101
|
Ko MS, Biswas T, Mulero MC, Bobkov AA, Ghosh G, Huxford T. Structurally plastic NEMO and oligomerization prone IKK2 subunits define the behavior of human IKK2:NEMO complexes in solution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140526. [PMID: 32853772 DOI: 10.1016/j.bbapap.2020.140526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
The human IκB Kinase (IKK) is a multisubunit protein complex of two kinases and one scaffolding subunit that controls induction of transcription factor NF-κB activity. IKK behaves as an entity of aberrantly high apparent molecular weight in solution. Recent X-ray crystallographic and cryo-electron microscopy structures of individual catalytic subunits (IKK1/IKKα and IKK2/IKKβ) reveal that they are both stably folded dimeric proteins that engage in extensive homo-oligomerization through unique surfaces that are required for activation of their respective catalytic activities. The NEMO/IKKγ subunit is a predominantly coiled coil protein that is required for activation of IKK through the canonical NF-κB signaling pathway. Here we report size-exclusion chromatography, multi-angle light scattering, analytical centrifugation, and thermal denaturation analyses of full-length human recombinant NEMO as well as deletion and disease-linked variants. We observe that NEMO is predominantly a dimer in solution, although by virtue of its modular coiled coil regions NEMO exhibits complicated solution dynamics involving portions that are mutually antagonistic toward homodimerization. This behavior causes NEMO to behave as a significantly larger sized particle in solution. Analyses of NEMO in complex with IKK2 indicate that NEMO preserves this structurally dynamic character within the multisubuit complex and provides the complex-bound IKK2 further propensity toward homo-oligomerization. These observations provide critical information on the structural plasticity of NEMO subunit dimers which helps clarify its role in diseases and in IKK regulation through oligomerization-dependent phosphorylation of catalytic IKK2 subunit dimers.
Collapse
Affiliation(s)
- Myung Soo Ko
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, United States; Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States
| | - Tapan Biswas
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States
| | | | - Andrey A Bobkov
- Sanford Burnham Prebys Medical Discovery Institute, United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States.
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, United States.
| |
Collapse
|
102
|
Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol 2020; 11:249-272. [PMID: 32827707 PMCID: PMC7689184 DOI: 10.1016/j.jcmgh.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS TNFSF15 genetic variants leading to increased TNF superfamily member 15 (TNFSF15) expression confer risk for inflammatory bowel disease (IBD), and TNFSF15 is being explored as a therapeutic target in IBD patients. Although the focus for TNFSF15-mediated inflammatory outcomes has been predominantly on its action on T cells, TNFSF15 also promotes inflammatory outcomes in human macrophages. Given the critical role for macrophages in bacterial clearance, we hypothesized that TNFSF15 promotes antimicrobial pathways in human macrophages and that macrophages from TNFSF15 IBD risk carriers with higher TNFSF15 expression have an advantage in these antimicrobial outcomes. METHODS We analyzed protein expression, signaling, bacterial uptake, and intracellular bacterial clearance in human monocyte-derived macrophages through flow cytometry, enzyme-linked immunosorbent assay, and gentamicin protection. RESULTS Autocrine/paracrine TNFSF15 interactions with death receptor 3 (DR3) were required for optimal levels of pattern-recognition-receptor (PRR)-induced bacterial clearance in human macrophages. TNFSF15 induced pyruvate dehydrogenase kinase 1-dependent bacterial uptake and promoted intracellular bacterial clearance through reactive oxygen species, nitric oxide synthase 2, and autophagy up-regulation. The TNFSF15-initiated TNF receptor-associated factor 2/receptor-interacting protein kinase 1/RIP3 pathway was required for mitogen-activated protein kinase and nuclear factor-κB activation, and, in turn, induction of each of the antimicrobial pathways; the TNFSF15-initiated Fas-associated protein with death domain/mucosa-associated lymphoid tissue lymphoma translocation protein 1/caspase-8 pathway played a less prominent role in antimicrobial functions, despite its key role in TNFSF15-induced cytokine secretion. Complementation of signaling pathways or antimicrobial pathways restored bacterial uptake and clearance in PRR-stimulated macrophages where TNFSF15:DR3 interactions were inhibited. Monocyte-derived macrophages from high TNFSF15-expressing rs6478108 TT IBD risk carriers in the TNFSF15 region showed increased levels of the identified antimicrobial pathways. CONCLUSIONS We identify that autocrine/paracrine TNFSF15 is required for optimal PRR-enhanced antimicrobial pathways in macrophages, define mechanisms regulating TNFSF15-dependent bacterial clearance, and determine how the TNFSF15 IBD risk genotype modulates these outcomes.
Collapse
Affiliation(s)
- Rui Sun
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
103
|
Li LC, Pan ZH, Ning DS, Fu YX. Anti-Inflammatory Effect of Simonsinol on Lipopolysaccharide Stimulated RAW264.7 Cells through Inactivation of NF-κB Signaling Pathway. Molecules 2020; 25:molecules25163573. [PMID: 32781605 PMCID: PMC7463804 DOI: 10.3390/molecules25163573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.
Collapse
|
104
|
Priyathilaka TT, Bathige SDNK, Lee S, Yang H, Jeong T, Lee S, Lee J. Structural and functional analysis of three Iκb kinases (IKK) in disk abalone (Haliotis discus discus): Investigating their role in the innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2020; 103:111-125. [PMID: 32320761 DOI: 10.1016/j.fsi.2020.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The IκB kinases (IKK) are large multiprotein complexes that regulate the activation of the transcription factor NF-κB and are involved in a diverse range of biological processes, including innate immunity, inflammation, and development. To explore the potential roles of invertebrate IKKs on immunity, three IKK encoding genes have been identified from molluscan species disk abalone and designed as AbIKK1, AbIKK2 and AbIKK3 at the transcriptional level. Coding sequences of AbIKK1, AbIKK2 and AbIKK3 encode the peptides of 746, 751 and 713 amino acids with the predicted molecular mass of 86.16, 86.12 and 81.88 kDa respectively. All three AbIKKs were found to share conserved IKK family features including the kinase superfamily domain (KD), ubiquitin-like domain (ULD), and α-helical scaffold/dimerization domain (SDD), similar to their mammalian counterparts. Under normal physiological conditions, AbIKKs were ubiquitously detected in six different tissues, with the highest abundance in the digestive tract and gills. Temporal transcriptional profiles in abalone hemocytes revealed the induction of AbIKK1, AbIKK2, and AbIKK3 expression following exposure to Gram-negative (Vibrio parahemolyticus) and Gram-positive (Listeria monocytogenes) bacteria, viruses (viral hemorrhagic septicemia virus, VHSV), LPS, or poly I:C. The overexpression of AbIKKs in HEK293T or RAW264.7 murine macrophage cells induced NF-κB promoter activation independent of stimulation by TNF-α or LPS. Moreover, iNOS and COX2 expression was induced in AbIKK transfected RAW264.7 murine macrophage cells and the induced state was maintained post-LPS treatment. Furthermore, mRNA levels of three selected cytokine-encoding genes (IL-1β, IL-6, and TNF-α) were found to be elevated in abalone IKK overexpressed RAW264.7 murine macrophage cells, both with and without LPS exposure. Overall, our findings demonstrated that AbIKKs identified in this study were positively involved in eliciting innate immune responses in abalone. In addition, the data revealed the presence of an evolutionarily conserved signaling mechanism for IKK mediated NF-κB activation in mollusks.
Collapse
Affiliation(s)
| | - S D N K Bathige
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
105
|
NF-κB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE. J Neurosci 2020; 40:6444-6456. [PMID: 32661025 DOI: 10.1523/jneurosci.1156-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/09/2023] Open
Abstract
Previous studies demonstrate that activation of pancreatic ER kinase (PERK) protects oligodendrocytes against inflammation in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Interestingly, data indicate that the cytoprotective effects of PERK activation on oligodendrocytes during EAE are not mediated by activating transcription factor 4 (ATF4) but are accompanied by activation of nuclear factor κB (NF-κB). NF-κB plays a critical role in MS and EAE; however, the effects of NF-κB activation on oligodendrocytes in these diseases remain elusive. Herein, we generated a mouse model that allow for activation of NF-κB specifically in oligodendrocytes and found that enhanced NF-κB activation in oligodendrocytes had a minimal effect on their viability and function under normal conditions (both male and female mice). Interestingly, we found that enhanced NF-κB activation in oligodendrocytes attenuated EAE disease severity and ameliorated EAE-induced oligodendrocyte loss, demyelination, and axon degeneration, without affecting inflammation (female mice). Moreover, we showed that the detrimental effects of PERK inactivation in oligodendrocytes in EAE were accompanied by impaired NF-κB activation in oligodendrocytes, and were completely rescued by enhanced NF-κB activation in oligodendrocytes (female mice). These findings suggest that NF-κB activation accounts for the cytoprotective effects of PERK activation on oligodendrocytes in MS and EAE.SIGNIFICANCE STATEMENT Nuclear factor κB (NF-κB) is activated in oligodendrocytes in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE); however, the role of NF-κB activation in oligodendrocytes in MS and EAE remains elusive. Herein, we generated a mouse model that allows for activation of NF-κB selectively in oligodendrocytes and demonstrated that NF-κB activation prevented oligodendrocyte death and myelin damage in the EAE model. We further demonstrated that NF-κB activation contributed to the protective effects of pancreatic ER kinase (PERK) activation on oligodendrocytes in the EAE model. As such, this work will facilitate the development of new treatments that enhance oligodendrocyte survival in MS patients by targeting the PERK-NF-κB pathway.
Collapse
|
106
|
Jin T, Wu D, Liu XM, Xu JT, Ma BJ, Ji Y, Jin YY, Wu SY, Wu T, Ma K. Intra-articular delivery of celastrol by hollow mesoporous silica nanoparticles for pH-sensitive anti-inflammatory therapy against knee osteoarthritis. J Nanobiotechnology 2020; 18:94. [PMID: 32641147 PMCID: PMC7346635 DOI: 10.1186/s12951-020-00651-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Celastrol has been proven effective in anti-inflammatory but was limited in the clinic due to the poor solubility and side effects induced by low bioavailability. Osteoarthritis has acidic and inflammatory environment. Our aim was to load celastrol into HMSNs and capped with chitosan to construct a pH-responsive nanoparticle medicine (CSL@HMSNs-Cs), which is of high solubility for osteoarthritis intra-articular injection treatment. METHODS The CSL@HMSNs-Cs were assembled and the characteristics were measured. The CSL@HMSNs-Cs was applied in vitro in the chondrocytes collected from rats cartilage tissue and in vivo in the MIA induced knee osteoarthritis rats via intra-articular injection. Cytotoxicity assay, pH-responsive release, pain behavior, MRI, safranin o fast green staining, ELISA and western blot analysis were applied to evaluate the bioavailability and therapeutic effect of CSL@HMSNs-Cs. RESULTS CSL@HMSNs-Cs was stable due to the protection of the chitosan layers in alkaline environment (pH = 7.7) but revealed good solubility and therapeutic effect in acidic environment (pH = 6.0). The cytotoxicity assay showed no cytotoxicity at relatively low concentration (200 μg/mL) and the cell viability of chondrocytes stimulated by IL-1β was increased in CSL@HMSNs-Cs group. Paw withdrawal threshold in CSL@HMSNs-Cs group is increased, and MRI and Safranin O Fast Green staining showed improvements in articular surface erosion and joint effusion. The upregulated expression levels of IL-1β, TNF-α, IL-6, MMP-3 and MMP-13 and NF-κB signaling pathway of chondrocytes were inhibited in CSL@HMSNs-Cs group. CONCLUSION Hollow mesoporous silica nanoparticles were an ideal carrier for natural drugs with poor solubility and were of high biocompatibility for intra-articular injection. These intra-articular injectable CSL@HMSNs-Cs with improved solubility, present a pH-responsive therapeutic strategy against osteoarthritis.
Collapse
Affiliation(s)
- Tian Jin
- Department of Pain Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Di Wu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 20092, China
| | - Xiao-Ming Liu
- Department of Pain Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiang-Tao Xu
- Department of Pain Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bing-Jie Ma
- Department of Pain Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yun Ji
- Department of Pain Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu-Ying Jin
- Department of Pain Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Si-Yin Wu
- Department of Pain Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Tao Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ke Ma
- Department of Pain Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
107
|
Forrester SJ, Preston KJ, Cooper HA, Boyer MJ, Escoto KM, Poltronetti AJ, Elliott KJ, Kuroda R, Miyao M, Sesaki H, Akiyama T, Kimura Y, Rizzo V, Scalia R, Eguchi S. Mitochondrial Fission Mediates Endothelial Inflammation. Hypertension 2020; 76:267-276. [PMID: 32389075 PMCID: PMC7289685 DOI: 10.1161/hypertensionaha.120.14686] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Endothelial inflammation and mitochondrial dysfunction have been implicated in cardiovascular diseases, yet, a unifying mechanism tying them together remains limited. Mitochondrial dysfunction is frequently associated with mitochondrial fission/fragmentation mediated by the GTPase Drp1 (dynamin-related protein 1). Nuclear factor (NF)-κB, a master regulator of inflammation, is implicated in endothelial dysfunction and resultant complications. Here, we explore a causal relationship between mitochondrial fission and NF-κB activation in endothelial inflammatory responses. In cultured endothelial cells, TNF-α (tumor necrosis factor-α) or lipopolysaccharide induces mitochondrial fragmentation. Inhibition of Drp1 activity or expression suppresses mitochondrial fission, NF-κB activation, vascular cell adhesion molecule-1 induction, and leukocyte adhesion induced by these proinflammatory factors. Moreover, attenuations of inflammatory leukocyte adhesion were observed in Drp1 heterodeficient mice as well as endothelial Drp1 silenced mice. Intriguingly, inhibition of the canonical NF-κB signaling suppresses endothelial mitochondrial fission. Mechanistically, NF-κB p65/RelA seems to mediate inflammatory mitochondrial fission in endothelial cells. In addition, the classical anti-inflammatory drug, salicylate, seems to maintain mitochondrial fission/fusion balance against TNF-α via inhibition of NF-κB. In conclusion, our results suggest a previously unknown mechanism whereby the canonical NF-κB cascade and a mitochondrial fission pathway interdependently regulate endothelial inflammation.
Collapse
Affiliation(s)
- Steven J. Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Kyle J. Preston
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Hannah A. Cooper
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Michael J. Boyer
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Kathleen M. Escoto
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Anthony J. Poltronetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Katherine J. Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Ryohei Kuroda
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Masashi Miyao
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, U.S.A
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA19140
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| |
Collapse
|
108
|
Han R, Wang JL, Chen HP, Luo XC, Li AX, Dan XM, Li YW. IκB kinase α-1 and -2 regulate cytokine expression in the orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2020; 101:291-301. [PMID: 32276035 DOI: 10.1016/j.fsi.2020.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
IκB kinase (IKK) is the core regulator of the nuclear factor-κB (NF-κB) pathway, which is involved in cellular development and proliferation, as well as the inflammatory response. IKKα is an important subunit of the IKK complex. In this study, two IKKαs (EcIKKα-1 and -2) were characterized in E. coioides. Similar to IKKα of other species, EcIKKα-1 and -2 contained a kinase domain, a leucine zipper, a helix-loop-helix domain and a beta NF-κB essential modulator-binding domain. Sequence alignment indicated that EcIKKα-1 and -2 shared high degrees of sequence identity with IKKs from other species (about 63%-96%). EcIKKα-1 and -2 are widely expressed in all tissues, but have different expression profiles in normal groupers. Additionally, EcIKKα-1 and -2 responded rapidly to Cryptocaryon irritans infection at the local infection site (i.e., gill tissue), but there was no significant change in EcIKKα-2 expression. In GS cells, EcIKKα-1 was uniformly distributed in the cytoplasm, while EcIKKα-2 was observed uniformly both in the cytoplasm and nucleus. Both EcIKKα-1 and -2 were found to activate NF-κB, but the luciferase activity of EcIKKα-2 was twice that of EcIKKα-1. In addition, EcIKKα-1 and -2 can regulate the expression of immune-related cytokines (IL-1β, IL-6, IL-8, IL-12 [p35 subunit], and TNF-α). These findings should prove helpful to further elucidate the innate immunity function of IKKα in fish.
Collapse
Affiliation(s)
- Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China
| | - Jiu-Le Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China
| | - Hong-Ping Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, China
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China.
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
109
|
Romero N, Van Waesberghe C, Favoreel HW. Pseudorabies Virus Infection of Epithelial Cells Leads to Persistent but Aberrant Activation of the NF-κB Pathway, Inhibiting Hallmark NF-κB-Induced Proinflammatory Gene Expression. J Virol 2020; 94:e00196-20. [PMID: 32132236 PMCID: PMC7199412 DOI: 10.1128/jvi.00196-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/27/2020] [Indexed: 02/03/2023] Open
Abstract
The nuclear factor kappa B (NF-κB) is a potent transcription factor, activation of which typically results in robust proinflammatory signaling and triggering of fast negative feedback modulators to avoid excessive inflammatory responses. Here, we report that infection of epithelial cells, including primary porcine respiratory epithelial cells, with the porcine alphaherpesvirus pseudorabies virus (PRV) results in the gradual and persistent activation of NF-κB, illustrated by proteasome-dependent degradation of the inhibitory NF-κB regulator IκB and nuclear translocation and phosphorylation of the NF-κB subunit p65. PRV-induced persistent activation of NF-κB does not result in expression of negative feedback loop genes, like the gene for IκBα or A20, and does not trigger expression of prototypical proinflammatory genes, like the gene for tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). In addition, PRV infection inhibits TNF-α-induced canonical NF-κB activation. Hence, PRV infection triggers persistent NF-κB activation in an unorthodox way and dramatically modulates the NF-κB signaling axis, preventing typical proinflammatory gene expression and the responsiveness of cells to canonical NF-κB signaling, which may aid the virus in modulating early proinflammatory responses in the infected host.IMPORTANCE The NF-κB transcription factor is activated via different key inflammatory pathways and typically results in the fast expression of several proinflammatory genes as well as negative feedback loop genes to prevent excessive inflammation. In the current report, we describe that infection of cells with the porcine alphaherpesvirus pseudorabies virus (PRV) triggers a gradual and persistent aberrant activation of NF-κB, which does not result in expression of hallmark proinflammatory or negative feedback loop genes. In addition, although PRV-induced NF-κB activation shares some mechanistic features with canonical NF-κB activation, it also shows remarkable differences; e.g., it is largely independent of the canonical IκB kinase (IKK) and even renders infected cells resistant to canonical NF-κB activation by the inflammatory cytokine TNF-α. Aberrant PRV-induced NF-κB activation may therefore paradoxically serve as a viral immune evasion strategy and may represent an important tool to unravel currently unknown mechanisms and consequences of NF-κB activation.
Collapse
Affiliation(s)
- Nicolás Romero
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Cliff Van Waesberghe
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
110
|
Aashaq S, Batool A, Andrabi KI. TAK1 mediates convergence of cellular signals for death and survival. Apoptosis 2020; 24:3-20. [PMID: 30288639 DOI: 10.1007/s10495-018-1490-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
TGF-β activated kinase 1, a MAPK kinase kinase family serine threonine kinase has been implicated in regulating diverse range of cellular processes that include embryonic development, differentiation, autophagy, apoptosis and cell survival. TAK1 along with its binding partners TAB1, TAB2 and TAB3 displays a complex pattern of regulation that includes serious crosstalk with major signaling pathways including the C-Jun N-terminal kinase (JNK), p38 MAPK, and I-kappa B kinase complex (IKK) involved in establishing cellular commitments for death and survival. This review also highlights how TAK1 orchestrates regulation of energy homeostasis via AMPK and its emerging role in influencing mTORC1 pathway to regulate death or survival in tandem.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Asiya Batool
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Khurshid I Andrabi
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| |
Collapse
|
111
|
Song X, Zhang Y, Dai E. Therapeutic targets of thunder god vine (Tripterygium wilfordii hook) in rheumatoid arthritis (Review). Mol Med Rep 2020; 21:2303-2310. [PMID: 32323812 DOI: 10.3892/mmr.2020.11052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/02/2020] [Indexed: 11/05/2022] Open
Abstract
Celastrol and triptolide, chemical compounds isolated from Tripterygium wilfordii hook (also known as thunder god vine), are effective against rheumatoid arthritis (RA). Celastrol targets numerous signaling pathways involving NF‑κB, endoplasmic reticulum Ca2+‑ATPase, myeloid differentiation factor 2, toll‑like receptor 4, pro‑inflammatory chemokines, DNA damage, cell cycle arrest and apoptosis. Triptolide, inhibits NF‑κB, the receptor activator of NF‑κB (RANK)/RANK ligand/osteoprotegerin signaling pathway, cyclooxygenase‑2, matrix metalloproteases and cytokines. The present review examined the chemistry and bioavailability of celastrol and triptolide, and their molecular targets in treating RA. Clinical studies have demonstrated that T. wilfordii has several promising bioactivities, but its multi‑target toxicity has restricted its application. Thus, dosage control and structural modification of T. wilfordii are required to reduce the toxicity. In this review, future directions for research into these promising natural products are discussed.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Yu Zhang
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Erqin Dai
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| |
Collapse
|
112
|
Wang W, Xiong L, Wang P, Wang F, Ma Q. Major vault protein plays important roles in viral infection. IUBMB Life 2020; 72:624-631. [PMID: 31769934 PMCID: PMC7165711 DOI: 10.1002/iub.2200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Viral replication and related protein expression inside the host cells, and host antiviral immune responses can lead to the occurrence of diverse diseases. With the outbreak of viral infection, a large number of newly diagnosed and died patients infected with various viruses are still reported every year. Viral infection has already been one of the major global public health issues and lead to huge economic and social burdens. Studying of viral pathogenesis is a very important way to find methods for prevention, diagnosis, and cure of viral infection; more evidence has confirmed that major vault protein (MVP) is closely associated with viral infection and pathogenesis, and this review is intended to provide a broad relationship between viruses and MVP to stimulate the interest of related researchers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Puai Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fubing Wang
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qingfeng Ma
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
113
|
Lee FFY, Davidson K, Harris C, McClendon J, Janssen WJ, Alper S. NF-κB mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages. J Biol Chem 2020; 295:6236-6248. [PMID: 32179652 DOI: 10.1074/jbc.ra119.011495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled.
Collapse
Affiliation(s)
- Frank Fang-Yao Lee
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Kevin Davidson
- Pulmonary and Critical Care, WakeMed Hospital, Raleigh, North Carolina 27610
| | - Chelsea Harris
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Jazalle McClendon
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado 80206; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Scott Alper
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045.
| |
Collapse
|
114
|
Yang PC, Jafri MS. Ca 2+ signaling in T lymphocytes: the interplay of the endoplasmic reticulum, mitochondria, membrane potential, and CRAC channels on transcription factor activation. Heliyon 2020; 6:e03526. [PMID: 32181396 PMCID: PMC7063158 DOI: 10.1016/j.heliyon.2020.e03526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/12/2018] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
T cell receptor stimulation initiates a cascade of reactions that cause an increase in intracellular calcium (Ca2+) concentration mediated through inositol 1,4,5-trisphosphate (IP3). To understand the basic mechanisms by which the immune response in T cells is activated, it is useful to understand the signaling pathways that contain important targets for drugs in a quantitative fashion. A computational model helps us to understand how the selected elements in the pathways interact with each other, and which component plays the crucial role in systems. We have developed a mathematical model to explore the mechanism for controlling transcription factor activity, which regulates gene expression, by the modulation of calcium signaling triggered during T cell activation. The model simulates the activation and modulation of Ca2+ release-activated Ca2+ (CRAC) channels by mitochondrial dynamics and depletion of endoplasmic reticulum (ER) store, and also includes membrane potential in T-cells. The model simulates the experimental finding that increases in Ca2+ current enhances the activation of transcription factors and the Ca2+ influx through CRAC is also essential for the NFAT and NFκB activation. The model also suggests that plasma membrane Ca2+-ATPase (PMCA) controls a majority of the extrusion of Ca2+ and modulates the activation of CRAC channels. Furthermore, the model simulations explain how the complex interaction of the endoplasmic reticulum, membrane potential, mitochondria, and ion channels such as CRAC channels control T cell activation.
Collapse
Affiliation(s)
- Pei-Chi Yang
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, 95616, USA
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA
| | - M. Saleet Jafri
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 20201, USA
| |
Collapse
|
115
|
Shoji S, Hanada K, Takahashi M, Watanabe K, Yonemochi M, Tomabechi Y, Shirouzu M. The NF-κB regulator IκBβ exhibits different molecular interactivity and phosphorylation status from IκBα in an IKK2-catalysed reaction. FEBS Lett 2020; 594:1532-1549. [PMID: 32017069 DOI: 10.1002/1873-3468.13752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor, a central player in immune response regulation, is based on phosphorylation of inhibitor of kappaB alpha (IκBα) by the Inhibitor of kappaB kinase (IKK) that triggers IκBα degradation. Although inhibitor of kappaB beta (IκBβ) is structurally similar to IκBα, its precise characteristics remain undefined. Herein, we report that the molecular interactivity of IκBβ with the kinase-active region of IKK subunit 2 (IKK2), as well as its phosphorylation status, differs markedly from those of IκBα. A mass spectrometry analysis revealed that IκBβ phosphorylation sites are distributed in its C-terminal region, whereas IκBα phosphorylation sites are located in the N-terminal region. Furthermore, IKK2 phosphorylation sites in IκBβ are found in a region distinct from typical degradation signals, such as phosphodegron and proline/glutamic acid/serine/threonine-rich sequence (PEST) motifs. Mutation of the IκBβ phosphorylation sites enhances its resistance to homeostatic proteasomal degradation. These findings contribute a novel concept in NF-κB/IKK signalling research.
Collapse
Affiliation(s)
- Shisako Shoji
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kazuharu Hanada
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | | | | | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| |
Collapse
|
116
|
Xu X, Zhou X, Gao C, Cao L, Zhang Y, Hu X, Cui Y. Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals. Biol Chem 2020; 400:777-785. [PMID: 30699065 DOI: 10.1515/hsz-2018-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Understanding the mechanisms responsible for the malignancy of NSCLC cells is important for therapy and drug development. Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. We found that Nodal can trigger the proliferation of NSCLC cells and decrease the sensitivity to doxorubicin (Dox) and cisplatin (CDDP) treatment. Targeted inhibition of Nodal can suppress the proliferation of NSCLC cells. Among the measured cytokines, Nodal can increase the expression of interleukin-6 (IL-6) and vascular endothelial growth factor A (VEGFA) in NSCLC cells. Inhibition of IL-6, while not VEGFA, attenuated Nodal induced cell proliferation, suggesting the essential roles of IL-6 in Nodal induced malignancy of NSCLC cells. Nodal can trigger the phosphorylation, nuclear translocation and transcriptional activities of p65, the key signal transducer of NF-κB. This was due to the fact that Nodal can increase the phosphorylation of IKKβ/IκBα. The inhibitor of IKKβ abolished Nodal induced activation of p65 and expression of IL-6. Collectively, we found that Nodal can increase the proliferation and decrease chemosensitivity of NSCLC cells via regulation of NF-κB/IL-6 signals. It indicated that Nodal might be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Ye Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Xue Hu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| |
Collapse
|
117
|
Pyrocatechol, a component of coffee, suppresses LPS-induced inflammatory responses by inhibiting NF-κB and activating Nrf2. Sci Rep 2020; 10:2584. [PMID: 32054966 PMCID: PMC7018815 DOI: 10.1038/s41598-020-59380-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
Coffee is a complex mixture of many bioactive compounds possessing anti-inflammatory properties. However, the mechanisms by which coffee exerts anti-inflammatory effects remains unclear and the active ingredients have not yet been identified. In this study, we found that coffee extract at more than 2.5%(v/v) significantly inhibited LPS-induced inflammatory responses in RAW264.7 cells and that anti-inflammatory activity of coffee required the roasting process. Interestingly, we identified pyrocatechol, a degradation product derived from chlorogenic acid during roasting, as the active ingredient exhibiting anti-inflammatory activity in coffee. HPLC analysis showed that 124 μM pyrocatechol was included in 100% (v/v) roasted coffee. A treatment with 5%(v/v) coffee extract and more than 2.5 μM pyrocatechol inhibited the LPS-induced activation of NF-κB and also significantly activated Nrf2, which acts as a negative regulator in LPS-induced inflammation. Furthermore, intake of 60% (v/v) coffee extract and 74.4 μM pyrocatechol, which is the concentration equal to contained in 60% (v/v) coffee, markedly inhibited the LPS-induced inflammatory responses in mice. Collectively, these results demonstrated that pyrocatechol, which was formed by the roasting of coffee green beans, is one of the ingredients contributing to the anti-inflammatory activity of coffee.
Collapse
|
118
|
Hu N, Wang C, Dai X, Zhou M, Gong L, Yu L, Peng C, Li Y. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112361. [PMID: 31683033 DOI: 10.1016/j.jep.2019.112361] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine Forsythiae Fructus is the dried fruit of Forsythia suspensa (Thunb.) Vahl. It is commonly used to clear heat and detoxify, reduce swelling and disperse knot, and evacuate wind and heat. AIM OF THE STUDY Inflammation is involved in liver fibrosis. Phillygenin (PHI) is a kind of lignans extracted and separated from Forsythiae Fructus, which has been reported to have a good anti-inflammatory effect. Therefore, we aimed to explore whether PHI has a therapeutic effect on liver fibrosis caused by inflammation. MATERIALS AND METHODS Firstly, the induction of the LX2 cells inflammatory model and fibrosis model by LPS with different concentrations were studied. Then, high, medium and low doses PHI was given for intervention therapy. The secretion of IL-6, IL-1β and TNF-α inflammatory factors were detected by ELISA kit, and the expression of collagen I and α-SMA was detected by Western blot and RT-qPCR. The possible mechanism of PHI on TLR4/MyD88/NF-κB signal pathway was studied by computer-aided drug design software and the results were further verified by Western blot and RT-qPCR experiments. RESULTS The results showed that LPS could promote the expression of IL-6, IL-1β and TNF-α and the expression of collagen I and α-SMA, indicating that LPS could induce inflammation and fibrosis in LX2 cells. PHI could inhibit LX2 cell activation and fibrotic cytokine expression by inhibiting LPS-induced pro-inflammatory reaction. Molecular docking results showed that PHI could successfully dock with TLR4, MyD88, IKKβ, p65, IκBα, and TAK1 proteins. Subsequently, Western blot and qPCR results further proved that PHI could inhibit the proteins expression in TLR4/MyD88/NF-κB signal pathway which were consistent with the molecular docking results. CONCLUSION PHI can inhibit LPS-induced pro-inflammatory reaction and LX2 cell activation through TLR4/MyD88/NF-κB signaling pathway, thereby inhibiting liver fibrosis.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xuyang Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lingyuan Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
119
|
Mishra R, Sehring I, Cederlund M, Mulaw M, Weidinger G. NF-κB Signaling Negatively Regulates Osteoblast Dedifferentiation during Zebrafish Bone Regeneration. Dev Cell 2020; 52:167-182.e7. [DOI: 10.1016/j.devcel.2019.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023]
|
120
|
Duncan KA, Saldanha CJ. Central aromatization: A dramatic and responsive defense against threat and trauma to the vertebrate brain. Front Neuroendocrinol 2020; 56:100816. [PMID: 31786088 PMCID: PMC9366903 DOI: 10.1016/j.yfrne.2019.100816] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023]
Abstract
Aromatase is the requisite and limiting enzyme in the production of estrogens from androgens. Estrogens synthesized centrally have more recently emerged as potent neuroprotectants in the vertebrate brain. Studies in rodents and songbirds have identified key mechanisms that underlie both; the injury-dependent induction of central aromatization, and the protective effects of centrally synthesized estrogens. Injury-induced aromatase expression in astrocytes occurs following a broad range of traumatic brain damage including excitotoxic, penetrating, and concussive injury. Responses to neural insult such as edema and inflammation involve signaling pathways the components of which are excellent candidates as inducers of this astrocytic response. Finally, estradiol from astrocytes exerts a paracrine neuroprotective influence via the potent inhibition of inflammatory pathways. Taken together, these data suggest a novel role for neural aromatization as a protective mechanism against the threat of inflammation and suggests that central estrogen provision is a wide-ranging neuroprotectant in the vertebrate brain.
Collapse
Affiliation(s)
- Kelli A Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, United States.
| | - Colin J Saldanha
- Department of Biology and Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States.
| |
Collapse
|
121
|
Lv S, Wang F, Wang K, Fan Y, Xu J, Zheng J, Zeng Y. IκB kinase α: an independent prognostic factor that promotes the migration and invasion of oral squamous cell carcinoma. Br J Oral Maxillofac Surg 2019; 58:296-303. [PMID: 31859105 DOI: 10.1016/j.bjoms.2019.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
IκB kinase α (IKKα) is associated with tumourigenesis, metastasis, and poor prognosis. However, its expression and function in oral squamous cell carcinoma (SCC) remain unknown. The aim of this study was to elucidate the clinicopathological associations and functions of IKKα in oral squamous cell carcinoma (SCC). We made an immunohistochemical analysis of IKKα in 94 tissue microarrays of specimens of oral SCC. We also examined IKKα expression in the patients' samples by quantitative real-time polymerase chain reaction (qRT-PCR), as well as the migration, invasion, and matrix metalloproteinase (MMP) activity of the cells under IKKα knockdown treatment. In oral SCC, immunostaining for IKKα was found in 60 of the 94 patients, and it correlated with lymph node status and poor prognosis. Univariate and multivariate analysis using Cox's proportional hazards model identified that IKKα expression was an independent predictor of distant- disease-free survival (p<0.05) and overall survival in oral SCC (p<0.05). Knocking down IKKα suppressed cell migration and invasion in oral SCC cells. Our results indicate that IKKα has an important role in promoting oral SCC, and it may be a useful biomarker and therapeutic target for diagnosis and treatment.
Collapse
Affiliation(s)
- S Lv
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - F Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - K Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Y Fan
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - J Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - J Zheng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| | - Y Zeng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
122
|
Inhibiting nuclear factor-κB at different stages after intracerebral hemorrhage can influence the hemorrhage-induced brain injury in experimental models in vivo. Brain Res Bull 2019; 155:159-165. [PMID: 31857135 DOI: 10.1016/j.brainresbull.2019.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Nuclear factor-κB (NF-κB) is a critical regulator of inflammatory responses after ICH, and different subunits may have different influences on the cell death and prognosis. The aim of the present study is to clarify whether the prognosis can be influenced by inhibiting NF-κB activation and subunits expression using PDTC at different stages after ICH. METHODS Rats were divided into sham group, ICH group, early interference group and late interference group. At preset time points after ICH, the ipsilateral striatum and tissue around was obtained for detection of NF-κB activation, cell death, and expression of caspase-3, bcl-2, and NF-κB subunits, to evaluate of the effect of PDTC. RESULTS NF-κB subunit p65 mainly expressed at the early stage after ICH, and c-Rel at the late stage. NF-κB activation can be inhibited at the early stage after ICH by administrating PDTC at 10 min, 1d and 2d after ICH, and at the late stage at 6d,7d and 8d. NF-κB activation inhibition at the early stage was due to p65, and c-Rel at the late stage. Inhibiting p65 expression at the early stage after ICH can reduce the apoptotic factor caspase-3 expression and cell death, and raise the antiapoptotic factor bcl-2. Meanwhile, inhibiting c-Rel expression at the late stage after ICH can lead to the opposite result. CONCLUSION Measures of inhibiting NF-κB subunits can be performed to influence the secondary brain damage and prognosis of ICH. We can also speculate that early inhibition of p65 expression and late promotion of c-Rel expression may be a more efficient method to improve the prognosis of ICH.
Collapse
|
123
|
Nakagawa MM, Rathinam CV. Constitutive Activation of the Canonical NF-κB Pathway Leads to Bone Marrow Failure and Induction of Erythroid Signature in Hematopoietic Stem Cells. Cell Rep 2019; 25:2094-2109.e4. [PMID: 30463008 PMCID: PMC6945759 DOI: 10.1016/j.celrep.2018.10.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Constitutive activation of the canonical NF-κB pathway has been associated with a variety of human pathologies. However, molecular mechanisms through which canonical NF-κB affects hematopoiesis remain elusive. Here, we demonstrate that deregulated canonical NF-κB signals in hematopoietic stem cells (HSCs) cause a complete depletion of HSC pool, pancytopenia, bone marrow failure, and premature death. Constitutive activation of IKK2 in HSCs leads to impaired quiescence and loss of function. Gene set enrichment analysis (GSEA) identified an induction of “erythroid signature” in HSCs with augmented NF-κB activity. Mechanistic studies indicated a reduction of thrombopoietin (TPO)-mediated signals and its downstream target p57 in HSCs, due to reduced c-MpI expression in a cell-intrinsic manner. Molecular studies established Klf1 as a key suppressor of c-MpI in HSPCs with increased NF-κB. In essence, these studies identified a previously unknown mechanism through which exaggerated canonical NF-κB signals affect HSCs and cause pathophysiology. Nakagawa and Rathinam demonstrate that constitutive activation of IKK2 in HSCs causes a complete depletion of the HSC pool and impairs HSC functions due to a loss of “sternness” signature and an induction of erythroid signature.
Collapse
Affiliation(s)
- Masahiro Marshall Nakagawa
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168(th) Street, New York, NY 10032, USA; Institute of Human Virology, University of Maryland, Baltimore, MD, USA; Center for Stem Cell & Regenerative Medicine, University of Maryland, Baltimore, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
124
|
NF-κB-Mediated Neuroinflammation in Parkinson's Disease and Potential Therapeutic Effect of Polyphenols. Neurotox Res 2019; 37:491-507. [PMID: 31823227 DOI: 10.1007/s12640-019-00147-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Different animal and human studies from last two decades in the case of Parkinson's disease (PD) have concentrated on oxidative stress due to increased inflammation and cytokine-dependent neurotoxicity leading to induction of dopaminergic (DA) degeneration pathway in the nigrostriatal region. Chronic inflammation, the principle hallmark of PD, forms the basis of neurodegeneration. Aging in association with activation of glia due to neuronal injury, perhaps because of immune alterations and genetic predispositions, leads to deregulation of inflammatory pathways premising the onset of PD. A family of inducible transcription factors, nuclear factor-κB (NF-κB), is found to show expression in various cells and tissues, such as microglia, neurons, and astrocytes which play an important role in activation and regulation of inflammatory intermediates during inflammation. Both canonical and non-canonical NF-κB pathways are involved in the regulation of the stimulated cells. During the prodromal/asymptomatic stage of age-associated neurodegenerative diseases (i.e., PD and AD), chronic neuroinflammation may act silently as the driver of neuronal dysfunction. Though research has provided an insight over age-related neurodegeneration in PD, elaborative role of NF-κB in neuroinflammation is yet to be completely understood and thus requires more investigation. Polyphenols, a group of naturally occurring compound in medicinal plants, have gained attention because of their anti-oxidative and anti-neuroinflammatory properties in neurodegenerative diseases. In this aspect, this review highlights the role of NF-κB and the possible therapeutic roles of polyphenols in NF-κB-mediated neuroinflammation in PD.
Collapse
|
125
|
Al-Huseini I, Harada M, Nishi K, Nguyen-Tien D, Kimura T, Ashida N. Improvement of insulin signalling rescues inflammatory cardiac dysfunction. Sci Rep 2019; 9:14801. [PMID: 31616027 PMCID: PMC6794250 DOI: 10.1038/s41598-019-51304-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
Inflammation resulting from virus infection is the cause of myocarditis; however, the precise mechanism by which inflammation induces cardiac dysfunction is still unclear. In this study, we investigated the contribution of insulin signalling to inflammatory cardiac dysfunction induced by the activation of signalling by NF-κB, a major transcriptional factor regulating inflammation. We generated mice constitutively overexpressing kinase-active IKK-β, an essential kinase for NF-κB activation, in cardiomyocytes (KA mice). KA mice demonstrated poor survival and significant cardiac dysfunction with remarkable dilation. Histologically, KA hearts revealed increased cardiac apoptosis and fibrosis and the enhanced recruitment of immune cells. By molecular analysis, we observed the increased phosphorylation of IRS-1, indicating the suppression of insulin signalling in KA hearts. To evaluate the contribution of insulin signalling to cardiac dysfunction in KA hearts, we generated mice with cardiac-specific suppression of phosphatase and tensin homologue 10 (PTEN), a negative regulator of insulin signalling, in the KA mouse background (KA-PTEN). The suppression of PTEN successfully improved insulin signalling in KA-PTEN hearts, and interestingly, KA-PTEN mice showed significantly improved cardiac function and survival. These results indicated that impaired insulin signalling underlies the mechanism involved in inflammation-induced cardiac dysfunction, which suggests that it may be a target for the treatment of myocarditis.
Collapse
Affiliation(s)
- Isehaq Al-Huseini
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Masayuki Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA98109, USA
| | - Dat Nguyen-Tien
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
126
|
Li Q, Chen Y, Zhang D, Grossman J, Li L, Khurana N, Jiang H, Grierson PM, Herndon J, DeNardo DG, Challen GA, Liu J, Ruzinova MB, Fields RC, Lim KH. IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer. JCI Insight 2019; 4:130867. [PMID: 31527315 DOI: 10.1172/jci.insight.130867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of the NF-κB transcription factors underlies chemoresistance in various cancer types, including colorectal cancer (CRC). Targeting the activating mechanisms, particularly with inhibitors to the upstream IκB kinase (IKK) complex, is a promising strategy to augment the effect of chemotherapy. However, clinical success has been limited, largely because of low specificity and toxicities of tested compounds. In solid cancers, the IKKs are driven predominantly by the Toll-like receptor (TLR)/IL-1 receptor family members, which signal through the IL-1 receptor-associated kinases (IRAKs), with isoform 4 (IRAK4) being the most critical. The pathogenic role and therapeutic value of IRAK4 in CRC have not been investigated. We found that IRAK4 inhibition significantly abrogates colitis-induced neoplasm in APCMin/+ mice, and bone marrow transplant experiments showed an essential role of IRAK4 in immune cells during neoplastic progression. Chemotherapy significantly enhances IRAK4 and NF-κB activity in CRC cells through upregulating TLR9 expression, which can in turn be suppressed by IRAK4 and IKK inhibitors, suggesting a feed-forward pathway that protects CRC cells from chemotherapy. Lastly, increased tumor phospho-IRAK4 staining or IRAK4 mRNA expression is associated with significantly worse survival in CRC patients. Our results support targeting IRAK4 to improve the effects of chemotherapy and outcomes in CRC.
Collapse
Affiliation(s)
- Qiong Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yali Chen
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Lin Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Namrata Khurana
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John Herndon
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David G DeNardo
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Grant A Challen
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, and
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
127
|
Li H, Chen T, Sun H, Wu X, Jiang X, Ren C. The first cloned echinoderm tumor necrosis factor receptor from Holothuria leucospilota: Molecular characterization and functional analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:542-550. [PMID: 31394160 DOI: 10.1016/j.fsi.2019.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
In this study, an echinoderm tumor necrosis factor receptor named HLTNFR-16 was first cloned from the tropical sea cucumber Holothuria leucospilota. The full-length cDNA of HLTNFR-16 is 3675 bp in size, containing a 415 bp 5'-untranslated region (UTR), a 2024 bp 3'-UTR and a 1236 bp open reading frame (ORF) encoding a protein of 411 amino acids with a deduced molecular weight of 45.63 kDa. The HLTNFR-16 protein contains a signal peptide, four TNFR domains (the last three were identified as extracellular cysteine-rich domains), a transmembrane region and a death domain. Phylogenetic analysis showed that HLTNFR-16 was clustered into a clade with TNFR-16s in other species, indicating that this echinoderm TNFR may be a new member of the TNFR-16 subfamily. The results of TUNEL assay showed that the over expression of HLTNFR-16 could induce apoptosis in HEK293T cells. When HLTNFR-16 was silenced by siRNA, the apoptosis of sea cucumber coelomocytes induced by inactivated Vibrio harveyi was suppressed significantly, indicating that HLTNFR-16 is important for apoptosis induction. Additionally, luciferase reporter assay exhibited that the over-expressed HLTNFR-16 in HEK293T cells could activate the transcription factors nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). Moreover, the secretion of proinflammatory cytokines interleukin (IL)-1β, IL-6 and IL-18 in HEK293T cells was increased by the over-expression of HLTNFR-16. This study provides evidences for the potential roles of sea cucumber TNFR in the innate immunity.
Collapse
Affiliation(s)
- Haipeng Li
- Guangzhou University, School of Environmental Science and Engineering, Guangzhou, 510006, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| | - Hongyan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Xiaofen Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| |
Collapse
|
128
|
O'Connor T, Zhou X, Kosla J, Adili A, Garcia Beccaria M, Kotsiliti E, Pfister D, Johlke AL, Sinha A, Sankowski R, Schick M, Lewis R, Dokalis N, Seubert B, Höchst B, Inverso D, Heide D, Zhang W, Weihrich P, Manske K, Wohlleber D, Anton M, Hoellein A, Seleznik G, Bremer J, Bleul S, Augustin HG, Scherer F, Koedel U, Weber A, Protzer U, Förster R, Wirth T, Aguzzi A, Meissner F, Prinz M, Baumann B, Höpken UE, Knolle PA, von Baumgarten L, Keller U, Heikenwalder M. Age-Related Gliosis Promotes Central Nervous System Lymphoma through CCL19-Mediated Tumor Cell Retention. Cancer Cell 2019; 36:250-267.e9. [PMID: 31526758 DOI: 10.1016/j.ccell.2019.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/05/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
How lymphoma cells (LCs) invade the brain during the development of central nervous system lymphoma (CNSL) is unclear. We found that NF-κB-induced gliosis promotes CNSL in immunocompetent mice. Gliosis elevated cell-adhesion molecules, which increased LCs in the brain but was insufficient to induce CNSL. Astrocyte-derived CCL19 was required for gliosis-induced CNSL. Deleting CCL19 in mice or CCR7 from LCs abrogated CNSL development. Two-photon microscopy revealed LCs transiently entering normal brain parenchyma. Astrocytic CCL19 enhanced parenchymal CNS retention of LCs, thereby promoting CNSL formation. Aged, gliotic wild-type mice were more susceptible to forming CNSL than young wild-type mice, and astrocytic CCL19 was observed in both human gliosis and CNSL. Therefore, CCL19-CCR7 interactions may underlie an increased age-related risk for CNSL.
Collapse
Affiliation(s)
- Tracy O'Connor
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Xiaolan Zhou
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany; Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jan Kosla
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Arlind Adili
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Maria Garcia Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Elena Kotsiliti
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Dominik Pfister
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Anna-Lena Johlke
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Ankit Sinha
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79085 Freiburg, Germany
| | - Markus Schick
- III. Medical Department, Technical University of Munich, 81675 Munich, Germany
| | - Richard Lewis
- III. Medical Department, Technical University of Munich, 81675 Munich, Germany
| | - Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79085 Freiburg, Germany
| | - Bastian Seubert
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Bastian Höchst
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Donato Inverso
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Wenlong Zhang
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Petra Weihrich
- Institute for Physiological Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Katrin Manske
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Martina Anton
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Alexander Hoellein
- III. Medical Department, Technical University of Munich, 81675 Munich, Germany
| | - Gitta Seleznik
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Juliane Bremer
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Sabine Bleul
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs University, 79106 Freiburg, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Florian Scherer
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs University, 79106 Freiburg, Germany
| | - Uwe Koedel
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Wirth
- Institute for Physiological Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79085 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Baumann
- Institute for Physiological Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Uta E Höpken
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Ulrich Keller
- III. Medical Department, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Hematology and Oncology, Charité - Universitätsmedizin Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany; Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| |
Collapse
|
129
|
Miyazaki T, Zhao Z, Ichihara Y, Yoshino D, Imamura T, Sawada K, Hayano S, Kamioka H, Mori S, Hirata H, Araki K, Kawauchi K, Shigemoto K, Tanaka S, Bonewald LF, Honda H, Shinohara M, Nagao M, Ogata T, Harada I, Sawada Y. Mechanical regulation of bone homeostasis through p130Cas-mediated alleviation of NF-κB activity. SCIENCE ADVANCES 2019; 5:eaau7802. [PMID: 31579816 PMCID: PMC6760935 DOI: 10.1126/sciadv.aau7802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/03/2019] [Indexed: 05/07/2023]
Abstract
Mechanical loading plays an important role in bone homeostasis. However, molecular mechanisms behind the mechanical regulation of bone homeostasis are poorly understood. We previously reported p130Cas (Cas) as a key molecule in cellular mechanosensing at focal adhesions. Here, we demonstrate that Cas is distributed in the nucleus and supports mechanical loading-mediated bone homeostasis by alleviating NF-κB activity, which would otherwise prompt inflammatory processes. Mechanical unloading modulates Cas distribution and NF-κB activity in osteocytes, the mechanosensory cells in bones. Cas deficiency in osteocytes increases osteoclastic bone resorption associated with NF-κB-mediated RANKL expression, leading to osteopenia. Upon shear stress application on cultured osteocytes, Cas translocates into the nucleus and down-regulates NF-κB activity. Collectively, fluid shear stress-dependent Cas-mediated alleviation of NF-κB activity supports bone homeostasis. Given the ubiquitous expression of Cas and NF-κB together with systemic distribution of interstitial fluid, the Cas-NF-κB interplay may also underpin regulatory mechanisms in other tissues and organs.
Collapse
Affiliation(s)
- T. Miyazaki
- Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
- Department of Orthopaedic Surgery, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
- Corresponding author. (T.M.); (Y.S.)
| | - Z. Zhao
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Y. Ichihara
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - D. Yoshino
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - T. Imamura
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - K. Sawada
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
- Laboratory for Mechanical Medicine, Nadogaya Research Institute, Nadogaya Hospital, Kashiwa, Chiba 277-0032, Japan
| | - S. Hayano
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama 700-8525, Japan
| | - H. Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama 700-8525, Japan
| | - S. Mori
- Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - H. Hirata
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - K. Araki
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - K. Kawauchi
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - K. Shigemoto
- Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - S. Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - L. F. Bonewald
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - H. Honda
- Field of Human Disease Models, Institute of Laboratory Animals, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - M. Shinohara
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - M. Nagao
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - T. Ogata
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - I. Harada
- Laboratory for Mechanical Medicine, Nadogaya Research Institute, Nadogaya Hospital, Kashiwa, Chiba 277-0032, Japan
| | - Y. Sawada
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
- Laboratory for Mechanical Medicine, Nadogaya Research Institute, Nadogaya Hospital, Kashiwa, Chiba 277-0032, Japan
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
- Corresponding author. (T.M.); (Y.S.)
| |
Collapse
|
130
|
Single-Cell Analysis of Multiple Steps of Dynamic NF-κB Regulation in Interleukin-1α-Triggered Tumor Cells Using Proximity Ligation Assays. Cancers (Basel) 2019; 11:cancers11081199. [PMID: 31426445 PMCID: PMC6721548 DOI: 10.3390/cancers11081199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
The frequently occurring heterogeneity of cancer cells and their functional interaction with immune cells in the tumor microenvironment raises the need to study signaling pathways at the single cell level with high precision, sensitivity, and spatial resolution. As aberrant NF-κB activity has been implicated in almost all steps of cancer development, we analyzed the dynamic regulation and activation status of the canonical NF-κB pathway in control and IL-1α-stimulated individual cells using proximity ligation assays (PLAs). These systematic experiments allowed the visualization of the dynamic dissociation and re-formation of endogenous p65/IκBα complexes and the nuclear translocation of NF-κB p50/p65 dimers. PLA combined with immunostaining for p65 or with NFKBIA single molecule mRNA-FISH facilitated the analysis of (i) further levels of the NF-κB pathway, (i) its functionality for downstream gene expression, and (iii) the heterogeneity of the NF-κB response in individual cells. PLA also revealed the interaction between NF-κB p65 and the P-body component DCP1a, a new p65 interactor that contributes to efficient p65 NF-κB nuclear translocation. In summary, these data show that PLA technology faithfully mirrored all aspects of dynamic NF-κB regulation, thus allowing molecular diagnostics of this key pathway at the single cell level which will be required for future precision medicine.
Collapse
|
131
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
132
|
Koike T, Harada K, Horiuchi S, Kitamura D. The quantity of CD40 signaling determines the differentiation of B cells into functionally distinct memory cell subsets. eLife 2019; 8:44245. [PMID: 31225793 PMCID: PMC6636905 DOI: 10.7554/elife.44245] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
In mice, memory B (Bmem) cells can be divided into two subpopulations: CD80hi Bmem cells, which preferentially differentiate into plasma cells; and CD80lo Bmem cells, which become germinal center (GC) B cells during a recall response. We demonstrate that these distinct responses can be B-cell-intrinsic and essentially independent of B-cell receptor (BCR) isotypes. Furthermore, we find that the development of CD80hi Bmem cells in the primary immune response requires follicular helper T cells, a relatively strong CD40 signal and a high-affinity BCR on B cells, whereas the development of CD80lo Bmem cells does not. Quantitative differences in CD40 stimulation were enough to recapitulate the distinct B cell fate decisions in an in vitro culture system. The quantity of CD40 signaling appears to be translated into NF-κB activation, followed by BATF upregulation that promotes Bmem cell differentiation from GC B cells.
Collapse
Affiliation(s)
- Takuya Koike
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Koshi Harada
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Shu Horiuchi
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| |
Collapse
|
133
|
Harirchian P, Lee J, Hilz S, Sedgewick AJ, Perez White BE, Kesling MJ, Mully T, Golovato J, Gray M, Mauro TM, Purdom E, Kim EA, Sbitany H, Bhutani T, Vaske CJ, Benz SC, Cho RJ, Cheng JB. A20 and ABIN1 Suppression of a Keratinocyte Inflammatory Program with a Shared Single-Cell Expression Signature in Diverse Human Rashes. J Invest Dermatol 2019; 139:1264-1273. [PMID: 30543901 PMCID: PMC6642632 DOI: 10.1016/j.jid.2018.10.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Genetic variation in the NF-κB inhibitors, ABIN1 and A20, increase risk for psoriasis. While critical for hematopoietic immune cell function, these genes are believed to additionally inhibit psoriasis by dampening inflammatory signaling in keratinocytes. We dissected ABIN1 and A20's regulatory role in human keratinocyte inflammation using an RNA sequencing-based comparative genomic approach. Here we show subsets of the IL-17 and tumor necrosis factor-α signaling pathways are robustly restricted by A20 overexpression. In contrast, ABIN1 overexpression inhibits these genes more modestly for IL-17, and weakly for tumor necrosis factor-α. Our genome-scale analysis also indicates that inflammatory program suppression appears to be the major transcriptional influence of A20/ABIN1 overexpression, without obvious influence on keratinocyte viability genes. Our findings thus enable dissection of the differing anti-inflammatory mechanisms of two distinct psoriasis modifiers, which may be directly exploited for therapeutic purposes. Importantly, we report that IL-17-induced targets of A20 show similar aberrant epidermal layer-specific transcriptional upregulation in keratinocytes from diseases as diverse as psoriasis, atopic dermatitis, and erythrokeratodermia variabilis, suggesting a contributory role for epidermal inflammation in a broad spectrum of rashes.
Collapse
Affiliation(s)
- Paymann Harirchian
- Department of Dermatology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California, USA
| | - Jerry Lee
- Department of Dermatology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | - Bethany E Perez White
- Skin Tissue Engineering Core and Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Thaddeus Mully
- Department of Pathology, University of California, San Francisco, California
| | | | | | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, California
| | - Esther A Kim
- Department of Plastic Surgery, University of California, San Francisco, California
| | - Hani Sbitany
- Department of Plastic Surgery, University of California, San Francisco, California
| | - Tina Bhutani
- Department of Dermatology, University of California, San Francisco, California
| | | | | | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, California
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California, USA.
| |
Collapse
|
134
|
Drukker NA, Durnitsyna OA, Nikashina AA. [The role of modification of innate immunity in development of premature labore]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:439-443. [PMID: 30378561 DOI: 10.18097/pbmc20186405439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To clarify the role of the infectious factor in the development of premature birth (PB) in women in serum, the content of TLR-4, the p65 subunit of the nuclear factor NF-kB, the cytokine TNF-a and the activity of PLA2 (phospholipase A2) were determinated by the enzyme immunoassay was studied. The profile of bioregulators in women with premature births was characterized by a high content of TLR-4, TNF-a and an increase in PLA2 activity and a decrease in the activity of the p65 subunit of NF-kB. 89 women aged 20-39 years were examined at 34-40 weeks gestation. They were divided into two groups: 42 women with preterm birth at 34-36.6 weeks, the control group is represented by 47 patients. The risk factors for PB are the presence of PB in history, endocervicitis, colpitis, dysbiosis, diseases of the urinary system (chronic pyelonephritis, chronic cystitis), aggravated obstetric and gynecological history (the threat of abortion during gestation, moderate preeclampsia, anemia of the pregnant woman). The obtained data of the studied bioregulators testify to the role of the infectious inflammatory process in the development of PB, which is evidenced by the high level of TLR-4, a component of innate immunity leading to the activation of the TLR-4 signaling pathway, which increases the activity of PLA2-factor of premature contractile activity of the uterus.
Collapse
Affiliation(s)
- N A Drukker
- Research Institute of Obstetrics and Pediatrics, Rostov State Medical University, Ministry of Health of Russia, Rostov-on-Don, Russia
| | - O A Durnitsyna
- Research Institute of Obstetrics and Pediatrics, Rostov State Medical University, Ministry of Health of Russia, Rostov-on-Don, Russia
| | - A A Nikashina
- Research Institute of Obstetrics and Pediatrics, Rostov State Medical University, Ministry of Health of Russia, Rostov-on-Don, Russia
| |
Collapse
|
135
|
Seigner J, Junker-Samek M, Plaza A, D'Urso G, Masullo M, Piacente S, Holper-Schichl YM, de Martin R. A Symphytum officinale Root Extract Exerts Anti-inflammatory Properties by Affecting Two Distinct Steps of NF-κB Signaling. Front Pharmacol 2019; 10:289. [PMID: 31105555 PMCID: PMC6498879 DOI: 10.3389/fphar.2019.00289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/11/2019] [Indexed: 01/09/2023] Open
Abstract
Symphytum officinale, commonly known as comfrey, constitutes a traditional medicinal plant with a long-standing therapeutic history, and preparations thereof have been widely used for the treatment of painful muscle and joint complaints, wound and bone healing, and inflammation. Today, its topical use is based on its analgesic and anti-inflammatory effects, which have been substantiated by modern clinical trials. However, the molecular basis of its action remained elusive. Here, we show that a hydroalcoholic extract of comfrey root impairs the development of a pro-inflammatory scenario in primary human endothelial cells in a dose-dependent manner. The extract, and especially its mucilage-depleted fraction, impair the interleukin-1 (IL-1) induced expression of pro-inflammatory markers including E-selectin, VCAM1, ICAM1, and COX-2. Both preparations inhibit the activation of NF-κB, a transcription factor of central importance for the expression of these and other pro-inflammatory genes. Furthermore, our biochemical studies provide evidence that comfrey inhibits NF-κB signaling at two stages: it dampens not only the activation of IKK1/2 and the subsequent IκBα degradation, but also interferes with NF-κB p65 nucleo-cytoplasmatic shuttling and transactivation. These results provide a first mechanistic insight into the mode of action of a century-old popular herbal medicine.
Collapse
Affiliation(s)
- Jacqueline Seigner
- Department of Vascular Biology, Medical University of Vienna, Vienna, Austria
| | | | | | - Gilda D'Urso
- Dipartimento di Farmacia, Università degli Studi di Salerno, Salerno, Italy
| | - Milena Masullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Salerno, Italy
| | - Sonia Piacente
- Dipartimento di Farmacia, Università degli Studi di Salerno, Salerno, Italy
| | | | - Rainer de Martin
- Department of Vascular Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
136
|
Liu M, Xiao CQ, Sun MW, Tan MJ, Hu LH, Yu Q. Xanthatin inhibits STAT3 and NF-κB signalling by covalently binding to JAK and IKK kinases. J Cell Mol Med 2019; 23:4301-4312. [PMID: 30993883 PMCID: PMC6533482 DOI: 10.1111/jcmm.14322] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of the signal transducer and activator of transcription 3 (STAT3) and the nuclear factor‐κB (NF‐κB) signalling pathways is associated with the development of cancer and inflammatory diseases. JAKs and IKKs are the key regulators in the STAT3 and NF‐κB signalling respectively. Therefore, the two families of kinases have been the major targets for developing drugs to regulate the two signalling pathways. Here, we report a natural compound xanthatin from the traditional Chinese medicinal herb Xanthium L. as a potent inhibitor of both STAT3 and NF‐κB signalling pathways. Our data demonstrated that xanthatin was a covalent inhibitor and its activities depended on its α‐methylene‐γ‐butyrolactone group. It preferentially interacted with the Cys243 of JAK2 and the Cys412 and Cys464 of IKKβ to inactivate their activities. In doing so, xanthatin preferentially inhibited the growth of cancer cell lines that have constitutively activated STAT3 and p65. These data suggest that xanthatin may be a promising anticancer and anti‐inflammation drug candidate.
Collapse
Affiliation(s)
- Man Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Cheng-Qian Xiao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Ming-Wei Sun
- University of Chinese Academy of Sciences, Beijing, PR China.,The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Min-Jia Tan
- University of Chinese Academy of Sciences, Beijing, PR China.,The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Li-Hong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
137
|
Zhao Y, Zagani R, Park SM, Yoshida N, Shah P, Reinecker HC. Microbial recognition by GEF-H1 controls IKKε mediated activation of IRF5. Nat Commun 2019; 10:1349. [PMID: 30902986 PMCID: PMC6430831 DOI: 10.1038/s41467-019-09283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
During infection, transcription factor interferon regulatory factor 5 (IRF5) is essential for the control of host defense. Here we show that the microtubule-associated guanine nucleotide exchange factor (GEF)-H1, is required for the phosphorylation of IRF5 by microbial muramyl-dipeptides (MDP), the minimal structural motif of peptidoglycan of both Gram-positive and Gram-negative bacteria. Specifically, GEF-H1 functions in a microtubule based recognition system for microbial peptidoglycans that mediates the activation of IKKε which we identify as a new upstream IKKα/β and IRF5 kinase. The deletion of GEF-H1 or dominant-negative variants of GEF-H1 prevent activation of IKKε and phosphorylation of IRF5. The GEF-H1-IKKε-IRF5 signaling axis functions independent of NOD-like receptors and is critically required for the recognition of intracellular peptidoglycans and host defenses against Listeria monocytogenes.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Rachid Zagani
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sung-Moo Park
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Naohiro Yoshida
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Pankaj Shah
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hans-Christian Reinecker
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
138
|
Activation of NF-κB in B cell receptor signaling through Bruton's tyrosine kinase-dependent phosphorylation of IκB-α. J Mol Med (Berl) 2019; 97:675-690. [PMID: 30887112 DOI: 10.1007/s00109-019-01777-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023]
Abstract
The antigen-mediated triggering of B cell receptor (BCR) activates the transcription factor NF-κB that regulates the expression of genes involved in B cell differentiation, proliferation, and survival. The tyrosine kinase Btk is essentially required for the activation of NF-κB in BCR signaling through the canonical pathway of IKK-dependent phosphorylation and proteasomal degradation of IκB-α, the main repressor of NF-κB. Here, we provide the evidence of an additional mechanism of NF-κB activation in BCR signaling that is Btk-dependent and IKK-independent. In DeFew B lymphoma cells, the anti-IgM stimulation of BCR activated Btk and NF-κB p50/p65 within 0.5 min in absence of IKK activation and IκB-α degradation. IKK silencing did not affect the rapid activation of NF-κB. Within this short time, Btk associated and phosphorylated IκB-α at Y289 and Y305, and, concomitantly, p65 translocated from cytosol to nucleus. The mutant IκB-α Y289/305A inhibited the NF-κB activation after BCR triggering, suggesting that the phosphorylation of IκB-α at tyrosines 289 and 305 was required for NF-κB activation. In primary chronic lymphocytic leukemia cells, Btk was constitutively active and associated with IκB-α, which correlated with Y305-phosphorylation of IκB-α and increased NF-κB activity compared with healthy B cells. Altogether, these results describe a novel mechanism of NF-κB activation in BCR signaling that could be relevant for Btk-targeted therapy in B-lymphoproliferative disorders. KEY MESSAGES: Anti-IgM stimulation of BCR activates NF-κB p50/p65 within 30 s by a Btk-dependent and IKK-independent mechanism. Btk associates and phosphorylates IκB-α at Y289 and Y305, promoting NF-κB activation. In primary CLLs, the binding of Btk to IκB-α correlates with tyrosine phosphorylation of IκB-α and increased NF-κB activity.
Collapse
|
139
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
140
|
Bimodal Distribution of Nuclear Factor-κB Activation and Expression of Subunits in Experimental Models of Intracerebral Hemorrhage In Vivo. J Stroke Cerebrovasc Dis 2019; 28:821-829. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023] Open
|
141
|
The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev 2019; 34:56-66. [DOI: 10.1016/j.blre.2018.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
142
|
Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermöhlen O, Krut O, Krönke M, Schramm M. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal 2019; 12:12/568/eaar5926. [PMID: 30755476 DOI: 10.1126/scisignal.aar5926] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A major function of macrophages during infection is initiation of the proinflammatory response, leading to the secretion of cytokines that help to orchestrate the immune response. Here, we identify reactive oxygen species (ROS) as crucial mediators of proinflammatory signaling leading to cytokine secretion in Listeria monocytogenes-infected macrophages. ROS produced by NADPH oxidases (Noxes), such as Nox2, are key components of the macrophage response to invading pathogens; however, our data show that the ROS that mediated proinflammatory signaling were produced by mitochondria (mtROS). We identified the inhibitor of κB (IκB) kinase (IKK) complex regulatory subunit NEMO [nuclear factor κB (NF-κB) essential modulator] as a target for mtROS. Specifically, mtROS induced intermolecular covalent linkage of NEMO through disulfide bonds formed by Cys54 and Cys347, which was essential for activation of the IKK complex and subsequent signaling through the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and NF-κB pathways that eventually led to the secretion of proinflammatory cytokines. We thus identify mtROS-dependent disulfide linkage of NEMO as an essential regulatory step of the proinflammatory response of macrophages to bacterial infection.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Alexander Gluschko
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Alina Farid
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Anne Wolf
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany.,Center of Molecular Medicine Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), 50931 Cologne, Germany
| | - Oleg Krut
- Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany.,Center of Molecular Medicine Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), 50931 Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany.
| |
Collapse
|
143
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
144
|
SNW1, a Novel Transcriptional Regulator of the NF-κB Pathway. Mol Cell Biol 2019; 39:MCB.00415-18. [PMID: 30397075 DOI: 10.1128/mcb.00415-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023] Open
Abstract
The nuclear factor kappa B (NF-κB) family of transcription factors plays a central role in coordinating the expression of genes that control inflammation, immune responses, cell proliferation, and a variety of other biological processes. In an attempt to identify novel regulators of this pathway, we performed whole-genome RNA interference (RNAi) screens in physiologically relevant human macrophages in response to lipopolysaccharide and tumor necrosis factor alpha (TNF-α). The top hit was SNW1, a splicing factor and transcriptional coactivator. SNW1 does not regulate the cytoplasmic components of the NF-κB pathway but complexes with the NF-κB heterodimer in the nucleus for transcriptional activation. We show that SNW1 detaches from its splicing complex (formed with SNRNP200 and SNRNP220) upon NF-κB activation and binds to NF-κB's transcriptional elongation partner p-TEFb. We also show that SNW1 is indispensable for the transcriptional elongation of NF-κB target genes such as the interleukin 8 (IL-8) and TNF genes. SNW1 is a unique protein previously shown to be involved in both splicing and transcription, and in this case, its role involves binding to the NF-κB-p-TEFb complex to facilitate transcriptional elongation of some NF-κB target genes.
Collapse
|
145
|
Zhao D, Gu MY, Xu JL, Zhang LJ, Ryu SY, Yang HO. Anti-neuroinflammatory Effects of 12-Dehydrogingerdione in LPS-Activated Microglia through Inhibiting Akt/IKK/NF-κB Pathway and Activating Nrf-2/HO-1 Pathway. Biomol Ther (Seoul) 2019; 27:92-100. [PMID: 30404129 PMCID: PMC6319549 DOI: 10.4062/biomolther.2018.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
Ginger, one of worldwide consumed dietary spice, is not only famous as food supplements, but also believed to exert a variety of remarkable pharmacological activity as herbal remedies. In this study, a ginger constituent, 12-dehydrogingerdione (DHGD) was proven that has comparable anti-inflammatory activity with positive control 6-shogaol in inhibiting LPS-induced interleukin (IL)-6, tumor necrosis factor (TNF)-α, prostaglandin (PG) E2, nitric oxide (NO), inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, without interfering with COX-1 in cultured microglial cells. Subsequent mechanistic studies indicate that 12-DHGD may inhibit neuro-inflammation through suppressing the LPS-activated Akt/IKK/NF-κB pathway. Furthermore, 12-DHGD markedly promoted the activation of NF-E2-related factor (Nrf)-2 and heme oxygenase (HO)-1, and we demonstrated that the involvement of HO-1 on the production of pro-inflammatory mediators such as NO and TNF-α by using a HO-1 inhibitor, Zinc protoporphyrin (Znpp). These results indicate that 12-DHGD may protect against neuro-inflammation by inhibiting Akt/IKK/IκB/NF-κB pathway and promoting Nrf-2/HO-1 pathway.
Collapse
Affiliation(s)
- Dong Zhao
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ming-Yao Gu
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea
| | - Jiu Liang Xu
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea
| | - Li Jun Zhang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Shi Yong Ryu
- Research Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
146
|
Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:207-226. [PMID: 31628658 DOI: 10.1007/978-981-13-9367-9_10] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The NF-κB (Nuclear Factor kappa B) transcription factor plays crucial roles in the regulation of numerous biological processes including development of the immune system, inflammation, and innate and adaptive immune responses. Control over the immune cell functions of NF-κB results from signaling through one of two different routes: the canonical and noncanonical NF-κB signaling pathways. Present at the end of both pathways are the proteins NF-κB, IκB, and the IκB kinase (IKK). These proteins work together to deliver the myriad outcomes that influence context-dependent transcriptional control in immune cells. In the present chapter, we review the structural information available on NF-κB, IκB, and IKK, the critical terminal components of the NF-κB signaling, in relation to their physiological function.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
147
|
Assumpção ALFV, Lu Z, Marlowe KW, Shaffer KS, Pan X. Targeting NEDD8-activating enzyme is a new approach to treat canine diffuse large B-cell lymphoma. Vet Comp Oncol 2018; 16:606-615. [PMID: 30101447 PMCID: PMC6392197 DOI: 10.1111/vco.12428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 07/05/2018] [Indexed: 02/04/2023]
Abstract
Canine diffuse large B-cell lymphoma (DLBCL), the most common hematologic malignancy of dogs, is associated with poor overall survival. The lack of conventional chemotherapies with sustainable efficacy warrants investigation of novel therapies. Pevonedistat (MLN4924) is a potent and selective small molecule NEDD8-activating enzyme inhibitor. In human activated B-cell-like (ABC) diffuse large B-cell lymphoma, pevonedistat induces lymphoma cell apoptosis, DNA damage and G1 cell cycle arrest by inhibiting the nuclear factor-κB (NF-κB) pathway. Genomic and transcriptomic studies showed that the NF-κB pathway is deregulated in canine DLBCL. Our results showed that pevonedistat treatment significantly reduces the viability of canine DLBCL cells by inducing G1 cell cycle arrest and apoptosis. Pevonedistat treatment inhibits NF-κB pathway activation and downregulates NF-κB target genes in canine DLBCL. Moreover, administration of pevonedistat to mice bearing canine DLBCL xenograft tumours resulted in tumour regression. Our in vivo and in vitro studies provide justification for future clinical application of pevonedistat as a potential new anti-cancer therapy that may benefit both canine and human species.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Blotting, Western/veterinary
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclopentanes/administration & dosage
- Cyclopentanes/therapeutic use
- Dog Diseases/drug therapy
- Dog Diseases/enzymology
- Dogs
- Dose-Response Relationship, Drug
- Inhibitory Concentration 50
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/veterinary
- Mice
- Mice, Inbred NOD
- NEDD8 Protein/antagonists & inhibitors
- Neoplasm Transplantation/veterinary
- Pyrimidines/administration & dosage
- Pyrimidines/therapeutic use
- Reverse Transcriptase Polymerase Chain Reaction
- Ubiquitin-Activating Enzymes/antagonists & inhibitors
Collapse
Affiliation(s)
- A. L. F. V. Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Z. Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - K. W. Marlowe
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - K. S. Shaffer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - X. Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
148
|
Structural instability of IκB kinase β promotes autophagic degradation through enhancement of Keap1 binding. PLoS One 2018; 13:e0203978. [PMID: 30500824 PMCID: PMC6267955 DOI: 10.1371/journal.pone.0203978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/10/2018] [Indexed: 12/30/2022] Open
Abstract
IKKβ, an essential kinase of NF-κB signaling, is composed of an N-terminal kinase domain (KD) and a C-terminal scaffolding domain, containing a ubiquitin-like domain (ULD). The Hsp90 chaperon has special responsibility for folding of protein kinases including IKKβ. Here, we found that Hsp90 inhibition induced IKKβ degradation, which is partially mediated by Keap1. Geldanamycin (GA), a Hsp90 inhibitor, enhances association of IKKβ with Keap1 through the binding site in KD, and translocates IKKβ to detergent-insoluble fractions leading to its autophagic degradation. An electrophile tBHQ suppressed Keap1-mediated proteasomal Nrf2 degradation but not autophagic IKKβ degradation. Substitution mutation of Leu353 to Ala in the ULD destabilizes IKKβ, enhances its association with Keap1, translocates it to detergent-insoluble fractions, and causes its autophagic degradation. These results suggest that Keap1 is involved in the degradation of structural destabilized IKKβ and negative regulation of NF-κB under proteotoxic stress.
Collapse
|
149
|
HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state. PLoS Pathog 2018; 14:e1007398. [PMID: 30419009 PMCID: PMC6258467 DOI: 10.1371/journal.ppat.1007398] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 11/26/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Elite controllers (ECs) are a rare subset of HIV-1 slow progressors characterized by prolonged viremia suppression. HLA alleles B27 and B57 promote the cytotoxic T lymphocyte (CTL)-mediated depletion of infected cells in ECs, leading to the emergence of escape mutations in the viral capsid (CA). Whether those mutations modulate CA detection by innate sensors and effectors is poorly known. Here, we investigated the targeting of CA from B27/B57+ individuals by cytosolic antiviral factors Mx2 and TRIM5α. Toward that aim, we constructed chimeric HIV-1 vectors using CA isolated from B27/B57+ or control subjects. HIV-1 vectors containing B27/B57+-specific CA had increased sensitivity to TRIM5α but not to Mx2. Following exposure to those vectors, cells showed increased resistance against both TRIM5α-sensitive and -insensitive HIV-1 strains. Induction of the antiviral state did not require productive infection by the TRIM5α-sensitive virus, as shown using chemically inactivated virions. Depletion experiments revealed that TAK1 and Ubc13 were essential to the TRIM5α-dependent antiviral state. Accordingly, induction of the antiviral state was accompanied by the activation of NF-κB and AP-1 in THP-1 cells. Secretion of IFN-I was involved in the antiviral state in THP-1 cells, as shown using a receptor blocking antibody. This work identifies innate activation pathways that are likely to play a role in the natural resistance to HIV-1 progression in ECs. Some HIV-1-infected individuals show a natural capacity to control viral propagation. In individuals that have the HLA B27 or B57 allele, HIV-1 control is associated with mutations in viral proteins that arise as a result of immune pressure from cytotoxic T lymphocytes. HIV-1 capsid protein mutations found in these subjects render HIV-1 more sensitive to detection by TRIM5α, a cytoplasmic innate effector that targets retroviral capsids. We show here that HIV-1 bearing such mutations is restricted by TRIM5α but not by Mx2, another capsid-targeting innate effector. As a result, cells have decreased permissiveness to subsequent HIV-1 infections, a phenomenon that could contribute to the inefficient disease progression observed in these individuals. This knowledge might find applications in the development of immune interventions to increase human cells resistance to HIV-1.
Collapse
|
150
|
Snigireva AV, Vrublevskaya VV, Zhmurina MA, Skarga YY, Morenkov OS. The Mechanisms of Stimulation of Migration and Invasion of Tumor Cells by Extracellular Heat Shock Protein 90 (eHsp90) in vitro. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|