum antiviral drugs by targeting the viral polymerases. However, the underlying mechanisms for the antiviral efficacies of these drugs are far from well understood. Here, we reveal that Favipiravir, as a pyrazine derivative, could be incorporated into the viral RNA products by mimicking both adenine and guanine nucleotides. This drug thus inhibits viral replication mainly by inducing mutations in progeny RNAs, different from Remdesivir or other RNA-terminating nucleoside analogs that impair the elongation of RNA products. We further determined the cryo-EM structure of Favipiravir bound to the replicating polymerase complex of SARS-CoV-2 in the pre-catalytic state. This structure provides a missing snapshot for visualizing the catalysis dynamics of coronavirus polymerase, and reveals an unexpected base-pairing pattern between Favipiravir and pyrimidine residues that may explain its capacity for mimicking both adenine and guanine nucleotides. These findings shed light on the mechanism of coronavirus polymerase catalysis and provide a rational basis for developing antiviral drugs to combat the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Qi Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingru Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
- College of Basic Medicine, Jilin University, Changchun, China
- Corresponding author
| |
Collapse
|
120
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
121
|
Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 2021; 19:685-700. [PMID: 34535791 PMCID: PMC8447893 DOI: 10.1038/s41579-021-00630-8] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an unprecedented global health crisis. However, therapeutic options for treatment are still very limited. The development of drugs that target vital proteins in the viral life cycle is a feasible approach for treating COVID-19. Belonging to the subfamily Orthocoronavirinae with the largest RNA genome, SARS-CoV-2 encodes a total of 29 proteins. These non-structural, structural and accessory proteins participate in entry into host cells, genome replication and transcription, and viral assembly and release. SARS-CoV-2 proteins can individually perform essential physiological roles, be components of the viral replication machinery or interact with numerous host cellular factors. In this Review, we delineate the structural features of SARS-CoV-2 from the whole viral particle to the individual viral proteins and discuss their functions as well as their potential as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Haitao Yang
- grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zihe Rao
- grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.12527.330000 0001 0662 3178Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China ,grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, China ,grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
122
|
Srinivasan K, Rao M. Understanding the clinical utility of favipiravir (T-705) in coronavirus disease of 2019: a review. Ther Adv Infect Dis 2021; 8:20499361211063016. [PMID: 34881025 PMCID: PMC8646822 DOI: 10.1177/20499361211063016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease of 2019 (COVID-19) has caused significant morbidity and mortality among infected individuals across the world. High transmissibility rate of the causative virus - Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) - has led to immense strain and bottlenecking of the health care system. While noteworthy advances in vaccine development have been made amid the current global pandemic, most therapeutic agents are repurposed from use in other viral infections and are being evaluated for efficacy in COVID-19. Favipiravir, an orally administered drug originally developed in Japan against emerging influenza viral strains, has been shown to have widespread application and safety across multiple ribonucleic acid (RNA) viral infections. With a strong affinity toward the viral RNA-dependent RNA polymerase (RdRp), favipiravir could be a promising therapy against SARS-CoV-2, by targeting downstream viral RNA replication. Initial trials for usage in COVID-19 have suggested that favipiravir administration during initial infection stages, in individuals with mild to moderate infection, has a strong potential to improve clinical outcomes. However, additional well-designed clinical trials are required to closely examine ideal timing of drug administration, dosage, and duration, to assess the role of favipiravir in COVID-19 therapy. This review provides evidence-based insights and throws light on the current clinical trials examining the efficacy of favipiravir in tackling COVID-19, including its mechanism, pharmacodynamics, and pharmacokinetics.
Collapse
Affiliation(s)
- Kritika Srinivasan
- Department of Biomaterials and Pathology, Vilcek Institute, New York University School of Medicine, New York, NY, USA
| | - Mana Rao
- Essen Medical Associates, 2015 Grand Concourse, Bronx, NY 10453, USA
| |
Collapse
|
123
|
El-Sokkary MMA, Gotina L, Al-Sanea MM, Pae AN, Elbargisy RM. Molecular Characterization of Hepatitis C Virus for Developed Antiviral Agents Resistance Mutations and New Insights into in-silico Prediction Studies. Infect Drug Resist 2020; 13:4235-4248. [PMID: 33262618 PMCID: PMC7696641 DOI: 10.2147/idr.s267809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
Background Identification and characterization of developed antiviral drug resistance mutations are key to the success of antiviral therapies against hepatitis C virus (HCV), which remains a worldwide highly prevalent pathogenic disease. Although most studies focus on HCV genotypes 1, 2 or 3, the investigation of drug resistance in HCV genotype 4, predominant in North Africa, is especially significant in Egypt. Methods We performed mutational and genotypic analysis of the untranslated region (UTR) and nonstructural protein 5B (NS5B) drug resistance-associated regions of HCV for patients in the surrounding villages of Mansoura city, who were not responding to different antiviral treatments (sofosbuvir (SOF), ribavirin, and interferon). Furthermore, molecular modelling approaches (homology modelling and docking studies) were used to investigate the significance of the identified NS5B mutations for SOF and ribavirin binding in the HCV genotype 4a NS5B active site. Results Genotypic analysis confirmed all samples to have genotype 4 with sub-genotype 4a predominant. Partial sequencing of the UTR and NS5B resistance-associated regions identified D258E, T282S and A307G mutations in all isolates of NS5B. The UTR mutation site at position 243 was associated with interferon resistance, whereas the NS5B T282S mutation was considered as significant for SOF and ribavirin resistance. Docking studies in the HCV genotype 4a homology model predict SOF and ribavirin to accommodate a nucleotide-like binding mode, in which the T282 residue does interfere with the binding as it would in HCV genotypes 1 and 2. Mutation energy calculations predict T282S to moderately destabilize the binding of SOF and ribavirin by 0.57 and 0.47 kcal/mol, respectively. Conclusion The performed study identified and characterized several antiviral drug resistance mutations of HCV genotype 4a and proposed a mechanism by which the T282S mutation may contribute to SOF and ribavirin resistance.
Collapse
Affiliation(s)
- Mohamed M Adel El-Sokkary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Rehab Mohammed Elbargisy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| |
Collapse
|
124
|
Picarazzi F, Vicenti I, Saladini F, Zazzi M, Mori M. Targeting the RdRp of Emerging RNA Viruses: The Structure-Based Drug Design Challenge. Molecules 2020; 25:E5695. [PMID: 33287144 PMCID: PMC7730706 DOI: 10.3390/molecules25235695] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) is an essential enzyme for the viral replication process, catalyzing the viral RNA synthesis using a metal ion-dependent mechanism. In recent years, RdRp has emerged as an optimal target for the development of antiviral drugs, as demonstrated by recent approvals of sofosbuvir and remdesivir against Hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively. In this work, we overview the main sequence and structural features of the RdRp of emerging RNA viruses such as Coronaviruses, Flaviviruses, and HCV, as well as inhibition strategies implemented so far. While analyzing the structural information available on the RdRp of emerging RNA viruses, we provide examples of success stories such as for HCV and SARS-CoV-2. In contrast, Flaviviruses' story has raised attention about how the lack of structural details on catalytically-competent or ligand-bound RdRp strongly hampers the application of structure-based drug design, either in repurposing and conventional approaches.
Collapse
Affiliation(s)
- Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| |
Collapse
|
125
|
Artese A, Svicher V, Costa G, Salpini R, Di Maio VC, Alkhatib M, Ambrosio FA, Santoro MM, Assaraf YG, Alcaro S, Ceccherini-Silberstein F. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist Updat 2020; 53:100721. [PMID: 33132205 PMCID: PMC7448791 DOI: 10.1016/j.drup.2020.100721] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
Coronaviridae is a peculiar viral family, with a very large RNA genome and characteristic appearance, endowed with remarkable tendency to transfer from animals to humans. Since the beginning of the 21st century, three highly transmissible and pathogenic coronaviruses have crossed the species barrier and caused deadly pneumonia, inflicting severe outbreaks and causing human health emergencies of inconceivable magnitude. Indeed, in the past two decades, two human coronaviruses emerged causing serious respiratory illness: severe acute respiratory syndrome coronavirus (SARS-CoV-1) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV), causing more than 10,000 cumulative cases, with mortality rates of 10 % for SARS-CoV-1 and 34.4 % for MERS-CoV. More recently, the severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) has emerged in China and has been identified as the etiological agent of the recent COVID-19 pandemic outbreak. It has rapidly spread throughout the world, causing nearly 22 million cases and ∼ 770,000 deaths worldwide, with an estimated mortality rate of ∼3.6 %, hence posing serious challenges for adequate and effective prevention and treatment. Currently, with the exception of the nucleotide analogue prodrug remdesivir, and despite several efforts, there is no known specific, proven, pharmacological treatment capable of efficiently and rapidly inducing viral containment and clearance of SARS-CoV-2 infection as well as no broad-spectrum drug for other human pathogenic coronaviruses. Another confounding factor is the paucity of molecular information regarding the tendency of coronaviruses to acquire drug resistance, a gap that should be filled in order to optimize the efficacy of antiviral drugs. In this light, the present review provides a systematic update on the current knowledge of the marked global efforts towards the development of antiviral strategies aimed at coping with the infection sustained by SARS-CoV-2 and other human pathogenic coronaviruses, displaying drug resistance profiles. The attention has been focused on antiviral drugs mainly targeting viral protease, RNA polymerase and spike glycoprotein, that have been tested in vitro and/or in clinical trials as well as on promising compounds proven to be active against coronaviruses by an in silico drug repurposing approach. In this respect, novel insights on compounds, identified by structure-based virtual screening on the DrugBank database endowed by multi-targeting profile, are also reported. We specifically identified 14 promising compounds characterized by a good in silico binding affinity towards, at least, two of the four studied targets (viral and host proteins). Among which, ceftolozane and NADH showed the best multi-targeting profile, thus potentially reducing the emergence of resistant virus strains. We also focused on potentially novel pharmacological targets for the development of compounds with anti-pan coronavirus activity. Through the analysis of a large set of viral genomic sequences, the current review provides a comprehensive and specific map of conserved regions across human coronavirus proteins which are essential for virus replication and thus with no or very limited tendency to mutate. Hence, these represent key druggable targets for novel compounds against this virus family. In this respect, the identification of highly effective and innovative pharmacological strategies is of paramount importance for the treatment and/or prophylaxis of the current pandemic but potentially also for future and unavoidable outbreaks of human pathogenic coronaviruses.
Collapse
Affiliation(s)
- Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy,Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy,Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Velia Chiara Di Maio
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy,Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | | |
Collapse
|
126
|
Liu XH, Zhang X, Lu ZH, Zhu YS, Wang T. Potential molecular targets of nonstructural proteins for the development of antiviral drugs against SARS-CoV-2 infection. Biomed Pharmacother 2020; 133:111035. [PMID: 33254013 PMCID: PMC7671653 DOI: 10.1016/j.biopha.2020.111035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023] Open
Abstract
The pandemic of SARS-CoV-2 has posed significant threats to public health worldwide. Target-based drug development is a promising approach against SARS-CoV-2 infection. Nonstructural proteins may play critical roles from drug design perspectives. Insights into NSPs of different viruses could streamline novel drug development.
Outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 have produced high pathogenicity and mortality rates in human populations. However, to meet the increasing demand for treatment of these pathogenic coronaviruses, accelerating novel antiviral drug development as much as possible has become a public concern. Target-based drug development may be a promising approach to achieve this goal. In this review, the relevant features of potential molecular targets in human coronaviruses (HCoVs) are highlighted, including the viral protease, RNA-dependent RNA polymerase, and methyltransferases. Additionally, recent advances in the development of antivirals based on these targets are summarized. This review is expected to provide new insights and potential strategies for the development of novel antiviral drugs to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Xiao Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-Hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - You-Shuang Zhu
- School of Biological Science, Jining Medical University, Jining, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, China.
| |
Collapse
|
127
|
Barage S, Karthic A, Bavi R, Desai N, Kumar R, Kumar V, Lee KW. Identification and characterization of novel RdRp and Nsp15 inhibitors for SARS-COV2 using computational approach. J Biomol Struct Dyn 2020; 40:2557-2574. [PMID: 33155531 PMCID: PMC7651200 DOI: 10.1080/07391102.2020.1841026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The World Health Organization has declared COVID-19 as a global health emergency. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and highlights an urgent need for therapeutics. Here, we have employed a series of computer-aided drug repurposing campaign to discover inhibitors of RNA dependent RNA polymerase (RdRp) and Nsp15/EndoU. Subsequently, MD simulation has been performed to observe dynamic behavior of identified leads at the active site of RdRp and Nsp15. We successfully identified novel lead molecule such as Alectinib for RdRp while Naldemedine and Ergotamine for NSP15. These lead molecules were accommodated in the active site of the enzyme and stabilized by the networks of the hydrogen bond, pi type and hydrophobic interaction with key residues of either target. Interestingly, identified compounds show molecular mimicry in terms of molecular interactions with key residues of RdRp and Nsp15 essential for catalysis and substrate interaction. Previously, Alectinib, Naldemedine and Ergotamine were used as drug in different diseases might be repurposed against selected protein targets of COVID19. Finally, we propose that the identified inhibitors represent a novel lead molecule to design a more effective inhibitor to stop the progress of pathogen. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - A Karthic
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.,School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra, India
| | - Neetin Desai
- SDSOS, NMIMS University, Mumbai, Maharashtra, India
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Vikas Kumar
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
128
|
Abstract
Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral genomes and transcribe viral mRNAs from individual viral genes as well as synthesize 5′ methylated cap and 3′ poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononegavirales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multimodular adapter P of Mononegavirales. We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo-electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainfluenza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales. We conclude by the discussion of remaining questions, evolutionary perspectives, and future directions.
Collapse
|
129
|
Mendes ÉA, Pilger DRBD, Santos Nastri ACDS, Malta FDM, Pascoalino BDS, Carneiro D'Albuquerque LA, Balan A, Freitas LHGD, Durigon EL, Carrilho FJ, Rebello Pinho JR. Sofosbuvir inhibits yellow fever virus in vitro and in patients with acute liver failure. Ann Hepatol 2020; 18:816-824. [PMID: 31594756 DOI: 10.1016/j.aohep.2019.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Direct antiviral agents (DAAs) are very efficient in inhibiting hepatitis C virus and might be used to treat infections caused by other flaviviruses whose worldwide detection has recently increased. The aim of this study was to verify the efficacy of DAAs in inhibiting yellow fever virus (YFV) by using drug repositioning (a methodology applied in the pharmaceutical industry to identify new uses for approved drugs). MATERIALS AND METHODS Three DAAs were evaluated: daclatasvir, sofosbuvir and ledipasvir or their combinations. For in vitro assays, the drugs were diluted in 100% dimethyl sulfoxide. Vaccine strain 17D and a 17D strain expressing the reporter fluorescent protein were used in the assays. A fast and reliable cell-based screening assay using Vero cells or Huh-7 cells (a hepatocyte-derived carcinoma ell line) was carried out. Two patients who acquired yellow fever virus with acute liver failure were treated with sofosbuvir for one week as a compassionate use. RESULTS Using a high-content screening assay, we verified that sofosbuvir presented the best antiviral activity against YFV. Moreover, after an off-label treatment with sofosbuvir, the two female patients diagnosed with yellow fever infection displayed a reduction in blood viremia and an improvement in the course of the disease, which was observed in the laboratory medical parameters related to disease evolution. CONCLUSIONS Sofosbuvir may be used as an option for treatment against YFV until other drugs are identified and approved for human use. These results offer insights into the role of nonstructural protein 5 (NS5) in YFV inhibition and suggest that nonstructural proteins may be explored as drug targets for YFV treatment.
Collapse
Affiliation(s)
- Érica Araújo Mendes
- Department of Microbiology, University of São Paulo Biomedical Sciences Institute, São Paulo, Brazil
| | - Denise Regina Bairros de Pilger
- Department of Microbiology, University of São Paulo Biomedical Sciences Institute, São Paulo, Brazil; Butantan Institute, São Paulo, Brazil
| | - Ana Catharina de Seixas Santos Nastri
- Department of Parasitic and Infectious Diseases, University of São Paulo School of Medicine, São Paulo, Brazil; LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Fernanda de Mello Malta
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | - Andrea Balan
- Department of Microbiology, University of São Paulo Biomedical Sciences Institute, São Paulo, Brazil
| | - Lucio Holanda Gondim de Freitas
- Department of Microbiology, University of São Paulo Biomedical Sciences Institute, São Paulo, Brazil; Butantan Institute, São Paulo, Brazil
| | - Edison Luis Durigon
- Department of Microbiology, University of São Paulo Biomedical Sciences Institute, São Paulo, Brazil
| | - Flair José Carrilho
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - João Renato Rebello Pinho
- Hospital Israelita Albert Einstein, São Paulo, Brazil; LIM-03, Central Laboratories Division, Clinics Hospital, São Paulo School of Medicine, University of São Paulo, São Paulo, Brazil; LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
130
|
Ribosome Pausing at Inefficient Codons at the End of the Replicase Coding Region Is Important for Hepatitis C Virus Genome Replication. Int J Mol Sci 2020; 21:ijms21186955. [PMID: 32971876 PMCID: PMC7555993 DOI: 10.3390/ijms21186955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infects liver cells and often causes chronic infection, also leading to liver cirrhosis and cancer. In the cytoplasm, the viral structural and non-structural (NS) proteins are directly translated from the plus strand HCV RNA genome. The viral proteins NS3 to NS5B proteins constitute the replication complex that is required for RNA genome replication via a minus strand antigenome. The most C-terminal protein in the genome is the NS5B replicase, which needs to initiate antigenome RNA synthesis at the very 3′-end of the plus strand. Using ribosome profiling of cells replicating full-length infectious HCV genomes, we uncovered that ribosomes accumulate at the HCV stop codon and about 30 nucleotides upstream of it. This pausing is due to the presence of conserved rare, inefficient Wobble codons upstream of the termination site. Synonymous substitution of these inefficient codons to efficient codons has negative consequences for viral RNA replication but not for viral protein synthesis. This pausing may allow the enzymatically active replicase core to find its genuine RNA template in cis, while the protein is still held in place by being stuck with its C-terminus in the exit tunnel of the paused ribosome.
Collapse
|
131
|
Perišić O. Recognition of Potential COVID-19 Drug Treatments through the Study of Existing Protein-Drug and Protein-Protein Structures: An Analysis of Kinetically Active Residues. Biomolecules 2020; 10:biom10091346. [PMID: 32967116 PMCID: PMC7565175 DOI: 10.3390/biom10091346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 01/18/2023] Open
Abstract
We report the results of our in silico study of approved drugs as potential treatments for COVID-19. The study is based on the analysis of normal modes of proteins. The drugs studied include chloroquine, ivermectin, remdesivir, sofosbuvir, boceprevir, and α-difluoromethylornithine (DMFO). We applied the tools we developed and standard tools used in the structural biology community. Our results indicate that small molecules selectively bind to stable, kinetically active residues and residues adjoining them on the surface of proteins and inside protein pockets, and that some prefer hydrophobic sites over other active sites. Our approach is not restricted to viruses and can facilitate rational drug design, as well as improve our understanding of molecular interactions, in general.
Collapse
Affiliation(s)
- Ognjen Perišić
- Big Blue Genomics, Vojvode Brane 32, 11000 Belgrade, Serbia
| |
Collapse
|
132
|
Ramesh D, Vijayakumar BG, Kannan T. Therapeutic potential of uracil and its derivatives in countering pathogenic and physiological disorders. Eur J Med Chem 2020; 207:112801. [PMID: 32927231 DOI: 10.1016/j.ejmech.2020.112801] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Uracil is one of the most notable pharmacophores in medicinal chemistry as the pyrimidine nucleobase forms an integral part of many commercial drugs. Though the name uracil is usually associated with cancer drugs, there are many uracil-based compounds which can treat different diseases when they are employed. So far, there has been no in-depth review concerning uracil drugs in the market, or in the different stages of clinical trials, including those approved or discontinued. The current work focuses on the importance of uracil and its derivatives in treating different diseases. The use of uracil compounds in treating viral infections, cancer, diabetic, thyroid and autosomal recessive disorders are discussed in the review. The mechanism of action of each uracil drug with emphasis on their structure and properties are discussed in detail. The targeted action of these drugs on sites or on the different stages of a disorder/pathogenic life cycle are also discussed. This review encompasses uracil drugs approved as well as those in development from the 1950's onwards. The utility of uracil in drug discovery and its association with a wide range of diseases is brought forth within this review to demonstrate its potential to a wider audience.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India
| | | | - Tharanikkarasu Kannan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
133
|
Jiang Y, Yin W, Xu HE. RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochem Biophys Res Commun 2020; 538:47-53. [PMID: 32943188 PMCID: PMC7473028 DOI: 10.1016/j.bbrc.2020.08.116] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly become a global pandemic. Although great efforts have been made to develop effective therapeutic interventions, only the nucleotide analog remdesivir was approved for emergency use against COVID-19. Remdesivir targets the RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral RNA replication and a promising drug target for COVID-19. Recently, several structures of RdRp in complex with substrate RNA and remdesivir were reported, providing insights into the mechanisms of RNA recognition by RdRp. These structures also reveal the mechanism of RdRp inhibition by nucleotide inhibitors and offer a molecular template for the development of RdRp-targeting drugs. This review discusses the recognition mechanism of RNA and nucleotide inhibitor by RdRp, and its implication in drug discovery.
Collapse
Affiliation(s)
- Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wanchao Yin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
134
|
Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P, Ng WL. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol Cell 2020; 79:710-727. [PMID: 32853546 PMCID: PMC7402271 DOI: 10.1016/j.molcel.2020.07.027] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) that is wreaking havoc on worldwide public health and economies has heightened awareness about the lack of effective antiviral treatments for human coronaviruses (CoVs). Many current antivirals, notably nucleoside analogs (NAs), exert their effect by incorporation into viral genomes and subsequent disruption of viral replication and fidelity. The development of anti-CoV drugs has long been hindered by the capacity of CoVs to proofread and remove mismatched nucleotides during genome replication and transcription. Here, we review the molecular basis of the CoV proofreading complex and evaluate its potential as a drug target. We also consider existing nucleoside analogs and novel genomic techniques as potential anti-CoV therapeutics that could be used individually or in combination to target the proofreading mechanism.
Collapse
Affiliation(s)
- Fran Robson
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Khadija Shahed Khan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Thi Khanh Le
- Life Science Department, University of Science and Technology of Hanoi (USTH), Hanoi, Vietnam; Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Sinem Demirbag
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Turkey
| | - Peter Barfuss
- Université Paris-Est, Cermics (ENPC), INRIA, 77455 Marne-la-Vallée, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Wai-Lung Ng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
135
|
Talele TT. Opportunities for Tapping into Three-Dimensional Chemical Space through a Quaternary Carbon. J Med Chem 2020; 63:13291-13315. [PMID: 32805118 DOI: 10.1021/acs.jmedchem.0c00829] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A quaternary carbon bears four other carbon substituents or combination of four non-hydrogen substituents at four vertices of a tetrahedron. The spirocyclic quaternary carbon positioned at the center of a bioactive molecule offers conformational rigidity, which in turn reduces the penalty for conformational entropy. The quaternary carbon is a predominant feature of natural product structures and has been associated with more effective and selective binding to target proteins compared to planar compounds with a high sp2 count. The presence of a quaternary carbon stereocenter allows the exploration of novel chemical space to obtain new molecules with enhanced three-dimensionality. These characteristics, coupled to an increasing awareness to develop sp3-rich molecules, boosted utility of quaternary carbon stereocenters in bioactive compounds. It is hoped that this Perspective will inspire the chemist to utilize quaternary carbon stereocenters to enhance potency, selectivity, and other drug-like properties.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
136
|
Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Front Pharmacol 2020; 11:1258. [PMID: 32973505 PMCID: PMC7466451 DOI: 10.3389/fphar.2020.01258] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
As the COVID-19 is still growing throughout the globe, a thorough investigation into the specific immunopathology of SARS-CoV-2, its interaction with the host immune system and pathogen evasion mechanism may provide a clear picture of how the pathogen can breach the host immune defenses in elderly patients and patients with comorbid conditions. Such studies will also reveal the underlying mechanism of how children and young patients can withstand the disease better. The study of the immune defense mechanisms and the prolonged immune memory from patients population with convalescent plasma may help in designing a suitable vaccine candidate not only for the current outbreak but also for similar outbreaks in the future. The vital drug candidates, which are being tested as potential vaccines or therapeutics against COVID-19, include live attenuated vaccine, inactivated or killed vaccine, subunit vaccine, antibodies, interferon treatment, repurposing existing drugs, and nucleic acid-based vaccines. Several organizations around the world have fast-tracked the development of a COVID-19 vaccine, and some drugs already went to phase III of clinical trials. Hence, here, we have tried to take a quick glimpse of the development stages of vaccines or therapeutic approaches to treat this deadly disease.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Manoj K. Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Snehasish Mandal
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
137
|
Pagadala NS, Bhat R, Kumar D J, Landi A. Discovery of anti-influenza nucleoside triphosphates targeting the catalytic site of A/PR/8/34/H1N1 polymerase. Med Chem Res 2020; 29:1463-1477. [PMID: 32837136 PMCID: PMC7246003 DOI: 10.1007/s00044-020-02561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/12/2020] [Indexed: 11/28/2022]
Abstract
In an effort to develop potent anti-influenza drugs that inhibit the activity of influenza virus RNA-dependent RNA polymerase (IAV RdRp), a database of nucleoside triphosphates with ~800 molecules were docked with the homology model of IAV RdRp from A/PR/8/34/H1N1 strain. Out of top 12 molecules that bind with higher affinities to the catalytic site of IAV RdRp above and below the PB1 priming loop, only seven molecules decreased the transcriptional activity of the viral RNA polymerase with an IC50 in the range of 0.09–3.58 µM. Molecular docking combining with experimental study indicated that the molecules with linear chain are more effective in inhibiting IAV RdRp replication than the molecules with V-shaped and are cyclic in nature. A correlation between ΔG and LogIC50 for these seven compounds resulted an R2 value of 0.73. Overall, these newly developed seven nucleoside triphosphates lay a strong foundation for the future development of a new therapeutics that can satisfy the Lipinski’s rule of five exhibiting high specificity to the catalytic site of influenza-A viruses.
Collapse
Affiliation(s)
- Nataraj Sekhar Pagadala
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1 Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB Canada
| | - Rakesh Bhat
- Precision Bio Laboratories, Edmonton, AB Canada
| | - Jagadeesh Kumar D
- Department of Biotechnology, Sir M. Visvesvaraya Institute of Technology, Bangalore, India
| | - Abdolamir Landi
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1 Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
138
|
Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal 2020; 10:320-328. [PMID: 32346490 PMCID: PMC7187848 DOI: 10.1016/j.jpha.2020.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 01/07/2023] Open
Abstract
Recently emerged SARS-CoV-2 caused a major outbreak of coronavirus disease 2019 (COVID-19) and instigated a widespread fear, threatening global health safety. To date, no licensed antiviral drugs or vaccines are available against COVID-19 although several clinical trials are under way to test possible therapies. During this urgent situation, computational drug discovery methods provide an alternative to tiresome high-throughput screening, particularly in the hit-to-lead-optimization stage. Identification of small molecules that specifically target viral replication apparatus has indicated the highest potential towards antiviral drug discovery. In this work, we present potential compounds that specifically target SARS-CoV-2 vital proteins, including the main protease, Nsp12 RNA polymerase and Nsp13 helicase. An integrative virtual screening and molecular dynamics simulations approach has facilitated the identification of potential binding modes and favourable molecular interaction profile of corresponding compounds. Moreover, the identification of structurally important binding site residues in conserved motifs located inside the active site highlights relative importance of ligand binding based on residual energy decomposition analysis. Although the current study lacks experimental validation, the structural information obtained from this computational study has paved way for the design of targeted inhibitors to combat COVID-19 outbreak.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
139
|
Pruijssers AJ, George AS, Schäfer A, Leist SR, Gralinksi LE, Dinnon KH, Yount BL, Agostini ML, Stevens LJ, Chappell JD, Lu X, Hughes TM, Gully K, Martinez DR, Brown AJ, Graham RL, Perry JK, Du Pont V, Pitts J, Ma B, Babusis D, Murakami E, Feng JY, Bilello JP, Porter DP, Cihlar T, Baric RS, Denison MR, Sheahan TP. Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Rep 2020; 32:107940. [PMID: 32668216 PMCID: PMC7340027 DOI: 10.1016/j.celrep.2020.107940] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV) potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 μM). Weaker activity is observed in Vero E6 cells (EC50 = 1.65 μM) because of their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase of SARS-CoV-2. In mice infected with the chimeric virus, therapeutic RDV administration diminishes lung viral load and improves pulmonary function compared with vehicle-treated animals. These data demonstrate that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.
Collapse
Affiliation(s)
- Andrea J Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA.
| | - Amelia S George
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E Gralinksi
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Dinnon
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maria L Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA
| | - Laura J Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA
| | - Tia M Hughes
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Jared Pitts
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Bin Ma
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | | | - Tomas Cihlar
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark R Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
140
|
Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, Wang X, Zhou F, Zhao W, Gao M, Chang S, Xie YC, Tian G, Jiang HW, Tao SC, Shen J, Jiang Y, Jiang H, Xu Y, Zhang S, Zhang Y, Xu HE. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020. [PMID: 32358203 DOI: 10.1126/scienceabc1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global crisis. Replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp) enzyme, a target of the antiviral drug remdesivir. Here we report the cryo-electron microscopy structure of the SARS-CoV-2 RdRp, both in the apo form at 2.8-angstrom resolution and in complex with a 50-base template-primer RNA and remdesivir at 2.5-angstrom resolution. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp, where remdesivir is covalently incorporated into the primer strand at the first replicated base pair, and terminates chain elongation. Our structures provide insights into the mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.
Collapse
Affiliation(s)
- Wanchao Yin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chunyou Mao
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaodong Luan
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan-Dan Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingya Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haixia Su
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fulai Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenfeng Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minqi Gao
- WuxiBiortus Biosciences Co. Ltd., Jiangyin 214437, China
| | - Shenghai Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Diagnostic Electron Microscopy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuan-Chao Xie
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guanghui Tian
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - He-Wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingshan Shen
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hualiang Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yechun Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
- Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
141
|
Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic. Sci Rep 2020; 10:9294. [PMID: 32518317 PMCID: PMC7283245 DOI: 10.1038/s41598-020-66440-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
As of today, there is no antiviral for the treatment of the SARS-CoV-2 infection, and the development of a vaccine might take several months or even years. The structural superposition of the hepatitis C virus polymerase bound to sofosbuvir, a nucleoside analog antiviral approved for hepatitis C virus infections, with the SARS-CoV polymerase shows that the residues that bind to the drug are present in the latter. Moreover, a multiple alignment of several SARS-CoV-2, SARS and MERS-related coronaviruses polymerases shows that these residues are conserved in all these viruses, opening the possibility to use sofosbuvir against these highly infectious pathogens.
Collapse
|
142
|
Tchesnokov EP, Bailey-Elkin BA, Mark BL, Götte M. Independent inhibition of the polymerase and deubiquitinase activities of the Crimean-Congo Hemorrhagic Fever Virus full-length L-protein. PLoS Negl Trop Dis 2020; 14:e0008283. [PMID: 32497085 PMCID: PMC7271988 DOI: 10.1371/journal.pntd.0008283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background The Crimean-Congo hemorrhagic fever virus (CCHFV) is a segmented negative-sense RNA virus that can cause severe human disease. The World Health Organization (WHO) has listed CCHFVas a priority pathogen with an urgent need for enhanced research activities to develop effective countermeasures. Here we adopted a biochemical approach that targets the viral RNA-dependent RNA polymerase (RdRp). The CCHFV RdRp activity is part of a multifunctional L protein that is unusually large with a molecular weight of ~450 kDa. The CCHFV L-protein also contains an ovarian tumor (OTU) domain that exhibits deubiquitinating (DUB) activity, which was shown to interfere with innate immune responses and viral replication. We report on the expression, characterization and inhibition of the CCHFV full-length L-protein and studied both RNA synthesis and DUB activity. Methodology/Principle findings Recombinant full-length CCHFV L protein was expressed in insect cells and purified to near homogeneity using affinity chromatography. RdRp activity was monitored with model primer/templates during elongation in the presence of divalent metal ions. We observed a 14-mer full length RNA product as well as the expected shorter products when omitting certain nucleotides from the reaction mixture. The D2517N mutation of the putative active site rendered the enzyme inactive. Inhibition of RNA synthesis was studies with the broad-spectrum antivirals ribavirin and favipiravir that mimic nucleotide substrates. The triphosphate form of these compounds act like ATP or GTP; however, incorporation of ATP or GTP is markedly favored over the inhibitors. We also studied the effects of bona fide nucleotide analogues 2’-deoxy-2’-fluoro-CTP (FdC) and 2’-deoxy-2’-amino-CTP and demonstrate increased inhibitory effects due to higher rates of incorporation. We further show that the CCHFV L full-length protein and the isolated OTU domain cleave Lys48- and Lys63-linked polyubiqutin chains. Moreover, the ubiquitin analogue CC.4 inhibits the CCHFV-associated DUB activity of the full-length L protein and the isolated DUB domain to a similar extent. Inhibition of DUB activity does not affect elongation of RNA synthesis, and inhibition of RNA synthesis does not affect DUB activity. Both domains are functionally independent under these conditions. Conclusions/Significance The requirements for high biosafety measures hamper drug discovery and development efforts with infectious CCHFV. The availability of full-length CCHFV L-protein provides an important tool in this regard. High-throughput screening (HTS) campaigns are now feasible. The same enzyme preparations can be employed to identify novel polymerase and DUB inhibitors. The tick-born Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe human disease with high fatality rates. Outbreaks have been documented in a large geographic area from Africa to Asia. Unfortunately, vaccines that would prevent infection with the virus or antiviral drugs that can be administered for disease treatment are not available. Biosafety requirements further impede research in this area. The development of biochemical tools could potentially address this problem. Here we have expressed recombinant viral L-protein in insect cells. The L-protein is unusually large and exhibits RNA synthesis and deubiquitinating activities that are required for efficient viral growth. We have demonstrated that two distinct activities can be monitored in biochemical assays. Inhibition of these activities was shown with prototypic compounds. Hence, the purified L-protein provides an attractive target and tool for future drug discovery and development efforts.
Collapse
Affiliation(s)
- Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Li Ka Shing Institute of Virology at University of Alberta, Edmonton, Alberta, Canada
| | | | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Li Ka Shing Institute of Virology at University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
143
|
Villalba B, Li J, Johnson KA. Resistance to excision determines efficiency of hepatitis C virus RNA-dependent RNA polymerase inhibition by nucleotide analogs. J Biol Chem 2020; 295:10112-10124. [PMID: 32457046 DOI: 10.1074/jbc.ra120.013422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
NS5B is the RNA-dependent RNA polymerase that catalyzes the replication of the hepatitis C virus genome. It is a major target for antiviral drugs including nucleoside analogs, such as the prodrugs mericitabine and sofosbuvir, which get metabolized to 2'-fluoro-2'C-methylcytidine-5'-triphosphate and 2'-fluoro-2'C-methyluridine-5'-triphosphate, respectively. These analogs act as chain terminators after they are incorporated during RNA synthesis. Recently, it has been shown that NS5B can efficiently remove chain terminators by a nucleotide-mediated excision reaction that rescues RNA synthesis. In this study, we use transient-state kinetics to understand the efficiency of inhibition for five nucleoside analogs. We show that CTP analogs are readily incorporated into a growing primer by NS5B but are also efficiently excised. In contrast, although UMP analogs are more slowly incorporated, the excision of UMP is slow and inefficient, and modifications to the 2'-carbon of the UTP ribose ring further decreased rates of excision to an undetectable level. Taken together, these data suggest that the clinical effectiveness of sofosbuvir is largely a function of being intractable to nucleotide-mediated excision compared with similar nucleoside analogs.
Collapse
Affiliation(s)
- Brian Villalba
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| | - Jiawen Li
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| |
Collapse
|
144
|
Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature 2020; 584:154-156. [PMID: 32438371 DOI: 10.1038/s41586-020-2368-8] [Citation(s) in RCA: 569] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 01/18/2023]
Abstract
The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes1-3. Here we present a cryo-electron microscopy structure of the SARS-CoV-2 RdRp in an active form that mimics the replicating enzyme. The structure comprises the viral proteins non-structural protein 12 (nsp12), nsp8 and nsp7, and more than two turns of RNA template-product duplex. The active-site cleft of nsp12 binds to the first turn of RNA and mediates RdRp activity with conserved residues. Two copies of nsp8 bind to opposite sides of the cleft and position the second turn of RNA. Long helical extensions in nsp8 protrude along exiting RNA, forming positively charged 'sliding poles'. These sliding poles can account for the known processivity of RdRp that is required for replicating the long genome of coronaviruses3. Our results enable a detailed analysis of the inhibitory mechanisms that underlie the antiviral activity of substances such as remdesivir, a drug for the treatment of coronavirus disease 2019 (COVID-19)4.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Goran Kokic
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Lucas Farnung
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
145
|
Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020. [PMID: 32277040 DOI: 10.1101/2020.03.16.993386] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A novel coronavirus [severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)] outbreak has caused a global coronavirus disease 2019 (COVID-19) pandemic, resulting in tens of thousands of infections and thousands of deaths worldwide. The RNA-dependent RNA polymerase [(RdRp), also named nsp12] is the central component of coronaviral replication and transcription machinery, and it appears to be a primary target for the antiviral drug remdesivir. We report the cryo-electron microscopy structure of COVID-19 virus full-length nsp12 in complex with cofactors nsp7 and nsp8 at 2.9-angstrom resolution. In addition to the conserved architecture of the polymerase core of the viral polymerase family, nsp12 possesses a newly identified β-hairpin domain at its N terminus. A comparative analysis model shows how remdesivir binds to this polymerase. The structure provides a basis for the design of new antiviral therapeutics that target viral RdRp.
Collapse
Affiliation(s)
- Yan Gao
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liming Yan
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Yucen Huang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Wang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Qianqian Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lianqi Zhang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Ji Ge
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Litao Zheng
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Ying Zhang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tian Hua
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijie Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China.
| | - Zihe Rao
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China.
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and College of Pharmacy, Nankai University, Tianjin, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| |
Collapse
|
146
|
Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020. [PMID: 32277040 DOI: 10.1126/science:abb7498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A novel coronavirus [severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)] outbreak has caused a global coronavirus disease 2019 (COVID-19) pandemic, resulting in tens of thousands of infections and thousands of deaths worldwide. The RNA-dependent RNA polymerase [(RdRp), also named nsp12] is the central component of coronaviral replication and transcription machinery, and it appears to be a primary target for the antiviral drug remdesivir. We report the cryo-electron microscopy structure of COVID-19 virus full-length nsp12 in complex with cofactors nsp7 and nsp8 at 2.9-angstrom resolution. In addition to the conserved architecture of the polymerase core of the viral polymerase family, nsp12 possesses a newly identified β-hairpin domain at its N terminus. A comparative analysis model shows how remdesivir binds to this polymerase. The structure provides a basis for the design of new antiviral therapeutics that target viral RdRp.
Collapse
Affiliation(s)
- Yan Gao
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liming Yan
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Yucen Huang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Wang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Qianqian Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lianqi Zhang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Ji Ge
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Litao Zheng
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Ying Zhang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tian Hua
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijie Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China.
| | - Zihe Rao
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China.
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and College of Pharmacy, Nankai University, Tianjin, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| |
Collapse
|
147
|
Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, Wang X, Zhou F, Zhao W, Gao M, Chang S, Xie YC, Tian G, Jiang HW, Tao SC, Shen J, Jiang Y, Jiang H, Xu Y, Zhang S, Zhang Y, Xu HE. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020; 368:1499-1504. [PMID: 32358203 PMCID: PMC7199908 DOI: 10.1126/science.abc1560] [Citation(s) in RCA: 857] [Impact Index Per Article: 171.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 01/18/2023]
Abstract
Understanding the inner workings of the virus that causes coronavirus disease 2019 (COVID-19) may help us to disrupt it. Yin et al. focused on the viral polymerase essential for replicating viral RNA. They determined a structure of the polymerase bound to RNA and to the drug remdesivir. Remdesivir mimics an RNA nucleotide building block and is covalently linked to the replicating RNA, which blocks further synthesis of RNA. The structure provides a template for designing improved therapeutics against the viral polymerase. Science, this issue p. 1499 The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global crisis. Replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp) enzyme, a target of the antiviral drug remdesivir. Here we report the cryo–electron microscopy structure of the SARS-CoV-2 RdRp, both in the apo form at 2.8-angstrom resolution and in complex with a 50-base template-primer RNA and remdesivir at 2.5-angstrom resolution. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp, where remdesivir is covalently incorporated into the primer strand at the first replicated base pair, and terminates chain elongation. Our structures provide insights into the mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.
Collapse
Affiliation(s)
- Wanchao Yin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chunyou Mao
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaodong Luan
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan-Dan Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingya Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haixia Su
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fulai Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenfeng Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minqi Gao
- WuxiBiortus Biosciences Co. Ltd., Jiangyin 214437, China
| | - Shenghai Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China.,Center of Diagnostic Electron Microscopy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuan-Chao Xie
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guanghui Tian
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - He-Wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingshan Shen
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hualiang Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yechun Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China. .,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China. .,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
148
|
Pruijssers AJ, George AS, Schäfer A, Leist SR, Gralinksi LE, Dinnon KH, Yount BL, Agostini ML, Stevens LJ, Chappell JD, Lu X, Hughes TM, Gully K, Martinez DR, Brown AJ, Graham RL, Perry JK, Du Pont V, Pitts J, Ma B, Babusis D, Murakami E, Feng JY, Bilello JP, Porter DP, Cihlar T, Baric RS, Denison MR, Sheahan TP. Remdesivir potently inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511392 DOI: 10.1101/2020.04.27.064279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC 50 = 0.01 μM). Weaker activity was observed in Vero E6 cells (EC 50 = 1.65 μM) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo , supporting its further clinical testing for treatment of COVID-19.
Collapse
|
149
|
Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Götte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020; 295:6785-6797. [PMID: 32284326 PMCID: PMC7242698 DOI: 10.1074/jbc.ra120.013679] [Citation(s) in RCA: 701] [Impact Index Per Article: 140.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Emma Woolner
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jason K Perry
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Joy Y Feng
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Danielle P Porter
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada .,Gilead Sciences, Inc., Foster City, California 94404
| |
Collapse
|
150
|
Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020; 368:779-782. [PMID: 32277040 PMCID: PMC7164392 DOI: 10.1126/science.abb7498] [Citation(s) in RCA: 1072] [Impact Index Per Article: 214.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Many in the scientific community have mobilized to understand the virus that is causing the global coronavirus disease 2019 (COVID-19) pandemic. Gao et al. focused on a complex that plays a key role in the replication and transcription cycle of the virus. They used cryo–electron microscopy to determine a 2.9-angstrom-resolution structure of the RNA-dependent RNA polymerase nsp12, which catalyzes the synthesis of viral RNA, in complex with two cofactors, nsp7 and nsp8. nsp12 is a target for nucleotide analog antiviral inhibitors such as remdesivir, and the structure may provide a basis for designing new antiviral therapeutics. Science, this issue p. 779 A novel coronavirus [severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2)] outbreak has caused a global coronavirus disease 2019 (COVID-19) pandemic, resulting in tens of thousands of infections and thousands of deaths worldwide. The RNA-dependent RNA polymerase [(RdRp), also named nsp12] is the central component of coronaviral replication and transcription machinery, and it appears to be a primary target for the antiviral drug remdesivir. We report the cryo–electron microscopy structure of COVID-19 virus full-length nsp12 in complex with cofactors nsp7 and nsp8 at 2.9-angstrom resolution. In addition to the conserved architecture of the polymerase core of the viral polymerase family, nsp12 possesses a newly identified β-hairpin domain at its N terminus. A comparative analysis model shows how remdesivir binds to this polymerase. The structure provides a basis for the design of new antiviral therapeutics that target viral RdRp.
Collapse
Affiliation(s)
- Yan Gao
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China.,Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liming Yan
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Yucen Huang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Wang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Qianqian Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lianqi Zhang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Ji Ge
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Litao Zheng
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Ying Zhang
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Life Sciences, Tianjin University, Tianjin, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tian Hua
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijie Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China.
| | - Zihe Rao
- Laboratory of Structural Biology, School of Life Sciences, and School of Medicine, Tsinghua University, Beijing, China. .,Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and College of Pharmacy, Nankai University, Tianjin, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| |
Collapse
|