101
|
Volmering E, Niehusmann P, Peeva V, Grote A, Zsurka G, Altmüller J, Nürnberg P, Becker AJ, Schoch S, Elger CE, Kunz WS. Neuropathological signs of inflammation correlate with mitochondrial DNA deletions in mesial temporal lobe epilepsy. Acta Neuropathol 2016; 132:277-288. [PMID: 26993140 DOI: 10.1007/s00401-016-1561-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
Abstract
Accumulation of mitochondrial DNA (mtDNA) deletions has been proposed to be responsible for the presence of respiratory-deficient neurons in several CNS diseases. Deletions are thought to originate from double-strand breaks due to attack of reactive oxygen species (ROS) of putative inflammatory origin. In epileptogenesis, emerging evidence points to chronic inflammation as an important feature. Here we aimed to analyze the potential association of inflammation and mtDNA deletions in the hippocampal tissue of patients with mesial temporal lobe epilepsy (mTLE) and hippocampal sclerosis (HS). Hippocampal and parahippocampal tissue samples from 74 patients with drug-refractory mTLE served for mtDNA analysis by multiplex PCR as well as long-range PCR, single-molecule PCR and ultra-deep sequencing of mtDNA in selected samples. Patients were sub-classified according to neuropathological findings. Semi-quantitative assessment of neuronal cell loss was performed in the hippocampal regions CA1-CA4. Inflammatory infiltrates were quantified by cell counts in the CA1, CA3 and CA4 regions from well preserved hippocampal samples (n = 33). Samples with HS showed a significantly increased frequency of a 7436-bp mtDNA deletion (p < 0.0001) and a higher proportion of somatic G>T transversions compared to mTLE patients with different histopathology. Interestingly, the number of T-lymphocytes in the hippocampal CA1, CA3 and CA4 regions was, similar to the 7436-bp mtDNA deletion, significantly increased in samples with HS compared to other subgroups. Our findings show a coincidence of HS, increased somatic G>T transversions, the presence of a specific mtDNA deletion, and increased inflammatory infiltrates. These results support the hypothesis that chronic inflammation leads to mitochondrial dysfunction by ROS-mediated mtDNA mutagenesis which promotes epileptogenesis and neuronal cell loss in patients with mTLE and HS.
Collapse
Affiliation(s)
- Elisa Volmering
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Pitt Niehusmann
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
- Department of Neuro-/Pathology, Oslo University Hospital, Oslo, Norway
| | - Viktoriya Peeva
- Division of Neurochemistry, Department of Epileptology, University Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Alexander Grote
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Gábor Zsurka
- Division of Neurochemistry, Department of Epileptology, University Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Albert J Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
- Translational Epilepsy Research Section, University of Bonn Medical Center, Bonn, Germany
| | - Susanne Schoch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
- Translational Epilepsy Research Section, University of Bonn Medical Center, Bonn, Germany
| | - Christian E Elger
- Division of Neurochemistry, Department of Epileptology, University Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Wolfram S Kunz
- Division of Neurochemistry, Department of Epileptology, University Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
102
|
O'Farrell NJ, Feighery R, Picardo SL, Lynam-Lennon N, Biniecka M, McGarrigle SA, Phelan JJ, MacCarthy F, O'Toole D, Fox EJ, Ravi N, Reynolds JV, O'Sullivan J. Changes in mitochondrial stability during the progression of the Barrett's esophagus disease sequence. BMC Cancer 2016; 16:497. [PMID: 27431913 PMCID: PMC4950724 DOI: 10.1186/s12885-016-2544-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023] Open
Abstract
Background Barrett’s esophagus follows the classic step-wise progression of metaplasia-dysplasia-adenocarcinoma. While Barrett’s esophagus is a leading known risk factor for esophageal adenocarcinoma, the pathogenesis of this disease sequence is poorly understood. Mitochondria are highly susceptible to mutations due to high levels of reactive oxygen species (ROS) coupled with low levels of DNA repair. The timing and levels of mitochondria instability and dysfunction across the Barrett’s disease progression is under studied. Methods Using an in-vitro model representing the Barrett’s esophagus disease sequence of normal squamous epithelium (HET1A), metaplasia (QH), dysplasia (Go), and esophageal adenocarcinoma (OE33), random mitochondrial mutations, deletions and surrogate markers of mitochondrial function were assessed. In-vivo and ex-vivo tissues were also assessed for instability profiles. Results Barrett’s metaplastic cells demonstrated increased levels of ROS (p < 0.005) and increased levels of random mitochondrial mutations (p < 0.05) compared with all other stages of the Barrett’s disease sequence in-vitro. Using patient in-vivo samples, Barrett’s metaplasia tissue demonstrated significantly increased levels of random mitochondrial deletions (p = 0.043) compared with esophageal adenocarcinoma tissue, along with increased expression of cytoglobin (CYGB) (p < 0.05), a gene linked to oxidative stress, compared with all other points across the disease sequence. Using ex-vivo Barrett’s metaplastic and matched normal patient tissue explants, higher levels of cytochrome c (p = 0.003), SMAC/Diablo (p = 0.008) and four inflammatory cytokines (all p values <0.05) were secreted from Barrett’s metaplastic tissue compared with matched normal squamous epithelium. Conclusions We have demonstrated that increased mitochondrial instability and markers of cellular and mitochondrial stress are early events in the Barrett’s disease sequence.
Collapse
Affiliation(s)
- N J O'Farrell
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - R Feighery
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - S L Picardo
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - N Lynam-Lennon
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - M Biniecka
- Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - S A McGarrigle
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - J J Phelan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - F MacCarthy
- Trinity Translational Medicine Institute, Department of Clinical Medicine, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - D O'Toole
- Trinity Translational Medicine Institute, Department of Clinical Medicine, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - E J Fox
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - N Ravi
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - J V Reynolds
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - J O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
103
|
Kristal BS, Kim JD, Yu BP. Tissue-specific susceptibility to peroxyl radical-mediated inhibition of mitochondrial transcription. Redox Rep 2016; 1:51-5. [DOI: 10.1080/13510002.1994.11746956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
104
|
Abstract
Clonal expansion of mtDNA deletions compromises mitochondrial function in human disease and aging, but how deleterious mtDNA genomes propagate has remained unclear. In this issue (Gitschlag et al., 2016) and in a recent Nature publication, C. elegans studies implicate the mitochondrial unfolded protein response (UPR(mt)) and offer mechanistic insights into this process.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY 10032, USA; Department of Neurology and Columbia Translational Neuroscience Initiative, H. Houston Merritt Center, Columbia University Medical Center, New York, NY 10032, USA; Wellcome Trust Centre for Mitochondrial Research and Newcastle Centre for Ageing and Vitality, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Amy E Vincent
- Wellcome Trust Centre for Mitochondrial Research and Newcastle Centre for Ageing and Vitality, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research and Newcastle Centre for Ageing and Vitality, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
105
|
Gitschlag BL, Kirby CS, Samuels DC, Gangula RD, Mallal SA, Patel MR. Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in C. elegans. Cell Metab 2016; 24:91-103. [PMID: 27411011 PMCID: PMC5287496 DOI: 10.1016/j.cmet.2016.06.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/27/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023]
Abstract
Mutant mitochondrial genomes (mtDNA) can be viewed as selfish genetic elements that persist in a state of heteroplasmy despite having potentially deleterious metabolic consequences. We sought to study regulation of selfish mtDNA dynamics. We establish that the large 3.1-kb deletion-bearing mtDNA variant uaDf5 is a selfish genome in Caenorhabditis elegans. Next, we show that uaDf5 mutant mtDNA replicates in addition to, not at the expense of, wild-type mtDNA. These data suggest the existence of a homeostatic copy-number control that is exploited by uaDf5 to "hitchhike" to high frequency. We also observe activation of the mitochondrial unfolded protein response (UPR(mt)) in uaDf5 animals. Loss of UPR(mt) causes a decrease in uaDf5 frequency, whereas its constitutive activation increases uaDf5 levels. UPR(mt) activation protects uaDf5 from mitophagy. Taken together, we propose that mtDNA copy-number control and UPR(mt) represent two homeostatic response mechanisms that play important roles in regulating selfish mitochondrial genome dynamics.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Interdisciplinary Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Cait S Kirby
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Biological Sciences Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rama D Gangula
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Simon A Mallal
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA 6150, Australia
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
106
|
Halilovic A, Schmedt T, Benischke AS, Hamill C, Chen Y, Santos JH, Jurkunas UV. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy. Antioxid Redox Signal 2016; 24:1072-83. [PMID: 26935406 PMCID: PMC4931310 DOI: 10.1089/ars.2015.6532] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/11/2016] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
Abstract
AIMS Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. RESULTS We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. INNOVATION This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. CONCLUSION MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.
Collapse
Affiliation(s)
- Adna Halilovic
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Thore Schmedt
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Anne-Sophie Benischke
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Cecily Hamill
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Yuming Chen
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Janine Hertzog Santos
- 2 Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, Rutgers University , New Jersey
| | - Ula V Jurkunas
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
107
|
Mitochondria in pluripotent stem cells: stemness regulators and disease targets. Curr Opin Genet Dev 2016; 38:1-7. [PMID: 26953561 DOI: 10.1016/j.gde.2016.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022]
Abstract
Beyond their canonical role in efficient ATP production through oxidative metabolism, mitochondria are increasingly recognized as critical in defining stem cell function and fate. Implicating a fundamental interplay within the epigenetics of eukaryotic cell systems, the integrity of mitochondria is found vital across the developmental/differentiation spectrum from securing pluripotency maintenance to informing organotypic decisions. This overview will discuss recent progress on examining the plasticity of mitochondria in enabling the execution of programming and reprogramming regimens, as well as the application of nuclear reprogramming and somatic cell nuclear transfer as rescue techniques to generate genetically and functionally corrected pluripotent stem cells from patients with mitochondrial DNA-based disease.
Collapse
|
108
|
Yonutas HM, Vekaria HJ, Sullivan PG. Mitochondrial specific therapeutic targets following brain injury. Brain Res 2016; 1640:77-93. [PMID: 26872596 DOI: 10.1016/j.brainres.2016.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury is a complicated disease to treat due to the complex multi-factorial secondary injury cascade that is initiated following the initial impact. This secondary injury cascade causes nonmechanical tissue damage, which is where therapeutic interventions may be efficacious for intervention. One therapeutic target that has shown much promise following brain injury are mitochondria. Mitochondria are complex organelles found within the cell. At a superficial level, mitochondria are known to produce the energy substrate used within the cell called ATP. However, their importance to overall cellular homeostasis is even larger than their production of ATP. These organelles are necessary for calcium cycling, ROS production and play a role in the initiation of cell death pathways. When mitochondria become dysfunctional, they can become dysregulated leading to a loss of cellular homeostasis and eventual cell death. Within this review there will be a deep discussion into mitochondrial bioenergetics followed by a brief discussion into traumatic brain injury and how mitochondria play an integral role in the neuropathological sequelae following an injury. The review will conclude with a discussion pertaining to the therapeutic approaches currently being studied to ameliorate mitochondrial dysfunction following brain injury. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- H M Yonutas
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States
| | - H J Vekaria
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States
| | - P G Sullivan
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States.
| |
Collapse
|
109
|
Prasad KN. Simultaneous activation of Nrf2 and elevation of antioxidant compounds for reducing oxidative stress and chronic inflammation in human Alzheimer's disease. Mech Ageing Dev 2016; 153:41-7. [PMID: 26811881 DOI: 10.1016/j.mad.2016.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 11/18/2022]
Abstract
Despite extensive research, neither the incidence nor the rate of progression of Alzheimer's disease (AD) has significantly changed. Some biochemical and genetic defects that initiate and promote AD include: (a) increased oxidative stress, (b) chronic inflammation (c) mitochondrial dysfunction, (d) Aß1-42 peptides generated from the amyloid precursor protein (APP), (e) proteasome inhibition, and (f) mutations in APP, presenilin-1 and presenilin-2 genes. Increased oxidative stress appears to precede other biochemical and genetic defects. Oxidative damage induces chronic inflammation. Therefore, reducing these defects simultaneously may reduce the development and progression of AD. Previous studies with individual antioxidants produced consistent benefits in animal models of AD; however, a similar approach produced inconsistent results in human AD. This review proposes a hypothesis that simultaneous elevation of the levels of antioxidant enzymes and antioxidant compounds is necessary for optimally reducing oxidative stress and chronic inflammation in human AD. Supplementation can enhance the levels of antioxidant compounds; but elevation of antioxidant enzymes requires activation of Nrf2. This review discusses activation and regulation of Nrf2. The need for multi- antioxidants that can affect multi-targets has been proposed without specific recommendations. This review proposes a micronutrient mixture that would simultaneously enhance the levels of antioxidant enzymes and antioxidant compounds in human AD.
Collapse
|
110
|
Oxidative and Inflammatory Pathways in Age-Related Chronic Disease Processes. INFLAMMATION, AGING, AND OXIDATIVE STRESS 2016. [DOI: 10.1007/978-3-319-33486-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
111
|
Hebert SL, Marquet-de Rougé P, Lanza IR, McCrady-Spitzer SK, Levine JA, Middha S, Carter RE, Klaus KA, Therneau TM, Highsmith EW, Nair KS. Mitochondrial Aging and Physical Decline: Insights From Three Generations of Women. J Gerontol A Biol Sci Med Sci 2015; 70:1409-17. [PMID: 26297939 PMCID: PMC4675931 DOI: 10.1093/gerona/glv086] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/22/2015] [Indexed: 02/07/2023] Open
Abstract
Decline in mitochondrial DNA (mtDNA) copy number, function, and accumulation of mutations and deletions have been proposed to contribute to age-related physical decline, based on cross sectional studies in genetically unrelated individuals. There is wide variability of mtDNA and functional measurements in many population studies and therefore we assessed mitochondrial function and physical function in 18 families of grandmothers, mothers, and daughters who share the same maternally inherited mtDNA sequence. A significant age-related decline in mtDNA copy number, mitochondrial protein expression, citrate synthase activity, cytochrome c oxidase content, and VO2 peak were observed. Also, a lower abundance of SIRT3, accompanied by an increase in acetylated skeletal muscle proteins, was observed in grandmothers. Muscle tissue-based full sequencing of mtDNA showed greater than 5% change in minor allele frequency over a lifetime in two locations, position 189 and 408 in the noncoding D-loop region but no changes were noted in blood cells mtDNA. The decline in oxidative capacity and muscle function with age in three generations of women who share the same mtDNA sequence are associated with a decline in muscle mtDNA copy number and reduced protein deacetylase activity of SIRT3.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumit Middha
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, 200 First Street SW, Joseph 5-194, Rochester, Minnesota 55905
| | - Rickey E Carter
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, 200 First Street SW, Joseph 5-194, Rochester, Minnesota 55905
| | | | - Terry M Therneau
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, 200 First Street SW, Joseph 5-194, Rochester, Minnesota 55905
| | | | | |
Collapse
|
112
|
Yang J, Huang T, Petralia F, Long Q, Zhang B, Argmann C, Zhao Y, Mobbs CV, Schadt EE, Zhu J, Tu Z. Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep 2015; 5:15145. [PMID: 26477495 PMCID: PMC4609956 DOI: 10.1038/srep15145] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/21/2015] [Indexed: 01/06/2023] Open
Abstract
Aging is one of the most important biological processes and is a known risk factor for many age-related diseases in human. Studying age-related transcriptomic changes in tissues across the whole body can provide valuable information for a holistic understanding of this fundamental process. In this work, we catalogue age-related gene expression changes in nine tissues from nearly two hundred individuals collected by the Genotype-Tissue Expression (GTEx) project. In general, we find the aging gene expression signatures are very tissue specific. However, enrichment for some well-known aging components such as mitochondria biology is observed in many tissues. Different levels of cross-tissue synchronization of age-related gene expression changes are observed, and some essential tissues (e.g., heart and lung) show much stronger "co-aging" than other tissues based on a principal component analysis. The aging gene signatures and complex disease genes show a complex overlapping pattern and only in some cases, we see that they are significantly overlapped in the tissues affected by the corresponding diseases. In summary, our analyses provide novel insights to the co-regulation of age-related gene expression in multiple tissues; it also presents a tissue-specific view of the link between aging and age-related diseases.
Collapse
Affiliation(s)
- Jialiang Yang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Tao Huang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Francesca Petralia
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Quan Long
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Carmen Argmann
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Yong Zhao
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Charles V. Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Medicine, Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Eric E. Schadt
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| |
Collapse
|
113
|
Zhou MC, Min R, Ji JJ, Zhang S, Tong AL, Xu JP, Li ZY, Zhang HB, Li YX. Analysis of association among clinical features and shorter leukocyte telomere length in mitochondrial diabetes with m.3243A>G mitochondrial DNA mutation. BMC MEDICAL GENETICS 2015; 16:92. [PMID: 26449496 PMCID: PMC4599722 DOI: 10.1186/s12881-015-0238-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 09/30/2015] [Indexed: 11/15/2022]
Abstract
Background Mitochondrial diabetes is a kind of rare diabetes caused by monogenic mutation in mitochondia. The study aimed to summarize the clinical phenotype profiles in mitochondrial diabetes withm.3243A>G mitochondrial DNA mutation and to investigate the mechanism in this kind of diabetes by analyzing the relationship among clinical phenotypes and peripheral leukocyte DNA telomere length. Methods Fifteen patients with maternally inherited diabetes in five families were confirmed as carrying the m.3243A>G mitochondrial DNA mutation. One hundred patients with type 2 diabetes and one hundred healthy control subjects were recruited to participate in the study. Sanger sequencing was used to detect the m.3243A>G mitochondrial DNA mutation. The peak height G/A ratio in the sequence diagram was calculated. Real-time polymerase chain reaction (PCR) was used to measure telomere length. Results The patients with mitochondrial diabetes all had definite maternally inherited history, normal BMI (19.5 ± 2.36 kg/m2), early onset of diabetes (35.0 ± 14.6 years) and deafness. The peak height G/A ratio correlated significantly and negatively with the age at onset of diabetes (≦25 years, 61.6 ± 20.17 %; 25–45 years, 16.59 ± 8.64 %; >45 years, 6.37 ± 0.59 %; p = 0.000). Telomere length was significantly shorter among patients with mitochondrial diabetes and type 2 diabetes than in the control group (1.28 ± 0.54 vs. 1.14 ± 0.43 vs. 1.63 ± 0.61; p = 0.000). However, there was no significant difference between patients with mitochondrial diabetes and those with type 2 diabetes. There was no correlation between telomere length and the peak height G/A ratio. Conclusion Deafness with definite maternal inheritance and normal BMI, associated with elevated blood lactic acid and encephalomyopathy, for the most part, suggest the diagnosis of mitochondrial diabetes . The peak height G/A ratio could reflect the spectrum of age at onset of the disease. Telomere length was shorter in patients with mitochondrial diabetes and those with type 2 diabetes, which suggests that the shorter telomere length is likely involved in the pathogenesis of diabetes but is not specific for this kind of diabetes.
Collapse
Affiliation(s)
- Mei-Cen Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Rui Min
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jian-Jun Ji
- Hongshan Traditional Chinese Medicine Hospital, Chifeng City, Inner Mongolia, 024076, China
| | - Shi Zhang
- Metabolic Disease Hospital of Tianjin Medical University, Tianjin City, 300000, China
| | - An-Li Tong
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jian-ping Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zeng-Yi Li
- Nanyang City Center Hospital, Nanyang City, Henan, 473003, China
| | - Hua-Bing Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yu-Xiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
114
|
Picca A, Lezza AMS. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 2015; 25:67-75. [PMID: 26437364 DOI: 10.1016/j.mito.2015.10.001] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 11/24/2022]
Abstract
Mitochondrial biogenesis is regulated to adapt mitochondrial population to cell energy demands. Mitochondrial transcription factor A (TFAM) performs several functions for mtDNA and interactions between TFAM and mtDNA participate to regulation of mitochondrial biogenesis. Such interactions are modulated through different mechanisms: regulation of TFAM expression and turnover, modulation of TFAM binding activity to mtDNA through post-translational modifications and differential affinity of TFAM, occurrence of TFAM sliding on mtDNA filaments and of cooperative binding among TFAM molecules, modulation of protein-protein interactions. The tissue-specific regulation of mitochondrial biogenesis in aging and calorie restriction (CR) highlights the relevance of modulation of TFAM-mtDNA interactions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy.
| |
Collapse
|
115
|
Kabekkodu SP, Chakrabarty S, Shukla V, Varghese VK, Singh KK, Thangaraj K, Satyamoorthy K. Mitochondrial biology: From molecules to diseases. Mitochondrion 2015; 24:93-98. [PMID: 26210788 DOI: 10.1016/j.mito.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/21/2015] [Indexed: 01/08/2023]
Abstract
As an integral part of the cell, mitochondria play a pivotal role in the regulation of energy metabolism, signaling pathways, cell differentiation, cell proliferation and cell death. Mitochondrion with its own genetic material has characteristics distinct from those of the nuclear counterpart and its dysregulation is associated with a myriad of diseases. The discovery of interplay between the nuclear and mitochondrial genes, and various post-transcriptional modifications associated with their products has added excitement in the field. This has led to a better understanding of the basic mitochondrial function in normal and disease states, and is important for diagnosis and prognosis of a large number of disorders. The Fourth Annual Conference of Society for Mitochondrial Research and Medicine - India (SMRM) was titled "Mitochondrial Biology: from Molecules to Disease". The conference was organized by K. Satyamoorthy and K. Thangaraj at School of Life Sciences, Manipal University, Manipal, India, during 8-9 December, 2014. The aim of the conference was to bring researchers and clinicians to a common platform; create an opportunity for networking between laboratories; and to discuss about the recent development in mitochondrial biology, diagnosis, and therapy. This review summarizes the key outcomes of the conference.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - Sanjiban Chakrabarty
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - Vaibhav Shukla
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - Vinay Koshy Varghese
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | | | - Kapaettu Satyamoorthy
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India.
| |
Collapse
|
116
|
Fröhlich C, Zschiebsch K, Gröger V, Paarmann K, Steffen J, Thurm C, Schropp EM, Brüning T, Gellerich F, Radloff M, Schwabe R, Lachmann I, Krohn M, Ibrahim S, Pahnke J. Activation of Mitochondrial Complex II-Dependent Respiration Is Beneficial for α-Synucleinopathies. Mol Neurobiol 2015; 53:4728-44. [PMID: 26319560 PMCID: PMC4965489 DOI: 10.1007/s12035-015-9399-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023]
Abstract
Parkinson’s disease and dementia with Lewy bodies are major challenges in research and clinical medicine world-wide and contribute to the most common neurodegenerative disorders. Previously, specific mitochondrial polymorphisms have been found to enhance clearance of amyloid-β from the brain of APP-transgenic mice leading to beneficial clinical outcome. It has been discussed whether specific mitochondrial alterations contribute to disease progression or even prevent toxic peptide deposition, as seen in many neurodegenerative diseases. Here, we investigated α-synuclein-transgenic C57BL/6J mice with the A30P mutation, and a novel A30P C57BL/6J mouse model with three mitochondrial DNA polymorphisms in the ND3, COX3 and mtRNAArg genes, as found in the inbred NOD/LtJ mouse strain. We were able to detect that the new model has increased mitochondrial complex II-respiration which occurs in parallel to neuronal loss and improved motor performance, although it exhibits higher amounts of high molecular weight species of α-synuclein. High molecular weight aggregates of different peptides are controversially discussed in the light of neurodegeneration. A favourable hypothesis states that high molecular weight species are protective and of minor importance for the pathogenesis of neurodegenerative disorders as compared to the extreme neurotoxic monomers and oligomers. Summarising, our results point to a potentially protective and beneficial effect of specific mitochondrial polymorphisms which cause improved mitochondrial complex II-respiration in α-synucleinopathies, an effect that could be exploited further for pharmaceutical interventions.
Collapse
Affiliation(s)
- Christina Fröhlich
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | - Katja Zschiebsch
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany.,University of Frankfurt, Institute of Clinical Pharmacology/ZAFES, Frankfurt, Germany
| | - Victoria Gröger
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany.,Fraunhofer Institute for Cell Therapy and Immunology (IZI), Halle, Germany
| | - Kristin Paarmann
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany.,LIED, University of Lübeck (UzL), Lübeck, Germany
| | - Johannes Steffen
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany.,LIED, University of Lübeck (UzL), Lübeck, Germany
| | - Christoph Thurm
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | - Eva-Maria Schropp
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | - Thomas Brüning
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | - Frank Gellerich
- Department of Neurology, University of Magdeburg/Leibniz Institut for Neurobiology, Magdeburg, Germany
| | - Martin Radloff
- Institute for Mathematical Stochastics, University of Magdeburg, Magdeburg, Germany
| | - Rainer Schwabe
- Institute for Mathematical Stochastics, University of Magdeburg, Magdeburg, Germany
| | | | - Markus Krohn
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | | | - Jens Pahnke
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway. .,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany. .,LIED, University of Lübeck (UzL), Lübeck, Germany. .,Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry (IPB), Halle, Germany.
| |
Collapse
|
117
|
Quan C, Cho MK, Perry D, Quan T. Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging. J Biomed Sci 2015. [PMID: 26215577 PMCID: PMC4517525 DOI: 10.1186/s12929-015-0167-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Reduced cell spreading is a prominent feature of aged dermal fibroblasts in human skin in vivo. Mitochondrial DNA (mtDNA) common deletion has been reported to play a role in the human aging process, however the relationship between age-related reduced cell spreading and mtDNA common deletion has not yet been reported. RESULTS To examine mtDNA common deletion in the dermis of aged human skin, the epidermis was removed from full-thickness human skin samples using cryostat. mtDNA common deletion was significantly elevated in the dermis of both naturally aged and photoaged human skin in vivo. To examine the relationship between age-related reduced cell spreading and mtDNA common deletion, we modulated the shape of dermal fibroblasts by disrupting the actin cytoskeleton. Reduced cell spreading was associated with a higher level of mtDNA common deletion and was also accompanied by elevated levels of endogenous reactive oxygen species (ROS). Boosting cellular antioxidant capacity by using antioxidants was found to be protective against mtDNA common deletion associated with reduced cell spreading. CONCLUSION mtDNA common deletion is highly prevalent in the dermis of both naturally aged and photoaged human skin in vivo. mtDNA common deletion in response to reduced cell spreading is mediated, at least in part, by elevated oxidative stress in human dermal fibroblasts. These data extend current understanding of the mitochondrial theory of aging by identifying the connection between mtDNA common deletion and age-related reduction of cell spreading.
Collapse
Affiliation(s)
- Chunji Quan
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, People's Republic of China.
| | - Moon Kyun Cho
- Department of Dermatology, Soonchunhyang University College of Medicine, Seoul, South Korea.
| | - Daniel Perry
- Department of Dermatology, University of Michigan Medical School, 1301 Catherine, Medical Science I, Room 6447, Ann Arbor, MI, 48109-5609, USA.
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, 1301 Catherine, Medical Science I, Room 6447, Ann Arbor, MI, 48109-5609, USA.
| |
Collapse
|
118
|
Demetrius LA, Driver JA. Preventing Alzheimer's disease by means of natural selection. J R Soc Interface 2015; 12:20140919. [PMID: 25551134 DOI: 10.1098/rsif.2014.0919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The amyloid cascade model for the origin of sporadic forms of Alzheimer's disease (AD) posits that the imbalance in the production and clearance of beta-amyloid is a necessary condition for the disease. A competing theory called the entropic selection hypothesis asserts that the primary cause of sporadic AD is age-induced mitochondrial dysregulation and the following cascade of events: (i) metabolic reprogramming—the upregulation of oxidative phosphorylation in compensation for insufficient energy production in neurons, (ii) natural selection—competition between intact and reprogrammed neurons for energy substrates and (iii) propagation—the spread of the disease due to the selective advantage of neurons with upregulated metabolism. Experimental studies to evaluate the predictions of the amyloid cascade model are being continually retuned to accommodate conflicts of the predictions with empirical data. Clinical trials of treatments for AD based on anti-amyloid therapy have been unsuccessful. We contend that these anomalies and failures stem from a fundamental deficit of the amyloid hypothesis: the model derives from a nuclear-genomic perspective of sporadic AD and discounts the bioenergetic processes that characterize the progression of most age-related disorders. In this article, we review the anomalies of the amyloid model and the theoretical and empirical support for the entropic selection theory. We also discuss the new therapeutic strategies based on natural selection which the model proposes.
Collapse
|
119
|
Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools. PLoS Genet 2015; 11:e1005306. [PMID: 26172475 PMCID: PMC4501845 DOI: 10.1371/journal.pgen.1005306] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/28/2015] [Indexed: 12/21/2022] Open
Abstract
DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA) sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1) an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies), incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2) an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031) and waist-hip ratio (p-value = 2.4×10-5), but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits. We present a new program that provides a general solution for the analysis of variation of mtDNA (the small circular genome in mitochondria, separate from the DNA in the nucleus). This is needed because many large-scale genetic studies are using new DNA sequencing technologies to help assess genetic variation and its effects on disease, but the mitochondrial genome is often ignored because it exists in many copies in a cell, complicating analyses. Our approach both identifies variants on mitochondrial genome and estimates mtDNA copy number. Applying the programs to DNA sequence from ~2,000 SardiNIA project participants, we show that heteroplasmies (mtDNA variants with more than one allele at a DNA site) increase with age, and that copy number is relatively highly heritable and is correlated with metabolic traits, particularly central fat levels. The program package can facilitate comprehensive mtDNA analysis from any whole-genome sequencing data, with an increase in the understanding of mtDNA dynamics and its potential role in aging and metabolism.
Collapse
|
120
|
Sung MM, Hamza SM, Dyck JRB. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 2015; 22:1606-30. [PMID: 25808033 DOI: 10.1089/ars.2015.6305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Cardiovascular complications in diabetes are particularly serious and represent the primary cause of morbidity and mortality in diabetic patients. Despite early observations of cardiac dysfunction in diabetic humans, cardiomyopathy unique to diabetes has only recently been recognized. RECENT ADVANCES Research has focused on understanding the pathogenic mechanisms underlying the initiation and development of diabetic cardiomyopathy. Emerging data highlight the importance of altered mitochondrial function as a major contributor to cardiac dysfunction in diabetes. Mitochondrial dysfunction occurs by several mechanisms involving altered cardiac substrate metabolism, lipotoxicity, impaired cardiac insulin and glucose homeostasis, impaired cellular and mitochondrial calcium handling, oxidative stress, and mitochondrial uncoupling. CRITICAL ISSUES Currently, treatment is not specifically tailored for diabetic patients with cardiac dysfunction. Given the multifactorial development and progression of diabetic cardiomyopathy, traditional treatments such as anti-diabetic agents, as well as cellular and mitochondrial fatty acid uptake inhibitors aimed at shifting the balance of cardiac metabolism from utilizing fat to glucose may not adequately target all aspects of this condition. Thus, an alternative treatment such as resveratrol, which targets multiple facets of diabetes, may represent a safe and promising supplement to currently recommended clinical therapy and lifestyle changes. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the initiation and progression of diabetic cardiomyopathy is essential for development of effective and targeted treatment strategies. Of particular interest is the investigation of alternative therapies such as resveratrol, which can function as both preventative and mitigating agents in the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Miranda M Sung
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Shereen M Hamza
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
121
|
Lourenço CF, Ledo A, Dias C, Barbosa RM, Laranjinha J. Neurovascular and neurometabolic derailment in aging and Alzheimer's disease. Front Aging Neurosci 2015; 7:103. [PMID: 26074816 PMCID: PMC4445047 DOI: 10.3389/fnagi.2015.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 12/17/2022] Open
Abstract
The functional and structural integrity of the brain requires local adjustment of blood flow and regulated delivery of metabolic substrates to meet the metabolic demands imposed by neuronal activation. This process—neurovascular coupling—and ensued alterations of glucose and oxygen metabolism—neurometabolic coupling—are accomplished by concerted communication between neural and vascular cells. Evidence suggests that neuronal-derived nitric oxide (•NO) is a key player in both phenomena. Alterations in the mechanisms underlying the intimate communication between neural cells and vessels ultimately lead to neuronal dysfunction. Both neurovascular and neurometabolic coupling are perturbed during brain aging and in age-related neuropathologies in close association with cognitive decline. However, despite decades of intense investigation, many aspects remain poorly understood, such as the impact of these alterations. In this review, we address neurovascular and neurometabolic derailment in aging and Alzheimer's disease (AD), discussing its significance in connection with •NO-related pathways.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Cândida Dias
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Faculty of Pharmacy, University of Coimbra Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Faculty of Pharmacy, University of Coimbra Coimbra, Portugal
| |
Collapse
|
122
|
Wang J, Lin F, Guo LL, Xiong XJ, Fan X. Cardiovascular Disease, Mitochondria, and Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:143145. [PMID: 26074984 PMCID: PMC4449907 DOI: 10.1155/2015/143145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/06/2014] [Accepted: 09/14/2014] [Indexed: 01/24/2023]
Abstract
Recent studies demonstrated that mitochondria play an important role in the cardiovascular system and mutations of mitochondrial DNA affect coronary artery disease, resulting in hypertension, atherosclerosis, and cardiomyopathy. Traditional Chinese medicine (TCM) has been used for thousands of years to treat cardiovascular disease, but it is not yet clear how TCM affects mitochondrial function. By reviewing the interactions between the cardiovascular system, mitochondrial DNA, and TCM, we show that cardiovascular disease is negatively affected by mutations in mitochondrial DNA and that TCM can be used to treat cardiovascular disease by regulating the structure and function of mitochondria via increases in mitochondrial electron transport and oxidative phosphorylation, modulation of mitochondrial-mediated apoptosis, and decreases in mitochondrial ROS. However further research is still required to identify the mechanism by which TCM affects CVD and modifies mitochondrial DNA.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fei Lin
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li-li Guo
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing-jiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xun Fan
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
123
|
Zheng Q, Li R, Li C, Zhao Y, Wang Y, Wang J, Wang R, Zhang Y, Liu H, Li J, Xiao X. Microcalorimetric investigation of five Aconitum L. plants on the metabolic activity of mitochondria isolated from rat liver. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2015; 120:335-344. [DOI: 10.1007/s10973-014-4160-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|
124
|
Liang D, Zhong P, Hu J, Lin F, Qian Y, Xu Z, Wang J, Zeng C, Li X, Liang G. EGFR inhibition protects cardiac damage and remodeling through attenuating oxidative stress in STZ-induced diabetic mouse model. J Mol Cell Cardiol 2015; 82:63-74. [PMID: 25758431 DOI: 10.1016/j.yjmcc.2015.02.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/14/2015] [Accepted: 02/27/2015] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is strongly associated with cardiomyopathy. The underlying mechanisms for the development of diabetic cardiomyopathy are complex and not completely understood. Recent studies showed that epidermal growth factor receptors (EGFRs) are involved in diabetes-induced cardiac injury. However, the role of EGFR in the diabetic heart has yet to be confirmed. The aim of the present study is to further determine the role of EGRF in the pathogenesis of diabetic heart injury. The type 1 diabetic mice induced by streptozotocin were treated with EGFR inhibitors (AG1478 and 451) for 8 weeks, respectively. It was observed that diabetes induced phospohorylation of EGFR and AKT, increased cardiac ROS levels, and ultimately led to cardiac remodeling including cardiac hypertrophy, disorganization, apoptosis, and fibrosis, while all these molecular and pathological alterations were attenuated by the treatment with EGFR inhibitors. In vitro, either pharmacological inhibition of EGFR/AKT or sh-RNA silencing of EGFR significantly inhibited high concentration glucose (HG)-induced ROS generation and subsequently cell apoptosis in both cardiac H9C2 cells and primary rat cardiomyocytes, respectively. The ROS reduction by EGFR inhibitor was associated with the decreased NADPH oxidase activity and expression in H9c2 cells. HG-induced cardiomyocyte injuries were also reduced by NAC, an inhibitor of ROS. This study provides evidence that EGFR has a key role in the pathogenesis of STZ-induced diabetic cardiac damage and remodeling via ROS generation, and suggests that EGFR may be a potential target in treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dandan Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, China
| | - Jie Hu
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Feng Lin
- Department of Gynaecology, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chunlai Zeng
- Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
125
|
Murphy C, Holden SA, Murphy EM, Cromie AR, Lonergan P, Fair S. The impact of storage temperature and sperm number on the fertility of liquid-stored bull semen. Reprod Fertil Dev 2015; 28:RD14369. [PMID: 25739711 DOI: 10.1071/rd14369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/15/2015] [Indexed: 02/28/2024] Open
Abstract
In Ireland, liquid bull semen is stored at unregulated ambient temperatures, typically at 5×106 spermatozoa per dose, and inseminated within 2.5 days of collection. In Experiment 1, the effect of storage temperature (5, 15, 22, 32°C and fluctuations (Flux) between these temperatures) on progressive motility, viability, acrosomal status, DNA fragmentation and osmotic resistance was assessed. In Experiment 2, the field fertility of liquid semen at 5, 4 and 3×106 spermatozoa per dose, up to Day 2 after collection, was assessed in comparison to frozen-thawed semen at 20×106 spermatozoa per dose (n=35328 inseminations). In Experiment 1, storage at 15°C resulted in the highest progressive motility (PP6 spermatozoa per dose on Day 2 of storage was reduced in comparison to frozen-thawed semen (P<0.01). In conclusion, liquid semen is versatile between storage temperatures of 5 and 22°C, but demonstrates reduced fertility on Day 2 of storage at lower sperm numbers in comparison to frozen-thawed semen.
Collapse
|
126
|
Ederveen A, Lai Y, van Driel MA, Gerats T, Peters JL. Modulating crossover positioning by introducing large structural changes in chromosomes. BMC Genomics 2015; 16:89. [PMID: 25879408 PMCID: PMC4359564 DOI: 10.1186/s12864-015-1276-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Crossing over assures the correct segregation of the homologous chromosomes to both poles of the dividing meiocyte. This exchange of DNA creates new allelic combinations thus increasing the genetic variation present in offspring. Crossovers are not uniformly distributed along chromosomes; rather there are preferred locations where they may take place. The positioning of crossovers is known to be influenced by both exogenous and endogenous factors as well as structural features inherent to the chromosome itself. We have introduced large structural changes into Arabidopsis chromosomes and report their effects on crossover positioning. RESULTS The introduction of large deletions and putative inversions silenced recombination over the length of the structural change. In the majority of cases analyzed, the total recombination frequency over the chromosomes was unchanged. The loss of crossovers at the sites of structural change was compensated for by increases in recombination frequencies elsewhere on the chromosomes, mostly in single intervals of one to three megabases in size. Interestingly, two independent cases of induced structural changes in the same chromosomal interval were found on both chromosomes 1 and 2. In both cases, compensatory increases in recombination frequencies were of similar strength and took place in the same chromosome region. In contrast, deletions in chromosome arms carrying the nucleolar organizing region did not change recombination frequencies in the remainder of those chromosomes. CONCLUSIONS When taken together, these observations show that changes in the physical structure of the chromosome can have large effects on the positioning of COs within that chromosome. Moreover, different reactions to induced structural changes are observed between and within chromosomes. However, the similarity in reaction observed when looking at chromosomes carrying similar changes suggests a direct causal relation between induced change and observed reaction.
Collapse
Affiliation(s)
- Antoine Ederveen
- Department of Molecular Plant Physiology, Radboud University Nijmegen, Institute for Water and Wetland Research (IWWR), Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Yuching Lai
- Netherlands Bioinformatics Centre, 260 NBIC, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- The Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands.
| | - Marc A van Driel
- Netherlands Bioinformatics Centre, 260 NBIC, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Current affiliation: Philips Research, High Tech Campus 11, 5656 AE, Eindhoven, The Netherlands.
| | - Tom Gerats
- Department of Molecular Plant Physiology, Radboud University Nijmegen, Institute for Water and Wetland Research (IWWR), Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Janny L Peters
- Department of Molecular Plant Physiology, Radboud University Nijmegen, Institute for Water and Wetland Research (IWWR), Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
127
|
Liu C, Dupuis J, Larson MG, Cupples LA, Ordovas JM, Vasan RS, Meigs JB, Jacques PF, Levy D. Revisiting heritability accounting for shared environmental effects and maternal inheritance. Hum Genet 2015; 134:169-79. [PMID: 25381465 PMCID: PMC4303043 DOI: 10.1007/s00439-014-1505-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/26/2014] [Indexed: 01/14/2023]
Abstract
Heritability measures the proportion of phenotypic variation attributable to genetic factors. In addition to a shared nuclear genetic component, a number of additional variance components, such as spousal correlation, sibship, household and maternal effects, may have strong contributions to inter-individual phenotype variation. In humans, the confounding effects of these components on heritability have not been studied thoroughly. We sought to obtain unbiased heritability estimates for complex traits in the presence of multiple variance components and also to estimate the contributions of these variance components to complex traits. We compared regression and variance component methods to estimate heritability in simulations when additional variance components existed. We then revisited heritability for several traits in Framingham Heart Study (FHS) participants. Using simulations, we found that failure to account for or misclassification of necessary variance components yielded biased heritability estimates. The direction and magnitude of the bias varied depending on a variance structure and an estimation method. Using the best fitted models to account for necessary variance components, we found that heritability estimates for most FHS traits were overestimated, ranging from 4 to 47 %, when we compared models that considered necessary variance components to models that only considered familial relationships. Spousal correlation explained 14-36 % of phenotypic variation in several anthropometric and lifestyle traits. Maternal and sibling effects also contributed to phenotypic variation, ranging from 3 to 5 % and 4 to 7 %, respectively, in several anthropometric and metabolic traits. Our findings may explain, in part, the missing heritability for some traits.
Collapse
Affiliation(s)
- Chunyu Liu
- The Framingham Heart Study, Framingham, MA, 01702, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Pandya JD, Grondin R, Yonutas HM, Haghnazar H, Gash DM, Zhang Z, Sullivan PG. Decreased mitochondrial bioenergetics and calcium buffering capacity in the basal ganglia correlates with motor deficits in a nonhuman primate model of aging. Neurobiol Aging 2015; 36:1903-13. [PMID: 25726361 DOI: 10.1016/j.neurobiolaging.2015.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/24/2014] [Accepted: 01/23/2015] [Indexed: 01/02/2023]
Abstract
Altered mitochondrial function in the basal ganglia has been hypothesized to underlie cellular senescence and promote age-related motor decline. We tested this hypothesis in a nonhuman primate model of human aging. Six young (6-8 years old) and 6 aged (20-25 years old) female Rhesus monkeys (Macaca mulatta) were behaviorally characterized from standardized video records. Additionally, we measured mitochondrial bioenergetics along with calcium buffering capacity in the substantia nigra and putamen (PUT) from both age groups. Our results demonstrate that the aged animals had significantly reduced locomotor activity and movement speed compared with younger animals. Moreover, aged monkeys had significantly reduced ATP synthesis capacity (in substantia nigra and PUT), reduced pyruvate dehydrogenase activity (in PUT), and reduced calcium buffering capacity (in PUT) compared with younger animals. Furthermore, this age-related decline in mitochondrial function in the basal ganglia correlated with decline in motor function. Overall, our results suggest that drug therapies designed to enhance altered mitochondrial function may help improve motor deficits in the elderly.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Richard Grondin
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Heather M Yonutas
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Hamed Haghnazar
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Don M Gash
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Zhiming Zhang
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA.
| |
Collapse
|
129
|
Busch KB, Kowald A, Spelbrink JN. Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond B Biol Sci 2015; 369:20130442. [PMID: 24864312 DOI: 10.1098/rstb.2013.0442] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mammalian mtDNA encodes for 13 core proteins of oxidative phosphorylation. Mitochondrial DNA mutations and deletions cause severe myopathies and neuromuscular diseases. Thus, the integrity of mtDNA is pivotal for cell survival and health of the organism. We here discuss the possible impact of mitochondrial fusion and fission on mtDNA maintenance as well as positive and negative selection processes. Our focus is centred on the important question of how the quality of mtDNA nucleoids can be assured when selection and mitochondrial quality control works on functional and physiological phenotypes constituted by oxidative phosphorylation proteins. The organelle control theory suggests a link between phenotype and nucleoid genotype. This is discussed in the light of new results presented here showing that mitochondrial transcription factor A/nucleoids are restricted in their intramitochondrial mobility and probably have a limited sphere of influence. Together with recent published work on mitochondrial and mtDNA heteroplasmy dynamics, these data suggest first, that single mitochondria might well be internally heterogeneous and second, that nucleoid genotypes might be linked to local phenotypes (although the link might often be leaky). We discuss how random or site-specific mitochondrial fission can isolate dysfunctional parts and enable their elimination by mitophagy, stressing the importance of fission in the process of mtDNA quality control. The role of fusion is more multifaceted and less understood in this context, but the mixing and equilibration of matrix content might be one of its important functions.
Collapse
Affiliation(s)
- Karin B Busch
- Division of Mitochondrial Dynamics, School of Biology and Chemistry, University of Osnabrück, 49069 Osnabrück, Germany
| | - Axel Kowald
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Johannes N Spelbrink
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Geert Grooteplein 10, PO Box 9101, 6500 HB Nijmegen, The Netherlands FinMIT Centre of Excellence, Institute of Biomedical Technology and Tampere University Hospital, Pirkanmaa Hospital District, 33014 Tampere, Finland
| |
Collapse
|
130
|
|
131
|
Plum S, Steinbach S, Abel L, Marcus K, Helling S, May C. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl 2014; 9:848-71. [DOI: 10.1002/prca.201400030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Plum
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Laura Abel
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Stefan Helling
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Caroline May
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| |
Collapse
|
132
|
Chen S, Xie X, Wang Y, Gao Y, Xie X, Yang J, Ye J. Association between leukocyte mitochondrial DNA content and risk of coronary heart disease: A case-control study. Atherosclerosis 2014; 237:220-6. [DOI: 10.1016/j.atherosclerosis.2014.08.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/05/2014] [Accepted: 08/25/2014] [Indexed: 01/04/2023]
|
133
|
Kowald A, Kirkwood TB. The evolution and role of mitochondrial fusion and fission in aging and disease. Commun Integr Biol 2014. [DOI: 10.4161/cib.17110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
134
|
Kubanov AA, Zhilova MB, Kubanova AA. Skin photoageing: mechanisms of development and particular features of clinical manifestations. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-5-53-59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The article discloses current concepts of mechanisms of development of skin photoageing caused by UV irradiation (UVA and UVB). Chronic exposure of skin to UV irradiation results in damage of genome DNA, development of DNA mutations, damage of proteins, membrane lipids, collagen and yellow fibers, degradation of the intercellular substance of the skin, development of a chronic inflammation, immunosuppression, melanogenesis disorders and increased angiogenesis. The authors described major clinical manifestations of skin photoageing and their histological characteristics.
Collapse
|
135
|
Valdez CE, Smith QA, Nechay MR, Alexandrova AN. Mysteries of metals in metalloenzymes. Acc Chem Res 2014; 47:3110-7. [PMID: 25207938 DOI: 10.1021/ar500227u] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural metalloenzymes are often the most proficient catalysts in terms of their activity, selectivity, and ability to operate at mild conditions. However, metalloenzymes are occasionally surprising in their selection of catalytic metals, and in their responses to metal substitution. Indeed, from the isolated standpoint of producing the best catalyst, a chemist designing from first-principles would likely choose a different metal. For example, some enzymes employ a redox active metal where a simple Lewis acid is needed. Such are several hydrolases. In other cases, substitution of a non-native metal leads to radical improvements in reactivity. For example, histone deacetylase 8 naturally operates with Zn(2+) in the active site but becomes much more active with Fe(2+). For β-lactamases, the replacement of the native Zn(2+) with Ni(2+) was suggested to lead to higher activity as predicted computationally. There are also intriguing cases, such as Fe(2+)- and Mn(2+)-dependent ribonucleotide reductases and W(4+)- and Mo(4+)-dependent DMSO reductases, where organisms manage to circumvent the scarcity of one metal (e.g., Fe(2+)) by creating protein structures that utilize another metal (e.g., Mn(2+)) for the catalysis of the same reaction. Naturally, even though both metal forms are active, one of the metals is preferred in every-day life, and the other metal variant remains dormant until an emergency strikes in the cell. These examples lead to certain questions. When are catalytic metals selected purely for electronic or structural reasons, implying that enzymatic catalysis is optimized to its maximum? When are metal selections a manifestation of competing evolutionary pressures, where choices are dictated not just by catalytic efficiency but also by other factors in the cell? In other words, how can enzymes be improved as catalysts merely through the use of common biological building blocks available to cells? Addressing these questions is highly relevant to the enzyme design community, where the goal is to prepare maximally efficient quasi-natural enzymes for the catalysis of reactions that interest humankind. Due to competing evolutionary pressures, many natural enzymes may not have evolved to be ideal catalysts and can be improved for the isolated purpose of catalysis in vitro when the competing factors are removed. The goal of this Account is not to cover all the possible stories but rather to highlight how variable enzymatic catalysis can be. We want to bring up possible factors affecting the evolution of enzyme structure, and the large- and intermediate-scale structural and electronic effects that metals can induce in the protein, and most importantly, the opportunities for optimization of these enzymes for catalysis in vitro.
Collapse
Affiliation(s)
- Crystal E. Valdez
- Department
of Chemistry and Biochemistry, and ‡California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Quentin A. Smith
- Department
of Chemistry and Biochemistry, and ‡California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michael R. Nechay
- Department
of Chemistry and Biochemistry, and ‡California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department
of Chemistry and Biochemistry, and ‡California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
136
|
An exploratory analysis of mitochondrial haplotypes and allogeneic hematopoietic cell transplantation outcomes. Biol Blood Marrow Transplant 2014; 21:81-8. [PMID: 25300867 DOI: 10.1016/j.bbmt.2014.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022]
Abstract
Certain mitochondrial haplotypes (mthaps) are associated with disease, possibly through differences in oxidative phosphorylation and/or immunosurveillance. We explored whether mthaps are associated with allogeneic hematopoietic cell transplantation (HCT) outcomes. Recipient (n = 437) and donor (n = 327) DNA were genotyped for common European mthaps (H, J, U, T, Z, K, V, X, I, W, and K2). HCT outcomes for mthap matched siblings (n = 198), all recipients, and all donors were modeled using relative risks (RR) and 95% confidence intervals and compared with mthap H, the most common mitochondrial haplotypes. Siblings with I and V were significantly more likely to die within 5 years (RR = 3.0; 95% confidence interval [CI], 1.2 to 7.9; and RR = 4.6; 95% CI, 1.8 to 12.3, respectively). W siblings experienced higher acute graft-versus-host disease (GVHD) grades II to IV events (RR = 2.1; 95% CI, 1.1 to 2.4) with no events for those with K or K2. Similar results were observed for all recipients combined, although J recipients experienced lower GVHD and higher relapse. Patients with I donors had a 2.7-fold (1.2 to 6.2) increased risk of death in 5 years, whereas few patients with K2 or W donors died. No patients with K2 donors and few patients with U donors relapsed. Mthap may be an important consideration in HCT outcomes, although validation and functional studies are needed. If confirmed, it may be feasible to select donors based on mthap to increase positive or decrease negative outcomes.
Collapse
|
137
|
Kapoor V, DeBry RW, Boccelli DL, Wendell D. Sequencing human mitochondrial hypervariable region II as a molecular fingerprint for environmental waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10648-10655. [PMID: 25154050 DOI: 10.1021/es503189g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To protect environmental water from human fecal contamination, authorities must be able to unambiguously identify the source of the contamination. Current identification methods focus on tracking fecal bacteria associated with the human gut, but many of these bacterial indicators also thrive in the environment and in other mammalian hosts. Mitochondrial DNA could solve this problem by serving as a human-specific marker for fecal contamination. Here we show that the human mitochondrial hypervariable region II can function as a molecular fingerprint for human contamination in an urban watershed impacted by combined sewer overflows. We present high-throughput sequencing analysis of hypervariable region II for spatial resolution of the contaminated sites and assessment of the population diversity of the impacting regions. We propose that human mitochondrial DNA from public waste streams may serve as a tool for identifying waste sources definitively, analyzing population diversity, and conducting other anthropological investigations.
Collapse
Affiliation(s)
- Vikram Kapoor
- Department of Biomedical, Chemical, and Environmental Engineering, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | | | | | | |
Collapse
|
138
|
Grabacka MM, Gawin M, Pierzchalska M. Phytochemical modulators of mitochondria: the search for chemopreventive agents and supportive therapeutics. Pharmaceuticals (Basel) 2014; 7:913-42. [PMID: 25192192 PMCID: PMC4190497 DOI: 10.3390/ph7090913] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/31/2014] [Accepted: 08/13/2014] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are crucially important for maintaining not only the energy homeostasis, but the proper cellular functions in a general sense. Impairment of mitochondrial functions is observed in a broad variety of pathological states such as neoplastic transformations and cancer, neurodegenerative diseases, metabolic disorders and chronic inflammation. Currently, in parallel to the classical drug design approaches, there is an increasing interest in the screening for natural bioactive substances, mainly phytochemicals, in order to develop new therapeutic solutions for the mentioned pathologies. Dietary phytochemicals such as resveratrol, curcumin and sulforaphane are very well tolerated and can effectively complement classical pharmacological therapeutic regimens. In this paper we disscuss the effect of the chosen phytochemicals (e.g., resveratrol, curcumin, sulforaphane) on various aspects of mitochondrial biology, namely mitochondrial biogenesis, membrane potential and reactive oxygen species production, signaling to and from the nucleus and unfolded protein response.
Collapse
Affiliation(s)
- Maja M Grabacka
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Krakow, Poland.
| | - Malgorzata Gawin
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Krakow, Poland
| | - Malgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Krakow, Poland
| |
Collapse
|
139
|
Campbell G, Krishnan KJ, Deschauer M, Taylor RW, Turnbull DM. Dissecting the mechanisms underlying the accumulation of mitochondrial DNA deletions in human skeletal muscle. Hum Mol Genet 2014; 23:4612-20. [PMID: 24740879 PMCID: PMC4119413 DOI: 10.1093/hmg/ddu176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/07/2023] Open
Abstract
Large-scale mitochondrial DNA (mtDNA) deletions are an important cause of mitochondrial disease, while somatic mtDNA deletions cause focal respiratory chain deficiency associated with ageing and neurodegenerative disorders. As mtDNA deletions only cause cellular pathology at high levels of mtDNA heteroplasmy, an mtDNA deletion must accumulate to levels which can result in biochemical dysfunction-a process known as clonal expansion. A number of hypotheses have been proposed for clonal expansion of mtDNA deletions, including a replicative advantage for deleted mitochondrial genomes inferred by their smaller size--implying that the largest mtDNA deletions would also display a replicative advantage over smaller mtDNA deletions. We proposed that in muscle fibres from patients with mtDNA maintenance disorders, which lead to the accumulation of multiple mtDNA deletions, we would observe the largest mtDNA deletions spreading the furthest longitudinally through individual muscle fibres by means of a greater rate of clonal expansion. We characterized mtDNA deletions in patients with mtDNA maintenance disorders from a range of 'large' and 'small' cytochrome c oxidase (COX)-deficient regions in skeletal muscle fibres. We measured the size of clonally expanded deletions in 62 small and 60 large individual COX-deficient f regions. No significant difference was observed in individual patients or in the total dataset (small fibre regions mean 6.59 kb--large fibre regions mean 6.51 kb). Thus no difference existed in the rate of clonal expansion throughout muscle fibres between mtDNA deletions of different sizes; smaller mitochondrial genomes therefore do not appear to have an inherent replicative advantage in human muscle.
Collapse
Affiliation(s)
- Georgia Campbell
- Wellcome Trust Centre for Mitochondrial Research, and Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Kim J Krishnan
- Wellcome Trust Centre for Mitochondrial Research, and Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Marcus Deschauer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube Str. 40, Halle (Saale) D-06120, Germany
| | | | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, and Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
140
|
Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1219-31. [PMID: 24071439 PMCID: PMC3962811 DOI: 10.1016/j.bbadis.2013.09.010] [Citation(s) in RCA: 551] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 01/01/2023]
Abstract
Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains that gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts that biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Departments of Neurology and Molecular and Integrative Physiology, and the University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Jeffrey M Burns
- Departments of Neurology and Molecular and Integrative Physiology, and the University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA
| | | |
Collapse
|
141
|
van Leeuwen N, Beekman M, Deelen J, van den Akker EB, de Craen AJM, Slagboom PE, ’t Hart LM. Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9629. [PMID: 24554339 PMCID: PMC4082602 DOI: 10.1007/s11357-014-9629-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/05/2014] [Indexed: 05/02/2023]
Abstract
Long-lived individuals delay aging and age-related diseases like diabetes, hypertension, and cardiovascular disease. The exact underlying mechanisms are largely unknown, but enhanced mitochondrial biogenesis and preservation of mitochondrial function have been suggested to explain healthy ageing. We investigated whether individuals belonging to long-lived families have altered mitochondrial DNA (mtDNA) content, as a biomarker of mitochondrial biogenesis and measured expression of genes regulating mitochondrial biogenesis. mtDNA and nuclear DNA (nDNA) levels were measured in blood samples from 2,734 participants from the Leiden Longevity Study: 704 nonagenarian siblings, 1,388 of their middle-aged offspring and 642 controls. We confirmed a negative correlation of mtDNA content in blood with age and a higher content in females. The middle-aged offspring had, on average, lower levels of mtDNA than controls and the nonagenarian siblings had an even lower mtDNA content (mtDNA/nDNA ratio = 0.744 ± 0.065, 0.767 ± 0.058 and 0.698 ± 0.074, respectively; p controls-offspring = 3.4 × 10(-12), p controls-nonagenarians = 6.5 × 10(-6)), which was independent of the confounding effects of age and gender. Subsequently, we examined in a subset of the study the expression in blood of two genes regulating mitochondrial biogenesis, YY1 and PGC-1α. We found a positive association of YY1 expression and mtDNA content in controls. The observed absence of such an association in the offspring suggests an altered regulation of mitochondrial biogenesis in the members of long-lived families. In conclusion, in this study, we show that mtDNA content decreases with age and that low mtDNA content is associated with familial longevity. Our data suggest that preservation of mitochondrial function rather than enhancing mitochondrial biogenesis is a characteristic of long-lived families.
Collapse
Affiliation(s)
- N. van Leeuwen
- />Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - M. Beekman
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands
| | - J. Deelen
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands
| | - E. B. van den Akker
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - A. J. M. de Craen
- />Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - P. E. Slagboom
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands
| | - L. M. ’t Hart
- />Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
142
|
Zheng Q, Zhao Y, Wang J, Liu T, Zhang B, Gong M, Li J, Liu H, Han B, Zhang Y, Song X, Li Y, Xiao X. Spectrum-effect relationships between UPLC fingerprints and bioactivities of crude secondary roots of Aconitum carmichaelii Debeaux (Fuzi) and its three processed products on mitochondrial growth coupled with canonical correlation analysis. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:615-623. [PMID: 24632114 DOI: 10.1016/j.jep.2014.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The crude secondary roots of Aconitum carmichaelii Debeaux (Fuzi), together with its processed products, including Yanfuzi, Heishunpian and Paofupian, are commonly applied in clinic using for thousands of years, such as collapse, syncope, rheumatic fever, painful joints and various tumors. AIM OF THE STUDY To explore the different effects of Fuzi and its processed products on energy metabolism, with mitochondria as the model with the aim of guiding the clinical use of Fuzi and its products. fingerprints of Fuzi, Yanfuzi, Heishunpian and Paofupian were established by Ultra-high Performance Liquid Chromatography (UPLC) and effects of Fuzi and its processed products on rat's liver׳s mitochondrial metabolism were studied by microcalorimetry. Spectrum-effect relationships between UPLC fingerprints and energy metabolism of mitochondria were investigated using canonical correlation analysis (CCA). RESULTS Because of their inherent differences in chemical compositions, the main activities of energy metabolism of mitochondria were different among Fuzi and its processed products. The potential bioactivity sequence of the tested products was Fuzi>Heishunpian>Paofupian>Yanfuzi. RESULTS of CCA showed that compounds mesaconitine, benzoylaconitine, and benzoylhypacoitine might be the principal active components. CONCLUSION Altogether, this work provides a general model of combination of UPLC and microcalorimetry to study the spectrum-effect relationships of Fuzi and its processed products which can offer some references for detecting principal components of traditional Chinese medicine on bioactivity to mitochondrial growth.
Collapse
Affiliation(s)
- Quanfu Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; China Military Institute of Chinese Medicine, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| | - Yanling Zhao
- China Military Institute of Chinese Medicine, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China.
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| | - Tiantian Liu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; China Military Institute of Chinese Medicine, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| | - Bo Zhang
- The Second Hospital Affiliated to Harbin Medical University, No 86, Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150086, China.
| | - Man Gong
- Department of Integrative Medical Center, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| | - Jianyu Li
- Department of Integrative Medical Center, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| | - Honghong Liu
- Department of Integrative Medical Center, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| | - Bin Han
- Department of Pharmacy, Guang Dong Pharmacy College, 68, Nanhua District, Guangzhou 51006, China
| | - Yaming Zhang
- China Military Institute of Chinese Medicine, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| | - Xueai Song
- Department of Integrative Medical Center, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| | - Yonggang Li
- Department of Integrative Medical Center, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, 302 Hospital of People׳s Liberation Army, 100, the 4th Ring Road, Beijing 100039, China
| |
Collapse
|
143
|
Chiang C, Chu Y, Chen H, Kuo T, Lee W. Synthesis and Characterization of Ni
III
N3S2 Complexes as Active Site Models for the Oxidized Form of Nickel Superoxide Dismutase. Chemistry 2014; 20:6283-6. [PMID: 24737622 DOI: 10.1002/chem.201304543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/19/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Chien‐Wei Chiang
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting‐Chow Rd., 11677 Taipei (Taiwan)
| | - Yun‐Li Chu
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting‐Chow Rd., 11677 Taipei (Taiwan)
| | - Hong‐Ling Chen
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting‐Chow Rd., 11677 Taipei (Taiwan)
| | - Ting‐Shen Kuo
- Instrumentation Center, Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting‐Chow Rd., Taipei 11677, Taiwan (R.O.C.)
| | - Way‐Zen Lee
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting‐Chow Rd., 11677 Taipei (Taiwan)
| |
Collapse
|
144
|
Abstract
In recent years, diabetes mellitus has become an epidemic and now represents one of the most prevalent disorders. Cardiovascular complications are the major cause of mortality and morbidity in diabetic patients. While ischaemic events dominate the cardiac complications of diabetes, it is widely recognised that the risk for developing heart failure is also increased in the absence of overt myocardial ischaemia and hypertension or is accelerated in the presence of these comorbidities. These diabetes-associated changes in myocardial structure and function have been called diabetic cardiomyopathy. Numerous molecular mechanisms have been proposed to contribute to the development of diabetic cardiomyopathy following analysis of various animal models of type 1 or type 2 diabetes and in genetically modified mouse models. The steady increase in reports presenting novel mechanistic data on this subject expands the list of potential underlying mechanisms. The current review provides an update on molecular alterations that may contribute to the structural and functional alterations in the diabetic heart.
Collapse
Affiliation(s)
- Heiko Bugger
- Heart Center Freiburg University, Cardiology and Angiology I, Freiburg, Germany
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 108 CMAB, 451 Newton Road, Iowa City, IA 52242-1101, USA
| |
Collapse
|
145
|
Gonzalez-Lima F, Barksdale BR, Rojas JC. Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 2014; 88:584-93. [DOI: 10.1016/j.bcp.2013.11.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
|
146
|
Picca A, Pesce V, Fracasso F, Joseph AM, Leeuwenburgh C, Lezza AMS. A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat. Biochim Biophys Acta Gen Subj 2014; 1840:2184-91. [PMID: 24631828 DOI: 10.1016/j.bbagen.2014.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Mitochondrial Transcription Factor A (TFAM) is regarded as a histone-like protein of mitochondrial DNA (mtDNA), performing multiple functions for this genome. Aging affects mitochondria in a tissue-specific manner and only calorie restriction (CR) is able to delay or prevent the onset of several age-related changes also in mitochondria. METHODS Samples of the frontal cortex and soleus skeletal muscle from 6- and 26-month-old ad libitum-fed and 26-month-old calorie-restricted rats and of the livers from 18- and 28-month-old ad libitum-fed and 28-month-old calorie-restricted rats were used to detect TFAM amount, TFAM-binding to mtDNA and mtDNA content. RESULTS We found an age-related increase in TFAM amount in the frontal cortex, not affected by CR, versus an age-related decrease in the soleus and liver, fully prevented by CR. The semi-quantitative analysis of in vivo binding of TFAM to specific mtDNA regions, by mtDNA immunoprecipitation assay and following PCR, showed a marked age-dependent decrease in TFAM-binding activity in the frontal cortex, partially prevented by CR. An age-related increase in TFAM-binding to mtDNA, fully prevented by CR, was found in the soleus and liver. MtDNA content presented a common age-related decrease, completely prevented by CR in the soleus and liver, but not in the frontal cortex. CONCLUSIONS The modulation of TFAM expression, TFAM-binding to mtDNA and mtDNA content with aging and CR showed a trend shared by the skeletal muscle and liver, but not by the frontal cortex counterpart. GENERAL SIGNIFICANCE Aging and CR appear to induce similar mitochondrial molecular mechanisms in the skeletal muscle and liver, different from those elicited in the frontal cortex.
Collapse
Affiliation(s)
- Anna Picca
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Anna-Maria Joseph
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
147
|
Van Bergen NJ, Blake RE, Crowston JG, Trounce IA. Oxidative phosphorylation measurement in cell lines and tissues. Mitochondrion 2014; 15:24-33. [DOI: 10.1016/j.mito.2014.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 01/01/2023]
|
148
|
Transcription could be the key to the selection advantage of mitochondrial deletion mutants in aging. Proc Natl Acad Sci U S A 2014; 111:2972-7. [PMID: 24569805 DOI: 10.1073/pnas.1314970111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mitochondrial theory of aging is widely popular but confronted by several apparent inconsistencies. On the one hand, mitochondrial energy production is of central importance to the health and proper functioning of cells, and single-cell studies have shown that mtDNA deletion mutants accumulate in a clonal fashion in various mammalian species, displacing the wild-type mtDNAs. On the other hand, no explanation exists yet for the clonal expansion of mtDNA mutants that is compatible with experimental observations. We present here a new idea based on the distinctive connection between transcription and replication of metazoan mtDNA. Bioinformatic analysis of mtDNA deletion spectra strongly supports the predictions of this hypothesis and identifies specific candidates for proteins involved in transcriptional control of mtDNA replication. Computer simulations show the mechanism to be compatible with the available data from short- and long-lived mammalian species.
Collapse
|
149
|
Riazifar H, Jia Y, Chen J, Lynch G, Huang T. Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med 2014; 3:424-32. [PMID: 24493857 DOI: 10.5966/sctm.2013-0147] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The loss of retinal ganglion cells (RGCs) is the primary pathological change for many retinal degenerative diseases. Although there is currently no effective treatment for this group of diseases, cell transplantation to replace lost RGCs holds great potential. However, for the development of cell replacement therapy, better understanding of the molecular details involved in differentiating stem cells into RGCs is essential. In this study, a novel, stepwise chemical protocol is described for the differentiation of human embryonic stem cells and induced pluripotent stem cells into functional RGCs. Briefly, stem cells were differentiated into neural rosettes, which were then cultured with the Notch inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). The expression of neural and RGC markers (BRN3A, BRN3B, ATOH7/Math5, γ-synuclein, Islet-1, and THY-1) was examined. Approximately 30% of the cell population obtained expressed the neuronal marker TUJ1 as well the RGC markers. Moreover, the differentiated RGCs generated action potentials and exhibited both spontaneous and evoked excitatory postsynaptic currents, indicating that functional and mature RGCs were generated. In combination, these data demonstrate that a single chemical (DAPT) can induce PAX6/RX-positive stem cells to undergo differentiation into functional RGCs.
Collapse
Affiliation(s)
- Hamidreza Riazifar
- Department of Pediatrics, Division of Human Genetics, Department of Anatomy and Neurobiology, Department of Psychiatry and Human Behavior, MitoMed Molecular Diagnostic Laboratory, Department of Pathology, Department of Developmental and Cell Biology, and Department of Ophthalmology, University of California, Irvine, Irvine, California, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
150
|
Jeong JH, Jeong HR, Jo YN, Kim HJ, Lee U, Heo HJ. Antioxidant and neuronal cell protective effects of columbia arabica coffee with different roasting conditions. Prev Nutr Food Sci 2014; 18:30-7. [PMID: 24471107 PMCID: PMC3867146 DOI: 10.3746/pnf.2013.18.1.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
In vitro antioxidant activities and neuronal cell protective effects of ethanol extract from roasted coffee beans were investigated. Colombia arabica coffee (Coffea arabica) green beans were roasted to give medium (230°C, 10 min), city (230°C, 12 min) and french (230°C, 15 min) coffee beans. Total phenolics in raw green beans, medium, city and french-roasted beans were 8.81±0.05, 9.77±0.03, 9.92±0.04 and 7.76±0.01 mg of GAE/g, respectively. The content of 5-O-caffeoylquinic acid, the predominant phenolic, was detected higher in medium-roasted beans than others. In addition, we found that extracts from medium-roasted beans particularly showed the highest in vitro antioxidant activity on ABTS radical scavenging activity and FRAP assays. To determine cell viability using the MTT assay, extracts from medium-roasted beans showed higher protection against H2O2-induced neurotoxicity than others. Lactate dehydrogenase (LDH) leakage was also inhibited by the extracts due to prevention of lipid peroxidation using the malondialdehyde (MDA) assay from mouse whole brain homogenates. These data suggest that the medium-roasting condition to making tasty coffee from Columbia arabica green beans may be more helpful to human health by providing the most physiological phenolics, including 5-O-caffeoylquinic acids.
Collapse
Affiliation(s)
- Ji Hee Jeong
- Division of Applied Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam 660-701, Korea
| | | | - Yu Na Jo
- Division of Applied Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam 660-701, Korea
| | - Hyun Ju Kim
- Division of Applied Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam 660-701, Korea
| | - Uk Lee
- Department of Special Purpose Trees, Korea Forest Research Institute, Gyeonggi 441-847, Korea
| | - Ho Jin Heo
- Division of Applied Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam 660-701, Korea
| |
Collapse
|