101
|
Ansari MW, Tuteja N. Post-harvest quality risks by stress/ethylene: management to mitigate. PROTOPLASMA 2015; 252:21-32. [PMID: 25091877 DOI: 10.1007/s00709-014-0678-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 05/10/2023]
Abstract
Fresh produce, in actual fact, is exposed to multiple stresses through entire post-harvest phase such as handling, storage and distribution. The biotic stresses are associated with various post-harvest diseases leading to massive produce loss. Abiotic stresses such as drought, heat and chilling cause cell weakening, membrane leakage, flavour loss, surface pitting, internal browning, textural changes, softening and mealiness of post-harvest produce. A burst in 'stress ethylene' formation makes post-harvest produce to be at high risk for over-ripening, decay, deterioration, pathogen attack and physiological disorders. The mutation study of genes and receptors involved in ethylene signal transduction shows reduced sensitivity to bind ethylene resulting in delayed ripening and longer shelf life of produce. This review is aimed to highlight the various detrimental effects of stress/ethylene on quality of post-harvest produce, primarily fruits, with special emphasize to its subsequent practical management involving the 'omics' tools. The outcome of the literature appraised herein will help us to understand the physiological and molecular bases of stress/ethylene which sustain fruit quality at post-harvest phase.
Collapse
Affiliation(s)
- Mohammad W Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | |
Collapse
|
102
|
Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC PLANT BIOLOGY 2014; 14:351. [PMID: 25491370 PMCID: PMC4272553 DOI: 10.1186/s12870-014-0351-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/25/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Fruit maturation and ripening are genetically regulated processes that involve a complex interplay of plant hormones, growth regulators and multiple biological and environmental factors. Tomato (Solanum lycopersicum) has been used as a model of biological and genetic studies on the regulation of specific ripening pathways, including ethylene, carotenoid and cell wall metabolism. This model has also been used to investigate the functions of upstream signalling and transcriptional regulators. Thus far, many ripening-associated transcription factors that influence fruit development and ripening have been reported. NAC transcription factors are plant specific and play important roles in many stages of plant growth and development, such as lateral root formation, secondary cell wall synthesis, and embryo, floral organ, vegetative organ and fruit development. RESULTS Tissue-specific analysis by quantitative real-time PCR showed that SlNAC1 was highly accumulated in immature green fruits; the expression of SlNAC1 increased with fruit ripening till to the highest level at 7 d after the breaker stage. The overexpression of SlNAC1 resulted in reduced carotenoids by altering carotenoid pathway flux and decreasing ethylene synthesis mediated mainly by the reduced expression of ethylene biosynthetic genes of system-2, thus led to yellow or orange mature fruits. The results of yeast one-hybrid experiment demonstrated that SlNAC1 can interact with the regulatory regions of genes related lycopene and ethylene synthesis. These results also indicated that SlNAC1 inhibited fruit ripening by affecting ethylene synthesis and carotenoid accumulation in SlNAC1 overexpression lines. In addition, the overexpression of SlNAC1 reduced the firmness of the fruits and the thickness of the pericarp and produced more abscisic acid, resulting in the early softening of fruits. Hence, in SlNAC1 overexpression lines, both ethylene-dependent and abscisic acid-dependent pathways are regulated by SlNAC1 in fruit ripening regulatory network. CONCLUSIONS SlNAC1 had a broad influence on tomato fruit ripening and regulated SlNAC1 overexpression tomato fruit ripening through both ethylene-dependent and abscisic acid-dependent pathways. Thus, this study provided new insights into the current model of tomato fruit ripening regulatory network.
Collapse
Affiliation(s)
- Nana Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Hailong Feng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Xia Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Dong Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Dongyue Yang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong P. R. China
| |
Collapse
|
103
|
Dong Y, Li M, Zhang P, Wang X, Fan C, Zhou Y. Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. BMC PLANT BIOLOGY 2014; 14:332. [PMID: 25428555 PMCID: PMC4253999 DOI: 10.1186/s12870-014-0332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/11/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND The members of the patatin-related phospholipase subfamily III (pPLAIIIs) have been implicated in the auxin response. However, it is not clear whether and how these genes affect plant and cell morphogenesis. Here, we studied the roles of the patatin-related phospholipase pPLAIIIδ in auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. RESULTS We show that overexpression of pPLAIIIδ inhibited longitudinal growth but promoted transverse growth in most organs of Arabidopsis and Brassica napus. Compared to wild-type plants, pPLAIIIδ-KO plants exhibited enhanced cell elongation in hypocotyls, and pPLAIIIδ-OE plants displayed broadened radial cell growth of hypocotyl and reduced leaf pavement cell polarity. For the hypocotyl phenotype in pPLAIIIδ mutants, which resembles the "triple response" to ethylene, we examined the expression of the ACS and ACO genes involved in ethylene biosynthesis and found that ACS4 and ACS5 were up-regulated by 2.5-fold on average in two OE lines compared with WT plants. The endogenous auxin distribution was disturbed in plants with altered pPLAIIIδ expression. pPLAIIIδ-OE and KO plants exhibited different sensitivities to indole-3-acetic acid-promoted hypocotyl elongation in both light and dark conditions. Gene expression analysis of auxin-induced genes in the dark showed that OE plants maintained a higher auxin response compared with WT and KO plants after treatment with 1 μM IAA for 12 h. Following treatment with 10 μM IAA for 30 min in the light, early auxin-induced genes were significantly up-regulated in two OE plant lines. CONCLUSIONS These data suggest that the PLAIIIδ gene plays an important role in cell morphology and organ size through its involvement in the regulation of auxin distribution in plants.
Collapse
Affiliation(s)
- Yanni Dong
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Maoyin Li
- />Donald Danforth Plant Science Center, St Louis, Missouri USA
| | - Peng Zhang
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuemin Wang
- />Donald Danforth Plant Science Center, St Louis, Missouri USA
| | - Chuchuan Fan
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
104
|
Casein kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5. Cell Rep 2014; 9:1692-1702. [PMID: 25464840 DOI: 10.1016/j.celrep.2014.10.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/03/2014] [Accepted: 10/17/2014] [Indexed: 12/29/2022] Open
Abstract
The casein kinase 1 (CK1) family participates in various cellular processes in eukaryotes, but CK1 function in higher plants remains largely unknown. Here, we characterize the function of Arabidopsis CK1 in the regulation of ethylene biosynthesis. Etiolated seedlings of a CK1.8-deficient mutant, ck1.8-1, showed characteristic ethylene-specific constitutive responses due to overaccumulation of ethylene. Biochemical and physiological studies showed that CK1.8 phosphorylates ACS5, a key enzyme of ethylene biosynthesis, at threonine 463 to promote its interaction with the E3 ubiquitin ligase Ethylene Overproduction 1 (ETO1). Deficiency of CK1.8 leads to the accumulation of ACS5, and transgenic plants harboring a dephosphorylation-mimic ACS5(T463A) showed constitutive ethylene responses, confirming the role of CK1.8 in regulating ACS5 stability by phosphorylation and demonstrating that CK1.8 is an important regulator of ethylene biosynthesis. CK1.8 expression is feedback regulated by ethylene. Our studies provide insight into the regulation of ACS5 and ethylene biosynthesis.
Collapse
|
105
|
Agrobacterium-mediated plant transformation: Factors, applications and recent advances. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
106
|
Liu CY, Lü RH, Li J, Zhao AC, Wang XL, Diane U, Wang XH, Wang CH, Yu YS, Han SM, Lu C, Yu MD. Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.). J Zhejiang Univ Sci B 2014; 15:611-23. [PMID: 25001221 DOI: 10.1631/jzus.b1300320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
1-Aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) are encoded by multigene families and are involved in fruit ripening by catalyzing the production of ethylene throughout the development of fruit. However, there are no reports on ACS or ACO genes in mulberry, partly because of the limited molecular research background. In this study, we have obtained five ACS gene sequences and two ACO gene sequences from Morus Genome Database. Sequence alignment and phylogenetic analysis of MaACO1 and MaACO2 showed that their amino acids are conserved compared with ACO proteins from other species. MaACS1 and MaACS2 are type I, MaACS3 and MaACS4 are type II, and MaACS5 is type III, with different C-terminal sequences. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) expression analysis showed that the transcripts of MaACS genes were strongly expressed in fruit, and more weakly in other tissues. The expression of MaACO1 and MaACO2 showed different patterns in various mulberry tissues. MaACS and MaACO genes demonstrated two patterns throughout the development of mulberry fruit, and both of them were strongly up-regulated by abscisic acid (ABA) and ethephon.
Collapse
Affiliation(s)
- Chang-ying Liu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Gupta SK, Sharma S, Santisree P, Kilambi HV, Appenroth K, Sreelakshmi Y, Sharma R. Complex and shifting interactions of phytochromes regulate fruit development in tomato. PLANT, CELL & ENVIRONMENT 2014; 37:1688-702. [PMID: 24433205 DOI: 10.1111/pce.12279] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/05/2014] [Indexed: 05/22/2023]
Abstract
Tomato fruit ripening is a complex metabolic process regulated by a genetical hierarchy. A subset of this process is also modulated by light signalling, as mutants encoding negative regulators of phytochrome signal transduction show higher accumulation of carotenoids. In tomato, phytochromes are encoded by a multi-gene family, namely PHYA, PHYB1, PHYB2, PHYE and PHYF; however, their contribution to fruit development and ripening has not been examined. Using single phytochrome mutants phyA, phyB1 and phyB2 and multiple mutants phyAB1, phyB1B2 and phyAB1B2, we compared the on-vine transitory phases of ripening until fruit abscission. The phyAB1B2 mutant showed accelerated transitions during ripening, with shortest time to fruit abscission. Comparison of transition intervals in mutants indicated a phase-specific influence of different phytochrome species either singly or in combination on the ripening process. Examination of off-vine ripened fruits indicated that ripening-specific carotenoid accumulation was not obligatorily dependent upon light and even dark-incubated fruits accumulated carotenoids. The accumulation of transcripts and carotenoids in off-vine and on-vine ripened mutant fruits indicated a complex and shifting phase-dependent modulation by phytochromes. Our results indicate that, in addition to regulating carotenoid levels in tomato fruits, phytochromes also regulate the time required for phase transitions during ripening.
Collapse
Affiliation(s)
- Suresh Kumar Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | | | | | | | |
Collapse
|
108
|
Liu M, Diretto G, Pirrello J, Roustan JP, Li Z, Giuliano G, Regad F, Bouzayen M. The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening. THE NEW PHYTOLOGIST 2014; 203:206-18. [PMID: 24645853 DOI: 10.1111/nph.12771] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/09/2014] [Indexed: 05/22/2023]
Abstract
Fruit ripening involves a complex interplay between ethylene and ripening-associated transcriptional regulators. Ethylene Response Factors (ERFs) are downstream components of ethylene signaling, known to regulate the expression of ethylene-responsive genes. Although fruit ripening is an ethylene-regulated process, the role of ERFs remains poorly understood. The role of Sl-ERF.B3 in tomato (Solanum lycopersicum) fruit maturation and ripening is addressed here using a chimeric dominant repressor version (ERF.B3-SRDX). Over-expression of ERF.B3-SRDX results in a dramatic delay of the onset of ripening, enhanced climacteric ethylene production and fruit softening, and reduced pigment accumulation. Consistently, genes involved in ethylene biosynthesis and in softening are up-regulated and those of carotenoid biosynthesis are down-regulated. Moreover, the expression of ripening regulators, such as RIN, NOR, CNR and HB-1, is stimulated in ERF.B3-SRDX dominant repressor fruits and the expression pattern of a number of ERFs is severely altered. The data suggest the existence of a complex network enabling interconnection between ERF genes which may account for the pleiotropic alterations in fruit maturation and ripening. Overall, the study sheds new light on the role of Sl-ERF.B3 in the transcriptional network controlling the ripening process and uncovers a means towards uncoupling some of the main ripening-associated processes.
Collapse
Affiliation(s)
- Mingchun Liu
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France; INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Guo Y, Gan SS. Translational researches on leaf senescence for enhancing plant productivity and quality. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3901-13. [PMID: 24935620 DOI: 10.1093/jxb/eru248] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research.
Collapse
Affiliation(s)
- Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Su-Sheng Gan
- Department of Horticulture and Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
110
|
Ireland HS, Gunaseelan K, Muddumage R, Tacken EJ, Putterill J, Johnston JW, Schaffer RJ. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes. PLANT & CELL PHYSIOLOGY 2014; 55:1005-16. [PMID: 24553848 DOI: 10.1093/pcp/pcu034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.
Collapse
Affiliation(s)
- Hilary S Ireland
- The New Zealand Institute for Plant & Food Research Ltd, Private Bag 92169, Auckland 1142, New Zealand
| | | | | | | | | | | | | |
Collapse
|
111
|
Dong T, Chen G, Tian S, Xie Q, Yin W, Zhang Y, Hu Z. A non-climacteric fruit gene CaMADS-RIN regulates fruit ripening and ethylene biosynthesis in climacteric fruit. PLoS One 2014; 9:e95559. [PMID: 24751940 PMCID: PMC3994064 DOI: 10.1371/journal.pone.0095559] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
MADS-box genes have been reported to play a major role in the molecular circuit of developmental regulation. Especially, SEPALLATA (SEP) group genes play a central role in the developmental regulation of ripening in both climacteric and non-climacteric fruits. However, the mechanisms underlying the regulation of SEP genes to non-climacteric fruits ripening are still unclear. Here a SEP gene of pepper, CaMADS-RIN, has been cloned and exhibited elevated expression at the onset of ripening of pepper. To further explore the function of CaMADS-RIN, an overexpressed construct was created and transformed into ripening inhibitor (rin) mutant tomato plants. Broad ripening phenotypes were observed in CaMADS-RIN overexpressed rin fruits. The accumulation of carotenoid and expression of PDS and ZDS were enhanced in overexpressed fruits compared with rin mutant. The transcripts of cell wall metabolism genes (PG, EXP1 and TBG4) and lipoxygenase genes (TomloxB and TomloxC) accumulated more abundant compared to rin mutant. Besides, both ethylene-dependent genes including ACS2, ACO1, E4 and E8 and ethylene-independent genes such as HDC and Nor were also up-regulated in transgenic fruits at different levels. Moreover, transgenic fruits showed approximately 1–3 times increase in ethylene production compared with rin mutant fruits. Yeast two-hybrid screen results indicated that CaMADS-RIN could interact with TAGL1, FUL1 and itself respectively as SlMADS-RIN did in vitro. These results suggest that CaMADS-RIN affects fruit ripening of tomato both in ethylene-dependent and ethylene-independent aspects, which will provide a set of significant data to explore the role of SEP genes in ripening of non-climacteric fruits.
Collapse
Affiliation(s)
- Tingting Dong
- Bioengineering College, Chongqing University, Chongqing, People’s Republic of China
| | - Guoping Chen
- Bioengineering College, Chongqing University, Chongqing, People’s Republic of China
| | - Shibing Tian
- The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, Chongqing, People’s Republic of China
| | - Qiaoli Xie
- Bioengineering College, Chongqing University, Chongqing, People’s Republic of China
| | - Wencheng Yin
- Bioengineering College, Chongqing University, Chongqing, People’s Republic of China
| | - Yanjie Zhang
- Bioengineering College, Chongqing University, Chongqing, People’s Republic of China
| | - Zongli Hu
- Bioengineering College, Chongqing University, Chongqing, People’s Republic of China
- * E-mail:
| |
Collapse
|
112
|
Kuklin A. Ethylene Impact on Somatic Embryogenesis: Biotechnological Considerations. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.1995.10818856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
113
|
Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Sci Rep 2014; 4:4367. [PMID: 24621662 PMCID: PMC3952145 DOI: 10.1038/srep04367] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/20/2014] [Indexed: 01/05/2023] Open
Abstract
MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.
Collapse
|
114
|
Sobolev AP, Neelam A, Fatima T, Shukla V, Handa AK, Mattoo AK. Genetic introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on the primary metabolome. FRONTIERS IN PLANT SCIENCE 2014; 5:632. [PMID: 25538712 PMCID: PMC4257014 DOI: 10.3389/fpls.2014.00632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/24/2014] [Indexed: 05/22/2023]
Abstract
Ethylene regulates a myriad physiological and biochemical processes in ripening fruits and is accepted as the ripening hormone for the climacteric fruits. However, its effects on metabolome and resulting fruit quality are not yet fully understood, particularly when some of the ripening-associated biochemical changes are independent of ethylene action. We have generated a homozygous transgenic tomato genotype (2AS-AS) that exhibits reduced ethylene production as a result of impaired expression of 1-aminocyclopropane-1-carboxylate synthase 2 gene by its antisense RNA and had a longer shelf life. Double transgenic hybrid (2AS-AS × 579HO) developed through a genetic cross between 2AS-AS and 579HO (Mehta et al., 2002) lines resulted in significantly higher ethylene production than either the WT or 2AS-AS fruit. To determine the effects of reduced ethylene and introgression of higher polyamines' trait, the metabolic profiles of ripening fruits from WT (556AZ), 2AS-AS, and 2AS-AS × 579HO lines were determined using (1)H-NMR spectroscopy. The levels of Glu, Asp, AMP, Adenosine, Nucl1, and Nucl2 increased during ripening of the WT fruit. The increases in Glu, Asp, and AMP levels were attenuated in 2AS-AS fruit but recovered in the double hybrid with higher ethylene and polyamine levels. The ripening-associated decreases in Ala, Tyr, Val, Ile, Phe, malate, and myo-inositol levels in the 2AS-AS line were not reversed in the double hybrid line suggesting a developmental/ripening regulated accumulation of these metabolites independent of ethylene. Significant increases in the levels of fumarate, formate, choline, Nucl1, and Nucl2 at most stages of ripening fruit were found in the double transgenic line due to introgression with higher-polyamines trait. Taken together these results show that the ripening-associated metabolic changes are both ethylene dependent and independent, and that the fruit metabolome is under the control of multiple regulators, including ethylene and polyamines.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Laboratory of Magnetic Resonance “Annalaura Segre”, Institute of Chemical Methodologies, National Research CouncilRome, Italy
| | - Anil Neelam
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Tahira Fatima
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Vijaya Shukla
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Avtar K. Handa
- Department of Horticulture, Purdue University, West LafayetteIN, USA
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- *Correspondence: Autar K. Mattoo, Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA e-mail:
| |
Collapse
|
115
|
Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol 2014; 15:548. [PMID: 25464976 DOI: 10.1186/preaccept-3895766441330481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Fruits are unique to flowering plants and play a central role in seed maturation and dispersal. Molecular dissection of fruit ripening has received considerable interest because of the biological and dietary significance of fruit. To better understand the regulatory mechanisms underlying fruit ripening, we report here the first comprehensive analysis of the nuclear proteome in tomato fruits. RESULTS Nuclear proteins were isolated from tomatoes in different stages of ripening, and subjected to iTRAQ (isobaric tags for relative and absolute quantification) analysis. We show that the proteins whose abundances change during ripening stages are involved in various cellular processes. We additionally evaluate changes in the nuclear proteome in the ripening-deficient mutant, ripening-inhibitor (rin), carrying a mutation in the transcription factor RIN. A set of proteins were identified and particular attention was paid to SlUBC32 and PSMD2, the components of ubiquitin-proteasome pathway. Through chromatin immunoprecipitation and gel mobility shift assays, we provide evidence that RIN directly binds to the promoters of SlUBC32 and PSMD2. Moreover, loss of RIN function affects protein ubiquitination in nuclei. SlUBC32 encodes an E2 ubiquitin-conjugating enzyme and a genome-wide survey of the E2 gene family in tomatoes identified five more E2s as direct targets of RIN. Virus-induced gene silencing assays show that two E2s are involved in the regulation of fruit ripening. CONCLUSIONS Our results uncover a novel function of protein ubiquitination, identifying specific E2s as regulators of fruit ripening. These findings contribute to the unraveling of the gene regulatory networks that control fruit ripening.
Collapse
|
116
|
Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol 2014; 15:548. [PMID: 25464976 PMCID: PMC4269173 DOI: 10.1186/s13059-014-0548-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/18/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fruits are unique to flowering plants and play a central role in seed maturation and dispersal. Molecular dissection of fruit ripening has received considerable interest because of the biological and dietary significance of fruit. To better understand the regulatory mechanisms underlying fruit ripening, we report here the first comprehensive analysis of the nuclear proteome in tomato fruits. RESULTS Nuclear proteins were isolated from tomatoes in different stages of ripening, and subjected to iTRAQ (isobaric tags for relative and absolute quantification) analysis. We show that the proteins whose abundances change during ripening stages are involved in various cellular processes. We additionally evaluate changes in the nuclear proteome in the ripening-deficient mutant, ripening-inhibitor (rin), carrying a mutation in the transcription factor RIN. A set of proteins were identified and particular attention was paid to SlUBC32 and PSMD2, the components of ubiquitin-proteasome pathway. Through chromatin immunoprecipitation and gel mobility shift assays, we provide evidence that RIN directly binds to the promoters of SlUBC32 and PSMD2. Moreover, loss of RIN function affects protein ubiquitination in nuclei. SlUBC32 encodes an E2 ubiquitin-conjugating enzyme and a genome-wide survey of the E2 gene family in tomatoes identified five more E2s as direct targets of RIN. Virus-induced gene silencing assays show that two E2s are involved in the regulation of fruit ripening. CONCLUSIONS Our results uncover a novel function of protein ubiquitination, identifying specific E2s as regulators of fruit ripening. These findings contribute to the unraveling of the gene regulatory networks that control fruit ripening.
Collapse
Affiliation(s)
- Yuying Wang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
| | - Weihao Wang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Jianghua Cai
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Yanrui Zhang
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| | - Guozheng Qin
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
| | - Shiping Tian
- />Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093 China
- />The Graduate University of the Chinese Academy of Sciences, Yuquanlu, Beijing, 100049 China
| |
Collapse
|
117
|
Gapper NE, Giovannoni JJ, Watkins CB. Understanding development and ripening of fruit crops in an 'omics' era. HORTICULTURE RESEARCH 2014; 1:14034. [PMID: 26504543 PMCID: PMC4596339 DOI: 10.1038/hortres.2014.34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 05/17/2023]
Abstract
Next generation sequencing has revolutionized plant biology. Not only has our understanding of plant metabolism advanced using model systems and modern chromatography, but application of 'omics'-based technology has been widely extended to non-model systems as costs have plummeted and efficiency increased. As a result, important fundamental questions relating to important horticultural crops are being answered, and novel approaches with application to industry are in progress. Here we review recent research advances on development and ripening of fruit crops, how next generation sequencing approaches are driving this advance and the emerging future landscape.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- mailto:
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- Plant, Soil, and Nutrition Laboratory, US Department of Agriculture/Agriculture Research Service, Ithaca, NY 14853, USA
| | | |
Collapse
|
118
|
Bergougnoux V. The history of tomato: From domestication to biopharming. Biotechnol Adv 2014; 32:170-89. [DOI: 10.1016/j.biotechadv.2013.11.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/24/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022]
|
119
|
Hoogstrate SW, van Bussel LJA, Cristescu SM, Cator E, Mariani C, Vriezen WH, Rieu I. Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening. FRONTIERS IN PLANT SCIENCE 2014; 5:466. [PMID: 25278945 PMCID: PMC4165129 DOI: 10.3389/fpls.2014.00466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/27/2014] [Indexed: 05/11/2023]
Abstract
Climacteric fruit ripening, as it occurs in many fruit crops, depends on a rapid, autocatalytic increase in ethylene production. This agriculturally important process has been studied extensively, with tomato simultaneously acting both as a model species and target crop for modification. In tomato, the ethylene biosynthetic genes ACC SYNTHASE2 (ACS2) and ACS4 are highly expressed during fruit ripening, with a combined loss of both ACS2 and ACS4 activity preventing generation of the ethylene burst necessary for fruit ripening. However, the individual roles and importance of ACS2 and ACS4 have not been determined. In this study, we examined specifically the role of ACS4 by comparing the phenotype of an acs4 mutant firstly with that of the wild-type, and secondly with two novel ripening-inhibitor (rin) mutants. Ethylene production during ripening was significantly reduced in both acs4-1, and rin lines, with rin genotypes showing the weaker ethylene burst. Also i) the time between anthesis and the start of fruit ripening and ii) the time required to progress through ripening were significantly longer in acs4-1 than in the wild type, but shorter than in the strongest rin mutant. The delay in ripening was reflected in the lower expression of ripening-related transcripts during the mature green and light red ripening stages. Furthermore, expression of ACS2 and ACS4 was strongly dependent on a functional RIN gene, while ACS2 expression was largely independent of ACS4. Altogether, we show that ACS4 is necessary for normal progression of tomato fruit ripening and that mutation of this gene may provide a useful means for altering ripening traits.
Collapse
Affiliation(s)
- Suzanne W. Hoogstrate
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud UniversityNijmegen, Netherlands
| | - Lambertus J. A. van Bussel
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud UniversityNijmegen, Netherlands
| | - Simona M. Cristescu
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud UniversityNijmegen, Netherlands
| | - Eric Cator
- Department of Applied Stochastics, Institute for Mathematics, Astrophysics and Particle Physics, Radboud UniversityNijmegen, Netherlands
| | - Celestina Mariani
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud UniversityNijmegen, Netherlands
| | - Wim H. Vriezen
- Molecular Breeding, Bayer Crop Science Vegetable SeedsNunhem, Netherlands
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud UniversityNijmegen, Netherlands
- *Correspondence: Ivo Rieu, Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands e-mail:
| |
Collapse
|
120
|
Maessen G. Genomic stability and stability of expression in genetically modified plants. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/plb.1997.46.1.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
121
|
Gepstein S, Glick BR. Strategies to ameliorate abiotic stress-induced plant senescence. PLANT MOLECULAR BIOLOGY 2013; 82:623-33. [PMID: 23595200 DOI: 10.1007/s11103-013-0038-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 02/26/2013] [Indexed: 05/05/2023]
Abstract
The plant senescence syndrome resembles, in many molecular and phenotypic aspects, plant responses to abiotic stresses. Both processes have an enormous negative global agro-economic impact and endanger food security worldwide. Premature plant senescence is the main cause of losses in grain filling and biomass yield due to leaf yellowing and deteriorated photosynthesis, and is also responsible for the losses resulting from the short shelf life of many vegetables and fruits. Under abiotic stress conditions the yield losses are often even greater. The primary challenge in agricultural sciences today is to develop technologies that will increase food production and sustainability of agriculture especially under environmentally limiting conditions. In this chapter, some of the mechanisms involved in abiotic stress-induced plant senescence are discussed. Recent studies have shown that crop yield and nutritional values can be altered as well as plant stress tolerance through manipulating the timing of senescence. It is often difficult to separate the effects of age-dependent senescence from stress-induced senescence since both share many biochemical processes and ultimately result in plant death. The focus of this review is on abiotic stress-induced senescence. Here, a number of the major approaches that have been developed to ameliorate some of the effects of abiotic stress-induced plant senescence are considered and discussed. Some approaches mimic the mechanisms already used by some plants and soil bacteria whereas others are based on development of new improved transgenic plants. While there may not be one simple strategy that can effectively decrease all losses of crop yield that accrue as a consequence of abiotic stress-induced plant senescence, some of the strategies that are discussed already show great promise.
Collapse
Affiliation(s)
- Shimon Gepstein
- Faculty of Biology, The Technion, Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
122
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013; 82:575-91. [PMID: 23585213 DOI: 10.1007/s11103-013-0050-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/23/2013] [Indexed: 05/21/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
123
|
Gupta A, Pal RK, Rajam MV. Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:987-95. [PMID: 23507024 DOI: 10.1016/j.jplph.2013.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 05/03/2023]
Abstract
The ripening hormone, ethylene is known to initiate, modulate and co-ordinate the expression of various genes involved in the ripening process. The burst in ethylene production is the key event for the onset of ripening in climacteric fruits, including tomatoes. Therefore ethylene is held accountable for the tons of post-harvest losses due to over-ripening and subsequently resulting in fruit rotting. In the present investigation, delayed ripening tomatoes were generated by silencing three homologs of 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) gene during the course of ripening using RNAi technology. The chimeric RNAi-ACS construct designed to target ACS homologs, effectively repressed the ethylene production in tomato fruits. Fruits from such lines exhibited delayed ripening and extended shelf life for ∼45 days, with improved juice quality. The ethylene suppression brought about compositional changes in these fruits by enhancing polyamine (PA) levels. Further, decreased levels of ethylene in RNAi-ACS fruits has led to the altered levels of various ripening-specific transcripts, especially the up-regulation of PA biosynthesis and ascorbic acid (AsA) metabolism genes and down-regulation of cell wall hydrolyzing enzyme genes. These results suggest that the down-regulation of ACS homologs using RNAi can be an effective approach for obtaining delayed ripening with longer shelf life and an enhanced processing quality of tomato fruits. Also, the chimeric gene fusion can be used as an effective design for simultaneous silencing of more than one gene. These observations would be useful in better understanding of the ethylene and PA signaling during fruit ripening and molecular mechanisms underlying the interaction of these two molecules in affecting fruit quality traits.
Collapse
Affiliation(s)
- Aarti Gupta
- Plant Polyamine, Transgenic and RNAi Research Laboratory, Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | | | | |
Collapse
|
124
|
Frenkel C, Hartman TG. Decrease in fruit moisture content heralds and might launch the onset of ripening processes. J Food Sci 2013; 77:S365-76. [PMID: 23061891 DOI: 10.1111/j.1750-3841.2012.02910.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED It is known that fruit ripening is a genetically programmed event but it is not entirely clear what metabolic cue(s) stimulate the onset of ripening, ethylene action notwithstanding. Here, we examined the conjecture that fruit ripening might be evoked by an autonomously induced decrease in tissue water status. We found decline in water content occurring at the onset of ripening in climacteric and nonclimacteric fruit, suggesting that this phenomenon might be universal. This decline in water content persisted throughout the ripening process in some fruit, whereas in others it reversed during the progression of the ripening process. Applied ethylene also induced a decrease in water content in potato (Solanum tuberosum) tubers. In ethylene-mutant tomato (Solanum lycopersicum) fruit (antisense to1-aminocyclopropane carboxylate synthase), cold-induced decline in water content stimulated onset of ripening processes apparently independently of ethylene action, suggesting cause-and-effect relationship between decreasing water content and onset of ripening. The decline in tissue water content, occurring naturally or induced by ethylene, was strongly correlated with a decrease in hydration (swelling) efficacy of cell wall preparations suggesting that hydration dynamics of cell walls might account for changes in tissue moisture content. Extent of cell wall swelling was, in turn, related to the degree of oxidative cross-linking of wall-bound phenolic acids, suggesting that oxidant-induced wall restructuring might mediate cell wall and, thus, fruit tissue hydration status. We propose that oxidant-induced cell wall remodeling and consequent wall dehydration might evoke stress signaling for the onset of ripening processes. PRACTICAL APPLICATION This study suggests that decline in fruit water content is an early event in fruit ripening. This information may be used to gauge fruit maturity for appropriate harvest date and for processing. Control of fruit hydration state might be used to regulate the onset of fruit ripening.
Collapse
Affiliation(s)
- Chaim Frenkel
- Department of Plant Biology and Pathology, Rutgers-the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
125
|
Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 2013; 31:154-9. [PMID: 23354102 DOI: 10.1038/nbt.2462] [Citation(s) in RCA: 504] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/22/2012] [Indexed: 01/23/2023]
Abstract
Ripening of tomato fruits is triggered by the plant hormone ethylene, but its effect is restricted by an unknown developmental cue to mature fruits containing viable seeds. To determine whether this cue involves epigenetic remodeling, we expose tomatoes to the methyltransferase inhibitor 5-azacytidine and find that they ripen prematurely. We performed whole-genome bisulfite sequencing on fruit in four stages of development, from immature to ripe. We identified 52,095 differentially methylated regions (representing 1% of the genome) in the 90% of the genome covered by our analysis. Furthermore, binding sites for RIN, one of the main ripening transcription factors, are frequently localized in the demethylated regions of the promoters of numerous ripening genes, and binding occurs in concert with demethylation. Our data show that the epigenome is not static during development and may have been selected to ensure the fidelity of developmental processes such as ripening. Crop-improvement strategies could benefit by taking into account not only DNA sequence variation among plant lines, but also the information encoded in the epigenome.
Collapse
Affiliation(s)
- Silin Zhong
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Osorio S, Scossa F, Fernie AR. Molecular regulation of fruit ripening. FRONTIERS IN PLANT SCIENCE 2013; 4:198. [PMID: 23785378 PMCID: PMC3682129 DOI: 10.3389/fpls.2013.00198] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/28/2013] [Indexed: 05/18/2023]
Abstract
Fruit ripening is a highly coordinated developmental process that coincides with seed maturation. The ripening process is regulated by thousands of genes that control progressive softening and/or lignification of pericarp layers, accumulation of sugars, acids, pigments, and release of volatiles. Key to crop improvement is a deeper understanding of the processes underlying fruit ripening. In tomato, mutations blocking the transition to ripe fruits have provided insights into the role of ethylene and its associated molecular networks involved in the control of ripening. However, the role of other plant hormones is still poorly understood. In this review, we describe how plant hormones, transcription factors, and epigenetic changes are intimately related to provide a tight control of the ripening process. Recent findings from comparative genomics and system biology approaches are discussed.
Collapse
Affiliation(s)
- Sonia Osorio
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas, Universidad de MálagaMálaga, Spain
- *Correspondence: Sonia Osorio, Departamento de Biologïa Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Edificio I+D, 3 Planta, Campus Teatinos, 29071 Málaga, Spain e-mail:
| | - Federico Scossa
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Consiglio per la ricerca e la sperimentazione in agricoltura, Centro di ricerca per l’OrticolturaPontecagnano (Salerno), Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
127
|
Grierson D, Hamilton AJ, Lycett GW. The life and times of ACC oxidase, alias TOM13. Mol Biol Rep 2012; 40:3021-2. [DOI: 10.1007/s11033-012-2375-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
|
128
|
Ma Q, Du W, Brandizzi F, Giovannoni JJ, Barry CS. Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato. PLANT PHYSIOLOGY 2012; 160:1968-84. [PMID: 23043080 PMCID: PMC3510124 DOI: 10.1104/pp.112.205476] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/05/2012] [Indexed: 05/18/2023]
Abstract
The factors that mediate specific responses to the plant hormone ethylene are not fully defined. In particular, it is not known how signaling at the receptor complex can control distinct subsets of ethylene responses. Mutations at the Green-ripe (Gr) and reversion to ethylene sensitivity1 (rte1) loci, which encode homologous proteins of unknown function, influence ethylene responses in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana), respectively. In Arabidopsis, AtRTE1 is required for function of the ETR1 ethylene receptor and acts predominantly through this receptor via direct protein-protein interaction. While most eudicot families including the Brassicaceae possess a single gene that is closely related to AtRTE1, we report that members of the Solanaceae family contain two phylogenetically distinct genes defined by GR and GREEN-RIPE LIKE1 (GRL1), creating the possibility of subfunctionalization. We also show that SlGR and SlGRL1 are differentially expressed in tomato tissues and encode proteins predominantly localized to the Golgi. A combination of overexpression in tomato and complementation of the rte1-3 mutant allele indicates that SlGR and SlGRL1 influence distinct but overlapping ethylene responses. Overexpression of SlGRL1 in the Gr mutant background provides evidence for the existence of different ethylene signaling modules in tomato that are influenced by GR, GRL1, or both. In addition, overexpression of AtRTE1 in tomato leads to reduced ethylene responsiveness in a subset of tissues but does not mimic the Gr mutant phenotype. Together, these data reveal species-specific heterogeneity in the control of ethylene responses mediated by members of the GR/RTE1 family.
Collapse
|
129
|
Mehrotra S, Goyal V. Agrobacterium-mediated gene transfer in plants and biosafety considerations. Appl Biochem Biotechnol 2012; 168:1953-75. [PMID: 23090683 DOI: 10.1007/s12010-012-9910-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/03/2012] [Indexed: 12/21/2022]
Abstract
Agrobacterium, the natures' genetic engineer, has been used as a vector to create transgenic plants. Agrobacterium-mediated gene transfer in plants is a highly efficient transformation process which is governed by various factors including genotype of the host plant, explant, vector, plasmid, bacterial strain, composition of culture medium, tissue damage, and temperature of co-cultivation. Agrobacterium has been successfully used to transform various economically and horticulturally important monocot and dicot species by standard tissue culture and in planta transformation techniques like floral or seedling infilteration, apical meristem transformation, and the pistil drip methods. Monocots have been comparatively difficult to transform by Agrobacterium. However, successful transformations have been reported in the last few years based on the adjustment of the parameters that govern the responses of monocots to Agrobacterium. A novel Agrobacterium transferred DNA-derived nanocomplex method has been developed which will be highly valuable for plant biology and biotechnology. Agrobacterium-mediated genetic transformation is known to be the preferred method of creating transgenic plants from a commercial and biosafety perspective. Agrobacterium-mediated gene transfer predominantly results in the integration of foreign genes at a single locus in the host plant, without associated vector backbone and is also known to produce marker free plants, which are the prerequisites for commercialization of transgenic crops. Research in Agrobacterium-mediated transformation can provide new and novel insights into the understanding of the regulatory process controlling molecular, cellular, biochemical, physiological, and developmental processes occurring during Agrobacterium-mediated transformation and also into a wide range of aspects on biological safety of transgenic crops to improve crop production to meet the demands of ever-growing world's population.
Collapse
Affiliation(s)
- Shweta Mehrotra
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi 110012, India.
| | | |
Collapse
|
130
|
Abstract
Arabidopsis has been used as a model system to study many aspects of plant growth and development. However, fruit senescence in Arabidopsis has been less investigated and the underlying molecular and hormonal (especially ethylene) regulatory mechanisms are not well understood. It is reported here that the Arabidopsis silique has characteristics of a climacteric fruit, and that AtNAP, a NAC family transcription factor gene whose expression is increased with the progression of silique senescence, plays an important role in its senescence. Silique senescence was delayed for 4-5 d in the atnap knockout mutant plants. The ethylene climacteric was delayed for 2 d in the atnap silique and the associated respiratory climacteric was suppressed. Exogenous ethylene stimulated respiration in the wild type, but not in the atnap mutant. The decoupling of the ethylene and respiratory climacterics in the atnap mutant suggests that AtNAP is required for ethylene stimulation of respiration. qPCR analyses revealed that the expression patterns of genes involved in ethylene biosynthesis, perception, and signalling, ACS2, ETR1, CTR1, EIN2, EIN3, and ERF1, were also altered in the atnap mutant. The effects of exogenous ABA, SA, 6-BA, and NAA on ethylene production and respiration in siliques of the wild type and atnap mutant were also investigated. A model involving ABA-AtNAP-controlled stomatal opening in regulating ethylene-stimulated respiration in fruit senescence is presented.
Collapse
Affiliation(s)
- Xiaohong Kou
- Department of Horticulture, Cornell University, Ithaca, New York 14853–5904, USA
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | | | - Su-Sheng Gan
- Department of Horticulture, Cornell University, Ithaca, New York 14853–5904, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
131
|
Xu F, Yuan S, Zhang DW, Lv X, Lin HH. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5705-16. [PMID: 22915749 PMCID: PMC3444281 DOI: 10.1093/jxb/ers226] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although the alternative oxidase (AOX) has been proposed to play a role in fruit development, the function of AOX in fruit ripening is unclear. To gain further insight into the role of AOX in tomato fruit ripening, transgenic tomato plants 35S-AOX1a and 35S-AOX-RNAi were generated. Tomato plants with reduced LeAOX levels exhibited retarded ripening; reduced carotenoids, respiration, and ethylene production; and the down-regulation of ripening-associated genes. Moreover, no apparent respiratory climacteric occurred in the AOX-reduced tomato fruit, indicating that AOX might play an important role in climacteric respiration. In contrast, the fruit that overexpressed LeAOX1a accumulated more lycopene, though they displayed a similar pattern of ripening to wild-type fruit. Ethylene application promoted fruit ripening and anticipated ethylene production and respiration, including the alternative pathway respiration. Interestingly, the transgenic plants with reduced LeAOX levels failed to ripen after 1-methylcyclopropene (1-MCP) treatment, while such inhibition was notably less effective in 35S-AOX1a fruit. These findings indicate that AOX is involved in respiratory climacteric and ethylene-mediated fruit ripening of tomato.
Collapse
Affiliation(s)
- Fei Xu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- These authors contributed equally to this work
| | - Shu Yuan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- These authors contributed equally to this work
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- These authors contributed equally to this work
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu 610065China
| |
Collapse
|
132
|
Chidley HG, Kulkarni RS, Pujari KH, Giri AP, Gupta VS. Spatial and temporal changes in the volatile profile of Alphonso mango upon exogenous ethylene treatment. Food Chem 2012; 136:585-94. [PMID: 23122101 DOI: 10.1016/j.foodchem.2012.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022]
Abstract
Alphonso is a highly favoured and exported mango cultivar among the vast mango germplasm of India. Being a climacteric fruit, ethylene plays an important role in ripening of mango. For deeper understanding of effect of pre-climacteric ethylene treatment on volatile profiles of Alphonso mango, 26 volatiles were tracked through six ripening stages of pulp and skin of ethylene-treated and control Alphonso fruits. The study revealed accelerated ripening in terms of early appearance of ripening-specific compounds, lactones and mesifuran, upon ethylene treatment. While the level of lactones remained unaffected, the mesifuran level vastly increased upon ethylene treatment. Skin showed high terpene content while pulp had higher amount of lactones compared to skin. This work points towards involvement of ethylene as a natural hormone in the biosynthesis of lactones and furanones in naturally ripened fruits; whereas, an increase in the terpene level during ripening appears to be independent of ethylene.
Collapse
Affiliation(s)
- Hemangi G Chidley
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411 008, India
| | | | | | | | | |
Collapse
|
133
|
Behboodian B, Mohd Ali Z, Ismail I, Zainal Z. Postharvest analysis of lowland transgenic tomato fruits harboring hpRNAi-ACO1 construct. ScientificWorldJournal 2012; 2012:439870. [PMID: 22919320 PMCID: PMC3417179 DOI: 10.1100/2012/439870] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
The plant hormone, ethylene, is an important regulator which involved in regulating fruit ripening and flower senescence. In this study, RNA interference (RNAi) technology was employed to silence the genes involved in ethylene biosynthetic pathway. This was achieved by blocking the expression of specific gene encoding the ACC oxidase. Initially, cDNA corresponding to ACO1 of lowland tomato cultivar (MT1), which has high identity with ACO1 of Solanum lycopersicum in GenBank, was cloned through RT-PCR. Using a partial coding region of ACO1, one hpRNAi transformation vector was constructed and expressed ectopically under the 35S promoter. Results showed that transgenic lines harboring the hpRNA-ACO1 construct had lower ethylene production and a longer shelf life of 32 days as compared to 10 days for wild-type fruits. Changes in cell wall degrading enzyme activities were also investigated in cases where the transgenic fruits exhibited reduced rates of firmness loss, which can be associated with a decrease in pectin methylesterase (PME) and polygalacturonase (PG) activities. However, no significant change was detected in both transgenic and wild-type fruits in terms of β-galactosidase (β-Gal) activity and levels of total soluble solid, titratable acid and ascorbic acid.
Collapse
Affiliation(s)
- Bita Behboodian
- School of Biosciences and Biotechnology, Faculty Science and Technology, UKM, Selangor, 43600 Bangi, Malaysia
- Institute of System Biology, UKM, Selangor, 43600 Bangi, Malaysia
| | - Zainon Mohd Ali
- School of Biosciences and Biotechnology, Faculty Science and Technology, UKM, Selangor, 43600 Bangi, Malaysia
| | - Ismanizan Ismail
- School of Biosciences and Biotechnology, Faculty Science and Technology, UKM, Selangor, 43600 Bangi, Malaysia
| | - Zamri Zainal
- School of Biosciences and Biotechnology, Faculty Science and Technology, UKM, Selangor, 43600 Bangi, Malaysia
- Institute of System Biology, UKM, Selangor, 43600 Bangi, Malaysia
| |
Collapse
|
134
|
Orozco-Arroyo G, Vázquez-Santana S, Camacho A, Dubrovsky JG, Cruz-García F. Inception of maleness: auxin contribution to flower masculinization in the dioecious cactus Opuntia stenopetala. PLANTA 2012; 236:225-38. [PMID: 22328126 DOI: 10.1007/s00425-012-1602-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/26/2012] [Indexed: 05/13/2023]
Abstract
In Opuntia stenopetala, flowers initiate as hermaphrodite; however, at maturity, only the stamens in male flowers and the gynoecium in female flowers become functional. At early developmental stages, growth and morphogenesis of the gynoecium in male flowers cease, forming a short style lacking stigmatic tissue at maturity. Here, an analysis of the masculinization process of this species and its relationship with auxin metabolism during gynoecium morphogenesis is presented. Histological analysis and scanning electron microscopy were performed; auxin levels were immunoanalyzed and exogenous auxin was applied to developing gynoecia. Male flower style-tissue patterning revealed morphological defects in the vascular bundles, stylar canal, and transmitting tissue. These features are similar to those observed in Arabidopsis thaliana mutant plants affected in auxin transport, metabolism, or signaling. Notably, when comparing auxin levels between male and female gynoecia from O. stenopetala at an early developmental stage, we found that they were particularly low in the male gynoecium. Consequently, exogenous auxin application on male gynoecia partially restored the defects of gynoecium development. We therefore hypothesize that, the arrest in male flower gynoecia patterning could be related to altered auxin homeostasis; alternatively, the addition of auxin could compensate for the lack of another unknown factor affecting male flower gynoecium development.
Collapse
Affiliation(s)
- Gregorio Orozco-Arroyo
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000. Col. Universidad Nacional Autónoma de México, 04510, Mexico, D.F., Mexico
| | | | | | | | | |
Collapse
|
135
|
Agarwal G, Choudhary D, Singh VP, Arora A. Role of ethylene receptors during senescence and ripening in horticultural crops. PLANT SIGNALING & BEHAVIOR 2012; 7:827-46. [PMID: 22751331 PMCID: PMC3583974 DOI: 10.4161/psb.20321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.
Collapse
Affiliation(s)
| | | | - Virendra P. Singh
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| |
Collapse
|
136
|
Okabe Y, Asamizu E, Ariizumi T, Shirasawa K, Tabata S, Ezura H. Availability of Micro-Tom mutant library combined with TILLING in molecular breeding of tomato fruit shelf-life. BREEDING SCIENCE 2012; 62:202-8. [PMID: 23136532 PMCID: PMC3405968 DOI: 10.1270/jsbbs.62.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/05/2012] [Indexed: 05/04/2023]
Abstract
Novel mutant alleles of an ethylene receptor Solanum lycopersicum ETHYLENE RESPONSE1 (SlETR1) gene, Sletr1-1 and Sletr1-2, were isolated from the Micro-Tom mutant library by TILLING in our previous study. They displayed different levels of impaired fruit ripening phenotype, suggesting that these alleles could be a valuable breeding material for improving shelf life of tomato fruit. To conduct practical use of the Sletr1 alleles in tomato breeding, genetic complementation analysis by transformation of genes carrying each allele is required. In this study, we generated and characterized transgenic lines over-expressing Sletr1-1 and Sletr1-2. All transgenic lines displayed ethylene insensitive phenotype and ripening inhibition, indicating that Sletr1-1 and Sletr1-2 associate with the ethylene insensitive phenotype. The level of ethylene sensitivity in the seedling was different between Sletr1-1 and Sletr1-2 transgenic lines, whereas no apparent difference was observed in fruit ripening phenotype. These results suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used. Our present and previous studies indicate that the Micro-Tom mutant library combined with TILLING could be an efficient tool for exploring genetic variations of important agronomic traits in tomato breeding.
Collapse
Affiliation(s)
- Yoshihiro Okabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Erika Asamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
137
|
Vandenbussche F, Vaseva I, Vissenberg K, Van Der Straeten D. Ethylene in vegetative development: a tale with a riddle. THE NEW PHYTOLOGIST 2012; 194:895-909. [PMID: 22404712 DOI: 10.1111/j.1469-8137.2012.04100.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The vegetative development of plants is strongly dependent on the action of phytohormones. For over a century, the effects of ethylene on plants have been studied, illustrating the profound impact of this gaseous hormone on plant growth, development and stress responses. Ethylene signaling is under tight self-control at various levels. Feedback regulation occurs on both biosynthesis and signaling. For its role in developmental processes, ethylene has a close and reciprocal relation with auxin, another major determinant of plant architecture. Here, we discuss, in view of novel findings mainly in the reference plant Arabidopsis, how ethylene is distributed and perceived throughout the plant at the organ, tissue and cellular levels, and reflect on how plants benefit from the complex interaction of ethylene and auxin, determining their shape. Furthermore, we elaborate on the implications of recent discoveries on the control of ethylene signaling.
Collapse
Affiliation(s)
- Filip Vandenbussche
- Department of Physiology, Faculty of Sciences, Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Irina Vaseva
- Department of Physiology, Faculty of Sciences, Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Kris Vissenberg
- Laboratory of Plant Growth and Development, University of Antwerp, Department of Biology, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Dominique Van Der Straeten
- Department of Physiology, Faculty of Sciences, Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
138
|
Qin G, Wang Y, Cao B, Wang W, Tian S. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:243-55. [PMID: 22098335 DOI: 10.1111/j.1365-313x.2011.04861.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The MADS box transcription factor RIN is a global regulator of fruit ripening. However, the direct targets modulated by RIN and the mechanisms underlying the transcriptional regulation remain largely unknown. Here we identified 41 protein spots representing 35 individual genes as potential targets of RIN by comparative proteomic analysis of a rin mutant in tomato fruits. Gene expression analysis showed that the mRNA level of 26 genes correlated well with the protein level. After examining the promoter regions of the candidate genes, a variable number of RIN binding sites were found. Five genes (E8, TomloxC, PNAE, PGK and ADH2) were identified as novel direct targets of RIN by chromatin immunoprecipitation. The results of a gel mobility shift assay confirmed the direct binding of RIN to the promoters of these genes. Of the direct target genes, TomloxC and ADH2, which encode lipoxygenase (LOX) and alcohol dehydrogenase, respectively, are critical for the production of characteristic tomato aromas derived from LOX pathway. Further study indicated that RIN also directly regulates the expression of HPL, which encodes hydroperoxide lyase, another rate-limiting enzyme in the LOX pathway. Loss of function of RIN causes de-regulation of the LOX pathway, leading to a specific defect in the generation of aroma compounds derived from this pathway. These results indicate that RIN modulates aroma formation by direct and rigorous regulation of expression of genes in the LOX pathway. Taken together, our findings suggest that the regulatory effect of RIN on fruit ripening is achieved by targeting specific molecular pathways.
Collapse
Affiliation(s)
- Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Haidian District, Beijing 100093, China.
| | | | | | | | | |
Collapse
|
139
|
Cruz-Hernández A, Paredes-lópez O. Fruit Quality: New Insights for Biotechnology. Crit Rev Food Sci Nutr 2012; 52:272-89. [DOI: 10.1080/10408398.2010.499844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
140
|
Abstract
Tomato ripening is a highly coordinated developmental process that coincides with seed maturation. Regulated expression of thousands of genes controls fruit softening as well as accumulation of pigments, sugars, acids, and volatile compounds that increase attraction to animals. A combination of molecular tools and ripening-affected mutants has permitted researchers to establish a framework for the control of ripening. Tomato is a climacteric fruit, with an absolute requirement for the phytohormone ethylene to ripen. This dependence upon ethylene has established tomato fruit ripening as a model system for study of regulation of its synthesis and perception. In addition, several important ripening mutants, including rin, nor, and Cnr, have provided novel insights into the control of ripening processes. Here, we describe how ethylene and the transcription factors associated with the ripening process fit together into a network controlling ripening.
Collapse
Affiliation(s)
- Harry J Klee
- University of Florida, Horticultural Sciences, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
141
|
Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 2011; 31:97-117. [PMID: 22198203 DOI: 10.1016/j.biotechadv.2011.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved.
Collapse
Affiliation(s)
- David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
142
|
Li Z, Zhang L, Yu Y, Quan R, Zhang Z, Zhang H, Huang R. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:88-99. [PMID: 21645149 DOI: 10.1111/j.1365-313x.2011.04670.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormones abscisic acid (ABA) and ethylene are known to play multiple roles in plant development and stress responses. Ethylene biosynthesis is affected by several factors including drought, cold and the phytohormone auxin, although the role of ABA is unclear. In this work ABA-responsive mutants were screened and a bZIP transcription factor HY5 was identified as a negative regulator of ethylene biosynthesis via modulation of the expression of the ethylene biosynthesis genes ACS2 and ACS5. Members of the ethylene response factor (ERF) family of transcriptional repressors in Arabidopsis have been shown to modulate ABA responses and three ERF members were found to carry putative HY5-binding cis-acting elements. Analyses with biochemical and molecular approaches revealed that HY5 specifically binds to the G-box region of the AtERF11 promoter to activate its transcription. We further demonstrate that AtERF11, which contains a repressor motif at its C-terminal, interacts with the dehydration-responsive element in the ACS2/5 promoters, to repress its expression, resulting in decreased ethylene biosynthesis. Moreover, an AtERF11 knockout mutant showed increased levels of ACS2/5 expression and ethylene emission, while treatment with ABA greatly suppressed ACS5 transcripts but not ACS2 expression and the ethylene content, indicating that AtERF11 is a key negative regulator for ABA-mediated control of ethylene synthesis. In addition, in ethylene over-producer mutants, ABA treatment was shown to suppress ACS5 transcripts and ethylene content, thereby affecting growth and development. Based on these data, in this research we present a model suggesting that the HY5-AtERF11 regulon is a key factor modulating ABA-regulated ethylene biosynthesis.
Collapse
Affiliation(s)
- Zhuofu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
143
|
Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One 2011; 6:e25216. [PMID: 21966459 PMCID: PMC3180291 DOI: 10.1371/journal.pone.0025216] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/29/2011] [Indexed: 12/23/2022] Open
Abstract
The phytohormone ethylene is a key signaling molecule that regulates a variety of developmental processes and stress responses in plants. Transcriptional modulation is a pivotal process controlling ethylene synthesis, which further triggers the expression of stress-related genes and plant adaptation to stresses; however, it is unclear how this process is transcriptionally modulated in rice. In the present research, we report the transcriptional regulation of a novel rice ethylene response factor (ERF) in ethylene synthesis and drought tolerance. Through analysis of transcriptional data, one of the drought-responsive ERF genes, OsDERF1, was identified for its activation in response to drought, ethylene and abscisic acid. Transgenic plants overexpressing OsDERF1 (OE) led to reduced tolerance to drought stress in rice at seedling stage, while knockdown of OsDERF1 (RI) expression conferred enhanced tolerance at seedling and tillering stages. This regulation was supported by negative modulation in osmotic adjustment response. To elucidate the molecular basis of drought tolerance, we identified the target genes of OsDERF1 using the Affymetrix GeneChip, including the activation of cluster stress-related negative regulators such as ERF repressors. Biochemical and molecular approaches showed that OsDERF1 at least directly interacted with the GCC box in the promoters of ERF repressors OsERF3 and OsAP2-39. Further investigations showed that OE seedlings had reduced expression (while RI lines showed enhanced expression) of ethylene synthesis genes, thereby resulting in changes in ethylene production. Moreover, overexpression of OsERF3/OsAP2-39 suppressed ethylene synthesis. In addition, application of ACC recovered the drought-sensitive phenotype in the lines overexpressing OsERF3, showing that ethylene production contributed to drought response in rice. Thus our data reveal that a novel ERF transcriptional cascade modulates drought response through controlling the ethylene synthesis, deepening our understanding of the regulation of ERF proteins in ethylene related drought response.
Collapse
Affiliation(s)
- Liyun Wan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- National Center for Plant Gene Research (Beijing), Beijing, China
| | - Jianfei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- National Center for Plant Gene Research (Beijing), Beijing, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- National Center for Plant Gene Research (Beijing), Beijing, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- National Center for Plant Gene Research (Beijing), Beijing, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- National Center for Plant Gene Research (Beijing), Beijing, China
| | - Shirong Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- National Center for Plant Gene Research (Beijing), Beijing, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- National Center for Plant Gene Research (Beijing), Beijing, China
- * E-mail:
| |
Collapse
|
144
|
Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JK, Fei Z, Giovannoni JJ, Fernie AR. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. PLANT PHYSIOLOGY 2011; 157:405-25. [PMID: 21795583 PMCID: PMC3165888 DOI: 10.1104/pp.111.175463] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/24/2011] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) is an established model to study fleshy fruit development and ripening. Tomato ripening is regulated independently and cooperatively by ethylene and transcription factors, including nonripening (NOR) and ripening-inhibitor (RIN). Mutations of NOR, RIN, and the ethylene receptor Never-ripe (Nr), which block ethylene perception and inhibit ripening, have proven to be great tools for advancing our understanding of the developmental programs regulating ripening. In this study, we present systems analysis of nor, rin, and Nr at the transcriptomic, proteomic, and metabolomic levels during development and ripening. Metabolic profiling marked shifts in the abundance of metabolites of primary metabolism, which lead to decreases in metabolic activity during ripening. When combined with transcriptomic and proteomic data, several aspects of the regulation of metabolism during ripening were revealed. First, correlations between the expression levels of a transcript and the abundance of its corresponding protein were infrequently observed during early ripening, suggesting that posttranscriptional regulatory mechanisms play an important role in these stages; however, this correlation was much greater in later stages. Second, we observed very strong correlation between ripening-associated transcripts and specific metabolite groups, such as organic acids, sugars, and cell wall-related metabolites, underlining the importance of these metabolic pathways during fruit ripening. These results further revealed multiple ethylene-associated events during tomato ripening, providing new insights into the molecular biology of ethylene-mediated ripening regulatory networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., M.L., M.I.Z., T.T., B.U., A.R.F.); Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center (R.A., Z.F., J.J.G.) and Department of Plant Biology (C.M.B.D., G.L.-C., J.K.C.R.), Cornell University, Ithaca, New York 14853
| |
Collapse
|
145
|
Li L, Zhu B, Yang P, Fu D, Zhu Y, Luo Y. The regulation mode of RIN transcription factor involved in ethylene biosynthesis in tomato fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:1822-8. [PMID: 21520447 DOI: 10.1002/jsfa.4390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND LE-RIN encodes the RIN (Ripening Inhibitor) transcription factor belonging to the MADS (Mcm1, Agamous, Deficiens, Srf) box family and regulates tomato ripening. The RIN transcription factor plays an indispensable role in ethylene biosynthesis. In the study, we respectively evaluated gene expressions and enzymatic activities of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) and ethylene production to understand the transcriptional regulation of RIN transcription factor in ethylene biosynthesis. RESULTS RIN transcription factor generates strong or weak induction of the expression of LE-ACS2, LE-ACS4 and LE-ACO1 associated with ethylene biosynthesis. Exogenous ethylene could positively affect gene expression of mature green AC tomato fruit compared with the control, including LE-ACS2, LE-ACO1 and LE-ACO4. However, LE-ACS6 expression was negatively affected by RIN transcription factor and high ethylene production. Accordingly, the activities of ACC synthase and ACC oxidase and ethylene production were also changed. CONCLUSION RIN transcription factor has an impact upon ethylene biosynthesis via regulating transcription of LE-ACS2, LE-ACS4, LE-ACO1 and LE-ACS6. These results will help to further clarify the mechanism of tomato fruit development and ripening, and to maintain quality and prolong shelf life of tomato fruit.
Collapse
Affiliation(s)
- Ling Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
146
|
Atkinson RG, Gunaseelan K, Wang MY, Luo L, Wang T, Norling CL, Johnston SL, Maddumage R, Schröder R, Schaffer RJ. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3821-35. [PMID: 21511911 DOI: 10.1093/jxb/err063] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During climacteric fruit ripening, autocatalytic (Type II) ethylene production initiates a transcriptional cascade that controls the production of many important fruit quality traits including flavour production and softening. The last step in ethylene biosynthesis is the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by the enzyme ACC oxidase (ACO). Ten independent kiwifruit (Actinidia chinensis) lines were generated targeting suppression of fruit ripening-related ACO genes and the fruit from one of these lines (TK2) did not produce detectable levels of climacteric ethylene. Ripening behaviour in a population of kiwifruit at harvest is asynchronous, so a short burst of exogenous ethylene was used to synchronize ripening in TK2 and control fruit. Following such a treatment, TK2 and control fruit softened to an 'eating-ripe' firmness. Control fruit produced climacteric ethylene and softened beyond eating-ripe by 5 d. In contrast, TK2 fruit maintained an eating-ripe firmness for >25 d and total volatile production was dramatically reduced. Application of continuous exogenous ethylene to the ripening-arrested TK2 fruit re-initiated fruit softening and typical ripe fruit volatiles were detected. A 17 500 gene microarray identified 401 genes that changed after ethylene treatment, including a polygalacturonase and a pectate lyase involved in cell wall breakdown, and a quinone oxidoreductase potentially involved in volatile production. Many of the gene changes were consistent with the softening and flavour changes observed after ethylene treatment. However, a surprisingly large number of genes of unknown function were also observed, which could account for the unique flavour and textural properties of ripe kiwifruit.
Collapse
Affiliation(s)
- Ross G Atkinson
- New Zealand Institute for Plant and Food Research Ltd , Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Dannehl D, Huyskens-keil S, Eichholz I, ulrichs C, Schmidt U. Effects of direct-electric-current on secondary plant compounds and antioxidant activity in harvested tomato fruits (Solanum lycopersicon L.). Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.10.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
148
|
Fujisawa M, Nakano T, Ito Y. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC PLANT BIOLOGY 2011; 11:26. [PMID: 21276270 PMCID: PMC3039564 DOI: 10.1186/1471-2229-11-26] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/30/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. RESULTS Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. CONCLUSIONS The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own promoter suggests the presence of autoregulation for RIN expression. ChIP-based analyses identified a novel RIN-binding CArG-box site that harbors a gene associated with RIN expression in its flanking region. These findings clarify the crucial role of RIN in the transcriptional regulation of ripening initiation and progression.
Collapse
Affiliation(s)
- Masaki Fujisawa
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Toshitsugu Nakano
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Yasuhiro Ito
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
149
|
Schärer MA, Eliot AC, Grütter MG, Capitani G. Structural basis for reduced activity of 1-aminocyclopropane-1-carboxylate synthase affected by a mutation linked to andromonoecy. FEBS Lett 2010; 585:111-4. [DOI: 10.1016/j.febslet.2010.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
150
|
Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK. Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:836-47. [PMID: 20584149 DOI: 10.1111/j.1365-313x.2010.04286.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polyamines (PAs) are ubiquitous, polycationic biogenic amines that are implicated in many biological processes, including plant growth and development, but their precise roles remain to be determined. Most of the previous studies have involved three biogenic amines: putrescine (Put), spermidine (Spd) and spermine (Spm), and their derivatives. We have expressed a yeast spermidine synthase (ySpdSyn) gene under constitutive (CaMV35S) and fruit-ripening specific (E8) promoters in Solanum lycopersicum (tomato), and determined alterations in tomato vegetative and fruit physiology in transformed lines compared with the control. Constitutive expression of ySpdSyn enhanced intracellular levels of Spd in the leaf, and transiently during fruit development, whereas E8-ySpdSyn expression led to Spd accumulation early and transiently during fruit ripening. The ySpdSyn transgenic fruits had a longer shelf life, reduced shriveling and delayed decay symptom development in comparison with the wild-type (WT) fruits. An increase in shelf life of ySpdSyn transgenic fruits was not facilitated by changes in the rate of water loss or ethylene evolution. Additionally, the expression of several cell wall and membrane degradation-related genes in ySpdSyn transgenic fruits was not correlated with an extension of shelf life, indicating that the Spd-mediated increase in fruit shelf life is independent of the above factors. Crop maturity, indicated by the percentage of ripening fruits on the vine, was delayed in a CaMV35S-ySpdSyn genotype, with fruits accumulating higher levels of the antioxidant lycopene. Notably, whole-plant senescence in the transgenic plants was also delayed compared with WT plants. Together, these results provide evidence for a role of PAs, particularly Spd, in increasing fruit shelf life, probably by reducing post-harvest senescence and decay.
Collapse
Affiliation(s)
- Savithri Nambeesan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|