101
|
|
102
|
Masuzawa N, Urata Y, Yagi K, Ashihara T. Constrained, Random, and Independent Motion of Texas-Red-labeled Chromatin in Living Interphase PtK2 Cells. Acta Histochem Cytochem 2000. [DOI: 10.1267/ahc.33.419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Naoko Masuzawa
- First Department of Pathology, Kyoto Prefectural University of Medicine
| | - Yoji Urata
- First Department of Pathology, Kyoto Prefectural University of Medicine
| | - Katsumi Yagi
- Department of Mathematics, Kyoto Prefectural University of Medicine
| | - Tsukasa Ashihara
- First Department of Pathology, Kyoto Prefectural University of Medicine
| |
Collapse
|
103
|
Ostashevsky JY, Reichman B, Lange CS. Higher-order structure of mammalian chromatin deduced from viscoelastometry data. J Biomol Struct Dyn 1999; 17:567-80. [PMID: 10636091 DOI: 10.1080/07391102.1999.10508387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The results of viscoelastometry (VE) for mammalian DNA have been puzzling because they have two orders of magnitude smaller measured viscoelastic relaxation times for mammalian chromosomes than that expected for DNA linear coils of chromosomal size. In an attempt to resolve this discrepancy, we have applied a recent model of G1 chromosome structure (J.Y. Ostashevsky, Mol Biol. Cell 9, 3031-3040, 1998) in which the 30 nm chromatin fiber of each chromosome forms a string of loop clusters (micelles). This model has two parameters: the number of loops per micelle (f) and the average loop size (Mf), which can be estimated independently from VE data. Using our VE data for plateau phase V79 Chinese hamster cells (unirradiated and X-irradiated with doses up to 40 Gy) we show that f approximately 13 , which is close to other estimates made using the model (f ranges from 10-20), and Mf approximately 2 Mbp, which is similar to estimates made from our nucleoid data (1.3 Mbp) and to estimates made in the literature using a variety of techniques (1-3 Mbp).
Collapse
Affiliation(s)
- J Y Ostashevsky
- Department of Radiation Oncology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
104
|
Pan YX, Xu J, Bolan E, Abbadie C, Chang A, Zuckerman A, Rossi G, Pasternak GW. Identification and characterization of three new alternatively spliced mu-opioid receptor isoforms. Mol Pharmacol 1999; 56:396-403. [PMID: 10419560 DOI: 10.1124/mol.56.2.396] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have identified four new mu-opiod receptor (MOR)-1 exons, indicating that the gene now contains at least nine exons spanning more than 200 kilobases. Replacement of exon 4 by combinations of the new exons yields three new receptors. When expressed in Chinese hamster ovary cells, all three variants displayed high affinity for mu-opioid ligands, but kappa and delta drugs were inactive. However, there were subtle, but significant, differences in the binding profiles of the three variants among themselves and from MOR-1. Immunohistochemically, the major variant, MOR-1C, displayed a regional distribution quite distinct from that of MOR-1. Region-specific processing also was seen at the mRNA level. Antisense mapping revealed that the four new exons were all involved in morphine analgesia. Together with two other variants generated from alternative splicing of exon 4, there are now six distinct MOR-1 receptors.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Brain/metabolism
- Cloning, Molecular
- Cricetinae
- Exons/genetics
- Male
- Mice
- Mice, Inbred ICR
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/isolation & purification
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/isolation & purification
Collapse
Affiliation(s)
- Y X Pan
- The Cotzias Laboratory of Neuro-Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Kozubek M, Kozubek S, Luk�?ov� E, Mare??kov� A, B�rtov� E, Skaln�kov� M, Jergov� A. High-resolution cytometry of FISH dots in interphase cell nuclei. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-0320(19990801)36:4<279::aid-cyto2>3.0.co;2-g] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
106
|
DeSilva U, Massa H, Trask BJ, Green ED. Comparative Mapping of the Region of Human Chromosome 7 Deleted in Williams Syndrome. Genome Res 1999. [DOI: 10.1101/gr.9.5.428] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Williams syndrome (WS) is a complex developmental disorder resulting from the deletion of a large (∼1.5–2 Mb) segment of human chromosome 7q11.23. Physical mapping studies have revealed that this deleted region, which contains a number of known genes, is flanked by several large, nearly identical blocks of DNA. The presence of such highly related DNA segments in close physical proximity to one another has hampered efforts to elucidate the precise long-range organization of this segment of chromosome 7. To gain insight about the structure and evolutionary origins of this important and complex genomic region, we have constructed a fully contiguous bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) contig map encompassing the corresponding region on mouse chromosome 5. In contrast to the difficulties encountered in constructing a clone-based physical map of the human WS region, the BAC/PAC-based map of the mouse WS region was straightforward to construct, with no evidence of large duplicated segments, such as those encountered in the human WS region. To confirm this difference, representative human and mouse BACs were used as probes for performing fluorescence in situ hybridization (FISH) to metaphase and interphase chromosomes. Human BACs derived from the nonunique portion of the WS region hybridized to multiple, closely spaced regions on human chromosome 7q11.23. In contrast, corresponding mouse BACs hybridized to a single site on mouse chromosome 5. Furthermore, FISH analysis revealed the presence of duplicated segments within the WS region of various nonhuman primates (chimpanzee, gorilla, orangutan, and gibbon). Hybridization was also noted at the genomic locations corresponding to human chromosome 7p22 and 7q22 in human, chimpanzee, and gorilla, but not in the other animal species examined. Together, these results indicate that the WS region is associated with large, duplicated blocks of DNA on human chromosome 7q11.23 as well as the corresponding genomic regions of other nonhuman primates. However, such duplications are not present in the mouse.
Collapse
|
107
|
Abstract
Nowhere is the record of receptor evolution more accessible than in the organization of the 19 vertebrate genes coding for subunits of the major inhibitory neurotransmitter receptor in the central nervous system, the gamma-aminobutyric acid receptor (GABAAR). Co-expression of alpha, beta, and gamma subunit genes is necessary for the formation of a GABAAR that is potentiated by widely used anxiolytics, anticonvulsants, and hypnotics. The identification of alpha, beta, and gamma genes on chromosomes 4, 5, and 15 suggests that co-localization of a gamma gene with an alpha and beta may be important for brain function. We have now directly examined the organization of GABAAR subunit genes on human chromosomes. Estimates of physical distance using in situ hybridization to cells in interphase, and gene localization using hybridization to cells in metaphase demonstrate the existence of beta-alpha-alpha-gamma gene clusters in cytogenetic bands on chromosomes 4(p12) and 5(q34). Sequencing of PAC clones establishes intercluster conservation of a unique head-to-head configuration for alpha and beta genes on chromosomes 4, 5, and 15. Remarkably, phylogenetic tree analysis predicts the existence of a beta-alpha-gamma ancestral gene cluster in which internal duplication of an ancestral alpha was followed by cluster duplication, resulting in the relative chromosomal positions of modern GABAAR subunit genes in the human genome.
Collapse
Affiliation(s)
- S J Russek
- Laboratory of Molecular Neurobiology, Department of Pharmacology, 80 East Concord Street, Boston University School of Medicine, Boston MA 02118, USA.
| |
Collapse
|
108
|
Frey MR, Bailey AD, Weiner AM, Matera AG. Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr Biol 1999; 9:126-35. [PMID: 10021385 DOI: 10.1016/s0960-9822(99)80066-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Coiled bodies are nuclear organelles that are highly enriched in small nuclear ribonucleoproteins (snRNPs) and certain basal transcription factors. Surprisingly, coiled bodies not only contain mature U snRNPs but also associate with specific chromosomal loci, including gene clusters that encode U snRNAs and histone messenger RNAs. The mechanism(s) by which coiled bodies associate with these genes is completely unknown. RESULTS Using stable cell lines, we show that artificial tandem arrays of human U1 and U2 snRNA genes colocalize with coiled bodies and that the frequency of the colocalization depends directly on the transcriptional activity of the array. Association of the genes with coiled bodies was abolished when the artificial U2 arrays contained promoter mutations that prevent transcription or when RNA polymerase II transcription was globally inhibited by alpha-amanitin. Remarkably, the association was also abolished when the U2 snRNA coding regions were replaced by heterologous sequences. CONCLUSIONS The requirement for the U2 snRNA coding region indicates that association of snRNA genes with coiled bodies is mediated by the nascent U2 RNA itself, not by DNA or DNA-bound proteins. Our data provide the first evidence that association of genes with a nuclear organelle can be directed by an RNA and suggest an autogenous feedback regulation model.
Collapse
Affiliation(s)
- M R Frey
- Department of Genetics, Case Western Reserve University, University Hospitals of Cleveland, Ohio 44106-4955, USA
| | | | | | | |
Collapse
|
109
|
Münkel C, Eils R, Dietzel S, Zink D, Mehring C, Wedemann G, Cremer T, Langowski J. Compartmentalization of interphase chromosomes observed in simulation and experiment. J Mol Biol 1999; 285:1053-65. [PMID: 9887267 DOI: 10.1006/jmbi.1998.2361] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human interphase chromosomes were simulated as a flexible fiber with excluded volume interaction, which represents the chromatin fiber of each chromosome. For the higher-order structures, we assumed a folding into 120 kb loops and an arrangement of these loops into rosette-like subcompartments. Chromosomes consist of subcompartments connected by small fragments of chromatin. Number and size of subcompartments correspond with chromosome bands in early prophase. We observed essentially separated chromosome arms in both our model calculations and confocal laser scanning microscopy, and measured the same overlap in simulation and experiment. Overlap, number and size of chromosome 15 subcompartments of our model chromosomes agree with subchromosomal foci composed of either early or late replicating chromatin, which were observed at all stages of the cell cycle and possibly provide a functionally relevant unit of chromosome territory compartmentalization. Computed distances of chromosome specific markers both on Mb and 10-100 Mb scale agree with fluorescent in situ hybridization measurements under different preparation conditions.
Collapse
Affiliation(s)
- C Münkel
- Division Biophysics of Macromolecules, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Solovjeva L, Svetlova M, Stein G, Chagin V, Rozanov Y, Zannis-Hadjopoulos M, Price G, Tomilin N. Conformation of replicated segments of chromosome fibres in human S-phase nucleus. Chromosome Res 1998; 6:595-602. [PMID: 10099872 DOI: 10.1023/a:1009293108736] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent statistical analysis of the folding of G0/G1 chromosomes using fluorescence in situ hybridization (FISH) allowed development of a random walk/giant loop model of chromosome structure. According to this model there are two levels of organization of G0/G1 chromosome fibres. On the first level, the fibres are arranged in giant loops several Mbp in size, and within each loop the fibres are randomly folded. On the second level, the loop attachment sites form a chromosome backbone that also shows random folding. Newly replicated segments of mammalian chromosomes may be directly visualized at high resolution in S-phase nuclei using immunofluorescent methods and appear as worm-like fibres. In our earlier study, we analysed conformation of the fibres in human cells blocked for 16 h at the G1/S boundary with 5-fluorodeoxyuridine (FdU) and then released into S-phase by the addition of a DNA precursor. However, long treatment of cells with FdU induces very short replicons and may promote apoptosis. In this study we analysed conformation of the fibres in normally proliferating human cells that had not been blocked with FdU for a long time. It has been found that replicated chromosome fibres visualized just after 2 h of incubation of the cells with a non-radioactively labelled DNA precursor behave as flexible polymer chains without major constraints, and that their local conformation in the range of several microns of their contour length may be considered as random. Confocal analysis of human X chromosomes visualized in HeLa cells using FISH with a specific painting probe shows that in S-phase the chromosomes occupy distinct nuclear territories and their apparent size does not differ from that in non-S-phase cells. This observation indicates that the second level of chromosome organization also exists in S-phase chromosomes. It appears, therefore, that the random walk/giant loop model developed earlier for G0/G1 chromosomes is also valid for S-phase chromosomes.
Collapse
Affiliation(s)
- L Solovjeva
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Ostashevsky J. A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes. Mol Biol Cell 1998; 9:3031-40. [PMID: 9802894 PMCID: PMC25584 DOI: 10.1091/mbc.9.11.3031] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A quantitative model of interphase chromosome higher-order structure is presented based on the isochore model of the genome and results obtained in the field of copolymer research. G1 chromosomes are approximated in the model as multiblock copolymers of the 30-nm chromatin fiber, which alternately contain two types of 0.5- to 1-Mbp blocks (R and G minibands) differing in GC content and DNA-bound proteins. A G1 chromosome forms a single-chain string of loop clusters (micelles), with each loop approximately 1-2 Mbp in size. The number of approximately 20 loops per micelle was estimated from the dependence of geometrical versus genomic distances between two points on a G1 chromosome. The greater degree of chromatin extension in R versus G minibands and a difference in the replication time for these minibands (early S phase for R versus late S phase for G) are explained in this model as a result of the location of R minibands at micelle cores and G minibands at loop apices. The estimated number of micelles per nucleus is close to the observed number of replication clusters at the onset of S phase. A relationship between chromosomal and nuclear sizes for several types of higher eukaryotic cells (insects, plants, and mammals) is well described through the micelle structure of interphase chromosomes. For yeast cells, this relationship is described by a linear coil configuration of chromosomes.
Collapse
Affiliation(s)
- J Ostashevsky
- Department of Radiation Oncology, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| |
Collapse
|
112
|
Sutherland HF, Kim UJ, Scambler PJ. Cloning and comparative mapping of the DiGeorge syndrome critical region in the mouse. Genomics 1998; 52:37-43. [PMID: 9740669 DOI: 10.1006/geno.1998.5414] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome deletions leading to the hemizygous loss of groups of contiguous genes are a major cause of human congenital defects. In some syndromes haploinsufficiency of a single gene causes the majority of the syndromal features, whereas other diseases are thought to be the consequences of a combined haploinsufficiency. In the case of the DiGeorge and velocardiofacial syndromes, caused by deletions within 22q11, the genetic analyses have so far failed to implicate a single gene. By virtue of FISH analysis and the creation of a BAC/P1 genomic clone contig we have mapped 19 murine homologues of genes and nine EST groups from the region deleted in DiGeorge syndrome and found them to be linked on mouse chromosome 16. Rearrangements during the divergence of mouse and human have led to differing gene orders in the two species, with implications for the most appropriate means of mimicking particular human deletions. The map confirms and extends previous analyses and the contig resources toward the generation of targeted deletions in the mouse.
Collapse
MESH Headings
- Animals
- Bacteriophage P1/genetics
- Cell Cycle Proteins
- Chromosome Mapping/methods
- Chromosomes, Artificial, Yeast/chemistry
- Chromosomes, Artificial, Yeast/genetics
- Chromosomes, Bacterial/genetics
- Chromosomes, Human, Pair 22/genetics
- Cloning, Molecular
- DiGeorge Syndrome/genetics
- Histone Chaperones
- Humans
- Mice
- Mice, Inbred Strains
- Nuclear Proteins/genetics
- Sequence Analysis, DNA
- Transcription Factors/genetics
Collapse
Affiliation(s)
- H F Sutherland
- Molecular Medicine Unit, Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | | | | |
Collapse
|
113
|
Martín-Parras L, Lucas I, Martínez-Robles ML, Hernández P, Krimer DB, Hyrien O, Schvartzman JB. Topological complexity of different populations of pBR322 as visualized by two-dimensional agarose gel electrophoresis. Nucleic Acids Res 1998; 26:3424-32. [PMID: 9649629 PMCID: PMC147708 DOI: 10.1093/nar/26.14.3424] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neutral/neutral two-dimensional (2D) agarose gelelectrophoresis was used to investigate populations of the different topological conformations that pBR322 can adopt in vivo in bacterial cells as well as in Xenopus egg extracts. To help in interpretation and identification of all the different signals, undigested as well as DNA samples pretreated with DNase I, topoisomerase I and topoisomerase II were analyzed. The second dimension of the 2D gel system was run with or without ethidium bromide to account for any possible changes in the migration behavior of DNA molecules caused by intercalation of this planar agent. Finally, DNA samples were isolated from a recA-strain of Escherichia coli , as well as after direct labeling of the replication intermediates in extracts of Xenopus laevis eggs. Altogether, the results obtained demonstrated that 2D gels can be readily used to identify most of the complex topological populations that circular molecules can adopt in vivo in both bacteria and eukaryotic cells.
Collapse
Affiliation(s)
- L Martín-Parras
- Departamento de Biología Celular y del Desarrollo, CIB (CSIC), Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
The techniques of in situ hybridization (ISH) are widely applied for analyzing the genetic make-up and RNA expression patterns of individual cells. This review focusses on a number of advances made over the last 5 years in the fluorescence ISH (FISH) field, i.e., Fiber-FISH, Multi-colour chromosome painting, Comparative Genomic Hybridization, Tyramide Signal Amplification and FISH with Polypeptide Nucleic Acid and Padlock probes.
Collapse
Affiliation(s)
- A K Raap
- Laboratory for Cytochemistry and Cytometry, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Netherlands.
| |
Collapse
|
115
|
Jackson DA, Pombo A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 1998; 140:1285-95. [PMID: 9508763 PMCID: PMC2132671 DOI: 10.1083/jcb.140.6.1285] [Citation(s) in RCA: 652] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In proliferating cells, DNA synthesis must be performed with extreme precision. We show that groups of replicons, labeled together as replicon clusters, form stable units of chromosome structure. HeLa cells were labeled with 5-bromodeoxyuridine (BrdU) at different times of S phase. At the onset of S phase, clusters of replicons were activated in each of approximately 750 replication sites. The majority of these replication "foci" were shown to be individual replicon clusters that remained together, as stable cohorts, throughout the following 15 cell cycles. In individual cells, the same replication foci were labeled with BrdU and 5-iododeoxyuridine at the beginning of different cell cycles. In DNA fibers, 95% of replicons in replicon clusters that were labeled at the beginning of one S phase were also labeled at the beginning of the next. This shows that a subset of origins are activated both reliably and efficiently in different cycles. The majority of replication forks activated at the onset of S phase terminated 45-60 min later. During this interval, secondary replicon clusters became active. However, while the activation of early replicons is synchronized at the onset of S phase, different secondary clusters were activated at different times. Nevertheless, replication foci pulse labeled during any short interval of S phase were stable for many cell cycles. We propose that the coordinated replication of related groups of replicons, that form stable replicon clusters, contributes to the efficient activation and propagation of S phase in mammalian cells.
Collapse
Affiliation(s)
- D A Jackson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom.
| | | |
Collapse
|
116
|
Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA, Sedat JW. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 1997; 7:930-9. [PMID: 9382846 DOI: 10.1016/s0960-9822(06)00412-x] [Citation(s) in RCA: 511] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Structural studies of fixed cells have revealed that interphase chromosomes are highly organized into specific arrangements in the nucleus, and have led to a picture of the nucleus as a static structure with immobile chromosomes held in fixed positions, an impression apparently confirmed by recent photobleaching studies. Functional studies of chromosome behavior, however, suggest that many essential processes, such as recombination, require interphase chromosomes to move around within the nucleus. RESULTS To reconcile these contradictory views, we exploited methods for tagging specific chromosome sites in living cells of Saccharomyces cerevisiae with green fluorescent protein and in Drosophila melanogaster with fluorescently labeled topoisomerase ll. Combining these techniques with submicrometer single-particle tracking, we directly measured the motion of interphase chromatin, at high resolution and in three dimensions. We found that chromatin does indeed undergo significant diffusive motion within the nucleus, but this motion is constrained such that a given chromatin segment is free to move within only a limited subregion of the nucleus. Chromatin diffusion was found to be insensitive to metabolic inhibitors, suggesting that it results from classical Brownian motion rather than from active motility. Nocodazole greatly reduced chromatin confinement, suggesting a role for the cytoskeleton in the maintenance of nuclear architecture. CONCLUSIONS We conclude that chromatin is free to undergo substantial Brownian motion, but that a given chromatin segment is confined to a subregion of the nucleus. This constrained diffusion is consistent with a highly defined nuclear architecture, but also allows enough motion for processes requiring chromosome motility to take place. These results lead to a model for the regulation of chromosome interactions by nuclear architecture.
Collapse
Affiliation(s)
- W F Marshall
- Department of Biochemistry, University of California at San Francisco, San Francisco, California, 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Hyrien O, Maric C, Lucas I. Role of nuclear architecture in the initiation of eukaryotic DNA replication. Biochimie 1997; 79:541-8. [PMID: 9466690 DOI: 10.1016/s0300-9084(97)82001-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The eukaryotic genome is compacted in the cell nucleus, in a way that allows its faithful and ordered replication each cell cycle. Chromatin is organized into topologically constrained loops that are anchored to the nuclear matrix by specific attachment regions (SARs). Chromatin loops were proposed to correspond to replication units. In particular, it has been suggested that replication origins coincide with SARs. Critical examination of these hypotheses has long been hampered by the elusive nature of higher eukaryotic DNA replication origins and termini. In recent years, however, a number of loci have been mapped for both SARs and replication units, and studies on the nuclear localization of replicating DNA and replication proteins have begun. We review these data and argue that they question this model. We then try to delineate other aspects of chromosome compartmentalization and cell-cycle remodeling which might be responsible for the specification and activation of metazoan DNA replication origins.
Collapse
Affiliation(s)
- O Hyrien
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, Paris, France
| | | | | |
Collapse
|
118
|
Yokota H, Singer MJ, van den Engh GJ, Trask BJ. Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei. Chromosome Res 1997; 5:157-66. [PMID: 9246408 DOI: 10.1023/a:1018438729203] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The large-scale structure of chromatin corresponding to G- and R-bands in human G0/G1 interphase nuclei was compared. Fluorescence in situ hybridization (FISH) was used to measure the interphase distance between 42 pairs of probes separated by 0.1-1.5 Mbp. The probe pairs were derived from 21q22.2 and Xp21.3, G-band positive regions, and from 4p16.3, 6p21.3, and Xq28, R-band positive regions. Distributions of measured interphase distances in all regions approximated a Rayleigh distribution, suggesting that the chromatin follows a random-walk path over this range. A linear correlation of mean-square interphase distance and genomic separation, also indicative of random-walk folding, was observed in all regions. The slope of the correlation observed using probes from G-band regions was systematically lower than that from R-band regions. The difference in the slope between Xp21.3 and Xq28 was particularly striking and was observed in normal fibroblast cells, fixed alternatively with methanol and acetic acid or paraformaldehyde, and HeLa cells. These results demonstrate regional differences in large-scale chromosome structure during interphase, with the more openly configured chromatin corresponding to R-bands.
Collapse
Affiliation(s)
- H Yokota
- Epoch Pharmaceuticals, Bothell, WA, USA
| | | | | | | |
Collapse
|
119
|
Wu H, Durante M, Sachs RK, Yang TC. Centric rings, acentric rings and excess acentric fragments based on a random-walk interphase chromosome model. Int J Radiat Biol 1997; 71:487-96. [PMID: 9191893 DOI: 10.1080/095530097143815] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Excess acentric fragments, consisting of acentric rings and acentric linear fragments, are among the most frequent kinds of chromosome-type aberrations produced by radiation. The frequency of acentric rings cannot be obtained directly by experiment but is estimated here from the ratio of acentric to centric rings, evaluated using a random-walk model for the organization of chromatin during interphase and an assumption that the probability of an exchange formation is proportional to the rate of collision between two DSB. This ratio is calculated to be 2.5 in low-LET irradiated human fibroblasts, significantly greater than the ratio if proximity effects are not considered. The calculated frequency of acentric rings is insufficient to account for all the observed excess acentric fragments. Assuming that the rest of the excess acentric fragments are due to incomplete exchanges, all possible recombinations between two DSB that result in acentric rings and acentric linear fragments have been identified. From the chromosome aberration data, the incompleteness parameter has been estimated. Intra-arm chromosome exchanges, either complete or incomplete, were estimated to account for more than 50% of the excess acentric fragments in human fibroblasts.
Collapse
Affiliation(s)
- H Wu
- NASA Johnson Space Center, Radiation Biophysics Laboratory, Houston Texas, USA
| | | | | | | |
Collapse
|
120
|
Hutchinson F. Calculation by microdosimetric methods of the formation by a single high-energy photon or electron of two lesions in the same DNA molecule. Int J Radiat Biol 1997; 71:485-6. [PMID: 9191892 DOI: 10.1080/095530097143806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The formation by a single high-energy photon or electron of two lesions (such as double-strand breaks) in the same DNA molecule is calculated by microdosimetric methods. The result is similar to a previous calculation using a target theory approach. Thus, it is reasonably certain that, for > or = 1 Gy of sparsely ionizing radiation acting on a DNA molecule of > or = 10(6) base pairs, < or = 3% of two-hit events such as deletions are from a single radiation event.
Collapse
Affiliation(s)
- F Hutchinson
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06520-8040, USA
| |
Collapse
|
121
|
Ichikawa K, Yamabe Y, Imamura O, Kuromitsu J, Sugawara K, Suzuki N, Shimamoto A, Matsumoto T, Tokutake Y, Kitao S, Kataoka H, Satoh M, Sugimoto M, Goto M, Sugawara M, Furuichi Y. Cloning and characterization of a novel gene, WS-3, in human chromosome 8p11-p12. Gene 1997; 189:277-87. [PMID: 9168138 DOI: 10.1016/s0378-1119(96)00863-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel human gene referred to as the WS-3 gene, in the short arm of human chromosome 8, was cloned by a combination of exon trapping, thermal asymmetric interlaced-PCR (TAIL-PCR) and the Marathon-Ready cDNA amplification method. The gene consists of 7 exons separated by 6 introns, and is at the telomere side of the STS marker, D8S1055. The full-length WS-3 gene contains 1052 nucleotides and codes for a protein of 190 amino acids with a calculated mol. wt. of 20,747. Southern blot experiments showed that the WS-3 gene exists as a single copy in the human genome. A protein encoded by the WS-3 gene has an R-G-D (Arg-Gly-Asp) motif in the N-terminal region, which seems to confer adhesive properties to macromolecular proteins like fibronectin. Although WS-3 is a small gene with unknown biological function, its ubiquitous expression in various tissues and organs suggests that the encoded protein is one of the essential components of all organs and tissues.
Collapse
Affiliation(s)
- K Ichikawa
- AGENE Research Institute, Kamakura-shi, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Daugherty BL, Springer MS. The beta-chemokine receptor genes CCR1 (CMKBR1), CCR2 (CMKBR2), and CCR3 (CMKBR3) cluster within 285 kb on human chromosome 3p21. Genomics 1997; 41:294-5. [PMID: 9143512 DOI: 10.1006/geno.1997.4626] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- B L Daugherty
- Department of Inflammation Research, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | |
Collapse
|
123
|
Abstract
A polymer model for the overall geometric structure of a human chromosome during the G0/G1 portion of cell-cycle interphase is constructed, based on fluorescence in situ hybridization data on distances between defined genomic sequences. The model consists of flexible giant loops, averaging about 6 million base pairs, with two random-walk backbones; it involves essentially three parameters. Numerical results based on properly selected values of parameters fit the data well.
Collapse
Affiliation(s)
- B Liu
- Department of Mathematics, College of St. Scholastica, Duluth, MN 55811, USA.
| | | |
Collapse
|
124
|
Gotta M, Gasser SM. Nuclear organization and transcriptional silencing in yeast. EXPERIENTIA 1996; 52:1136-47. [PMID: 8988257 DOI: 10.1007/bf01952113] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcriptional repression at the yeast silent mating type loci requires the formation of a nucleoprotein complex at specific cis-acting elements called silencers, which in turn promotes the binding of a histone-associated Sir-protein complex to adjacent chromatin. A similar mechanism of long-range transcriptional repression appears to function near telomeric repeat sequences, where it has been demonstrated that Sir3p is a limiting factor for the propagation of silencing. A combined immunofluorescence/in situ hybridization method for budding yeast was developed that maintains the three-dimensional structure of the nucleus. In wild-type cells the immunostaining of Sir3p, Sir4p and Rap1 colocalizes with Y' subtelomeric sequences detected by in situ hybridization. All three antigens and the subtelomeric in situ hybridization signals are clustered in foci, which are often adjacent to, but not coincident with, nuclear pores. This colocalization of Rap1, Sir3p and Sir4p with telomeres is lost in sir mutants, and also when Sir4p is overexpressed. To test whether the natural positioning of the two HM loci, located roughly 10 and 25 kb from the ends of chromosome III, is important for silencer function, a reporter gene flanked by wild-type silencer elements was integrated at various internal sites on other yeast chromosomes. We find that integration at internal loci situated far from telomeres abrogates the ability of silencers to repress the reporter gene. Silencing can be restored by creation of a telomere at 13 kb from the reporter construct, or by insertion of 340 bp of yeast telomeric repeat sequence at this site without chromosomal truncation. Elevation of the internal nuclear pools of Sir1p, Sir3p and Sir4p can relieve the lack of repression at the LYS2 locus in an additive manner, suggesting that in wild-type cells silencer function is facilitated by its juxtaposition to a pool of highly concentrated Sir proteins, such as those created by telomere clustering.
Collapse
Affiliation(s)
- M Gotta
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges/Lausanne, Switzerland
| | | |
Collapse
|
125
|
Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 1996; 135:1685-700. [PMID: 8991083 PMCID: PMC2133976 DOI: 10.1083/jcb.135.6.1685] [Citation(s) in RCA: 553] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report a new method for in situ localization of DNA sequences that allows excellent preservation of nuclear and chromosomal ultrastructure and direct, in vivo observations. 256 direct repeats of the lac operator were added to vector constructs used for transfection and served as a tag for labeling by lac repressor. This system was first characterized by visualization of chromosome homogeneously staining regions (HSRs) produced by gene amplification using a dihydrofolate reductase (DHFR) expression vector with methotrexate selection. Using electron microscopy, most HSRs showed approximately 100-nm fibers, as described previously for the bulk, large-scale chromatin organization in these cells, and by light microscopy, distinct, large-scale chromatin fibers could be traced in vivo up to 5 microns in length. Subsequent experiments demonstrated the potential for more general applications of this labeling technology. Single and multiple copies of the integrated vector could be detected in living CHO cells before gene amplification, and detection of a single 256 lac operator repeat and its stability during mitosis was demonstrated by its targeted insertion into budding yeast cells by homologous recombination. In both CHO cells and yeast, use of the green fluorescent protein-lac repressor protein allowed extended, in vivo observations of the operator-tagged chromosomal DNA. Future applications of this technology should facilitate structural, functional, and genetic analysis of chromatin organization, chromosome dynamics, and nuclear architecture.
Collapse
Affiliation(s)
- C C Robinett
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign 61801, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Baker MD, Read LR, Beatty BG, Ng P. Requirements for ectopic homologous recombination in mammalian somatic cells. Mol Cell Biol 1996; 16:7122-32. [PMID: 8943368 PMCID: PMC231716 DOI: 10.1128/mcb.16.12.7122] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ectopic recombination occurs between DNA sequences that are not in equivalent positions on homologous chromosomes and has beneficial as well as potentially deleterious consequences for the eukaryotic genome. In the present study, we have examined ectopic recombination in mammalian somatic (murine hybridoma) cells in which a deletion in the mu gene constant (Cmu) region of the endogenous chromosomal immunoglobulin mu gene is corrected by using as a donor an ectopic wild-type Cmu region. Ectopic recombination restores normal immunoglobulin M production in hybridomas. We show that (i) chromosomal mu gene deletions of 600 bp and 4 kb are corrected less efficiently than a deletion of only 2 bp, (ii) the minimum amount of homology required to mediate ectopic recombination is between 1.9 and 4.3 kb, (iii) the frequency of ectopic recombination does not depend on donor copy number, and (iv) the frequency of ectopic recombination in hybridoma lines in which the donor and recipient Cmu regions are physically connected to each other on the same chromosome can be as much as 4 orders of magnitude higher than it is for the same sequences located on homologous or nonhomologous chromosomes. The results are discussed in terms of a model for ectopic recombination in mammalian somatic cells in which the scanning mechanism that is used to locate a homologous partner operates preferentially in cis.
Collapse
Affiliation(s)
- M D Baker
- Department of Pathobiology, University of Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
127
|
Guo SW, Flejter WL. Statistical methods for gene map construction by fluorescence in situ hybridization. Genome Res 1996; 6:1133-50. [PMID: 8973908 DOI: 10.1101/gr.6.12.1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fluorescence in situ hybridization (FISH) provides an efficient and powerful technique for ordering loci both on metaphase chromosomes and in less condensed interphase chromatin. Two-color metaphase FISH can be used to order pairs of loci relative to the centromere; two- and three-color interphase FISH can be used to accurately order trios of loci spaced within 1 Mb relative to one another. Loci separated by a distance > 1-2 Mb exhibit chromatin loops that often give rise to a statistically significant but incorrect order. We derive Bayesian methods for selecting the best locus order based on microscopic evaluation for each of these types of FISH mapping data. We then describe how the results from several two- and three-locus analyses can be combined to evaluate the approximate posterior probability of a given multilocus order within the limits of the technology utilized. These methods directly address the question of interest: What is the probability that the inferred two-, three-, or multilocus order actually is correct? We illustrate our analysis methods by applying them to previously described FISH mapping data of 14 markers in the BRCA1 region on chromosome 17q12-q21. We also propose design strategies to order a group of closely spaced (< 1 Mb) loci, two and three loci at a time, using a bisection strategy for two-color FISH data and a trisection strategy for three-color FISH data. These strategies have the best worst-case performance for ordering a new locus relative to a group of ordered loci and are nearly optimal for ordering a group of loci of unknown order. These, in conjunction with physical mapping strategies, provide efficient and reliable methods for gene map construction by FISH.
Collapse
Affiliation(s)
- S W Guo
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor 48109-2029, USA.
| | | |
Collapse
|
128
|
Kurz A, Lampel S, Nickolenko JE, Bradl J, Benner A, Zirbel RM, Cremer T, Lichter P. Active and inactive genes localize preferentially in the periphery of chromosome territories. J Biophys Biochem Cytol 1996; 135:1195-205. [PMID: 8947544 PMCID: PMC2121085 DOI: 10.1083/jcb.135.5.1195] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The intranuclear position of a set of genes was analyzed with respect to the territories occupied by the whole chromosomes in which these genes are localized. Genes and their respective chromosome territories were simultaneously visualized in three-dimensionally preserved nuclei applying dual color fluorescence in situ hybridization. Three coding (DMD, MYH7, and HBB) and two noncoding sequences (D1Z2 and an anonymous sequence) were analyzed in four different cell types, including cells where DMD and MYH7 are actively transcribed. Spatial analysis by confocal laser scanning microscopy revealed that the genes are preferentially located in the periphery of chromosome territories. This positioning was independent from the activity of the genes. In contrast, the non-expressed anonymous fragment was found randomly distributed or localized preferentially in the interior of the corresponding chromosome territory. Furthermore, the distribution of the analyzed genes within the territorial peripheries was found to be highly characteristic for each gene, and, again, independent from its expression. The impact of these findings with regard to the three-dimensional arrangement of the linear DNA string within chromosome territories, as well as with respect to a putative nuclear subcompartment confining gene expression, are discussed.
Collapse
Affiliation(s)
- A Kurz
- Abteilung Organisation komplexer Genome, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Ferrier DE, Akam M. Organization of the Hox gene cluster in the grasshopper, Schistocerca gregaria. Proc Natl Acad Sci U S A 1996; 93:13024-9. [PMID: 8917538 PMCID: PMC24040 DOI: 10.1073/pnas.93.23.13024] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1996] [Accepted: 08/20/1996] [Indexed: 02/03/2023] Open
Abstract
The conserved organization of the Hox genes throughout the animal kingdom has become one of the major paradigms of evolutionary developmental biology. We have examined the organization of the Hox genes of the grasshopper, Schistocerca gregaria. We find that the grasshopper Hox cluster is over 700 kb long, and is not split into equivalents of the Antennapedia complex and the bithorax complex of Drosophila melanogaster. SgDax and probably also Sgzen, the grasshopper homologues of fushi-tarazu (ftz) and Zerknüllt (zen), respectively, are also in the cluster, showing that the non-homeotic Antp-class genes, "accessory genes," are an ancient feature of insect Hox clusters.
Collapse
Affiliation(s)
- D E Ferrier
- Wellcome/Cancer Research Campaign Institute, Cambridge, United Kingdom,
| | | |
Collapse
|
130
|
Hutchinson F. Formation of two double-strand breaks in the same DNA molecule by a single high-energy photon or ionizing particle. Int J Radiat Biol 1996; 70:505-12. [PMID: 8947530 DOI: 10.1080/095530096144699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
I calculate the probability that a single high-energy ionizing particle or photon makes two widely spaced double-strand breaks in the same DNA molecule. Deletions (or inversions) between two breaks formed by the same incident particle are linear in radiation dose and occur even at extremely low dose-rates; deletions between breaks induced by separate particles are quadratic in dose and are much fewer at very low dose-rate. The calculations show that for a few grays of sparsely ionizing radiations such as fast electrons, X-rays of gamma-rays, the formation of two double-strand breaks in a DNA molecule 1 megabase in size should be nearly entirely quadratic in dose. For heavily ionizing particles such as alpha particles from radon products, the linear and quadratic terms are comparable in size. These conclusions are robust and insensitive to details of the calculations. The results are essentially the same for DNA in a random coil configuration and for DNA uniformly and randomly distributed within a sphere.
Collapse
Affiliation(s)
- F Hutchinson
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06520-8040, USA
| |
Collapse
|
131
|
Jiang J, Hulbert SH, Gill BS, Ward DC. Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:497-502. [PMID: 8914510 DOI: 10.1007/bf02172395] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The chromatin in interphase nuclei is much less condensed than are metaphase chromosomes, making the resolving power of fluorescence in situ hybridization (FISH) two orders of magnitude higher in interphase nuclei than on metaphase chromosomes. In mammalian species it has been demonstrated that within a certain range the interphase distance between two FISH sites can be used to estimate the linear DNA distance between the two probes. The interphase mapping strategy has never been applied in plant species, mainly because of the low sensitivity of the FISH technique on plant chromosomes. Using a CCD (charge-coupled device) camera system, we demonstrate that DNA probes in the 4 to 8 kb range can be detected on both metaphase and interphase chromosomes in maize. DNA probes pA1-Lc and pSh2.5.SstISalI, which contain the maize loci a1 and sh2, respectively, and are separated by 140 kb, completely overlapped on metaphase chromosomes. However, when the two probes were mapped in interphase nuclei, the FISH signals were well separated from each other in 86% of the FISH sites analyzed. The average interphase distance between the two probes was 0.50 micron. This result suggests that the resolving power of interphase FISH mapping in plant species can be as little as 100 kb. We also mapped the interphase locations of another pair of probes, ksu3/4 and ksu16, which span the Rp1 complex controlling rust resistance of maize. Probes ksu3/4 and ksu16 were mapped genetically approximately 4 cM apart and their FISH signals were also overlapped on metaphase chromosomes. These two probes were separated by an average of 2.32 microns in interphase nuclei. The possibility of estimating the linear DNA distance between ksu3/4 and ksu16 is discussed.
Collapse
Affiliation(s)
- J Jiang
- Department of Horticulture, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
132
|
Laan M, Isosomppi J, Klockars T, Peltonen L, Palotie A. Utilization of FISH in positional cloning: an example on 13q22. Genome Res 1996; 6:1002-12. [PMID: 8908520 DOI: 10.1101/gr.6.10.1002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In positional cloning the initial assignment of a gene to a specific chromosomal locus is followed by physical mapping of the critical region. The construction of a high-resolution physical map still involves considerable effort. However, new high-resolution fluorescence in situ hybridization (FISH) techniques have facilitated this process substantially. Here we summarize a strategy that combines a spectrum of FISH techniques [metaphase, interphase, mechanically stretched chromosomes (MSCs), and fiber-FISH on free chromatin] for the construction and characterization of a high-resolution physical map for a positional cloning project. The chromosomal region 13q22, containing the locus of the variant form of the neuronal ceroid lipofuscinosis (vLINCL, CLN5) disease, serves here as an example for this process. We used metaphase FISH to exclude positionally a candidate gene, to refine the locus to 13q22, and to analyze the possible chimerism of the YACs in the region. Both metaphase and interphase FISH techniques were applied to determine the low-resolution distances between the restricting markers. FISH using MSCs confirmed the centromeric-telomeric order of the clones and facilitated the estimation of the size of the gaps between the clones. Finally, fiber-FISH was found to be the method of choice for the construction of an accurate high-resolution map of the contig established over the restricted region. Thus, FISH techniques in combination with genetic mapping data enabled the refinement of the initial 4-cM region to a high-resolution map of only 400 kb in length. Here the FISH strategy replaced the need for many laborious traditional physical mapping methods, e.g., pulsed-field gel electrophoresis.
Collapse
Affiliation(s)
- M Laan
- Department of Clinical Chemistry, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
133
|
Tokutake Y, Satoh M, Suzuki N, Sugimoto M, Sugawara M, Goto M, Furuichi Y. Estimation of the physical distance between major genomic markers in the Werner syndrome locus (8p11.2-12) by dual-color fish analysis. THE JAPANESE JOURNAL OF HUMAN GENETICS 1996; 41:291-7. [PMID: 8996964 DOI: 10.1007/bf01913171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The gene responsible for Werner syndrome (WS) is considered to be located between D8S131 and D8S87 in the 8p11.2-12 region that includes the closest marker D8S339 (Goto et al. (1992) Nature 355: 735-738). In this experiment, the order of major markers in this region was determined and the physical distances between them were estimated by dual-color fluorescence in situ hybridization (FISH) using P1, PAC and cosmid clone DNAs as probes. The fine overall order of telomere-D8S131-D8S339-GSR-PP2A beta-D8S283-D8S87-centromere was determined for the first time. The distance from D8S131 to D8S87 was estimated to be 1,634 kb. To our surprise, the distance between D8S131 and D8S87 is much shorter than previously estimated by recombination analysis, 8.3 cM equivalent to 8.3 Mb in physical distance. These information provide the basis for the positional cloning of WS gene and the identification of its mutation.
Collapse
Affiliation(s)
- Y Tokutake
- AGENE Research Institute, Kamakura, Japan
| | | | | | | | | | | | | |
Collapse
|
134
|
Thiagalingam S, Lengauer C, Leach FS, Schutte M, Hahn SA, Overhauser J, Willson JK, Markowitz S, Hamilton SR, Kern SE, Kinzler KW, Vogelstein B. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet 1996; 13:343-6. [PMID: 8673134 DOI: 10.1038/ng0796-343] [Citation(s) in RCA: 423] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chromosome deletions are the most common genetic events observed in cancer. These deletions are generally thought to reflect the existence of a tumour suppressor gene within the lost region. However, when the lost region does not precisely coincide with a hereditary cancer locus, identification of the putative tumour suppressor gene (target of the deletion) can be problematic. For example, previous studies have demonstrated that chromosome 18q is lost in over 60% of colorectal as well as in other cancers, but the lost region could not be precisely determined. Here we present a rigorous strategy for mapping and evaluating allelic deletions in sporadic tumours, and apply it to the evaluation of chromosome 18 in colorectal cancers. Using this approach, we define a minimally lost region (MLR) on chromosome 18q21, which contains at least two candidate tumour suppressor genes, DPC4 and DCC. The analysis further suggested genetic heterogeneity, with DPC4 the deletion target in up to a third of the cases and DCC or a neighbouring gene the target in the remaining tumours.
Collapse
Affiliation(s)
- S Thiagalingam
- Johns Hopkins Oncology Center, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
In the course of anaphase, the chromosomal DNA is submitted to the traction of the spindle. Several physical problems are associated with this action. In particular, the sister chromatids are generally topologically intertwined at the onset of anaphase, and the removal of the intertwinings results from a coupling between the enzymatic action of type II DNA topoisomerases and the force exerted by the spindle. We propose a physical analysis of some of these problems: 1) We compare the maximum force the spindle can produce with the force required to break a DNA molecule, and define the conditions compatible with biological safety during anaphase. 2) We show that the behavior of the sister chromatids in the absence of type II DNA topoisomerases can be described by two distinct models: a chain pullout model accounts for the experimental observations made in the budding yeast, and a model of the mechanical rupture of rubbers accounts for the nondisjunction in standard cases. 3) Using the fluctuation-dissipation theorem, we introduce an effective protein friction associated with the strand-passing activity of type II DNA topoisomerases. We show that this friction can be used to describe the situation in which one chromosome passes entirely through another one. Possible experiments that could test these theoretical analyses are discussed.
Collapse
Affiliation(s)
- G Jannink
- Laboratoire Léon Brillouin (CEA-CNRS), Departement de Biologie Cellulaire et Moléculaire, CEA/Saclay, Gif-sur-Yvette, France
| | | | | |
Collapse
|
136
|
Löbrich M, Rydberg B, Cooper PK. Random-breakage mapping method applied to human DNA sequences. Nucleic Acids Res 1996; 24:1802-8. [PMID: 8657558 PMCID: PMC145864 DOI: 10.1093/nar/24.10.1802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The random-breakage mapping method [Game et al. (1990) Nucleic Acids Res., 18, 4453-4461] was applied to DNA sequences in human fibroblasts. The methodology involves NotI restriction endonuclease digestion of DNA from irradiated calls, followed by pulsed-field gel electrophoresis, Southern blotting and hybridization with DNA probes recognizing the single copy sequences of interest. The Southern blots show a band for the unbroken restriction fragments and a smear below this band due to radiation induced random breaks. This smear pattern contains two discontinuities in intensity at positions that correspond to the distance of the hybridization site to each end of the restriction fragment. By analyzing the positions of those discontinuities we confirmed the previously mapped position of the probe DXS1327 within a NotI fragment on the X chromosome, thus demonstrating the validity of the technique. We were also able to position the probes D21S1 and D21S15 with respect to the ends of their corresponding NotI fragments on chromosome 21. A third chromosome 21 probe, D21S11, has previously been reported to be close to D21S1, although an uncertainty about a second possible location existed. Since both probes D21S1 and D21S11 hybridized to a single NotI fragment and yielded a similar smear pattern, this uncertainty is removed by the random-breakage mapping method.
Collapse
Affiliation(s)
- M Löbrich
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
137
|
Ferguson ML, Brown SE, Knudson DL. FISH digital imaging microscopy in mosquito genomics. ACTA ACUST UNITED AC 1996; 12:91-6. [PMID: 15275237 DOI: 10.1016/0169-4758(96)80667-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The yellow fever mosquito, Aedes aegypti, transmits pathogens that affect both humans and livestock, and has been the focus of extensive research to identify genetic loci that may be useful in control strategies. Fluorescence in situ hybridization (FISH) and digital imaging microscopy have provided a rapid mechanism to populate the physical map with probes derived from genetic markers, cDNAs and recombinant genomic libraries. When the physical and genetic linkage maps are aligned, map-based cloning will allow the rapid isolation of target genomic sequences. The strategy of FISH mapping and the results of initial hybridization studies are reviewed here by Martin Ferguson, Susan Brown and Dennis Knudson. An Ae. aegypti-specific genomic database, which collates data from mapping studies, sequences, references and other relevant information, is also discussed.
Collapse
Affiliation(s)
- M L Ferguson
- Department of Entomology, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
138
|
|
139
|
Yokota H, van den Engh G, Hearst JE, Sachs RK, Trask BJ. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Biophys Biochem Cytol 1995; 130:1239-49. [PMID: 7559748 PMCID: PMC2120584 DOI: 10.1083/jcb.130.6.1239] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We determined the folding of chromosomes in interphase nuclei by measuring the distance between points on the same chromosome. Over 25,000 measurements were made in G0/G1 nuclei between DNA sequences separated by 0.15-190 megabase pairs (Mbp) on three human chromosomes. The DNA sequences were specifically labeled by fluorescence in situ hybridization. The relationship between mean-square interphase distance and genomic separation has two linear phases, with a transition at approximately 2 Mbp. This biphasic relationship indicates the existence of two organizational levels at scales > 100 kbp. On one level, chromatin appears to be arranged in large loops several Mbp in size. Within each loop, chromatin is randomly folded. On the second level, specific loop-attachment sites are arranged to form a supple, backbonelike structure, which also shows characteristic random walk behavior. This random walk/giant loop model is the simplest model that fully describes the observed large-scale spatial relationships. Additional evidence for large loops comes from measurements among probes in Xq28, where interphase distance increases and then locally decreases with increasing genomic separation.
Collapse
Affiliation(s)
- H Yokota
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
140
|
Abstract
The basic structural elements of chromatin and chromosomes are reviewed. Then a model involving only three architectural motifs, nucleosomes, chromatin loops and transcription factories/chromomeres, is presented. Loops are tied through transcription factors and RNA polymerases to factories during interphase and to the remnants of those factories, chromomeres, during mitosis. On entry into mitosis, increased adhesiveness between nucleosomes and between factories drives a ‘sticky-end’ aggregation to the most compact and stable structure, a cylinder of nucleosomes around an axial chromomeric core.
Collapse
Affiliation(s)
- P R Cook
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
141
|
Brown SE, Menninger J, Difillipantonio M, Beaty BJ, Ward DC, Knudson DL. Toward a physical map of Aedes aegypti. INSECT MOLECULAR BIOLOGY 1995; 4:161-167. [PMID: 8589842 DOI: 10.1111/j.1365-2583.1995.tb00021.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Labelled recombinant cosmids were used as in situ hybridization probes to Aedes aegypti metaphase chromosomes. The cosmid probes yielded paired signals, one on each arm of sister chromatids, and they were ordered along the three chromosomes. In total, thirty-seven different probes were mapped to the three chromosomes of Ae. aegypti (2n = 6): twenty-eight to chromosome 1, six to chromosome 2, and six to chromosome 3. These results represent an initial stage in the generation of a physical map of the Ae. aegypti genome.
Collapse
Affiliation(s)
- S E Brown
- Department of Entomology, College of Agricultural Sciences, Colorado State University, Fort Collins 80523, USA
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
We have (separately) disrupted all of the expressed macronuclear copies of the HHO gene encoding macronuclear histone H1 and of the micronuclear linker histone (MLH) gene encoding the protein MicLH in Tetrahymena thermophila. These disruptions are shown to eliminate completely the expression of each protein. Strains without either linker histone grow at normal rates and reach near-normal cell densities, demonstrating that linker histones are not essential for cell survival. Histone H1 knockout (delta H1) cells have enlarged DAPI-stained macronuclei and normal-sized micronuclei, while MicLH knockout (delta MicLH) cells have enlarged micronuclei and normal-sized macronuclei. delta MicLH cells undergo mitosis normally. However, the micronuclear mitotic chromosome structure is less condensed. These studies provide evidence that linker histones are nonessential and are involved in chromatin packaging and condensation in vivo.
Collapse
Affiliation(s)
- X Shen
- Department of Biology, University of Rochester, New York 14627, USA
| | | | | | | |
Collapse
|
143
|
Abstract
Fluorescence in situ hybridization (FISH) has profoundly altered the aspect of genome research and molecular diagnostics. Deletions of only a few kilobases can be detected by hybridizing probes to naked DNA fibers. Loss or gain of chromosomal material in tumor cells can be visualized using comparative genome hybridization. Further diversification of FISH application will result from new ultrasensitive detection techniques.
Collapse
Affiliation(s)
- G J van Ommen
- Department of Human Genetics, Leiden University, The Netherlands
| | | | | |
Collapse
|
144
|
Selleri L, Smith MW, Holmsen AL, Romo AJ, Thomas SD, Paternotte C, Romberg LC, Wei YH, Evans GA. High-resolution physical mapping of a 250-kb region of human chromosome 11q24 by genomic sequence sampling (GSS). Genomics 1995; 26:489-501. [PMID: 7607672 DOI: 10.1016/0888-7543(95)80167-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A physical map of the region of human chromosome 11q24 containing the FLI1 gene, disrupted by the t(11;22) translocation in Ewing sarcoma and primitive neuroectodermal tumors, was analyzed by genomic sequence sampling. Using a 4- to 5-fold coverage chromosome 11-specific library, 22 region-specific cosmid clones were identified by phenol emulsion reassociation hybridization, with a 245-kb yeast artificial chromosome clone containing the FLI1 gene, and by directed "walking" techniques. Cosmid contigs were constructed by individual clone fingerprinting using restriction enzyme digestion and assembly with the Genome Reconstruction and AsseMbly (GRAM) computer algorithm. The relative orientation and spacing of cosmid contigs with respect to the chromosome was determined by the structural analysis of cosmid clones and by direct visual in situ hybridization mapping. Each cosmid clone in the contig was subjected to "one-pass" end sequencing, and the resulting ordered sequence fragments represent approximately 5% of the complete DNA sequence, making the entire region accessible by PCR amplification. The sequence samples were analyzed for putative exons, repetitive DNAs, and simple sequence repeats using a variety of computer algorithms. Based upon the computer predictions, Southern and Northern blot experiments led to the independent identification and localization of the FLI1 gene as well as a previously unknown gene located in this region of chromosome 11q24. This approach to high-resolution physical analysis of human chromosomes allows the assembly of detailed sequence-based maps and provides a tool for further structural and functional analysis of the genome.
Collapse
Affiliation(s)
- L Selleri
- Molecular Genetics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE. A random-walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci U S A 1995; 92:2710-4. [PMID: 7708711 PMCID: PMC42288 DOI: 10.1073/pnas.92.7.2710] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fluorescence in situ hybridization data on distances between defined genomic sequences are used to construct a quantitative model for the overall geometric structure of a human chromosome. We suggest that the large-scale geometry during the G0/G1 part of the cell cycle may consist of flexible chromatin loops, averaging approximately 3 million bp, with a random-walk backbone. A fully explicit, three-parametric polymer model of this random-walk/giant-loop structure can account well for the data. More general models consistent with the data are briefly discussed.
Collapse
Affiliation(s)
- R K Sachs
- Department of Mathematics, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
146
|
Lindsay EA, Greenberg F, Shaffer LG, Shapira SK, Scambler PJ, Baldini A. Submicroscopic deletions at 22q11.2: variability of the clinical picture and delineation of a commonly deleted region. AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 56:191-7. [PMID: 7625444 DOI: 10.1002/ajmg.1320560216] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DiGeorge anomaly (DGA) and velo-cardiofacial syndrome (VCFS) are frequently associated with monosomy of chromosome region 22q11. Most patients have a submicroscopic deletion, recently estimated to be at least 1-2 Mb. It is not clear whether individuals who present with only some of the features of these conditions have the deletion, and if so, whether the size of the deletion varies from those with more classic phenotypes. We have used fluorescence in situ hybridization (FISH) to assess the deletion status of 85 individuals referred to us for molecular analysis, with a wide range of DGA-like or VCFS-like clinical features. The test probe used was the cosmid sc11.1, which detects two loci about 2 Mb apart in 22q11.2. Twenty-four patients carried the deletion. Of the deleted patients, most had classic DGA or VCFS phenotypes, but 6 deleted patients had mild phenotypes, including 2 with minor facial anomalies and velopharyngeal incompetence as the only presenting signs. Despite the great phenotypic variability among the deleted patients, none had a deletion smaller than the 2-Mb region defined by sc11.1. Smaller deletions were not detected in patients with particularly suggestive phenotypes who were not deleted for sc11.1, even when tested with two other probes from the DGA/VCFS region.
Collapse
Affiliation(s)
- E A Lindsay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
147
|
Rouquier S, Lowe JB, Kelly RJ, Fertitta AL, Lennon GG, Giorgi D. Molecular cloning of a human genomic region containing the H blood group alpha(1,2)fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human Secretor blood group locus. J Biol Chem 1995; 270:4632-9. [PMID: 7876234 DOI: 10.1074/jbc.270.9.4632] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have used the human H blood group alpha(1,2)fucosyltransferase (FUT1) cDNA to screen chromosome 19 cosmid libraries in a search for the human Secretor (Se) blood group gene (FUT2). One cosmid has been isolated that contains two distinct segments that cross-hybridize with FUT1. We have assembled a 100-kilobase (kb) cosmid contig, localized to 19q13.3, encompassing FUT1 and the two FUT1-related sequences, termed Sec1 and Sec2, for Secretor candidate 1 and 2. Sec1 and Sec2 are separated by 12 kb and are 65.5 kb and 35 kb apart, respectively, from the FUT1 gene. We used a cosmid-dependent direct cDNA selection method to clone a cDNA corresponding to a transcript that emanates from Sec2. This cDNA detects a 3.35-kb transcript in human tissues known to express the Se locus. Together with sequence and expression data reported in the accompanying article (Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G., and Lowe, J. B. (1995) J. Biol. Chem. 270, 4640-4649), these data demonstrate that Sec2 corresponds to the human Se blood group locus (FUT2). Our results furthermore define the physical relationship between the H and Se loci and confirm a hypothesis that these two loci represent distinct but closely linked alpha(1,2)fucosyltransferase genes.
Collapse
MESH Headings
- Animals
- Blood Group Antigens/genetics
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 19
- Cloning, Molecular
- Cosmids
- Cricetinae
- Cricetulus
- DNA, Complementary/genetics
- Deoxyribonuclease EcoRI
- Fucosyltransferases/genetics
- Genome, Human
- Humans
- Hybrid Cells
- In Situ Hybridization, Fluorescence
- Intestinal Mucosa/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Restriction Mapping
- Galactoside 2-alpha-L-fucosyltransferase
Collapse
Affiliation(s)
- S Rouquier
- Human Genome Center, Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | | | | | | | | |
Collapse
|
148
|
Windle B, Silvas E, Parra I. High resolution microscopic mapping of DNA using multi-color fluorescent hybridization. Electrophoresis 1995; 16:273-8. [PMID: 7774568 DOI: 10.1002/elps.1150160143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe a procedure for microscopically mapping the relative positions of DNA probes along extended strands of DNA. The procedure referred to as direct visual hybridization (DIRVISH) DNA mapping involves the simultaneous hybridization of multiple probes and the fluorescent colors, red green and blue to produce images that convey high-resolution mapping information. The images appear as long strings of fluorescent signals positioned as they are in the genome. A visual multi-color map is generated within 2 days. Cosmid probes span a distance of 10 microms or more and have been observed to contain patterns within the strings of signals. We have developed computer imaging programs to scan through the strings of signals and plot the intensities. Scans through multiple signal strings for one cosmid probe revealed consistent patterns. We have interpreted the patterns as the result of suppression of repetitive DNA sequence hybridization. These patterns may prove useful as fingerprints for regions of DNA.
Collapse
Affiliation(s)
- B Windle
- Cancer Therapy and Research Center, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
149
|
Yokota H, van den Engh G, Mostert M, Trask BJ. Treatment of cells with alkaline borate buffer extends the capability of interphase FISH mapping. Genomics 1995; 25:485-91. [PMID: 7789982 DOI: 10.1016/0888-7543(95)80049-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interphase fluorescence in situ hybridization (FISH) has been shown to be a means to map DNA sequences relative to each other in the 100 kb to 1-2 Mb genomic-separation range. At distances below 0.1 Mb, probe sites are infrequently resolved in interphase chromatin. In the 0.1- to 1-Mb range, interphase chromatin can be modeled as a freely flexible chain. The mean square interphase distance between two probes is proportional to the genomic separation between the probes on the linear DNA molecule. Above 1-2 Mb, the relationship between interphase distance and genomic separation changes abruptly and appears to level off. We have used alkaline-borate treatment to expand the capability of interphase FISH mapping. We show here that alkaline-borate treatment increases nuclear diameter, the interphase distance between probes on homologous chromosomes, and the distance between probes on the same chromosome. We also show that the mean square distance between hybridization sites in borate-treated nuclei is proportional to genomic separation up to 4 Mb. Thus, alkaline-borate treatment enhances the capability of interphase FISH mapping by increasing the absolute distance between probes and extending the range of the simple relationship between interphase distance and genomic separation.
Collapse
Affiliation(s)
- H Yokota
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
150
|
Tanke HJ, Florijn RJ, Wiegant J, Raap AK, Vrolijk J. CCD microscopy and image analysis of cells and chromosomes stained by fluorescence in situ hybridization. THE HISTOCHEMICAL JOURNAL 1995; 27:4-14. [PMID: 7713755 DOI: 10.1007/bf00164167] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This paper reviews methods and applications of CCD microscopy for analysing cells and chromosomes subjected to fluorescence in situ hybridization (FISH). The current status of indirect and direct FISH staining methods with respect to probe labelling, detection sensitivity, multiplicity and DNA resolution is summarized. Microscope hardware, including special multi-band pass filters and CCD cameras required for FISH analysis, is described. Then follows a detailed discussion of current and emerging applications such as the automated enumeration of chromosomal abnormalities (counting of dots in interphase cells), comparative genomic hybridization, automated evaluation of radiation-induced chromosomal translocations, and high-resolution DNA mapping on highly extended chromatin. Finally, the limitations of the present methodology and future prospects are discussed.
Collapse
Affiliation(s)
- H J Tanke
- Department of Cytochemistry and Cytometry, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|