101
|
Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB, Trombetta JJ, Satija R, Shalek AK, Xavier RJ, Regev A, Hung DT. Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses. Cell 2015; 162:1309-21. [PMID: 26343579 PMCID: PMC4578813 DOI: 10.1016/j.cell.2015.08.027] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/08/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023]
Abstract
Encounters between immune cells and invading bacteria ultimately determine the course of infection. These interactions are usually measured in populations of cells, masking cell-to-cell variation that may be important for infection outcome. To characterize the gene expression variation that underlies distinct infection outcomes and monitor infection phenotypes, we developed an experimental system that combines single-cell RNA-seq with fluorescent markers. Probing the responses of individual macrophages to invading Salmonella, we find that variation between individual infected host cells is determined by the heterogeneous activity of bacterial factors in individual infecting bacteria. We illustrate how variable PhoPQ activity in the population of invading bacteria drives variable host type I IFN responses by modifying LPS in a subset of bacteria. This work demonstrates a causative link between host and bacterial variability, with cell-to-cell variation between different bacteria being sufficient to drive radically different host immune responses. This co-variation has implications for host-pathogen dynamics in vivo.
Collapse
Affiliation(s)
- Roi Avraham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nathan Haseley
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Health, Sciences, and Technology, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Douglas Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cristina Penaranda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Humberto B Jijon
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
102
|
Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents 2015. [DOI: 10.1016/j.ijantimicag.2015.06.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
103
|
Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals (Basel) 2015; 8:366-415. [PMID: 26184232 PMCID: PMC4588174 DOI: 10.3390/ph8030366] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics.
Collapse
|
104
|
Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen. Proc Natl Acad Sci U S A 2015; 112:E3709-18. [PMID: 26124143 DOI: 10.1073/pnas.1503118112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have functionally and structurally defined an essential protein phosphorelay that regulates expression of genes required for growth, division, and intracellular survival of the global zoonotic pathogen Brucella abortus. Our study delineates phosphoryl transfer through this molecular pathway, which initiates from the sensor kinase CckA and proceeds through the ChpT phosphotransferase to two regulatory substrates: CtrA and CpdR. Genetic perturbation of this system results in defects in cell growth and division site selection, and a specific viability deficit inside human phagocytic cells. Thus, proper control of B. abortus division site polarity is necessary for survival in the intracellular niche. We further define the structural foundations of signaling from the central phosphotransferase, ChpT, to its response regulator substrate, CtrA, and provide evidence that there are at least two modes of interaction between ChpT and CtrA, only one of which is competent to catalyze phosphoryltransfer. The structure and dynamics of the active site on each side of the ChpT homodimer are distinct, supporting a model in which quaternary structure of the 2:2 ChpT-CtrA complex enforces an asymmetric mechanism of phosphoryl transfer between ChpT and CtrA. Our study provides mechanistic understanding, from the cellular to the atomic scale, of a conserved transcriptional regulatory system that controls the cellular and infection biology of B. abortus. More generally, our results provide insight into the structural basis of two-component signal transduction, which is broadly conserved in bacteria, plants, and fungi.
Collapse
|
105
|
Activation of Histidine Kinase SpaK Is Mediated by the N-Terminal Portion of Subtilin-Like Lantibiotics and Is Independent of Lipid II. Appl Environ Microbiol 2015; 81:5335-43. [PMID: 26025904 DOI: 10.1128/aem.01368-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022] Open
Abstract
The biosynthesis of the lantibiotic subtilin is autoinduced in a quorum-sensing mechanism via histidine kinase SpaK. Subtilin-like lantibiotics, such as entianin, ericin S, and subtilin, specifically activated SpaK in a comparable manner, whereas the structurally similar nisin did not provide the signal for SpaK activation at nontoxic concentrations. Surprisingly, nevertheless, nisin if applied together with entianin partly quenched SpaK activation. The N-terminal entianin1-20 fragment (comprising N-terminal amino acids 1 to 20) was sufficient for SpaK activation, although higher concentrations were needed. The N-terminal nisin1-20 fragment also interfered with entianin-mediated activation of SpaK and, remarkably, at extremely high concentrations also activated SpaK. Our data show that the N-terminal entianin1-20 fragment is sufficient for SpaK activation. However, if present, the C-terminal part of the molecule further strongly enhances the activation, possibly by its interference with the cellular membrane. As shown by using lipid II-interfering substances and a lipid II-deficient mutant strain, lipid II is not needed for the sensing mechanism.
Collapse
|
106
|
HAMP Domain Rotation and Tilting Movements Associated with Signal Transduction in the PhoQ Sensor Kinase. mBio 2015; 6:e00616-15. [PMID: 26015499 PMCID: PMC4447245 DOI: 10.1128/mbio.00616-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HAMP domains are α-helical coiled coils that often transduce signals from extracytoplasmic sensing domains to cytoplasmic domains. Limited structural information has resulted in hypotheses that specific HAMP helix movement changes downstream enzymatic activity. These hypotheses were tested by mutagenesis and cysteine cross-linking analysis of the PhoQ histidine kinase, essential for resistance to antimicrobial peptides in a variety of enteric pathogens. These results support a mechanistic model in which periplasmic signals which induce an activation state generate a rotational movement accompanied by a tilt in α-helix 1 which activates kinase activity. Biochemical data and a high-confidence model of the PhoQ cytoplasmic domain indicate a possible physical interaction of the HAMP domain with the catalytic domain as necessary for kinase repression. These results support a model of PhoQ activation in which changes in the periplasmic domain lead to conformational movements in the HAMP domain helices which disrupt interaction between the HAMP and the catalytic domains, thus promoting increased kinase activity. Most studies on the HAMP domain signaling states have been performed with chemoreceptors or the HAMP domain of Af1503. Full-length structures of the HAMP-containing histidine kinases VicK and CpxA or a hybrid between the HAMP domain of Af1503 and the EnvZ histidine kinase agree with the parallel four-helix bundle structure identified in Af1503 and provide snapshots of structural conformations experienced by HAMP domains. We took advantage of the fact that we can easily regulate the activation state of PhoQ histidine kinase to study its HAMP domain in the context of the full-length protein in living cells and provide biochemical evidence for different conformational states experienced by Salmonella enterica serovar Typhimurium PhoQ HAMP domain upon signaling.
Collapse
|
107
|
Hicks KG, Delbecq SP, Sancho-Vaello E, Blanc MP, Dove KK, Prost LR, Daley ME, Zeth K, Klevit RE, Miller SI. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence. eLife 2015; 4:e06792. [PMID: 26002083 PMCID: PMC4473727 DOI: 10.7554/elife.06792] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/22/2015] [Indexed: 12/30/2022] Open
Abstract
Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQW104C-A128C is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQW104C-A128CSalmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence. DOI:http://dx.doi.org/10.7554/eLife.06792.001 Salmonella bacteria cause illnesses in humans, such as food poisoning and typhoid fever. In response to a Salmonella infection, immune cells known as macrophages detect and engulf the bacteria. The conditions inside the macrophage (which include an acidic pH and high levels of antimicrobial molecules) can destroy some bacteria. However, Salmonella bacteria (which are also called salmonellae) can sense and counteract these hostile conditions; this allows them to remodel their surface to survive and reproduce inside macrophages and continue to cause disease. A protein known as PhoQ, which is found on the surface of Salmonella bacteria, is a sensor that detects when the bacterium is inside a macrophage and so needs to boost its defenses. The PhoQ sensor is able to respond to acidity, the absence of divalent cations—such as magnesium and calcium ions—and certain antimicrobial peptide molecules. These conditions and components are used inside macrophages to try and kill the bacteria, but it was not known which of these signals PhoQ actually senses during an infection. Hicks et al. established how the sensor region of PhoQ changes when it is exposed to acid. This knowledge enabled variants of this protein to be constructed that do not respond when exposed to acidic conditions or low levels of divalent cations. Salmonellae that have these modified PhoQ sensors were still able to infect macrophages and cause disease in mice. These findings suggest that antimicrobial peptide sensing alone is sufficient to trigger the bacteria's defenses inside host organisms. Understanding how salmonellae detect antimicrobial factors could help with the development of new treatments for the diseases caused by these bacteria. Furthermore, the new tools developed by Hicks et al. could be applied to other systems to characterize how bacteria interact with their host environment during infection. DOI:http://dx.doi.org/10.7554/eLife.06792.002
Collapse
Affiliation(s)
- Kevin G Hicks
- Department of Microbiology, University of Washington Medical School, Seattle, United States
| | - Scott P Delbecq
- Department of Biochemistry, University of Washington Medical School, Seattle, United States
| | - Enea Sancho-Vaello
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Leioa, Bizkaia, Spain
| | - Marie-Pierre Blanc
- Department of Microbiology, University of Washington Medical School, Seattle, United States
| | - Katja K Dove
- Department of Biochemistry, University of Washington Medical School, Seattle, United States
| | - Lynne R Prost
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Margaret E Daley
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, United States
| | - Kornelius Zeth
- Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa, Spain
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington Medical School, Seattle, United States
| | - Samuel I Miller
- Department of Microbiology, University of Washington Medical School, Seattle, United States
| |
Collapse
|
108
|
Laughlin RC, Mickum M, Rowin K, Adams LG, Alaniz RC. Altered host immune responses to membrane vesicles from Salmonella and Gram-negative pathogens. Vaccine 2015; 33:5012-9. [PMID: 26001432 DOI: 10.1016/j.vaccine.2015.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 02/08/2023]
Abstract
Membrane vesicles (MVs), discrete nano-structures produced from the outer membrane of Gram-negative bacteria such as Salmonella enterica Typhimurium (S. Typhimurium), strongly activate dendritic cells (DCs), contain major antigens (Ags) recognized by Salmonella-specific B-cells and CD4+ T-cells, and provide protection against S. Typhimurium challenge in a mouse model. With this in mind, we hypothesized that alterations to the gene expression profile of bacteria will be reflected in the immunologic response to MVs. To test this, we assessed the ability of MVs from wild-type (WT) S. Typhimurium or a strain with a phenotype mimicking the intracellular-phase of S. Typhimurium (PhoP(c)) to activate dendritic cells and initiate a strong inflammatory response. MVs, isolated from wild-type and PhoP(c)S. Typhimurium (WTMVs and PhoPcMVs, respectively) had pro-inflammatory properties consistent with the parental bacterial strains: PhoPcMVs were less stimulatory for DC activation in vitro and were impaired for subsequent inflammatory responses compared to WTMVs. Interestingly, the reduced pro-inflammatory properties of PhoPcMVs did not completely rely on signals through TLR4, the receptor for LPS. Nonetheless, both WTMVs and PhoPcMVs contained abundant immunogenic antigens capable of being recognized by memory-immune CD4+ T-cells from mice previously infected with S. Typhimurium. Furthermore, we analyzed a suite of pathogenic Gram-negative bacteria and their purified MVs for their ability to activate DCs and stimulate inflammation in a manner consistent with the known inflammatory properties of the parental strains, as shown for S. Typhimurium. Finally, analysis of the potential vaccine utility of S. Typhimurium MVs revealed their capacity to encapsulate an exogenous model antigen and stimulate antigen-specific CD4+ and CD8+ T-cell responses. Taken together, our results demonstrate the dependence of bacterial cell gene expression for MV immunogenicity and subsequent in vitro immunologic response, as well as their potential utility as a vaccine platform.
Collapse
Affiliation(s)
- Richard C Laughlin
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Megan Mickum
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Kristina Rowin
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
109
|
Mucosal physical and chemical innate barriers: Lessons from microbial evasion strategies. Semin Immunol 2015; 27:111-8. [PMID: 25936225 DOI: 10.1016/j.smim.2015.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/13/2015] [Indexed: 12/24/2022]
Abstract
The innate immune system has evolved since millions of years under a selective pressure. Among the different host mechanisms selected and conserved as a first line of defense, the gastrointestinal mucus layer constitutes an efficient physical and chemical barrier against invading microbes. Mucin glycoproteins and antimicrobial peptides are the major components of the mucus barrier, and evidences prove that they form an effective protection against most microbes. However, successful pathogens have evolved evasion strategies to circumvent this defense barrier. Here, we discuss the interactions between pathogens, mucins, and antimicrobial peptides, and the mechanisms that pathogens have developed to evade the innate defense systems of the intestinal mucosal barrier.
Collapse
|
110
|
Tolerance of Salmonella enterica serovar Typhimurium to nisin combined with EDTA is accompanied by changes in cellular composition. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
111
|
Fischer U, Hertlein S, Grimm C. The structure of apo ArnA features an unexpected central binding pocket and provides an explanation for enzymatic cooperativity. ACTA ACUST UNITED AC 2015; 71:687-96. [PMID: 25760615 DOI: 10.1107/s1399004714026686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022]
Abstract
The bacterial protein ArnA is an essential enzyme in the pathway leading to the modification of lipid A with the pentose sugar 4-amino-4-deoxy-L-arabinose. This modification confers resistance to polymyxins, which are antibiotics that are used as a last resort to treat infections with multiple drug-resistant Gram-negative bacteria. ArnA contains two domains with distinct catalytic functions: a dehydrogenase domain and a transformylase domain. The protein forms homohexamers organized as a dimer of trimers. Here, the crystal structure of apo ArnA is presented and compared with its ATP- and UDP-glucuronic acid-bound counterparts. The comparison reveals major structural rearrangements in the dehydrogenase domain that lead to the formation of a previously unobserved binding pocket at the centre of each ArnA trimer in its apo state. In the crystal structure, this pocket is occupied by a DTT molecule. It is shown that formation of the pocket is linked to a cascade of structural rearrangements that emerge from the NAD(+)-binding site. Based on these findings, a small effector molecule is postulated that binds to the central pocket and modulates the catalytic properties of ArnA. Furthermore, the discovered conformational changes provide a mechanistic explanation for the strong cooperative effect recently reported for the ArnA dehydrogenase function.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simon Hertlein
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
112
|
Pentobra: A Potent Antibiotic with Multiple Layers of Selective Antimicrobial Mechanisms against Propionibacterium Acnes. J Invest Dermatol 2015; 135:1581-1589. [PMID: 25668237 PMCID: PMC4430421 DOI: 10.1038/jid.2015.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/21/2014] [Accepted: 01/26/2015] [Indexed: 02/08/2023]
Abstract
Although antibiotics are a common treatment for acne, the difficulties inherent to effective antimicrobial penetration in sebum and selective antimicrobial action in skin are compounded by increasing resistance of Propionibacterium acnes clinical isolates. To address these problems, we engineered Pentobra, a peptide-aminoglycoside molecule which has multiple mechanisms of antibacterial action, and investigated whether it can be a potential candidate for the treatment of acne. Pentobra combines the potent ribosomal activity of aminoglycosides with the bacteria-selective membrane-permeabilizing abilities of antimicrobial peptides (AMPs). Pentobra demonstrated potent and selective killing of P. acnes, but not against human skin cells in vitro. In direct comparison, Pentobra demonstrated bactericidal activity and drastically outperformed free tobramycin (by 5–7 logs) against multiple P. acnes clinical strains. Moreover, EM studies showed that Pentobra had robust membrane activity, as treatment with Pentobra killed P. acnes cells and caused leakage of intracellular contents. Pentobra may also have potential anti-inflammatory effects as demonstrated by suppression of some P. acnes-induced chemokines. Importantly, the killing activity was maintained in sebaceous environments as Pentobra was bactericidal against clinical isolates in comedones extracts isolated from human donors. Our work demonstrates that equipping aminoglycosides with selective membrane activity is a viable approach for developing antibiotics against P. acnes that are effective in cutaneous environments.
Collapse
|
113
|
Matamouros S, Miller SI. S. Typhimurium strategies to resist killing by cationic antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3021-5. [PMID: 25644871 DOI: 10.1016/j.bbamem.2015.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Abstract
S. Typhimurium is a broad host range Gram-negative pathogen that must evade killing by host innate immune systems to colonize, replicate, cause disease, and be transmitted to other hosts. A major pathogenic strategy of Salmonellae is entrance, survival, and replication within eukaryotic cell phagocytic vacuoles. These phagocytic vacuoles and gastrointestinal mucosal surfaces contain multiple cationic antimicrobial peptides (CAMPs) which control invading bacteria. S. Typhimurium possesses several key mechanisms to resist killing by CAMPs which involve sensing CAMPs and membrane damage to activate signaling cascades that result in remodeling of the bacterial envelope to reduce its overall negative charge with an increase in hydrophobicity to decrease binding and effectiveness of CAMPs. Moreover Salmonellae have additional mechanisms to resist killing by CAMPs including an outer membrane protease which targets cationic peptides at the surface, and specific efflux pumps which protect the inner membrane from damage. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Susana Matamouros
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Samuel I Miller
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA; Departments of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
114
|
Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 2014; 5:643. [PMID: 25505462 PMCID: PMC4244539 DOI: 10.3389/fmicb.2014.00643] [Citation(s) in RCA: 995] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/07/2014] [Indexed: 01/06/2023] Open
Abstract
Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.
Collapse
Affiliation(s)
- Abiola O Olaitan
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université Marseille, France
| | - Serge Morand
- Institut des Sciences de l'Evolution, CNRS-IRD-UM2, CC065, Université Montpellier 2 Montpellier, France
| | - Jean-Marc Rolain
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université Marseille, France
| |
Collapse
|
115
|
Destoumieux-Garzón D, Duperthuy M, Vanhove AS, Schmitt P, Wai SN. Resistance to Antimicrobial Peptides in Vibrios. Antibiotics (Basel) 2014; 3:540-63. [PMID: 27025756 PMCID: PMC4790380 DOI: 10.3390/antibiotics3040540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Marylise Duperthuy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| | - Audrey Sophie Vanhove
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile.
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
116
|
Decrausaz L, Pythoud C, Domingos-Pereira S, Derré L, Jichlinski P, Nardelli-Haefliger D. Intravaginal live attenuated Salmonella increase local antitumor vaccine-specific CD8 + T cells. Oncoimmunology 2014; 2:e22944. [PMID: 23483225 PMCID: PMC3583940 DOI: 10.4161/onci.22944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have recently reported that the intravaginal instillation of synthetic Toll-like receptor 3 (TLR3) or TLR9 agonists after a subcutaneous vaccination against human papillomavirus E7 highly increases (~5-fold) the number of vaccine-specific CD8+ T cells in the genital mucosa of mice, without affecting E7-specific systemic responses. Here, we show that the instillation of live attenuated Salmonella enterica serovar Typhimurium similarly, though more efficiently (~15- fold), increases both E7-specific and total CD8+ T cells in the genital mucosa. Cancer immunotherapeutic strategies combining vaccination with local immunostimulation with live bacteria deserve further investigations.
Collapse
Affiliation(s)
- Loane Decrausaz
- Department of Urology; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
117
|
Nowicki EM, O'Brien JP, Brodbelt JS, Trent MS. Characterization of Pseudomonas aeruginosa LpxT reveals dual positional lipid A kinase activity and co-ordinated control of outer membrane modification. Mol Microbiol 2014; 94:728-41. [PMID: 25223756 DOI: 10.1111/mmi.12796] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2014] [Indexed: 01/01/2023]
Abstract
Gram-negative bacteria have evolved modification machinery to promote a dynamic outer membrane in response to a continually fluctuating environment. The kinase LpxT, for example, adds a phosphate group to the lipid A moiety of some Gram-negatives including Escherichia coli and Salmonella enterica. LpxT activity is inhibited under conditions that compromise membrane integrity, resulting instead in the addition of positively charged groups to lipid A that increase membrane stability and provide resistance to cationic antimicrobial peptides. We have now identified a functional lpxT orthologue in P. aeruginosa. LpxTPa has unique enzymatic characteristics, as it is able to phosphorylate P. aeruginosa lipid A at two sites of the molecule. Surprisingly, a previously uncharacterized lipid A 4'-dephospho-1-triphosphate species was detected. LpxTPa activity is inhibited by magnesium independently of lpxTPa transcription. Modulation of LpxTPa activity is influenced by transcription of the lipid A aminoarabinose transferase ArnT, known to be activated in response to limiting magnesium. These results demonstrate a divergent activity of LpxTPa , and suggest the existence of a co-ordinated regulatory mechanism that permits adaptation to a changing environment.
Collapse
Affiliation(s)
- Emily M Nowicki
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | |
Collapse
|
118
|
Spanò S. Host restriction inSalmonella: insights from Rab GTPases. Cell Microbiol 2014; 16:1321-8. [DOI: 10.1111/cmi.12327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Stefania Spanò
- School of Medical Sciences; University of Aberdeen; Ashgrove Road West Aberdeen UK
| |
Collapse
|
119
|
The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Mol Immunol 2014; 63:134-42. [PMID: 25037631 DOI: 10.1016/j.molimm.2014.06.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 01/17/2023]
Abstract
Lipid A, a component of bacterial lipopolysaccharide, is a conserved microbe-associated molecular pattern that activates the MD-2/TLR4 receptor complex. Nevertheless, bacteria produce lipid A molecules of considerable structural diversity. The human MD-2/TLR4 receptor most efficiently recognizes hexaacylated bisphosphorylated lipid A produced by enterobacteria, but in some animal species the immune response can be elicited also by alternative lipid A varieties, such as tetraacylated lipid IVa or pentaacylated lipid A of Rhodobacter spheroides. Several crystal structures revealed that hexaacylated lipid A and tetraacylated lipid IVa activate the murine MD-2/TLR4 in a similar manner, but failed to explain the antagonistic vs. agonistic activity of lipid IVa in the human vs. equine receptor, respectively. Targeted mutagenesis studies of the receptor complex revealed intricate combination of electrostatic and hydrophobic interactions primarily within the MD-2 co-receptor, but with a contribution of TLR4 as well, that contribute to species-specific recognition of lipid A. We will review current knowledge regarding lipid A diversity and species-specific activation of the MD-2/TLR4 receptor complex in different species (e.g. human, mouse or equine) by lipid A varieties.
Collapse
|
120
|
Tan Y, Kagan JC. A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol Cell 2014; 54:212-23. [PMID: 24766885 DOI: 10.1016/j.molcel.2014.03.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The study of innate immunity to bacteria has focused heavily on the mechanisms by which mammalian cells detect lipopolysaccharide (LPS), the conserved surface component of Gram-negative bacteria. While Toll-like receptor 4 (TLR4) is responsible for all the host transcriptional responses to LPS, recent discoveries have revealed the existence of several TLR4-independent responses to LPS. These discoveries not only broaden our view of the means by which mammalian cells interact with bacteria, but they also highlight new selective pressures that may have promoted the evolution of bacterial immune evasion strategies. In this review, we highlight past and recent discoveries on host LPS sensing mechanisms and discuss bacterial countermeasures that promote infection. By looking at both sides of the host-pathogen interaction equation, we hope to provide comprehensive insights into host defense mechanisms and bacterial pathogenesis.
Collapse
Affiliation(s)
- Yunhao Tan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
121
|
Stubben CJ, Micheva-Viteva SN, Shou Y, Buddenborg SK, Dunbar JM, Hong-Geller E. Differential expression of small RNAs from Burkholderia thailandensis in response to varying environmental and stress conditions. BMC Genomics 2014; 15:385. [PMID: 24884623 PMCID: PMC4035088 DOI: 10.1186/1471-2164-15-385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial small RNAs (sRNAs) regulate gene expression by base-pairing with downstream target mRNAs to attenuate translation of mRNA into protein at the post-transcriptional level. In response to specific environmental changes, sRNAs can modulate the expression levels of target genes, thus enabling adaptation of cellular physiology. RESULTS We profiled sRNA expression in the Gram-negative bacteria Burkholderia thailandensis cultured under 54 distinct growth conditions using a Burkholderia-specific microarray that contains probe sets to all intergenic regions greater than 90 bases. We identified 38 novel sRNAs and performed experimental validation on five sRNAs that play a role in adaptation of Burkholderia to cell stressors. In particular, the trans-encoded BTH_s1 and s39 exhibited differential expression profiles dependent on growth phase and cell stimuli, such as antibiotics and serum. Furthermore, knockdown of the highly-expressed BTH_s39 by antisense transcripts reduced B. thailandensis cell growth and attenuated host immune response upon infection, indicating that BTH_s39 functions in bacterial metabolism and adaptation to the host. In addition, expression of cis-encoded BTH_s13 and s19 found in the 5' untranslated regions of their cognate genes correlated with tight regulation of gene transcript levels. This sRNA-mediated downregulation of gene expression may be a conserved mechanism of post-transcriptional gene dosage control. CONCLUSIONS These studies provide a broad analysis of differential Burkholderia sRNA expression profiles and illustrate the complexity of bacterial gene regulation in response to different environmental stress conditions.
Collapse
|
122
|
Wang X, Quinn PJ, Yan A. Kdo2 -lipid A: structural diversity and impact on immunopharmacology. Biol Rev Camb Philos Soc 2014; 90:408-27. [PMID: 24838025 PMCID: PMC4402001 DOI: 10.1111/brv.12114] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | | | | |
Collapse
|
123
|
Salazar MO, Viarengo G, Sciara MI, Kieffer PM, Garcia Vescovi E, Furlan RLE. A thin-layer chromatography autographic method for the detection of inhibitors of the Salmonella PhoP-PhoQ regulatory system. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:155-160. [PMID: 24185747 DOI: 10.1002/pca.2482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
INTRODUCTION The PhoP-PhoQ system from Salmonella enterica serovar Typhimurium controls the expression of factors that are critical for the bacterial entry into host cells and the bacterial intramacrophage survival. Therefore it constitutes an interesting target to search for compounds that would control Salmonella virulence. Localisation of such compounds in complex matrixes could be facilitated by thin-layer chromatography (TLC) bioautography. OBJECTIVE To develop a TLC bioautography to detect inhibitors of the PhoP-PhoQ regulatory system in complex matrixes. METHODS The TLC plates were covered by a staining solution containing agar, Luria-Bertani medium, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal), kanamycin and a S. typhimurium strain that harbours a reporter transcriptional lacZ-fusion to an archetypal PhoP-activated gene virK. After solidification, the plate was incubated at 37°C for 16 h. RESULTS A bioautographic assay suitable for the localisation of inhibitors of the PhoP-PhoQ system activity in S. enterica serovar Typhimurium present in a complex matrix is described. The assay was used to analyse a series of hydrolysed extracts prepared by alkaline treatment of crude plant extracts. Bioassay-guided analysis of the fractions by NMR spectroscopy and MS led to the identification of linolenic and linoleic acids as inhibitory input signals of the PhoP-PhoQ system. CONCLUSION A practical tool is introduced that facilitates detection of inhibitors of the Salmonella PhoP-PhoQ regulatory system. The assay convenience is illustrated with the identification of the first naturally occurring organic compounds that down-regulate a PhoP-PhoQ regulatory system from a hydrolysed extract.
Collapse
Affiliation(s)
- Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, S2002LRK, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
124
|
Choi HW, Brooking-Dixon R, Neupane S, Lee CJ, Miao EA, Staats HF, Abraham SN. Salmonella typhimurium impedes innate immunity with a mast-cell-suppressing protein tyrosine phosphatase, SptP. Immunity 2014; 39:1108-20. [PMID: 24332031 DOI: 10.1016/j.immuni.2013.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/30/2013] [Indexed: 11/25/2022]
Abstract
The virulence of Salmonella is linked to its invasive capacity and suppression of adaptive immunity. This does not explain, however, the rapid dissemination of the pathogen after it breaches the gut. In our study, S. Typhimurium suppressed degranulation of local mast cells (MCs), resulting in limited neutrophil recruitment and restricting outflow of vascular contents into infection sites, thus facilitating bacterial spread. MC suppression was mediated by secreted effector protein (SptP), which shares structural homology with Yersinia YopH. SptP functioned by dephosphorylating the vesicle fusion protein N-ethylmalemide-sensitive factor and by blocking phosphorylation of Syk. Without SptP, orally challenged S. Typhimurium failed to suppress MC degranulation and exhibited limited colonization of the mesenteric lymph nodes. Administration of SptP to sites of E. coli infection markedly enhanced its virulence. Thus, SptP-mediated inactivation of local MCs is a powerful mechanism utilized by S. Typhimurium to impede early innate immunity.
Collapse
Affiliation(s)
- Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rhea Brooking-Dixon
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Subham Neupane
- Undergraduate Program in Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chul-Jin Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Herman F Staats
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke - National University of Singapore Graduate Medical School, Singapore 169857, Singapore.
| |
Collapse
|
125
|
Dalebroux ZD, Miller SI. Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr Opin Microbiol 2014; 17:106-13. [PMID: 24531506 DOI: 10.1016/j.mib.2013.12.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022]
Abstract
Salmonellae sense host cues to regulate properties important for bacterial survival and replication within host tissues. The PhoPQ two-component regulatory system senses phagosome acidification and cationic antimicrobial peptides (CAMP) to regulate the protein and lipid contents of the bacterial envelope that comprises an inner and outer membrane. PhoPQ-regulated lipid components of the outer membrane include lipopolysaccharides and glycerophospholipids. Envelope proteins regulated by PhoPQ, include: components of virulence associated secretion systems, the flagellar apparatus, membrane transport systems, and proteins that are likely structural components of the outer membrane. PhoPQ alteration of the bacterial surface results in increased bacterial resistance to CAMP and decreased detection by the innate immune system. This review details the molecular complexity of the bacterial cell envelope and highlights the outer membrane lipid bilayer as an environmentally regulated bacterial organelle.
Collapse
Affiliation(s)
- Zachary D Dalebroux
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, WA, United States; Department of Genome Sciences, University of Washington, Seattle, WA, United States; Department of Immunology, University of Washington, Seattle, WA, United States; Department of Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
126
|
PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane. Proc Natl Acad Sci U S A 2014; 111:1963-8. [PMID: 24449881 DOI: 10.1073/pnas.1316901111] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gram-negative bacteria have two lipid membranes separated by a periplasmic space containing peptidoglycan. The surface bilayer, or outer membrane (OM), provides a barrier to toxic molecules, including host cationic antimicrobial peptides (CAMPs). The OM comprises an outer leaflet of lipid A, the bioactive component of lipopolysaccharide (LPS), and an inner leaflet of glycerophospholipids (GPLs). The structure of lipid A is environmentally regulated in a manner that can promote bacterial infection by increasing bacterial resistance to CAMP and reducing LPS recognition by the innate immune system. The gastrointestinal pathogen, Salmonella Typhimurium, responds to acidic pH and CAMP through the PhoPQ two-component regulatory system, which stimulates lipid A remodeling, CAMP resistance, and intracellular survival within acidified phagosomes. Work here demonstrates that, in addition to regulating lipid A structure, the S. Typhimurium PhoPQ virulence regulators also regulate acidic GPL by increasing the levels of cardiolipins and palmitoylated acylphosphatidylglycerols within the OM. Triacylated palmitoyl-PG species were diminished in strains deleted for the PhoPQ-regulated OM lipid A palmitoyltransferase enzyme, PagP. Purified PagP transferred palmitate to PG consistent with PagP acylation of both lipid A and PG within the OM. Therefore, PhoPQ coordinately regulates OM acidic GPL with lipid A structure, suggesting that GPLs cooperate with lipid A to form an OM barrier critical for CAMP resistance and intracellular survival of S. Typhimurium.
Collapse
|
127
|
Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence 2014; 5:213-8. [PMID: 24193365 PMCID: PMC3916377 DOI: 10.4161/viru.27024] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Bacterial sepsis is a major cause of fatality worldwide. Sepsis is a multi-step process that involves an uncontrolled inflammatory response by the host cells that may result in multi organ failure and death. Both gram-negative and gram-positive bacteria play a major role in causing sepsis. These bacteria produce a range of virulence factors that enable them to escape the immune defenses and disseminate to remote organs, and toxins that interact with host cells via specific receptors on the cell surface and trigger a dysregulated immune response. Over the past decade, our understanding of toxins has markedly improved, allowing for new therapeutic strategies to be developed. This review summarizes some of these toxins and their role in sepsis.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
128
|
Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc Natl Acad Sci U S A 2013; 110:E4345-54. [PMID: 24167293 DOI: 10.1073/pnas.1303641110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
LPS is a potent bacterial effector triggering the activation of the innate immune system following binding with the complex CD14, myeloid differentiation protein 2, and Toll-like receptor 4. The LPS of the enteropathogen Shigella flexneri is a hexa-acylated isoform possessing an optimal inflammatory activity. Symptoms of shigellosis are produced by severe inflammation caused by the invasion process of Shigella in colonic and rectal mucosa. Here we addressed the question of the role played by the Shigella LPS in eliciting a dysregulated inflammatory response of the host. We unveil that (i) Shigella is able to modify the LPS composition, e.g., the lipid A and core domains, during proliferation within epithelial cells; (ii) the LPS of intracellular bacteria (iLPS) and that of bacteria grown in laboratory medium differ in the number of acyl chains in lipid A, with iLPS being the hypoacylated; (iii) the immunopotential of iLPS is dramatically lower than that of bacteria grown in laboratory medium; (iv) both LPS forms mainly signal through the Toll-like receptor 4/myeloid differentiation primary response gene 88 pathway; (v) iLPS down-regulates the inflammasome-mediated release of IL-1β in Shigella-infected macrophages; and (vi) iLPS exhibits a reduced capacity to prime polymorfonuclear cells for an oxidative burst. We propose a working model whereby the two forms of LPS might govern different steps of the invasive process of Shigella. In the first phases, the bacteria, decorated with hypoacylated LPS, are able to lower the immune system surveillance, whereas, in the late phases, shigellae harboring immunopotent LPS are fully recognized by the immune system, which can then successfully resolve the infection.
Collapse
|
129
|
Reyes L, Eiler-McManis E, Rodrigues PH, Chadda AS, Wallet SM, Bélanger M, Barrett AG, Alvarez S, Akin D, Dunn WA, Progulske-Fox A. Deletion of lipoprotein PG0717 in Porphyromonas gingivalis W83 reduces gingipain activity and alters trafficking in and response by host cells. PLoS One 2013; 8:e74230. [PMID: 24069284 PMCID: PMC3772042 DOI: 10.1371/journal.pone.0074230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/29/2013] [Indexed: 01/10/2023] Open
Abstract
P. gingivalis (Pg), a causative agent of chronic generalized periodontitis, has been implicated in promoting cardiovascular disease. Expression of lipoprotein gene PG0717 of Pg strain W83 was found to be transiently upregulated during invasion of human coronary artery endothelial cells (HCAEC), suggesting this protein may be involved in virulence. We characterized the virulence phenotype of a PG0717 deletion mutant of pg W83. There were no differences in the ability of W83Δ717 to adhere and invade HCAEC. However, the increased proportion of internalized W83 at 24 hours post-inoculation was not observed with W83∆717. Deletion of PG0717 also impaired the ability of W83 to usurp the autophagic pathway in HCAEC and to induce autophagy in Saos-2 sarcoma cells. HCAEC infected with W83Δ717 also secreted significantly greater amounts of MCP-1, IL-8, IL-6, GM-CSF, and soluble ICAM-1, VCAM-1, and E-selectin when compared to W83. Further characterization of W83Δ717 revealed that neither capsule nor lipid A structure was affected by deletion of PG0717. Interestingly, the activity of both arginine (Rgp) and lysine (Kgp) gingipains was reduced in whole-cell extracts and culture supernatant of W83Δ717. RT-PCR revealed a corresponding decrease in transcription of rgpB but not rgpA or kgp. Quantitative proteome studies of the two strains revealed that both RgpA and RgpB, along with putative virulence factors peptidylarginine deiminase and Clp protease were significantly decreased in the W83Δ717. Our results suggest that PG0717 has pleiotropic effects on W83 that affect microbial induced manipulation of host responses important for microbial clearance and infection control.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Eileen Eiler-McManis
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Paulo H. Rodrigues
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Amandeep S. Chadda
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Myriam Bélanger
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Amanda G. Barrett
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Sophie Alvarez
- Donald Danforth Plant Science Center, proteomics & mass spectrometry Core, St. Louis, Missouri, United States of America
| | - Debra Akin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - William A. Dunn
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| |
Collapse
|
130
|
Li Y, Wang Z, Chen J, Ernst RK, Wang X. Influence of lipid A acylation pattern on membrane permeability and innate immune stimulation. Mar Drugs 2013; 11:3197-208. [PMID: 24065161 PMCID: PMC3806461 DOI: 10.3390/md11093197] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 07/29/2013] [Accepted: 08/09/2013] [Indexed: 12/13/2022] Open
Abstract
Lipid A, the hydrophobic anchor of lipopolysaccharide (LPS), is an essential component in the outer membrane of Gram-negative bacteria. It can stimulate the innate immune system via Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD2), leading to the release of inflammatory cytokines. In this study, six Escherichia coli strains which can produce lipid A with different acylation patterns were constructed; the influence of lipid A acylation pattern on the membrane permeability and innate immune stimulation has been systematically investigated. The lipid A species were isolated and identified by matrix assisted laser ionization desorption-time of flight/tandem mass spectrometry. N-Phenyl naphthylamine uptake assay and antibiotic susceptibility test showed that membrane permeability of these strains were different. The lower the number of acyl chains in lipid A, the stronger the membrane permeability. LPS purified from these strains were used to stimulate human or mouse macrophage cells, and different levels of cytokines were induced. Compared with wild type hexa-acylated LPS, penta-acylated, tetra-acylated and tri-acylated LPS induced lower levels of cytokines. These results suggest that the lipid A acylation pattern influences both the bacterial membrane permeability and innate immune stimulation. The results would be useful for redesigning the bacterial membrane structure and for developing lipid A vaccine adjuvant.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; E-Mails: (Y.L.); (Z.W.); (J.C.)
| | - Zhou Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; E-Mails: (Y.L.); (Z.W.); (J.C.)
| | - Jiuzhou Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; E-Mails: (Y.L.); (Z.W.); (J.C.)
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA; E-Mail:
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; E-Mails: (Y.L.); (Z.W.); (J.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-510-8532-9239
| |
Collapse
|
131
|
LPS structure and PhoQ activity are important for Salmonella Typhimurium virulence in the Galleria mellonella infection model [corrected]. PLoS One 2013; 8:e73287. [PMID: 23951347 PMCID: PMC3738532 DOI: 10.1371/journal.pone.0073287] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
The larvae of the wax moth, Galleria mellonella, have been used experimentally to host a range of bacterial and fungal pathogens. In this study we evaluated the suitability of G. mellonella as an alternative animal model of Salmonella infection. Using a range of inoculum doses we established that the LD₅₀ of SalmonellaTyphimurium strain NCTC 12023 was 3.6 × 10³ bacteria per larva. Further, a set of isogenic mutant strains depleted of known virulence factors was tested to identify determinants essential for S. Typhimurium pathogenesis. Mutants depleted of one or both of the type III secretion systems encoded by Salmonella Pathogenicity Islands 1 and 2 showed no virulence defect. In contrast, we observed reduced pathogenic potential of a phoQ mutant indicating an important role for the PhoPQ two-component signal transduction system. Lipopolysaccharide (LPS) structure was also shown to influence Salmonella virulence in G. mellonella. A waaL(rfaL) mutant, which lacks the entire O-antigen (OAg), was virtually avirulent, while a wzz(ST)/wzz(fepE) double mutant expressing only a very short OAg was highly attenuated for virulence. Furthermore, shortly after infection both LPS mutant strains showed decreased replication when compared to the wild type in a flow cytometry-based competitive index assay. In this study we successfully established a G. mellonella model of S. Typhimurium infection. By identifying PhoQ and LPS OAg length as key determinants of virulence in the wax moth larvae we proved that there is an overlap between this and other animal model systems, thus confirming that the G. mellonella infection model is suitable for assessing aspects of Salmonella virulence function.
Collapse
|
132
|
Inflammation-induced acid tolerance genes gadAB in luminal commensal Escherichia coli attenuate experimental colitis. Infect Immun 2013; 81:3662-71. [PMID: 23876805 DOI: 10.1128/iai.00355-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dysregulated immune responses to commensal intestinal bacteria, including Escherichia coli, contribute to the development of inflammatory bowel diseases (IBDs) and experimental colitis. Reciprocally, E. coli responds to chronic intestinal inflammation by upregulating expression of stress response genes, including gadA and gadB. GadAB encode glutamate decarboxylase and protect E. coli from the toxic effects of low pH and fermentation acids, factors present in the intestinal lumen in patients with active IBDs. We hypothesized that E. coli upregulates gadAB during inflammation to enhance its survival and virulence. Using real-time PCR, we determined gadAB expression in luminal E. coli from ex-germfree wild-type (WT) and interleukin-10 (IL-10) knockout (KO) (IL-10(-/-)) mice selectively colonized with a commensal E. coli isolate (NC101) that causes colitis in KO mice in isolation or in combination with 7 other commensal intestinal bacterial strains. E. coli survival and host inflammatory responses were measured in WT and KO mice colonized with NC101 or a mutant lacking the gadAB genes (NC101ΔgadAB). The susceptibility of NC101 and NC101ΔgadAB to killing by host antimicrobial peptides and their translocation across intestinal epithelial cells were evaluated using bacterial killing assays and transwell experiments, respectively. We show that expression of gadAB in luminal E. coli increases proportionately with intestinal inflammation in KO mice and enhances the susceptibility of NC101 to killing by the host antimicrobial peptide cryptdin-4 but decreases bacterial transmigration across intestinal epithelial cells, colonic inflammation, and mucosal immune responses. Chronic intestinal inflammation upregulates acid tolerance pathways in commensal E. coli isolates, which, contrary to our original hypothesis, limits their survival and colitogenic potential. Further investigation of microbial adaptation to immune-mediated inflammation may provide novel insights into the pathogenesis and treatment of IBDs.
Collapse
|
133
|
Santander J, Martin T, Loh A, Pohlenz C, Gatlin DM, Curtiss R. Mechanisms of intrinsic resistance to antimicrobial peptides of Edwardsiella ictaluri and its influence on fish gut inflammation and virulence. MICROBIOLOGY (READING, ENGLAND) 2013; 159:1471-1486. [PMID: 23676433 PMCID: PMC4085987 DOI: 10.1099/mic.0.066639-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/10/2013] [Indexed: 11/18/2022]
Abstract
The genus Edwardsiella comprises a genetically distinct taxon related to other members of the family Enterobacteriaceae. It consists of bacteria differing strongly in their biochemical and physiological features, natural habitats, and pathogenic properties. Intrinsic resistance to cationic antimicrobial peptides (CAMPs) is a specific property of the genus Edwardsiella. In particular, Edwardsiella ictaluri, an important pathogen of the catfish (Ictalurus punctatus) aquaculture and the causative agent of a fatal systemic infection, is highly resistant to CAMPs. E. ictaluri mechanisms of resistance to CAMPs are unknown. We hypothesized that E. ictaluri lipopolysaccharide (LPS) plays a role in both virulence and resistance to CAMPs. The putative genes related to LPS oligo-polysaccharide (O-PS) synthesis were in-frame deleted. Individual deletions of wibT, gne and ugd eliminated synthesis of the O-PS, causing auto-agglutination, rough colonies, biofilm-like formation and motility defects. Deletion of ugd, the gene that encodes the UDP-glucose dehydrogenase enzyme responsible for synthesis of UDP-glucuronic acid, causes sensitivity to CAMPs, indicating that UDP-glucuronic acid and its derivatives are related to CAMP intrinsic resistance. E. ictaluri OP-S mutants showed different levels of attenuation, colonization of lymphoid tissues and immune protection in zebrafish (Danio rerio) and catfish. Orally inoculated catfish with O-PS mutant strains presented different degrees of gut inflammation and colonization of lymphoid tissues. Here we conclude that intrinsic resistance to CAMPs is mediated by Ugd enzyme, which has a pleiotropic effect in E. ictaluri influencing LPS synthesis, motility, agglutination, fish gut inflammation and virulence.
Collapse
Affiliation(s)
- Javier Santander
- Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
| | - Taylor Martin
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Amanda Loh
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Camilo Pohlenz
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX 77843, USA
| | - Delbert M. Gatlin
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX 77843, USA
- Intercollegiate Faculty of Nutrition, Texas A&M University System, College Station, TX 77843, USA
| | - Roy Curtiss
- Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
134
|
Viarengo G, Sciara MI, Salazar MO, Kieffer PM, Furlán RLE, García Véscovi E. Unsaturated long chain free fatty acids are input signals of the Salmonella enterica PhoP/PhoQ regulatory system. J Biol Chem 2013; 288:22346-58. [PMID: 23782700 DOI: 10.1074/jbc.m113.472829] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg(2+) limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ. We demonstrate that LCUFAs inhibit PhoQ autokinase activity, turning off the expression of the PhoP-dependent regulon. We also show that LCUFAs exert their action independently of their cellular uptake and metabolic utilization by means of the β-oxidative pathway. Our findings put forth the complexity of input signals that can converge to finely tune the activity of the PhoP/PhoQ system. In addition, they provide a new potential biochemical platform for the development of antibacterial strategies to fight against Salmonella infections.
Collapse
Affiliation(s)
- Gastón Viarengo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Predio CCT-CONICET-Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
135
|
Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013; 11:467-81. [PMID: 23748343 PMCID: PMC6913092 DOI: 10.1038/nrmicro3047] [Citation(s) in RCA: 426] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gram-negative bacteria decorate their outermost surface structure, lipopolysaccharide, with elaborate chemical moieties, which effectively disguises them from immune surveillance and protects them from the onslaught of host defences. Many of these changes occur on the lipid A moiety of lipopolysaccharide, a component that is crucial for host recognition of Gram-negative infection. In this Review, we describe the regulatory mechanisms controlling lipid A modification and discuss the impact of modifications on pathogenesis, bacterial physiology and bacterial interactions with the host immune system.
Collapse
Affiliation(s)
- Brittany D Needham
- The Institute of Cellular and Molecular Biology, The University of Texas at Austin, 78712, USA
| | | |
Collapse
|
136
|
Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, Singh PK, Chopp DL, Packman AI, Parsek MR. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol 2013; 15:2865-78. [PMID: 23751003 DOI: 10.1111/1462-2920.12155] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 01/20/2023]
Abstract
Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non-mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose-dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.
Collapse
Affiliation(s)
- Boo Shan Tseng
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Brown DB, Muszyński A, Salas O, Speed K, Carlson RW. Elucidation of the 3-O-deacylase gene, pagL, required for the removal of primary β-hydroxy fatty acid from the lipid A in the nitrogen-fixing endosymbiont Rhizobium etli CE3. J Biol Chem 2013; 288:12004-13. [PMID: 23511636 PMCID: PMC3636886 DOI: 10.1074/jbc.m113.470484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 12/25/2022] Open
Abstract
Until now, the gene responsible for the 3-O-deacylation of lipid A among nitrogen-fixing endosymbionts has not been characterized. Several Gram-negative animal pathogens such as Salmonella enterica, Pseudomonas aeruginosa, and Bordetella bronchiseptica contain an outer membrane 3-O-deacylase (PagL) that has been implicated in host immune evasion. The role of 3-O-deacylated lipid A among nitrogen-fixing endosymbionts, plant endophytes, and plant pathogens has not been studied. However, D'Haeze et al. (D'Haeze, W., Leoff, C., Freshour, G., Noel, K. D., and Carlson, R. W. (2007) J. Biol. Chem. 282, 17101-17113) reported that the lipopolysaccharide from Rhizobium etli CE3 bacteroids isolated from host bean root nodules contained exclusively tetraacylated lipid A that lacked a lipid A β-hydroxymyristyl residue, an observation that is consistent with the possibility of PagL activity being important in symbiosis. A putative pagL gene was identified in the R. etli genome sequence. With this information, we created a pagL(-) mutant strain derived from R. etli CE3. Using mass spectrometry, we demonstrated that the mutant lacks 3-O-deacylated lipid A. The parent and mutant LPS were very similar as determined by gel electrophoresis and glycosyl composition analysis using gas chromatography/mass spectrometry. However, fatty acid analysis showed that the mutant lipid A contained larger amounts of β-hydroxypentadecanoic acid than that of the parent. Furthermore, the mutant was adversely affected in establishing symbiosis with its host, Phaseolus vulgaris.
Collapse
Affiliation(s)
- Dusty B. Brown
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Artur Muszyński
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Omar Salas
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kacie Speed
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Russell W. Carlson
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
138
|
Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23. Appl Environ Microbiol 2013; 79:3160-70. [PMID: 23455349 DOI: 10.1128/aem.00178-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCS) are major signal transduction pathways that allow bacteria to detect and respond to environmental and intracellular changes. A group of TCS has been shown to be involved in the response against antimicrobial peptides (AMPs). These TCS are characterized by the possession of intramembrane-sensing histidine kinases, and they are usually associated with ABC transporters of the peptide-7 exporter family (Pep7E). Lactobacillus casei BL23 encodes two TCS belonging to this group (TCS09 and TCS12) that are located next to two ABC transporters (ABC09 and ABC12), as well as a third Pep7E ABC transporter not genetically associated with any TCS (orphan ABC). This study addressed the involvement of modules TCS09/ABC09 and TCS12/ABC12 in AMP resistance. Results showed that both systems contribute to L. casei resistance to AMPs, and that each TCS constitutes a functional unit with its corresponding ABC transporter. Analysis of transcriptional levels showed that module 09 is required for the induction of ABC09 expression in response to nisin. In contrast, module 12 controls a wider regulon that encompasses the orphan ABC, the dlt operon (d-alanylation of teichoid acids), and the mprF gene (l-lysinylation of phospholipids), thereby controlling properties of the cell envelope. Furthermore, the characterization of a dltA mutant showed that Dlt plays a major role in AMP resistance in L. casei. This is the first report on the regulation of the response of L. casei to AMPs, giving insight into its ability to adapt to the challenging environments that it encounters as a probiotic microorganism.
Collapse
|
139
|
Kilár A, Dörnyei Á, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques. MASS SPECTROMETRY REVIEWS 2013; 32:90-117. [PMID: 23165926 DOI: 10.1002/mas.21352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 06/01/2023]
Abstract
The focus of this review is the application of mass spectrometry to the structural characterization of bacterial lipopolysaccharides (LPSs), also referred to as "endotoxins," because they elicit the strong immune response in infected organisms. Recently, a wide variety of MS-based applications have been implemented to the structure elucidation of LPS. Methodological improvements, as well as on- and off-line separation procedures, proved the versatility of mass spectrometry to study complex LPS mixtures. Special attention is given in the review to the tandem mass spectrometric methods and protocols for the analyses of lipid A, the endotoxic principle of LPS. We compare and evaluate the different ionization techniques (MALDI, ESI) in view of their use in intact R- and S-type LPS and lipid A studies. Methods for sample preparation of LPS prior to mass spectrometric analysis are also described. The direct identification of intrinsic heterogeneities of most intact LPS and lipid A preparations is a particular challenge, for which separation techniques (e.g., TLC, slab-PAGE, CE, GC, HPLC) combined with mass spectrometry are often necessary. A brief summary of these combined methodologies to profile LPS molecular species is provided.
Collapse
Affiliation(s)
- Anikó Kilár
- Department of Analytical and Environmental Chemistry, Institute of Chemistry, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| | | | | |
Collapse
|
140
|
Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection. J Bacteriol 2013; 195:1920-30. [PMID: 23435973 DOI: 10.1128/jb.02000-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of Yersinia pestis is greatly enhanced after it forms a bacterial biofilm in the foregut of the flea vector that interferes with normal blood feeding. Here we report that the ability to produce a normal foregut-blocking infection depends on induction of the Y. pestis PhoP-PhoQ two-component regulatory system in the flea. Y. pestis phoP-negative mutants achieved normal infection rates and bacterial loads in the flea midgut but produced a less cohesive biofilm both in vitro and in the flea and had a greatly reduced ability to localize to and block the flea foregut. Thus, not only is the PhoP-PhoQ system induced in the flea gut environment, but also this induction is required to produce a normal transmissible infection. The altered biofilm phenotype in the flea was not due to lack of PhoPQ-dependent or PmrAB-dependent addition of aminoarabinose to the Y. pestis lipid A, because an aminoarabinose-deficient mutant that is highly sensitive to cationic antimicrobial peptides had a normal phenotype in the flea digestive tract. In addition to enhancing transmissibility, induction of the PhoP-PhoQ system in the arthropod vector prior to transmission may preadapt Y. pestis to resist the initial encounter with the mammalian innate immune response.
Collapse
|
141
|
Maeshima N, Fernandez RC. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol 2013; 3:3. [PMID: 23408095 PMCID: PMC3569842 DOI: 10.3389/fcimb.2013.00003] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of almost all Gram-negative bacteria and consists of lipid A, core sugars, and O-antigen. LPS is recognized by Toll-like receptor 4 (TLR4) and MD-2 on host innate immune cells and can signal to activate the transcription factor NFκB, leading to the production of pro-inflammatory cytokines that initiate and shape the adaptive immune response. Most of what is known about how LPS is recognized by the TLR4-MD-2 receptor complex on animal cells has been studied using Escherichia coli lipid A, which is a strong agonist of TLR4 signaling. Recent work from several groups, including our own, has shown that several important pathogenic bacteria can modify their LPS or lipid A molecules in ways that significantly alter TLR4 signaling to NFκB. Thus, it has been hypothesized that expression of lipid A variants is one mechanism by which pathogens modulate or evade the host immune response. Additionally, several key differences in the amino acid sequences of human and mouse TLR4-MD-2 receptors have been shown to alter the ability to recognize these variations in lipid A, suggesting a host-specific effect on the immune response to these pathogens. In this review, we provide an overview of lipid A variants from several human pathogens, how the basic structure of lipid A is recognized by mouse and human TLR4-MD-2 receptor complexes, as well as how alteration of this pattern affects its recognition by TLR4 and impacts the downstream immune response.
Collapse
Affiliation(s)
- Nina Maeshima
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
142
|
Han Y, Li Y, Chen J, Tan Y, Guan F, Wang X. Construction of monophosphoryl lipid A producing Escherichia coli mutants and comparison of immuno-stimulatory activities of their lipopolysaccharides. Mar Drugs 2013; 11:363-76. [PMID: 23434832 PMCID: PMC3640385 DOI: 10.3390/md11020363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/15/2013] [Accepted: 01/21/2013] [Indexed: 11/21/2022] Open
Abstract
The lipid A moiety of Escherichia coli lipopolysaccharide is a hexaacylated disaccharide of glucosamine phosphorylated at the 1- and 4'-positions. It can be recognized by the TLR4/MD-2 complex of mammalian immune cells, leading to release of proinflammatory cytokines. The toxicity of lipid A depends on its structure. In this study, two E. coli mutants, HW001 and HW002, were constructed by deleting or integrating key genes related to lipid A biosynthesis in the chromosome of E. coli W3110. HW001 was constructed by deleting lacI and replacing lacZ with the Francisella novicida lpxE gene in the chromosome and only synthesizes monophosphoryl lipid A. HW002 was constructed by deleting lpxM in HW001 and synthesizes only the pentaacylated monophosphoryl lipid A. The structures of lipid A made in HW001 and HW002 were confirmed by thin layer chromatography and electrospray ionization mass spectrometry. HW001 and HW002 grew as well as the wild-type W3110. LPS purified from HW001 or HW002 was used to stimulate murine macrophage RAW264.7 cells, and less TNF-α were released. This study provides a feasible way to produce interesting lipid A species in E. coli.
Collapse
Affiliation(s)
- Yaning Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; E-Mails: (Y.H.); (Y.L.); (J.C.); (Y.T.)
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; E-Mail:
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; E-Mails: (Y.H.); (Y.L.); (J.C.); (Y.T.)
| | - Jiuzhou Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; E-Mails: (Y.H.); (Y.L.); (J.C.); (Y.T.)
| | - Yanzhen Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; E-Mails: (Y.H.); (Y.L.); (J.C.); (Y.T.)
| | - Feng Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; E-Mail:
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; E-Mails: (Y.H.); (Y.L.); (J.C.); (Y.T.)
| |
Collapse
|
143
|
Abstract
The human body is populated by an extremely diverse group of microbes that live in a symbiotic relationship with their host. Among these, intestinal commensals are the most abundant, induce homeostatic mucosal immune responses, and fulfill physiologic functions that benefit the host. In some cases, gut symbionts, including Escherichia coli, may contribute to the pathogenesis of chronic intestinal inflammation by causing dysregulated immune activation in genetically susceptible hosts. Although immune responses to bacterial products are well-characterized, the impact of intestinal inflammation on the function of commensal luminal microbes is only beginning to be elucidated. We recently reported that chronic intestinal inflammation induces commensal E. coli to upregulate stress response genes that paradoxically limit their growth in vivo. Herein, we discuss our findings in the context of host-microbial interactions in health and disease and a developing paradigm that may distinguish pathogens from commensals.
Collapse
Affiliation(s)
- Sandrine Tchaptchet
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, USA
| | | |
Collapse
|
144
|
Arpaia N, Barton GM. The impact of Toll-like receptors on bacterial virulence strategies. Curr Opin Microbiol 2013; 16:17-22. [PMID: 23290772 DOI: 10.1016/j.mib.2012.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/12/2012] [Accepted: 11/26/2012] [Indexed: 12/12/2022]
Abstract
The mammalian immune system has evolved in the presence of microbes, both pathogenic and commensal. The consequences of microbial recognition by the host has led to the development of compensatory mechanisms by both the host and microbe to either resist or tolerate the existence of the other. In this review we discuss examples of this co-evolutionary relationship. Because of space considerations and for conceptual clarity, we have focused on detection of bacteria by the Toll-like receptor (TLR) family and highlight examples of bacterial strategies to evade, subvert and in some cases even utilize these receptors.
Collapse
Affiliation(s)
- Nicholas Arpaia
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
145
|
Shimomura H, Hosoda K, Hirai Y. Interaction of <i>Helicobacter pylori</i> Cell Membrane with Non-Esterified Cholesterol and Other Steroids. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojmm.2013.31011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
146
|
Piek S, Kahler CM. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Front Cell Infect Microbiol 2012; 2:162. [PMID: 23267440 PMCID: PMC3526765 DOI: 10.3389/fcimb.2012.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
Collapse
Affiliation(s)
- Susannah Piek
- Department of Pathology and Laboratory Medicine, The University of Western Australia Perth, WA, Australia
| | | |
Collapse
|
147
|
Baddam R, Kumar N, Shaik S, Suma T, Ngoi ST, Thong KL, Ahmed N. Genome sequencing and analysis of Salmonella enterica serovar Typhi strain CR0063 representing a carrier individual during an outbreak of typhoid fever in Kelantan, Malaysia. Gut Pathog 2012; 4:20. [PMID: 23234298 PMCID: PMC3528463 DOI: 10.1186/1757-4749-4-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/29/2012] [Indexed: 12/01/2022] Open
Abstract
Salmonella Typhi is a human restricted pathogen with a significant number of individuals as asymptomatic carriers of the bacterium. Salmonella infection can be effectively controlled if a reliable method for identification of these carriers is developed. In this context, the availability of whole genomes of carrier strains through high- throughput sequencing and further downstream analysis by comparative genomics approaches is very promising. Herein we describe the genome sequence of a Salmonella Typhi isolate representing an asymptomatic carrier individual during a prolonged outbreak of typhoid fever in Kelantan, Malaysia. Putative genomic coordinates relevant in pathogenesis and persistence of this carrier strain are identified and discussed.
Collapse
Affiliation(s)
- Ramani Baddam
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| | | | | | | | | | | | | |
Collapse
|
148
|
An altered immune response, but not individual cationic antimicrobial peptides, is associated with the oral attenuation of Ara4N-deficient Salmonella enterica serovar Typhimurium in mice. PLoS One 2012; 7:e49588. [PMID: 23166721 PMCID: PMC3499468 DOI: 10.1371/journal.pone.0049588] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) uses two-component regulatory systems (TCRS) to respond to stimuli in the local microenvironment. Upon infection, the Salmonella TCRSs PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB) are activated by environmental signals in the intestinal lumen and within host cells. TCRS-mediated gene expression results in lipopolysaccharide (LPS) modification and cationic antimicrobial peptide resistance. The PmrA-regulated pmrHFIJKLM operon mediates 4-amino-4-deoxy-L-arabinose (Ara4N) production and attachment to the lipid A of LPS. A ΔpmrF S. Typhimurium strain cannot produce Ara4N, exhibits increased sensitivity to cationic antimicrobial peptide (CAMP)-mediated killing, and attenuated virulence in mice upon oral infection. CAMPs are predicted to play a role in elimination of Salmonella, and may activate PhoPQ and PmrAB in vivo, which could increase bacterial resistance to host defenses. Competition experiments between wild type (WT) and ΔpmrF mutant strains of S. Typhimurium indicated that selection against this mutant first occurs within the intestinal lumen early during infection. However, CRAMP and active cryptdins alone are not responsible for elimination of Ara4N-deficient bacteria in vivo. Investigation into the early immune response to ΔpmrF showed that it differed slightly from the early immune response to WT S. Typhimurium. Further investigation into the early immune response to infection of Peyer's patches suggests a role for IL-13 in the attenution of the ΔpmrF mutant strain. Thus, prominent CAMPs present in the mouse intestine are not responsible for the selection against the ΔpmrF strain in this location, but limited alterations in innate immune induction were observed that affect bacterial survival and virulence.
Collapse
|
149
|
Ding PH, Wang CY, Darveau RP, Jin LJ. Nuclear factor-κB and p38 mitogen-activated protein kinase signaling pathways are critically involved in Porphyromonas gingivalis lipopolysaccharide induction of lipopolysaccharide-binding protein expression in human oral keratinocytes. Mol Oral Microbiol 2012. [PMID: 23194012 DOI: 10.1111/omi.12010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipopolysaccharide (LPS) -binding protein (LBP) plays a crucial role in innate host response to bacterial challenge. Porphyromonas gingivalis is a keystone pathogen in periodontal disease and the shift of P. gingivalis LPS lipid A structure from penta-acylated (LPS(1690)) to tetra-acylated (LPS(1435/1449)) isoform may significantly contribute to periodontal pathogenesis. We recently demonstrated that LBP is expressed in human gingiva and contributes to periodontal homeostasis. Furthermore, different isoforms of P. gingivalis LPS differently modulate the immuno-inflammatory response, and P. gingivalis LPS(1690) induces LBP expression in human oral keratinocytes (HOKs). This study further examined the signaling mechanisms of P. gingivalis LPS(1690) -induced and Escherichia coli LPS-induced LBP expression in HOKs. Both P. gingivalis LPS(1690) and E. coli LPS were potent inducers of LBP expression in HOKs. The former activated phosphorylation of IκBα, p65, p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), whereas the latter phosphorylated IκBα, p38 MAPK and SAPK/JNK. A nuclear translocation of NF-κB transcription factor was confirmed upon stimulation by both forms of LPS. Further blocking assay showed that P. gingivalis LPS(1690) induction of LBP was through NF-κB and p38 MPAK pathways, whereas E. coli LPS-induced LBP expression was mediated by NF-κB, p38 MPAK and JNK pathways. This study demonstrates that NF-κB and p38 MAPK signaling pathways are involved in P. gingivalis LPS(1690) induction of LBP expression in HOKs. The current findings could enhance the understanding of the molecular mechanisms of innate defense in maintenance of periodontal homeostasis.
Collapse
Affiliation(s)
- P-H Ding
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
150
|
Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy. Infect Immun 2012; 81:154-65. [PMID: 23090959 DOI: 10.1128/iai.01080-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.
Collapse
|