101
|
Ran Q, Chen J, Li C, Wen L, Yue F, Shu T, Mi J, Wang G, Zhang L, Gao D, Zhang D. Abnormal amplitude of low-frequency fluctuations associated with rapid-eye movement in chronic primary insomnia patients. Oncotarget 2017; 8:84877-84888. [PMID: 29156690 PMCID: PMC5689580 DOI: 10.18632/oncotarget.17921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Chronic primary insomnia (CPI) is the most prevalent sleep disorder worldwide. CPI manifests as difficulties in sleep onset, maintaining sleep, prolonged sleep latency, and daytime impairment and is often accompanied by cognitive problems such as poor academic performance, poor attention, and decreased memory. The most popular explanation of insomnia is hyperarousal or increased activities of neurons. Rapid eye movement (REM) sleep detected by polysomnography (PSG) exhibits a positive relationship with brain homeostasis and can be helpful for optimally preparing an organism for emotional and social function. Limited work has been performed to explore brain function of insomnia patients in combination with PSG analysis. Results We observed increased ALFF within areas related to hyperarousal such as the midbrain and bilateral extra-nucleus, whereas decreased ALFF was observed within areas associated with memory and attention involving the parietal and occipital lobule and others. Furthermore, the altered ALFF was associated with the duration of insomnia, sleep efficiency, duration of REM, latency of RME and ratio of REM. Materials and Methods In this study, we recruited twenty-five CPI patients and twenty-five normal sleep (NS) volunteers as a control group to investigate the amplitude of low-frequency fluctuations (ALFF) and the correlation between those altered ALFF regions through resting-state fMRI and PSG data. Conclusions These findings suggest that hyperarousal reflected by ALFF abnormality within brain areas related to cognition and emotion in insomnia associated with REM sleep.
Collapse
Affiliation(s)
- Qian Ran
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Jia Chen
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Chuan Li
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Li Wen
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Faguo Yue
- Department of Sleep and Psychology, Institute of Surgery Research, The Third Affiliated Hospital of The Third Military Medical University, Da Ping, Chongqing 400042, China
| | - Tongsheng Shu
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Jianxun Mi
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Guangxian Wang
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Lei Zhang
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| | - Dong Gao
- Department of Sleep and Psychology, Institute of Surgery Research, The Third Affiliated Hospital of The Third Military Medical University, Da Ping, Chongqing 400042, China
| | - Dong Zhang
- Department of Radiology, The Second Affiliated Hospital of The Third Military Medical University, Sha Pingba, Chongqing 400037, China
| |
Collapse
|
102
|
Bolkan SS, Stujenske JM, Parnaudeau S, Spellman TJ, Rauffenbart C, Abbas AI, Harris AZ, Gordon JA, Kellendonk C. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci 2017; 20:987-996. [PMID: 28481349 PMCID: PMC5501395 DOI: 10.1038/nn.4568] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/21/2017] [Indexed: 02/04/2023]
Abstract
The mediodorsal thalamus (MD) shares reciprocal connectivity with the prefrontal cortex (PFC), and decreased MD-PFC connectivity is observed in schizophrenia patients. Patients also display cognitive deficits including impairments in working memory, but a mechanistic link between thalamo-prefrontal circuit function and working memory is missing. Using pathway-specific inhibition, we found directional interactions between mouse MD and medial PFC (mPFC), with MD-to-mPFC supporting working memory maintenance and mPFC-to-MD supporting subsequent choice. We further identify mPFC neurons that display elevated spiking during the delay, a feature that was absent on error trials and required MD inputs for sustained maintenance. Strikingly, delay-tuned neurons had minimal overlap with spatially tuned neurons, and each mPFC population exhibited mutually exclusive dependence on MD and hippocampal inputs. These findings indicate a role for MD in sustaining prefrontal activity during working memory maintenance. Consistent with this idea, we found that enhancing MD excitability was sufficient to enhance task performance.
Collapse
Affiliation(s)
- Scott S Bolkan
- Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Joseph M Stujenske
- Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Sebastien Parnaudeau
- Institut de Biologie Paris Seine, UM119, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Paris, France
| | - Timothy J Spellman
- Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Caroline Rauffenbart
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Department of Pharmacology, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Atheir I Abbas
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA.,National Institute of Mental Health, Office of the Director, Bethesda, Maryland, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Department of Pharmacology, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
103
|
Sapkota RP, van der Linde I, Lamichhane N, Upadhyaya T, Pardhan S. Patients with Mild Cognitive Impairment Show Lower Visual Short-Term Memory Performance in Feature Binding Tasks. Dement Geriatr Cogn Dis Extra 2017; 7:74-86. [PMID: 28611821 PMCID: PMC5465696 DOI: 10.1159/000455831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
Background Early cognitive changes in people at risk of developing dementia may be detected using behavioral tests that examine the performance of typically affected brain areas, such as the hippocampi. An important cognitive function supported by the hippocampi is memory binding, in which object features are associated to create a unified percept. Aim To compare visual short-term memory (VSTM) binding performance for object names, locations, and identities between a participant group known to be at higher risk of developing dementia (mild cognitive impairment [MCI]) and healthily aging controls. Methods Ten MCI and 10 control participants completed five VSTM tests that differed in their requirement of remembering bound or unbound object names, locations, and identities, along with a standard neuropsychological test (Addenbrooke's Cognitive Examination [ACE]-III). Results The performance of the MCI participants was selectively and significantly lower than that of the healthily aging controls for memory tasks that required object-location or name-location binding. Conclusion Tasks that measure unimodal (object-location) and crossmodal (name-location) binding performance appear to be particularly effective for the detection of early cognitive changes in those at higher risk of developing dementia due to Alzheimer's disease.
Collapse
Affiliation(s)
- Raju P Sapkota
- aVision and Eye Research Unit (VERU), Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Cambridge, UK
| | - Ian van der Linde
- aVision and Eye Research Unit (VERU), Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Cambridge, UK.,bDepartment of Computing and Technology, Anglia Ruskin University, Cambridge, UK
| | - Nirmal Lamichhane
- cDepartment of Neuropsychiatry, Gandaki Medical College Teaching Hospital and BG Hospital and Research Center Pvt. Ltd, Pokhara, Nepal
| | - Tirthalal Upadhyaya
- dDepartment of Medicine, Gandaki Medical College, Teaching Hospital, Pokhara, Nepal
| | - Shahina Pardhan
- aVision and Eye Research Unit (VERU), Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
104
|
Neural Architecture for Feature Binding in Visual Working Memory. J Neurosci 2017; 37:3913-3925. [PMID: 28270569 PMCID: PMC5394900 DOI: 10.1523/jneurosci.3493-16.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 11/21/2022] Open
Abstract
Binding refers to the operation that groups different features together into objects. We propose a neural architecture for feature binding in visual working memory that employs populations of neurons with conjunction responses. We tested this model using cued recall tasks, in which subjects had to memorize object arrays composed of simple visual features (color, orientation, and location). After a brief delay, one feature of one item was given as a cue, and the observer had to report, on a continuous scale, one or two other features of the cued item. Binding failure in this task is associated with swap errors, in which observers report an item other than the one indicated by the cue. We observed that the probability of swapping two items strongly correlated with the items' similarity in the cue feature dimension, and found a strong correlation between swap errors occurring in spatial and nonspatial report. The neural model explains both swap errors and response variability as results of decoding noisy neural activity, and can account for the behavioral results in quantitative detail. We then used the model to compare alternative mechanisms for binding nonspatial features. We found the behavioral results fully consistent with a model in which nonspatial features are bound exclusively via their shared location, with no indication of direct binding between color and orientation. These results provide evidence for a special role of location in feature binding, and the model explains how this special role could be realized in the neural system.SIGNIFICANCE STATEMENT The problem of feature binding is of central importance in understanding the mechanisms of working memory. How do we remember not only that we saw a red and a round object, but that these features belong together to a single object rather than to different objects in our environment? Here we present evidence for a neural mechanism for feature binding in working memory, based on encoding of visual information by neurons that respond to the conjunction of features. We find clear evidence that nonspatial features are bound via space: we memorize directly where a color or an orientation appeared, but we memorize which color belonged with which orientation only indirectly by virtue of their shared location.
Collapse
|
105
|
Meichtry JR, Cazzoli D, Chaves S, von Arx S, Pflugshaupt T, Kalla R, Bassetti CL, Gutbrod K, Müri RM. Pure optic ataxia and visual hemiagnosia - extending the dual visual hypothesis. J Neuropsychol 2017; 12:271-290. [PMID: 28258660 DOI: 10.1111/jnp.12119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/01/2017] [Indexed: 11/28/2022]
Abstract
Goodale and Milner's two visual system hypothesis is an influential model for the understanding of the primate visual system. Lesions of either the ventral (occipito-temporal) or the dorsal (occipito-parietal) stream produce distinct and dissociated syndromes in humans: visual agnosia is typical for ventral damage, whereas optic ataxia (OA) for dorsal damage. We studied the case of a 59-year-old left-handed woman with a circumscribed lesion around the left posterior occipital sulcus, extending to the underlying white matter. Initially, she presented with a central visual field OA, which regressed to an OA to the right visual hemifield during the 3 months observation period. In addition, tachistoscopic experiments showed visual hemiagnosia to the right visual hemifield. In line with the findings of the neuropsychological experiments, the analysis of the structural MR data by means of a trackwise hodologic probabilistic approach revealed damage to the left superior longitudinal fasciculus and to the left inferior longitudinal fasciculus, indicating an impairment of both the dorsal and the ventral stream. The combination of OA and visual hemiagnosia in the same patient has never been previously described. The present case study thus provides further insights for the understanding of visual processing.
Collapse
Affiliation(s)
- Jurka R Meichtry
- Department of Neurology, Inselspital, University Hospital Bern, Switzerland.,Perception and Eye Movement Laboratory, Departments of Neurology and Clinical Research, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Dario Cazzoli
- Perception and Eye Movement Laboratory, Departments of Neurology and Clinical Research, Inselspital, University Hospital Bern, University of Bern, Switzerland.,Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Silvia Chaves
- Department of Neurology, Inselspital, University Hospital Bern, Switzerland
| | - Sebastian von Arx
- Department of Neurology, Inselspital, University Hospital Bern, Switzerland
| | - Tobias Pflugshaupt
- Center of Neurology and Neurorehabilitation, State Hospital Luzern, Switzerland
| | - Roger Kalla
- Department of Neurology, Inselspital, University Hospital Bern, Switzerland
| | - Claudio L Bassetti
- Department of Neurology, Inselspital, University Hospital Bern, Switzerland
| | - Klemens Gutbrod
- Department of Neurology, Inselspital, University Hospital Bern, Switzerland.,Perception and Eye Movement Laboratory, Departments of Neurology and Clinical Research, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - René M Müri
- Department of Neurology, Inselspital, University Hospital Bern, Switzerland.,Perception and Eye Movement Laboratory, Departments of Neurology and Clinical Research, Inselspital, University Hospital Bern, University of Bern, Switzerland.,Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
106
|
Battistoni E, Stein T, Peelen MV. Preparatory attention in visual cortex. Ann N Y Acad Sci 2017; 1396:92-107. [PMID: 28253445 DOI: 10.1111/nyas.13320] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/01/2022]
Abstract
Top-down attention is the mechanism that allows us to selectively process goal-relevant aspects of a scene while ignoring irrelevant aspects. A large body of research has characterized the effects of attention on neural activity evoked by a visual stimulus. However, attention also includes a preparatory phase before stimulus onset in which the attended dimension is internally represented. Here, we review neurophysiological, functional magnetic resonance imaging, magnetoencephalography, electroencephalography, and transcranial magnetic stimulation (TMS) studies investigating the neural basis of preparatory attention, both when attention is directed to a location in space and when it is directed to nonspatial stimulus attributes (content-based attention) ranging from low-level features to object categories. Results show that both spatial and content-based attention lead to increased baseline activity in neural populations that selectively code for the attended attribute. TMS studies provide evidence that this preparatory activity is causally related to subsequent attentional selection and behavioral performance. Attention thus acts by preactivating selective neurons in the visual cortex before stimulus onset. This appears to be a general mechanism that can operate on multiple levels of representation. We discuss the functional relevance of this mechanism, its limitations, and its relation to working memory, imagery, and expectation. We conclude by outlining open questions and future directions.
Collapse
Affiliation(s)
- Elisa Battistoni
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Timo Stein
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Marius V Peelen
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
107
|
Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes JD. The Distributed Nature of Working Memory. Trends Cogn Sci 2017; 21:111-124. [PMID: 28063661 DOI: 10.1016/j.tics.2016.12.007] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022]
Abstract
Studies in humans and non-human primates have provided evidence for storage of working memory contents in multiple regions ranging from sensory to parietal and prefrontal cortex. We discuss potential explanations for these distributed representations: (i) features in sensory regions versus prefrontal cortex differ in the level of abstractness and generalizability; and (ii) features in prefrontal cortex reflect representations that are transformed for guidance of upcoming behavioral actions. We propose that the propensity to produce persistent activity is a general feature of cortical networks. Future studies may have to shift focus from asking where working memory can be observed in the brain to how a range of specialized brain areas together transform sensory information into a delayed behavioral response.
Collapse
Affiliation(s)
- Thomas B Christophel
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany; Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany; Clinic for Neurology, Charité Universitätsmedizin, Berlin, Germany.
| | - P Christiaan Klink
- Department of Neuromodulation & Behaviour, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bernhard Spitzer
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany; Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany; Clinic for Neurology, Charité Universitätsmedizin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität, Berlin, Germany; Cluster of Excellence NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
108
|
Abstract
Abstract
One major lesson learned in the cognitive sciences is that even basic human cognitive capacities are extraordinarily complicated and
elusive to mechanistic explanations. This is definitely the case for naming and identity. Nothing seems simpler than using a proper name to
refer to a unique individual object in the world. But psychological research has shown that the criteria and mechanisms by which humans
establish and use names are unclear and seemingly contradictory. Children only develop the necessary knowledge and skills after years of
development and naming degenerates in unusual selective ways with strokes, schizophrenia, or Alzheimer disease. Here we present an
operational model of social interaction patterns and cognitive functions to explain how naming can be achieved and acquired. We study the
Grounded Naming Game as a particular example of a symbolic interaction that requires naming and present mechanisms that build up and use the
semiotic networks necessary for performance in the game. We demonstrate in experiments with autonomous physical robots that the proposed
dynamical systems indeed lead to the formation of an effective naming system and that the model hence explains how naming and identity can
get socially constructed and shared by a population of embodied agents.
Collapse
Affiliation(s)
- Luc Steels
- ICREA-Institut de Biologia Evolutiva, Universitat Pompeu Fabra and CSIC, Barcelona, Spain
- VUB AI Lab, Vrije Universiteit Brussels, Belgium
| | | | | |
Collapse
|
109
|
Fellrath J, Mottaz A, Schnider A, Guggisberg AG, Ptak R. Theta-band functional connectivity in the dorsal fronto-parietal network predicts goal-directed attention. Neuropsychologia 2016; 92:20-30. [DOI: 10.1016/j.neuropsychologia.2016.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/21/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023]
|
110
|
Finlayson NJ, Golomb JD. Feature-location binding in 3D: Feature judgments are biased by 2D location but not position-in-depth. Vision Res 2016; 127:49-56. [PMID: 27468654 PMCID: PMC5035601 DOI: 10.1016/j.visres.2016.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
A fundamental aspect of human visual perception is the ability to recognize and locate objects in the environment. Importantly, our environment is predominantly three-dimensional (3D), but while there is considerable research exploring the binding of object features and location, it is unknown how depth information interacts with features in the object binding process. A recent paradigm called the spatial congruency bias demonstrated that 2D location is fundamentally bound to object features, such that irrelevant location information biases judgments of object features, but irrelevant feature information does not bias judgments of location or other features. Here, using the spatial congruency bias paradigm, we asked whether depth is processed as another type of location, or more like other features. We initially found that depth cued by binocular disparity biased judgments of object color. However, this result seemed to be driven more by the disparity differences than the depth percept: Depth cued by occlusion and size did not bias color judgments, whereas vertical disparity information (with no depth percept) did bias color judgments. Our results suggest that despite the 3D nature of our visual environment, only 2D location information - not position-in-depth - seems to be automatically bound to object features, with depth information processed more similarly to other features than to 2D location.
Collapse
Affiliation(s)
- Nonie J Finlayson
- Department of Psychology, Center for Cognitive & Brain Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Julie D Golomb
- Department of Psychology, Center for Cognitive & Brain Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
111
|
Abstract
One way to understand the topography of the cerebral cortex is that “like attracts like.” The cortex is organized to maximize nearest neighbor similarity. This principle can explain the separation of the cortex into discrete areas that emphasize different information domains. It can also explain the maps that form within cortical areas. However, because the cortex is two-dimensional, when a parameter space of much higher dimensionality is reduced onto the cortical sheet while optimizing nearest neighbor relationships, the result may lack an obvious global ordering into separate areas. Instead, the topography may consist of partial gradients, fractures, swirls, regions that resemble separate areas in some ways but not others, and in not a lack of topographic maps but an excess of maps overlaid on each other, no one of which seems to be entirely correct. Like a canvas in a gallery of modern art that no two observers interpret the same way, this lack of obvious ordering of high-dimensional spaces onto the cortex might then result in some scientific controversy over the true organization. In this review, the authors suggest that at least some sectors of the cortex do not have a simple global ordering and are better understood as a result of a reduction of a high-dimensional space onto the cortical sheet. The cortical motor system may be an example of this phenomenon. The authors discuss a model of the lateral motor cortex in which a reduction of many parameters onto a simulated cortical sheet results in a complex topographic pattern that matches the actual monkey motor cortex in surprising detail. Some of the ambiguities of topography and areal boundaries that have plagued the attempt to systematize the lateral motor cortex are explained by the model. NEUROSCIENTIST the attempt to syste 13(2):138—147, 2007.
Collapse
|
112
|
Woolgar A, Jackson J, Duncan J. Coding of Visual, Auditory, Rule, and Response Information in the Brain: 10 Years of Multivoxel Pattern Analysis. J Cogn Neurosci 2016; 28:1433-54. [PMID: 27315269 DOI: 10.1162/jocn_a_00981] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
How is the processing of task information organized in the brain? Many views of brain function emphasize modularity, with different regions specialized for processing different types of information. However, recent accounts also highlight flexibility, pointing especially to the highly consistent pattern of frontoparietal activation across many tasks. Although early insights from functional imaging were based on overall activation levels during different cognitive operations, in the last decade many researchers have used multivoxel pattern analyses to interrogate the representational content of activations, mapping out the brain regions that make particular stimulus, rule, or response distinctions. Here, we drew on 100 searchlight decoding analyses from 57 published papers to characterize the information coded in different brain networks. The outcome was highly structured. Visual, auditory, and motor networks predominantly (but not exclusively) coded visual, auditory, and motor information, respectively. By contrast, the frontoparietal multiple-demand network was characterized by domain generality, coding visual, auditory, motor, and rule information. The contribution of the default mode network and voxels elsewhere was minor. The data suggest a balanced picture of brain organization in which sensory and motor networks are relatively specialized for information in their own domain, whereas a specific frontoparietal network acts as a domain-general "core" with the capacity to code many different aspects of a task.
Collapse
Affiliation(s)
- Alexandra Woolgar
- Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Australia
| | - Jade Jackson
- Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Australia
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, Cambridge, UK.,University of Oxford
| |
Collapse
|
113
|
Abstract
Goal-directed behavior can be characterized as a dynamic link between a sensory stimulus and a motor act. Neural correlates of many of the intermediate events of goal-directed behavior are found in the posterior parietal cortex. Although the parietal cortex’s role in guiding visual behaviors has received considerable attention, relatively little is known about its role in mediating auditory behaviors. Here, the authors review recent studies that have focused on how neurons in the lateral intraparietal area (area LIP) differentially process auditory and visual stimuli. These studies suggest that area LIP contains a modality-dependent representation that is highly dependent on behavioral context.
Collapse
Affiliation(s)
- Yale E Cohen
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH
| | | | | |
Collapse
|
114
|
Nakayama Y, Yamagata T, Hoshi E. Rostrocaudal functional gradient among the pre-dorsal premotor cortex, dorsal premotor cortex and primary motor cortex in goal-directed motor behaviour. Eur J Neurosci 2016; 43:1569-89. [PMID: 27062460 DOI: 10.1111/ejn.13254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 11/29/2022]
Abstract
The dorsal premotor cortex residing in the dorsolateral aspect of area 6 is a rostrocaudally elongated area that is rostral to the primary motor cortex (M1) and caudal to the prefrontal cortex. This region, which is subdivided into rostral [pre-dorsal premotor cortex (pre-PMd)] and caudal [dorsal premotor cortex proper (PMd)] components, probably plays a central role in planning and executing actions to achieve a behavioural goal. In the present study, we investigated the functional specializations of the pre-PMd, PMd, and M1, because the synthesis of the specific functions performed by each area is considered to be essential. Neurons were recorded while monkeys performed a conditional visuo-goal task designed to include separate processes for determining a behavioural goal (reaching towards a right or left potential target) on the basis of visual object instructions, specifying actions (direction of reaching) to be performed on the basis of the goal, and preparing and executing the action. Neurons in the pre-PMd and PMd retrieved and maintained behavioural goals without encoding the visual features of the visual object instructions, and subsequently specified the actions by multiplexing the goals with the locations of the targets. Furthermore, PMd and M1 neurons played a major role in representing the action during movement preparation and execution, whereas the contribution of the pre-PMd progressively decreased as the time of the actual execution of the movement approached. These findings revealed that the multiple processing stages necessary for the realization of an action to accomplish a goal were implemented in an area-specific manner across a functional gradient from the pre-PMd to M1 that included the PMd as an intermediary.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan.,Tamagawa University Brain Science Institute, Machida, Tokyo, Japan
| | - Tomoko Yamagata
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan.,Tamagawa University Brain Science Institute, Machida, Tokyo, Japan
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan.,Tamagawa University Brain Science Institute, Machida, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
115
|
Hyperactivity of caudate, parahippocampal, and prefrontal regions during working memory in never-medicated persons at clinical high-risk for psychosis. Schizophr Res 2016; 173:1-12. [PMID: 26965745 PMCID: PMC4836956 DOI: 10.1016/j.schres.2016.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Deficits in working memory (WM) are a core feature of schizophrenia (SZ) and other psychotic disorders. We examined brain activity during WM in persons at clinical high risk (CHR) for psychosis. METHODS Thirty-seven CHR and 34 healthy control participants underwent functional MRI (fMRI) on a 3.0T scanner while performing an N-back WM task. The sample included a sub-sample of CHR participants who had no lifetime history of treatment with psychotropic medications (n=11). Data were analyzed using SPM8 (2-back>0-back contrast). Pearson correlations between brain activity, symptoms, and WM performance were examined. RESULTS The total CHR group and medication-naive CHR sub-sample were comparable to controls in most demographic features and in N-back WM performance, but had significantly lower IQ. Relative to controls, medication-naïve CHR showed hyperactivity in the left parahippocampus (PHP) and the left caudate during performance of the N-back WM task. Relative to medication-exposed CHR, medication naïve CHR exhibited hyperactivity in the left caudate and the right dorsolateral prefrontal cortex (DLPFC). DLPFC activity was significantly negatively correlated with WM performance. PHP, caudate and DLPFC activity correlated strongly with symptoms, but results did not withstand FDR-correction for multiple comparisons. When all CHR participants were combined (regardless of medication status), only trend-level PHP hyperactivity was observed in CHR relative to controls. CONCLUSIONS Medication-naïve CHR exhibit hyperactivity in regions that subserve WM. These regions are implicated in studies of schizophrenia and risk for psychosis. Results emphasize the importance of medication status in the interpretation of task - induced brain activity.
Collapse
|
116
|
Riley MR, Constantinidis C. Role of Prefrontal Persistent Activity in Working Memory. Front Syst Neurosci 2016; 9:181. [PMID: 26778980 PMCID: PMC4700146 DOI: 10.3389/fnsys.2015.00181] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
Abstract
The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between BOLD activation and spiking activity findings, and point out that fMRI methods do not currently have the spatial resolution necessary to decode information within the prefrontal cortex, which is likely organized at the micrometer scale. Therefore, we make the case that prefrontal persistent activity is both necessary and sufficient for the maintenance of information in working memory.
Collapse
Affiliation(s)
- Mitchell R Riley
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
117
|
Mansouri FA, Rosa MGP, Atapour N. Working Memory in the Service of Executive Control Functions. Front Syst Neurosci 2015; 9:166. [PMID: 26696841 PMCID: PMC4677100 DOI: 10.3389/fnsys.2015.00166] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 01/31/2023] Open
Abstract
Working memory is a type of short-term memory which has a crucial cognitive function that supports ongoing and upcoming behaviors, allowing storage of information across delay periods. The content of this memory may typically include tangible information about features such as the shape, color or texture of an object, and its location and motion relative to the body, as well as phonological information. The neural correlate of working memory has been found in different brain areas that are involved in organizing perceptual or motor functions. In particular, neuronal activity in prefrontal areas encodes task-related information corresponding to working memory across delay periods, and lesions in the prefrontal cortex severely affect the ability to retain this type of memory. Recent studies have further expanded the scope and possible role of working memory by showing that information of a more abstract nature (including a behavior-guiding rule, or the occurrence of a conflict in information processing) can also be maintained in short-term memory, and used for adjusting the allocation of executive control in dynamic environments. It has also been shown that neuronal activity in the prefrontal cortex encodes and maintains information about such abstract entities. These findings suggest that the prefrontal cortex plays crucial roles in the organization of goal-directed behavior by supporting many different mnemonic processes, which maintain a wide range of information required for the executive control of ongoing and upcoming behaviors.
Collapse
Affiliation(s)
- Farshad A Mansouri
- Department of Physiology, Monash University Melbourne, VIC, Australia ; ARC Centre of Excellence in Integrative Brain Function, Monash University Melbourne, VIC, Australia ; Neuroscience Program, Biomedicine Discovery Institute, Monash University Melbourne, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology, Monash University Melbourne, VIC, Australia ; ARC Centre of Excellence in Integrative Brain Function, Monash University Melbourne, VIC, Australia ; Neuroscience Program, Biomedicine Discovery Institute, Monash University Melbourne, VIC, Australia
| | - Nafiseh Atapour
- Department of Physiology, Monash University Melbourne, VIC, Australia ; Neuroscience Program, Biomedicine Discovery Institute, Monash University Melbourne, VIC, Australia
| |
Collapse
|
118
|
Abstract
Rewards obtained from specific behaviors can and do change across time. To adapt to such conditions, humans need to represent and update associations between behaviors and their outcomes. Much previous work focused on how rewards affect the processing of specific tasks. However, abstract associations between multiple potential behaviors and multiple rewards are an important basis for adaptation as well. In this experiment, we directly investigated which brain areas represent associations between multiple tasks and rewards, using time-resolved multivariate pattern analysis of functional magnetic resonance imaging data. Importantly, we were able to dissociate neural signals reflecting task-reward associations from those related to task preparation and reward expectation processes, variables that were often correlated in previous research. We hypothesized that brain regions involved in processing tasks and/or rewards will be involved in processing associations between them. Candidate areas included the dorsal anterior cingulate cortex, which is involved in associating simple actions and rewards, and the parietal cortex, which has been shown to represent task rules and action values. Our results indicate that local spatial activation patterns in the inferior parietal cortex indeed represent task-reward associations. Interestingly, the parietal cortex flexibly changes its content of representation within trials. It first represents task-reward associations, later switching to process tasks and rewards directly. These findings highlight the importance of the inferior parietal cortex in associating behaviors with their outcomes and further show that it can flexibly reconfigure its function within single trials. Significance statement: Rewards obtained from specific behaviors rarely remain constant over time. To adapt to changing conditions, humans need to continuously update and represent the current association between behavior and its outcomes. However, little is known about the neural representation of behavior-outcome associations. Here, we used multivariate pattern analysis of functional magnetic resonance imaging data to investigate the neural correlates of such associations. Our results demonstrate that the parietal cortex plays a central role in representing associations between multiple behaviors and their outcomes. They further highlight the flexibility of the parietal cortex, because we find it to adapt its function to changing task demands within trials on relatively short timescales.
Collapse
|
119
|
Michalka SW, Kong L, Rosen ML, Shinn-Cunningham BG, Somers DC. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks. Neuron 2015; 87:882-92. [PMID: 26291168 DOI: 10.1016/j.neuron.2015.07.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 02/25/2015] [Accepted: 07/20/2015] [Indexed: 11/28/2022]
Abstract
The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex.
Collapse
Affiliation(s)
- Samantha W Michalka
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA 02215, USA; Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA.
| | - Lingqiang Kong
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA 02215, USA; Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Maya L Rosen
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Barbara G Shinn-Cunningham
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA 02215, USA; Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - David C Somers
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA 02215, USA; Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA; Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
120
|
Bichot NP, Heard MT, DeGennaro EM, Desimone R. A Source for Feature-Based Attention in the Prefrontal Cortex. Neuron 2015; 88:832-44. [PMID: 26526392 DOI: 10.1016/j.neuron.2015.10.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
In cluttered scenes, we can use feature-based attention to quickly locate a target object. To understand how feature attention is used to find and select objects for action, we focused on the ventral prearcuate (VPA) region of prefrontal cortex. In a visual search task, VPA cells responded selectively to search cues, maintained their feature selectivity throughout the delay and subsequent saccades, and discriminated the search target in their receptive fields with a time course earlier than in FEF or IT cortex. Inactivation of VPA impaired the animals' ability to find targets, and simultaneous recordings in FEF revealed that the effects of feature attention were eliminated while leaving the effects of spatial attention in FEF intact. Altogether, the results suggest that VPA neurons compute the locations of objects with the features sought and send this information to FEF to guide eye movements to those relevant stimuli.
Collapse
Affiliation(s)
- Narcisse P Bichot
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Matthew T Heard
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ellen M DeGennaro
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Desimone
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
121
|
Braun M, Jacobs AM, Richlan F, Hawelka S, Hutzler F, Kronbichler M. Many neighbors are not silent. fMRI evidence for global lexical activity in visual word recognition. Front Hum Neurosci 2015; 9:423. [PMID: 26257634 PMCID: PMC4510423 DOI: 10.3389/fnhum.2015.00423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/10/2015] [Indexed: 12/03/2022] Open
Abstract
Many neurocognitive studies investigated the neural correlates of visual word recognition, some of which manipulated the orthographic neighborhood density of words and nonwords believed to influence the activation of orthographically similar representations in a hypothetical mental lexicon. Previous neuroimaging research failed to find evidence for such global lexical activity associated with neighborhood density. Rather, effects were interpreted to reflect semantic or domain general processing. The present fMRI study revealed effects of lexicality, orthographic neighborhood density and a lexicality by orthographic neighborhood density interaction in a silent reading task. For the first time we found greater activity for words and nonwords with a high number of neighbors. We propose that this activity in the dorsomedial prefrontal cortex reflects activation of orthographically similar codes in verbal working memory thus providing evidence for global lexical activity as the basis of the neighborhood density effect. The interaction of lexicality by neighborhood density in the ventromedial prefrontal cortex showed lower activity in response to words with a high number compared to nonwords with a high number of neighbors. In the light of these results the facilitatory effect for words and inhibitory effect for nonwords with many neighbors observed in previous studies can be understood as being due to the operation of a fast-guess mechanism for words and a temporal deadline mechanism for nonwords as predicted by models of visual word recognition. Furthermore, we propose that the lexicality effect with higher activity for words compared to nonwords in inferior parietal and middle temporal cortex reflects the operation of an identification mechanism based on local lexico-semantic activity.
Collapse
Affiliation(s)
- Mario Braun
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
- Department of Experimental and Neurocognitive Psychology, Freie Universität BerlinBerlin, Germany
| | - Arthur M. Jacobs
- Department of Experimental and Neurocognitive Psychology, Freie Universität BerlinBerlin, Germany
- Center for Cognitive Neuroscience BerlinBerlin, Germany
- Dahlem Institute for Neuroimaging of Emotion, BerlinGermany
| | - Fabio Richlan
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
| | - Stefan Hawelka
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
| | - Florian Hutzler
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
| | - Martin Kronbichler
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
- Christian-Doppler-Klinik, Paracelsus Medical University, SalzburgAustria
| |
Collapse
|
122
|
Miconi T, Groomes L, Kreiman G. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task. Cereb Cortex 2015; 26:3064-82. [PMID: 26092221 DOI: 10.1093/cercor/bhv129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global "priority map" that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects.
Collapse
Affiliation(s)
- Thomas Miconi
- Children's Hospital, Harvard Medical School, Boston, MA, USA The Neurosciences Institute, La Jolla, CA 92037, USA
| | - Laura Groomes
- Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Kreiman
- Children's Hospital, Harvard Medical School, Boston, MA, USA Center for Brain Science Swartz Center for Theoretical Neuroscience, Harvard University, Cambridge, MA, USA
| |
Collapse
|
123
|
How to learn places without spatial concepts: Does the what-and-where reaction time system in children regulate learning during stimulus repetition? Brain Cogn 2015; 97:59-73. [PMID: 26025390 DOI: 10.1016/j.bandc.2015.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 04/08/2015] [Accepted: 04/30/2015] [Indexed: 11/21/2022]
Abstract
We investigated the role of repetition for place learning in children although the acquisition of organizing spatial concepts is often seen as more essential. In a reaction-time accuracy task, 7- and 9-year-old children were presented with a randomized sequence of objects-in-places. In a novelty condition (NC), memory sets in different colors were presented, while in a repetition condition (RC), the identical memory set was tested several times. Shape memory deteriorated more than place memory in the NC, but also stayed superior to place memory when both improved in the RC. False alarms occurred for objects and places in the same way in 7-year-olds in the NC, but were negligible for 9-year-olds. In contrast, false alarms in the RC occurred in both age groups mainly for place memory. The Common Region Test (CRT) predicted reaction times only in the novelty condition, indicating use of spatial concepts. Importantly, reaction times for shapes were faster than for places at the beginning of the experiment but slowed down thereafter, while reaction times for places were slow at the beginning of the experiment but accelerated considerably thereafter. False alarms and regulation of reaction times indicated that repetition facilitated true abstraction of information leading to place learning without spatial concepts.
Collapse
|
124
|
Woolgar A, Afshar S, Williams MA, Rich AN. Flexible Coding of Task Rules in Frontoparietal Cortex: An Adaptive System for Flexible Cognitive Control. J Cogn Neurosci 2015; 27:1895-911. [PMID: 26058604 DOI: 10.1162/jocn_a_00827] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
How do our brains achieve the cognitive control that is required for flexible behavior? Several models of cognitive control propose a role for frontoparietal cortex in the structure and representation of task sets or rules. For behavior to be flexible, however, the system must also rapidly reorganize as mental focus changes. Here we used multivoxel pattern analysis of fMRI data to demonstrate adaptive reorganization of frontoparietal activity patterns following a change in the complexity of the task rules. When task rules were relatively simple, frontoparietal cortex did not hold detectable information about these rules. In contrast, when the rules were more complex, frontoparietal cortex showed clear and decodable rule discrimination. Our data demonstrate that frontoparietal activity adjusts to task complexity, with better discrimination of rules that are behaviorally more confusable. The change in coding was specific to the rule element of the task and was not mirrored in more specialized cortex (early visual cortex) where coding was independent of difficulty. In line with an adaptive view of frontoparietal function, the data suggest a system that rapidly reconfigures in accordance with the difficulty of a behavioral task. This system may provide a neural basis for the flexible control of human behavior.
Collapse
|
125
|
Sanada M, Ikeda K, Hasegawa T. Shape and spatial working memory capacities are mostly independent. Front Psychol 2015; 6:581. [PMID: 26042056 PMCID: PMC4438232 DOI: 10.3389/fpsyg.2015.00581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/21/2015] [Indexed: 11/13/2022] Open
Abstract
Whether visual working memory (WM) consists of a common storage resource or of multiple subsystems has been a controversial issue. Logie (1995) suggested that it can be divided into visual (for color, shape, objects, etc.) and spatial WM (for location). However, a recent study reported evidence against this hypothesis. Using a dual task paradigm, Wood (2011) showed interference between shape and spatial WM capacities, suggesting that they share a common resource limitation. We re-examined this finding controlling possible confounding factors, including the way to present spatial location cues, task order, and type of WM load to be manipulated. The same pattern of results was successfully reproduced, but only in a highly powered experiment (N = 90), and therefore the size of interference was estimated to be quite small (d = 0.24). Thus, these data offer a way to reconcile seemingly contradicting previous findings. On the one hand, some part of the storage system is genuinely shared by shape and spatial WM systems, confirming the report of Wood (2011). On the other hand, the amount of the overlap is only minimal, and therefore the two systems should be regarded as mostly independent from each other, supporting the classical visuo-spatial separation hypothesis.
Collapse
Affiliation(s)
- Motoyuki Sanada
- Department of Cognitive and Behavioral Sciences, Graduate School of Arts and Science, The University of Tokyo Tokyo, Japan ; Japan Society for the Promotion of Science Tokyo, Japan
| | - Koki Ikeda
- Japan Society for the Promotion of Science Tokyo, Japan ; Department of Psychology, Chukyo University Nagoya, Japan
| | - Toshikazu Hasegawa
- Department of Cognitive and Behavioral Sciences, Graduate School of Arts and Science, The University of Tokyo Tokyo, Japan
| |
Collapse
|
126
|
Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev 2015; 51:164-88. [DOI: 10.1016/j.neubiorev.2015.01.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 12/17/2022]
|
127
|
Woolgar A, Williams MA, Rich AN. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices. Neuroimage 2015; 109:429-37. [DOI: 10.1016/j.neuroimage.2014.12.083] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/21/2014] [Accepted: 12/31/2014] [Indexed: 11/30/2022] Open
|
128
|
End effects and cross-dimensional interference in identification of time and length: Evidence for a common memory mechanism. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 15:680-95. [PMID: 25805323 DOI: 10.3758/s13415-015-0348-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Memory plays a critical role in time estimation, yet detailed mechanisms underlying temporal memory have not been fully understood. The current functional magnetic resonance imaging (fMRI) study investigated memory phenomena in absolute identification of time durations and line lengths. In both time and length identification, participants responded faster to end-of-range stimuli (e.g., the shortest or longest items of the stimulus set) than to middle stimuli. Participants performed worse in the incongruent condition (mismatch between time and length in the stimulus position) than in the congruent condition, indicating cross-dimensional interference between time and length. Both phenomena reflect increased difficulty of retrieving information relevant to the current context in the presence of context-irrelevant information. A region in the lateral inferior prefrontal cortex showed a greater response to the middle stimuli and in the incongruent condition suggesting greater demands for controlled memory retrieval. A cognitive model based on the ACT-R (Adaptive Control of Thought - Rational) declarative memory mechanisms accounted for the major behavioral and imaging results. The results suggest that contextual effects in temporal memory can be understood in terms of domain-general memory principles established outside the time estimation domain.
Collapse
|
129
|
Abstract
During communication we combine auditory and visual information. Neurophysiological research in nonhuman primates has shown that single neurons in ventrolateral prefrontal cortex (VLPFC) exhibit multisensory responses to faces and vocalizations presented simultaneously. However, whether VLPFC is also involved in maintaining those communication stimuli in working memory or combining stored information across different modalities is unknown, although its human homolog, the inferior frontal gyrus, is known to be important in integrating verbal information from auditory and visual working memory. To address this question, we recorded from VLPFC while rhesus macaques (Macaca mulatta) performed an audiovisual working memory task. Unlike traditional match-to-sample/nonmatch-to-sample paradigms, which use unimodal memoranda, our nonmatch-to-sample task used dynamic movies consisting of both facial gestures and the accompanying vocalizations. For the nonmatch conditions, a change in the auditory component (vocalization), the visual component (face), or both components was detected. Our results show that VLPFC neurons are activated by stimulus and task factors: while some neurons simply responded to a particular face or a vocalization regardless of the task period, others exhibited activity patterns typically related to working memory such as sustained delay activity and match enhancement/suppression. In addition, we found neurons that detected the component change during the nonmatch period. Interestingly, some of these neurons were sensitive to the change of both components and therefore combined information from auditory and visual working memory. These results suggest that VLPFC is not only involved in the perceptual processing of faces and vocalizations but also in their mnemonic processing.
Collapse
|
130
|
Mobbs D, Hagan CC, Dalgleish T, Silston B, Prévost C. The ecology of human fear: survival optimization and the nervous system. Front Neurosci 2015; 9:55. [PMID: 25852451 PMCID: PMC4364301 DOI: 10.3389/fnins.2015.00055] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/07/2015] [Indexed: 01/04/2023] Open
Abstract
We propose a Survival Optimization System (SOS) to account for the strategies that humans and other animals use to defend against recurring and novel threats. The SOS attempts to merge ecological models that define a repertoire of contextually relevant threat induced survival behaviors with contemporary approaches to human affective science. We first propose that the goal of the nervous system is to reduce surprise and optimize actions by (i) predicting the sensory landscape by simulating possible encounters with threat and selecting the appropriate pre-encounter action and (ii) prevention strategies in which the organism manufactures safe environments. When a potential threat is encountered the (iii) threat orienting system is engaged to determine whether the organism ignores the stimulus or switches into a process of (iv) threat assessment, where the organism monitors the stimulus, weighs the threat value, predicts the actions of the threat, searches for safety, and guides behavioral actions crucial to directed escape. When under imminent attack, (v) defensive systems evoke fast reflexive indirect escape behaviors (i.e., fight or flight). This cascade of responses to threat of increasing magnitude are underwritten by an interconnected neural architecture that extends from cortical and hippocampal circuits, to attention, action and threat systems including the amygdala, striatum, and hard-wired defensive systems in the midbrain. The SOS also includes a modulatory feature consisting of cognitive appraisal systems that flexibly guide perception, risk and action. Moreover, personal and vicarious threat encounters fine-tune avoidance behaviors via model-based learning, with higher organisms bridging data to reduce face-to-face encounters with predators. Our model attempts to unify the divergent field of human affective science, proposing a highly integrated nervous system that has evolved to increase the organism's chances of survival.
Collapse
Affiliation(s)
- Dean Mobbs
- Department of Psychology, Columbia University New York, NY, USA
| | - Cindy C Hagan
- Department of Psychology, Columbia University New York, NY, USA
| | - Tim Dalgleish
- Medical Research Council-Cognition and Brain Sciences Unit Cambridge, UK
| | - Brian Silston
- Department of Psychology, Columbia University New York, NY, USA
| | | |
Collapse
|
131
|
Funahashi S. Functions of delay-period activity in the prefrontal cortex and mnemonic scotomas revisited. Front Syst Neurosci 2015; 9:2. [PMID: 25698942 PMCID: PMC4318271 DOI: 10.3389/fnsys.2015.00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/09/2015] [Indexed: 11/23/2022] Open
Abstract
Working memory (WM) is one of key concepts to understand functions of the prefrontal cortex. Delay-period activity is an important neural correlate to understand the role of WM in prefrontal functions. The importance of delay-period activity is that this activity can encode not only visuospatial information but also a variety of information including non-spatial visual features, auditory and tactile stimuli, task rules, expected reward, and numerical quantity. This activity also participates in a variety of information processing including sensory-to-motor information transformation. These mnemonic features of delay-period activity enable to perform various important operations that the prefrontal cortex participates in, such as executive controls, and therefore, support the notion that WM is an important function to understand prefrontal functions. On the other hand, although experiments using manual versions of the delayed-response task had revealed many important findings, an oculomotor version of this task enabled us to use multiple cue positions, exclude postural orientation during the delay period, and further prove the importance of mnemonic functions of the prefrontal cortex. In addition, monkeys with unilateral lesions exhibited specific impairment only in the performance of memory-guided saccades directed toward visual cues in the visual field contralateral to the lesioned hemisphere. This result indicates that memories for visuospatial coordinates in each hemifield are processed primarily in the contralateral prefrontal cortex. This result further strengthened the idea of mnemonic functions of the prefrontal cortex. Thus, the mnemonic functions of the prefrontal cortex and delay-period activity may not need to be reconsidered, but should be emphasized.
Collapse
|
132
|
Daie K, Goldman MS, Aksay ERF. Spatial patterns of persistent neural activity vary with the behavioral context of short-term memory. Neuron 2015; 85:847-60. [PMID: 25661184 DOI: 10.1016/j.neuron.2015.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/25/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
A short-term memory can be evoked by different inputs and control separate targets in different behavioral contexts. To address the circuit mechanisms underlying context-dependent memory function, we determined through optical imaging how memory is encoded at the whole-network level in two behavioral settings. Persistent neural activity maintaining a memory of desired eye position was imaged throughout the oculomotor integrator after saccadic or optokinetic stimulation. While eye position was encoded by the amplitude of network activity, the spatial patterns of firing were context dependent: cells located caudally generally were most persistent following saccadic input, whereas cells located rostrally were most persistent following optokinetic input. To explain these data, we computationally identified four independent modes of network activity and found these were differentially accessed by saccadic and optokinetic inputs. These results show how a circuit can simultaneously encode memory value and behavioral context, respectively, in its amplitude and spatial pattern of persistent firing.
Collapse
Affiliation(s)
- Kayvon Daie
- Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Mark S Goldman
- Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, and Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95618, USA.
| | - Emre R F Aksay
- Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
133
|
Donahue CH, Lee D. Dynamic routing of task-relevant signals for decision making in dorsolateral prefrontal cortex. Nat Neurosci 2015; 18:295-301. [PMID: 25581364 PMCID: PMC5452079 DOI: 10.1038/nn.3918] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/05/2014] [Indexed: 11/23/2022]
Abstract
Neurons in the dorsolateral prefrontal cortex (DLPFC) encode a diverse array of sensory and mnemonic signals, but little is known about how this information is dynamically routed during decision making. We analyzed the neuronal activity in the DLPFC of monkeys performing a probabilistic reversal task where information about the probability and magnitude of reward was provided by the target color and numerical cues, respectively. The location of the target of a given color was randomized across trials and therefore was not relevant for subsequent choices. DLPFC neurons encoded signals related to both task-relevant and irrelevant features, but only task-relevant mnemonic signals were encoded congruently with choice signals. Furthermore, only the task-relevant signals related to previous events were more robustly encoded following rewarded outcomes. Thus, multiple types of neural signals are flexibly routed in the DLPFC so as to favor actions that maximize reward.
Collapse
Affiliation(s)
- Christopher H Donahue
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daeyeol Lee
- 1] Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA. [3] Department of Psychology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
134
|
Kadohisa M, Kusunoki M, Petrov P, Sigala N, Buckley MJ, Gaffan D, Duncan J. Spatial and temporal distribution of visual information coding in lateral prefrontal cortex. Eur J Neurosci 2015; 41:89-96. [PMID: 25307044 PMCID: PMC4315869 DOI: 10.1111/ejn.12754] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 11/27/2022]
Abstract
Prefrontal neurons code many kinds of behaviourally relevant visual information. In behaving monkeys, we used a cued target detection task to address coding of objects, behavioural categories and spatial locations, examining the temporal evolution of neural activity across dorsal and ventral regions of the lateral prefrontal cortex (encompassing parts of areas 9, 46, 45A and 8A), and across the two cerebral hemispheres. Within each hemisphere there was little evidence for regional specialisation, with neurons in dorsal and ventral regions showing closely similar patterns of selectivity for objects, categories and locations. For a stimulus in either visual field, however, there was a strong and temporally specific difference in response in the two cerebral hemispheres. In the first part of the visual response (50-250 ms from stimulus onset), processing in each hemisphere was largely restricted to contralateral stimuli, with strong responses to such stimuli, and selectivity for both object and category. Later (300-500 ms), responses to ipsilateral stimuli also appeared, many cells now responding more strongly to ipsilateral than to contralateral stimuli, and many showing selectivity for category. Activity on error trials showed that late activity in both hemispheres reflected the animal's final decision. As information is processed towards a behavioural decision, its encoding spreads to encompass large, bilateral regions of prefrontal cortex.
Collapse
Affiliation(s)
- Mikiko Kadohisa
- MRC Cognition and Brain Sciences Unit, Cambridge, UK; Department of Experimental Psychology, University of Oxford, South Parks Rd, Oxford, OX1 3UD, UK
| | | | | | | | | | | | | |
Collapse
|
135
|
Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory. Proc Natl Acad Sci U S A 2014; 112:E214-9. [PMID: 25540412 DOI: 10.1073/pnas.1410130112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that neurons of monkey dorsolateral prefrontal cortex (DLPFC) integrate information across modalities and maintain it throughout the delay period of working-memory (WM) tasks. However, the mechanisms of this temporal integration in the DLPFC are still poorly understood. In the present study, to further elucidate the role of the DLPFC in crossmodal WM, we trained monkeys to perform visuo-haptic (VH) crossmodal and haptic-haptic (HH) unimodal WM tasks. The neuronal activity recorded in the DLPFC in the delay period of both tasks indicates that the early-delay differential activity probably is related to the encoding of sample information with different strengths depending on task modality, that the late-delay differential activity reflects the associated (modality-independent) action component of haptic choice in both tasks (that is, the anticipation of the behavioral choice and/or active recall and maintenance of sample information for subsequent action), and that the sustained whole-delay differential activity likely bridges and integrates the sensory and action components. In addition, the VH late-delay differential activity was significantly diminished when the haptic choice was not required. Taken together, the results show that, in addition to the whole-delay differential activity, DLPFC neurons also show early- and late-delay differential activities. These previously unidentified findings indicate that DLPFC is capable of (i) holding the coded sample information (e.g., visual or tactile information) in the early-delay activity, (ii) retrieving the abstract information (orientations) of the sample (whether the sample has been haptic or visual) and holding it in the late-delay activity, and (iii) preparing for behavioral choice acting on that abstract information.
Collapse
|
136
|
Bourguignon NJ. A rostro-caudal axis for language in the frontal lobe: the role of executive control in speech production. Neurosci Biobehav Rev 2014; 47:431-44. [PMID: 25305636 DOI: 10.1016/j.neubiorev.2014.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023]
Abstract
The present article promotes a formal executive model of frontal functions underlying speech production, bringing together hierarchical theories of adaptive behavior in the (pre-)frontal cortex (pFC) and psycho- and neurolinguistic approaches to spoken language within an information-theoretic framework. Its biological plausibility is revealed through two Activation Likelihood Estimation meta-analyses carried out on a total of 41 hemodynamic studies of overt word and continuous speech production respectively. Their principal findings, considered in light of neuropsychological evidence and earlier models of speech-related frontal functions, support the engagement of a caudal-to-rostral gradient of pFC activity operationalized by the nature and quantity of speech-related information conveyed by task-related external cues (i.e., cue codability) on the one hand, and the total informational content of generated utterances on the other. In particular, overt reading or repetition and picture naming recruit primarily caudal motor-premotor regions involved in the sensorimotor and phonological aspects of speech; word and sentence generation engage mid- ventro- and dorsolateral areas supporting its basic predicative and syntactic functions; finally, rostral- and fronto-polar cortices subsume domain-general strategic processes of discourse generation for creative speech. These different levels interact in a top-down fashion, ranging representationally and temporally from the most general and extended to the most specific and immediate. The end-result is an integrative theory of pFC as the main executive component of the language cortical network, which supports the existence of areas specialized for speech communication and articulation and regions subsuming internal reasoning and planning. Prospective avenues of research pertaining to this model's principal predictions are discussed.
Collapse
Affiliation(s)
- Nicolas J Bourguignon
- Centre de recherche du CHU Sainte-Justine, Montreal, Canada; Département d'orthophonie et d'audiologie, Université de Montréal, Canada; Centre for Research on the Brain, Language and Music, Montreal, Canada.
| |
Collapse
|
137
|
Abstract
Dyslexia is more than just difficulty with translating letters into sounds. Many dyslexics have problems with clearly seeing letters and their order. These difficulties may be caused by abnormal development of their visual “magnocellular” (M) nerve cells; these mediate the ability to rapidly identify letters and their order because they control visual guidance of attention and of eye fixations. Evidence for M cell impairment has been demonstrated at all levels of the visual system: in the retina, in the lateral geniculate nucleus, in the primary visual cortex and throughout the dorsal visuomotor “where” pathway forward from the visual cortex to the posterior parietal and prefrontal cortices. This abnormality destabilises visual perception; hence, its severity in individuals correlates with their reading deficit. Treatments that facilitate M function, such as viewing text through yellow or blue filters, can greatly increase reading progress in children with visual reading problems. M weakness may be caused by genetic vulnerability, which can disturb orderly migration of cortical neurones during development or possibly reduce uptake of omega-3 fatty acids, which are usually obtained from fish oils in the diet. For example, M cell membranes require replenishment of the omega-3 docosahexaenoic acid to maintain their rapid responses. Hence, supplementing some dyslexics’ diets with DHA can greatly improve their M function and their reading.
Collapse
|
138
|
Park S, Gooding DC. WORKING MEMORY IMPAIRMENT AS AN ENDOPHENOTYPIC MARKER OF A SCHIZOPHRENIA DIATHESIS. SCHIZOPHRENIA RESEARCH-COGNITION 2014; 1:127-136. [PMID: 25414816 PMCID: PMC4234058 DOI: 10.1016/j.scog.2014.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter focuses on the viability of working memory impairment as an endophenotypic marker of a schizophrenia diathesis. It begins with an introduction of the construct of working memory. It follows with a review of the operational criteria for defining an endophenotype. Research findings regarding the working memory performance of schizophrenia and schizophrenia-spectrum patients, first-degree relatives of schizophrenia patients and healthy controls, are reviewed in terms of the criteria for being considered an endophenotypic marker. Special attention is paid to specific components of the working memory deficit (namely, encoding, maintenance, and manipulation), in terms of which aspects are likely to be the best candidates for endophenotypes. We consider the extant literature regarding working memory performance in bipolar disorder and major depression in order to address the issue of relative specificity to schizophrenia. Despite some unresolved issues, it appears that working memory impairment is a very promising candidate for an endophenotypic marker of a schizophrenia diathesis but not for mood disorders. Throughout this chapter, we identify future directions for research in this exciting and dynamic area of research and evaluate the contribution of working memory research to our understanding of schizophrenia.
Collapse
Affiliation(s)
- Sohee Park
- Departments of Psychology and Psychiatry, Vanderbilt University, 111, 21st Avenue South, Nashville, TN 37240, USA
- Corresponding authors.
| | - Diane C. Gooding
- Departments of Psychology and Psychiatry, University of Wisconsin-Madison, 1202 West Johnson Street, Madison, WI 53706, USA
- Corresponding authors.
| |
Collapse
|
139
|
Functional connectivity changes between parietal and prefrontal cortices in primary insomnia patients: evidence from resting-state fMRI. Eur J Med Res 2014; 19:32. [PMID: 24915847 PMCID: PMC4062281 DOI: 10.1186/2047-783x-19-32] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/15/2014] [Indexed: 12/05/2022] Open
Abstract
Background Primary insomnia can severely impair daytime function by disrupting attention and working memory and imposes a danger to self and others by increasing the risk of accidents. We speculated that the neurobiological changes impeding working memory in primary insomnia patients would be revealed by resting-state functional MRI (R-fMRI), which estimates the strength of cortical pathways by measuring local and regional correlations in blood oxygen level dependent (BOLD) signs independent of specific task demands. Methods We compared the R-fMRI activity patterns of 15 healthy controls to 15 primary insomnia patients (all 30 participants were right-handed) using a 3.0 T MRI scanner. The SPM8 and REST1.7 software packages were used for preprocessing and analysis. Activity was expressed relative to the superior parietal lobe (SPL, the seed region) to reveal differences in functional connectivity to other cortical regions implicated in spatial working memory. Result In healthy controls, bilateral SPL activity was associated with activity in the posterior cingulate gyrus, precuneus, ventromedial prefrontal cortex, and superior frontal gyrus, indicating functional connectivity between these regions. Strong functional connectivity between the SPL and bilateral pre-motor cortex, bilateral supplementary motor cortex, and left dorsolateral prefrontal cortex was observed in both the control group and the primary insomnia group. However, the strength of several other functional connectivity pathways to the SPL exhibited significant group differences. Compared to healthy controls, connectivity in the primary insomnia group was stronger between the bilateral SPL and the right ventral anterior cingulate cortex, left ventral posterior cingulate cortex, right splenium of the corpus callosum, right pars triangularis (right inferior frontal gyrus/Broca’s area), and right insular lobe, while connectivity was weaker between the SPL and right superior frontal gyrus (dorsolateral prefrontal cortex). Conclusion Primary insomnia appears to alter the functional connectivity between the parietal and frontal lobes, cortical structures critical for spatial and verbal working memory.
Collapse
|
140
|
REFERENCES. Monogr Soc Res Child Dev 2014. [DOI: 10.1002/mono.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
141
|
Visual-spatial attention aids the maintenance of object representations in visual working memory. Mem Cognit 2014; 41:698-715. [PMID: 23371773 DOI: 10.3758/s13421-013-0296-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers' eye movements while they remembered a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval should impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy, even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations.
Collapse
|
142
|
Executive control processes underlying multi-item working memory. Nat Neurosci 2014; 17:876-83. [PMID: 24747574 PMCID: PMC4039364 DOI: 10.1038/nn.3702] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/26/2014] [Indexed: 11/19/2022]
Abstract
A dominant view of prefrontal cortex (PFC) function is that it stores task-relevant information in working memory. To examine this and determine how it applies when multiple pieces of information must be stored, we trained two macaque monkeys to perform a multi-item color change-detection task and recorded activity of neurons in PFC. Few neurons encoded the color of the items. Instead, the predominant encoding was spatial: a static signal reflecting the item's position and a dynamic signal reflecting the animal's covert attention. These findings challenge the notion that PFC stores task-relevant information. Instead, we suggest that the contribution of PFC is in controlling the allocation of resources to support working memory. In support of this, we found that increased power in the alpha and theta bands of PFC local field potentials, which are thought to reflect long-range communication with other brain areas, was correlated with more precise color representations.
Collapse
|
143
|
Peelen MV, Kastner S. Attention in the real world: toward understanding its neural basis. Trends Cogn Sci 2014; 18:242-50. [PMID: 24630872 DOI: 10.1016/j.tics.2014.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 11/28/2022]
Abstract
The efficient selection of behaviorally relevant objects from cluttered environments supports our everyday goals. Attentional selection has typically been studied in search tasks involving artificial and simplified displays. Although these studies have revealed important basic principles of attention, they do not explain how the brain efficiently selects familiar objects in complex and meaningful real-world scenes. Findings from recent neuroimaging studies indicate that real-world search is mediated by 'what' and 'where' attentional templates that are implemented in high-level visual cortex. These templates represent target-diagnostic properties and likely target locations, respectively, and are shaped by object familiarity, scene context, and memory. We propose a framework for real-world search that incorporates these recent findings and specifies directions for future study.
Collapse
Affiliation(s)
- Marius V Peelen
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy.
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
144
|
Broad intrinsic functional connectivity boundaries of the macaque prefrontal cortex. Neuroimage 2014; 88:202-11. [DOI: 10.1016/j.neuroimage.2013.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/23/2013] [Accepted: 11/14/2013] [Indexed: 11/20/2022] Open
|
145
|
Roca M, Manes F, Cetkovich M, Bruno D, Ibáñez A, Torralva T, Duncan J. The relationship between executive functions and fluid intelligence in schizophrenia. Front Behav Neurosci 2014; 8:46. [PMID: 24605092 PMCID: PMC3932409 DOI: 10.3389/fnbeh.2014.00046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/30/2014] [Indexed: 11/26/2022] Open
Abstract
An enduring question is unity vs. separability of executive deficits resulting from impaired frontal lobe function. In previous studies, we have asked how executive deficits link to a conventional measure of fluid intelligence, obtained either by standard tests of novel problem-solving, or by averaging performance in a battery of novel tasks. For some classical executive tasks, such as the Wisconsin Card Sorting Test (WCST), Verbal Fluency, and Trail Making Test B (TMTB), frontal deficits are entirely explained by fluid intelligence. However, on a second set of executive tasks, including tests of multitasking and decision making, deficits exceed those predicted by fluid intelligence loss. In this paper we discuss how these results shed light on the diverse clinical phenomenology observed in frontal dysfunction, and present new data on a group of 15 schizophrenic patients and 14 controls. Subjects were assessed with a range of executive tests and with a general cognitive battery used to derive a measure of fluid intelligence. Group performance was compared and fluid intelligence was introduced as a covariate. In line with our previous results, significant patient-control differences in classical executive tests were removed when fluid intelligence was introduced as a covariate. However, for tests of multitasking and decision making, deficits remained. We relate our findings to those of previous factor analytic studies describing a single principal component, which accounts for much of the variance of schizophrenic patients' cognitive performance. We propose that this general factor reflects low fluid intelligence capacity, which accounts for much but not all cognitive impairment in this patient group. Partialling out the general effects of fluid intelligence, we propose, may clarify the role of additional, more specific cognitive impairments in conditions such as schizophrenia.
Collapse
Affiliation(s)
- María Roca
- Neuropsychology Research Department, Institute of Cognitive Neurology (INECO)Buenos Aires, Argentina
- Laboratory of Cognitive and Social Neuroscience (LaNCyS), UDP-INECO, Foundation Core on Neuroscience (UIFCoN), Diego Portales UniversitySantiago, Chile
- Neuropsychology Department, Institute of Neurosciences Favaloro UniversityBuenos Aires, Argentina
| | - Facundo Manes
- Neuropsychology Research Department, Institute of Cognitive Neurology (INECO)Buenos Aires, Argentina
- Neuropsychology Department, Institute of Neurosciences Favaloro UniversityBuenos Aires, Argentina
| | - Marcelo Cetkovich
- Neuropsychology Research Department, Institute of Cognitive Neurology (INECO)Buenos Aires, Argentina
- Neuropsychology Department, Institute of Neurosciences Favaloro UniversityBuenos Aires, Argentina
| | - Diana Bruno
- Neuropsychology Research Department, Institute of Cognitive Neurology (INECO)Buenos Aires, Argentina
| | - Agustín Ibáñez
- Neuropsychology Research Department, Institute of Cognitive Neurology (INECO)Buenos Aires, Argentina
- Laboratory of Cognitive and Social Neuroscience (LaNCyS), UDP-INECO, Foundation Core on Neuroscience (UIFCoN), Diego Portales UniversitySantiago, Chile
- Universidad Autónoma del CaribeBarranquilla, Colombia
| | - Teresa Torralva
- Neuropsychology Research Department, Institute of Cognitive Neurology (INECO)Buenos Aires, Argentina
- Neuropsychology Department, Institute of Neurosciences Favaloro UniversityBuenos Aires, Argentina
| | - John Duncan
- MRC Cognition and Brain Sciences UnitCambridge, UK
- Department of Experimental Psychology, University of OxfordOxford, UK
| |
Collapse
|
146
|
Opris I, Santos L, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA. Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 2014; 3:2285. [PMID: 23893262 PMCID: PMC3725477 DOI: 10.1038/srep02285] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/03/2013] [Indexed: 01/13/2023] Open
Abstract
During the perception-to-action cycle, our cerebral cortex mediates the interactions between the environment and the perceptual-executive systems of the brain. At the top of the executive hierarchy, prefrontal cortical microcircuits are assumed to bind perceptual and executive control information to guide goal-driven behavior. Here, we tested this hypothesis by comparing simultaneously recorded neuron firing in prefrontal cortical layers and the caudate-putamen of rhesus monkeys, trained in a spatial-versus-object, rule-based match-to-sample task. We found that during the perception and executive selection phases, cell firing in the localized prefrontal layers and caudate-putamen region exhibited similar location preferences on spatial-trials, but less on object- trials. Then, we facilitated the perceptual-executive circuit by stimulating the prefrontal infra-granular-layers with patterns previously derived from supra-granular-layers, and produced stimulation-induced spatial preference in percent correct performance on spatial trials, similar to neural tuning. These results show that inter-laminar prefrontal microcircuits play causal roles to the perception-to-action cycle.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
147
|
Bahlmann J, Blumenfeld RS, D'Esposito M. The Rostro-Caudal Axis of Frontal Cortex Is Sensitive to the Domain of Stimulus Information. Cereb Cortex 2014; 25:1815-26. [PMID: 24451658 DOI: 10.1093/cercor/bht419] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evidence suggests that lateral frontal cortex implements cognitive control processing along its rostro-caudal axis, yet other evidence supports a dorsal-ventral functional organization for processes engaged by different stimulus domains (e.g., spatial vs. nonspatial). This functional magnetic resonance imaging study investigated whether separable dorsolateral and ventrolateral rostro-caudal gradients exist in humans, while participants performed tasks requiring cognitive control at 3 levels of abstraction with language or spatial stimuli. Abstraction was manipulated by using 3 different task sets that varied in relational complexity. Relational complexity refers to the process of manipulating the relationship between task components (e.g., to associate a particular cue with a task) and drawing inferences about that relationship. Tasks using different stimulus domains engaged distinct posterior regions, but within the lateral frontal cortex, we found evidence for a single rostro-caudal gradient that was organized according to the level of abstraction and was independent of processing of the stimulus domain. However, a pattern of dorsal/ventral segregation of processing engaged by domain-specific information was evident in each separable frontal region only within the most rostral region recruited by task demands. These results suggest that increasingly abstract information is represented in the frontal cortex along distinct rostro-caudal gradients that also segregate along a dorsal-ventral axis dependent on task demands.
Collapse
Affiliation(s)
- Jörg Bahlmann
- Department of Neurology, University of Lübeck, Lübeck, Germany Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Robert S Blumenfeld
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA Department of Psychology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
148
|
Falcone R, Bevacqua S, Cerasti E, Brunamonti E, Cervelloni M, Genovesio A. Transfer of the nonmatch-to-goal rule in monkeys across cognitive domains. PLoS One 2013; 8:e84100. [PMID: 24391894 PMCID: PMC3877192 DOI: 10.1371/journal.pone.0084100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/12/2013] [Indexed: 11/19/2022] Open
Abstract
To solve novel problems, it is advantageous to abstract relevant information from past experience to transfer on related problems. To study whether macaque monkeys were able to transfer an abstract rule across cognitive domains, we trained two monkeys on a nonmatch-to-goal (NMTG) task. In the object version of the task (O-NMTG), the monkeys were required to choose between two object-like stimuli, which differed either only in shape or in shape and color. For each choice, they were required to switch from their previously chosen object-goal to a different one. After they reached a performance level of over 90% correct on the O-NMTG task, the monkeys were tested for rule transfer on a spatial version of the task (S-NMTG). To receive a reward, the monkeys had to switch from their previously chosen location to a different one. In both the O-NMTG and S-NMTG tasks, there were four potential choices, presented in pairs from trial-to-trial. We found that both monkeys transferred successfully the NMTG rule within the first testing session, showing effective transfer of the learned rule between two cognitive domains.
Collapse
Affiliation(s)
- Rossella Falcone
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sara Bevacqua
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Erika Cerasti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Milena Cervelloni
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
149
|
Underbjerg M, George MS, Thorsen P, Kesmodel US, Mortensen EL, Manly T. Separable sustained and selective attention factors are apparent in 5-year-old children. PLoS One 2013; 8:e82843. [PMID: 24376591 PMCID: PMC3869710 DOI: 10.1371/journal.pone.0082843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
In adults and older children, evidence consistent with relative separation between selective and sustained attention, superimposed upon generally positive inter-test correlations, has been reported. Here we examine whether this pattern is detectable in 5-year-old children from the healthy population. A new test battery (TEA-ChJ) was adapted from measures previously used with adults and older children and administered to 172 5-year-olds. Test-retest reliability was assessed in 60 children. Ninety-eight percent of the children managed to complete all measures. Discrimination of visual and auditory stimuli were good. In a factor analysis, the two TEA-ChJ selective attention tasks (one visual, one auditory) loaded onto a common factor and diverged from the two sustained attention tasks (one auditory, one motor), which shared a common loading on the second factor. This pattern, which suggests that the tests are indeed sensitive to underlying attentional capacities, was supported by the relationships between the TEA-ChJ factors and Test of Everyday Attention for Children subtests in the older children in the sample. It is possible to gain convincing performance-based estimates of attention at the age of 5 with the results reflecting a similar factor structure to that obtained in older children and adults. The results are discussed in light of contemporary models of attention function. Given the potential advantages of early intervention for attention difficulties, the findings are of clinical as well as theoretical interest.
Collapse
Affiliation(s)
- Mette Underbjerg
- Department of Public Health, Section of Epidemiology, Aarhus University, Aarhus, Denmark
- Children’s Neurocenter at Vejlefjord Rehabilitation Center, Stouby, Denmark
- * E-mail:
| | | | - Poul Thorsen
- Department of Obstetrics and Gynaecology, Lillebaelt Hospital, Kolding, Denmark
| | - Ulrik S. Kesmodel
- Department of Public Health, Section of Epidemiology, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik L. Mortensen
- Institute of Public Health and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Tom Manly
- MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom
| |
Collapse
|
150
|
Abstract
The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.
Collapse
|