101
|
Wang J, Zheng S, Liu Y, Zhang Z, Lin Z, Li J, Zhang G, Wang X, Li J, Chen PR. Palladium-Triggered Chemical Rescue of Intracellular Proteins via Genetically Encoded Allene-Caged Tyrosine. J Am Chem Soc 2016; 138:15118-15121. [PMID: 27797486 DOI: 10.1021/jacs.6b08933] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemical de-caging has emerged as an attractive strategy for gain-of-function study of proteins via small-molecule reagents. The previously reported chemical de-caging reactions have been largely centered on liberating the side chain of lysine on a given protein. Herein, we developed an allene-based caging moiety and the corresponding palladium de-caging reagents for chemical rescue of tyrosine (Tyr) activity on intracellular proteins. This bioorthogonal de-caging pair has been successfully applied to unmask enzymatic Tyr sites (e.g., Y671 on Taq polymerase and Y728 on Anthrax lethal factor) as well as the post-translational Tyr modification site (Y416 on Src kinase) in vitro and in living cells. Our strategy provides a general platform for chemical rescue of Tyr-dependent protein activity inside cells.
Collapse
Affiliation(s)
- Jie Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Siqi Zheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yanjun Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Zhaoyue Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Zhi Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Jiaofeng Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Gong Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Xin Wang
- Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Jie Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
102
|
Sharma AK, Dhasmana N, Dubey N, Kumar N, Gangwal A, Gupta M, Singh Y. Bacterial Virulence Factors: Secreted for Survival. Indian J Microbiol 2016; 57:1-10. [PMID: 28148975 DOI: 10.1007/s12088-016-0625-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022] Open
Abstract
Virulence is described as an ability of an organism to infect the host and cause a disease. Virulence factors are the molecules that assist the bacterium colonize the host at the cellular level. These factors are either secretory, membrane associated or cytosolic in nature. The cytosolic factors facilitate the bacterium to undergo quick adaptive-metabolic, physiological and morphological shifts. The membrane associated virulence factors aid the bacterium in adhesion and evasion of the host cell. The secretory factors are important components of bacterial armoury which help the bacterium wade through the innate and adaptive immune response mounted within the host. In extracellular pathogens, the secretory virulence factors act synergistically to kill the host cells. In this review, we revisit the role of some of the secreted virulence factors of two human pathogens: Mycobacterium tuberculosis-an intracellular pathogen and Bacillus anthracis-an extracellular pathogen. The advances in research on the role of secretory factors of these pathogens during infection are discussed.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Neha Dhasmana
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Neha Dubey
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Nishant Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Aakriti Gangwal
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
| | - Meetu Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
| | - Yogendra Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
103
|
Zilbermintz L, Leonardi W, Tran SH, Zozaya J, Mathew-Joseph A, Liem S, Levitin A, Martchenko M. Cross-inhibition of pathogenic agents and the host proteins they exploit. Sci Rep 2016; 6:34846. [PMID: 27703274 PMCID: PMC5050486 DOI: 10.1038/srep34846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/19/2016] [Indexed: 11/09/2022] Open
Abstract
The major limitations of pathogen-directed therapies are the emergence of drug-resistance and their narrow spectrum of coverage. A recently applied approach directs therapies against host proteins exploited by pathogens in order to circumvent these limitations. However, host-oriented drugs leave the pathogens unaffected and may result in continued pathogen dissemination. In this study we aimed to discover drugs that could simultaneously cross-inhibit pathogenic agents, as well as the host proteins that mediate their lethality. We observed that many pathogenic and host-assisting proteins belong to the same functional class. In doing so we targeted a protease component of anthrax toxin as well as host proteases exploited by this toxin. We identified two approved drugs, ascorbic acid 6-palmitate and salmon sperm protamine, that effectively inhibited anthrax cytotoxic protease and demonstrated that they also block proteolytic activities of host furin, cathepsin B, and caspases that mediate toxin's lethality in cells. We demonstrated that these drugs are broad-spectrum and reduce cellular sensitivity to other bacterial toxins that require the same host proteases. This approach should be generally applicable to the discovery of simultaneous pathogen and host-targeting inhibitors of many additional pathogenic agents.
Collapse
Affiliation(s)
| | | | | | - Josue Zozaya
- Keck Graduate Institute, Claremont, CA 91711, USA
| | | | - Spencer Liem
- Keck Graduate Institute, Claremont, CA 91711, USA
| | | | | |
Collapse
|
104
|
Hotamisligil GS, Davis RJ. Cell Signaling and Stress Responses. Cold Spring Harb Perspect Biol 2016; 8:8/10/a006072. [PMID: 27698029 DOI: 10.1101/cshperspect.a006072] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress-signaling pathways are evolutionarily conserved and play an important role in the maintenance of homeostasis. These pathways are also critical for adaptation to new cellular environments. The endoplasmic reticulum (ER) unfolded protein response (UPR) is activated by biosynthetic stress and leads to a compensatory increase in ER function. The JNK and p38 MAPK signaling pathways control adaptive responses to intracellular and extracellular stresses, including environmental changes such as UV light, heat, and hyperosmotic conditions, and exposure to inflammatory cytokines. Metabolic stress caused by a high-fat diet represents an example of a stimulus that coordinately activates both the UPR and JNK/p38 signaling pathways. Chronic activation of these stress-response pathways ultimately causes metabolic changes associated with obesity and altered insulin sensitivity. Stress-signaling pathways, therefore, represent potential targets for therapeutic intervention in the metabolic stress response and other disease processes.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases, Broad Institute of Harvard-MIT, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Roger J Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
105
|
Bachran C, Leppla SH. Tumor Targeting and Drug Delivery by Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8070197. [PMID: 27376328 PMCID: PMC4963830 DOI: 10.3390/toxins8070197] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/17/2022] Open
Abstract
Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.
Collapse
Affiliation(s)
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
106
|
Abstract
Engineered tumor-targeted anthrax lethal toxin proteins have been shown to strongly suppress growth of solid tumors in mice. These toxins work through the native toxin receptors tumor endothelium marker-8 and capillary morphogenesis protein-2 (CMG2), which, in other contexts, have been described as markers of tumor endothelium. We found that neither receptor is required for tumor growth. We further demonstrate that tumor cells, which are resistant to the toxin when grown in vitro, become highly sensitive when implanted in mice. Using a range of tissue-specific loss-of-function and gain-of-function genetic models, we determined that this in vivo toxin sensitivity requires CMG2 expression on host-derived tumor endothelial cells. Notably, engineered toxins were shown to suppress the proliferation of isolated tumor endothelial cells. Finally, we demonstrate that administering an immunosuppressive regimen allows animals to receive multiple toxin dosages and thereby produces a strong and durable antitumor effect. The ability to give repeated doses of toxins, coupled with the specific targeting of tumor endothelial cells, suggests that our strategy should be efficacious for a wide range of solid tumors.
Collapse
|
107
|
Rabideau AE, Pentelute BL. Delivery of Non-Native Cargo into Mammalian Cells Using Anthrax Lethal Toxin. ACS Chem Biol 2016; 11:1490-501. [PMID: 27055654 DOI: 10.1021/acschembio.6b00169] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intracellular delivery of peptide and protein therapeutics is a major challenge due to the plasma membrane, which acts as a barrier between the extracellular environment and the intracellular milieu. Over the past two decades, a nontoxic PA/LFN delivery platform derived from anthrax lethal toxin has been developed for the transport of non-native cargo into the cytosol of cells in order to understand the translocation process through a protective antigen (PA) pore and to probe intracellular biological functions. Enzyme-mediated ligation using sortase A and native chemical ligation are two facile methods used to synthesize these non-native conjugates, inaccessible by recombinant technology. Cargo molecules that translocate efficiently include enzymes from protein toxins, antibody mimic proteins, and peptides of varying lengths and non-natural amino acid compositions. The PA pore has been found to effectively convey over 30 known cargos other than native lethal factor (LF; i.e., non-native) with diverse sequences and functionalities on the LFN transporter protein. All together these studies demonstrated that non-native cargos must adopt an unfolded or extended conformation and contain a suitable charge composition in order to efficiently pass through the PA pore. This review provides insight into design parameters for the efficient delivery of new cargos using PA and LFN.
Collapse
Affiliation(s)
- Amy E. Rabideau
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley Lether Pentelute
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
108
|
Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Arch Toxicol 2016; 91:1431-1445. [DOI: 10.1007/s00204-016-1716-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
109
|
Cardona-Correa A, Rios-Velazquez C. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening. Mol Med Rep 2016; 13:3797-804. [PMID: 27035230 PMCID: PMC4838128 DOI: 10.3892/mmr.2016.5031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents.
Collapse
Affiliation(s)
- Albin Cardona-Correa
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| | - Carlos Rios-Velazquez
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| |
Collapse
|
110
|
Rubino JT, Martinelli M, Cantini F, Castagnetti A, Leuzzi R, Banci L, Scarselli M. Structural characterization of zinc-bound Zmp1, a zinc-dependent metalloprotease secreted by Clostridium difficile. J Biol Inorg Chem 2016; 21:185-96. [PMID: 26711661 DOI: 10.1007/s00775-015-1319-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
Abstract
Proteases are commonly secreted by microorganisms. In some pathogens, they can play a series of functional roles during infection, including maturation of cell surface or extracellular virulence factors, interference with host cell signaling, massive host tissue destruction, and dissolution of infection-limiting clots through degradation of the host proteins devoted to the coagulation cascade. We previously reported the identification and characterization of Zmp1, a zinc-dependent metalloprotease secreted by Clostridium difficile, demonstrated that Zmp1 is able to degrade fibrinogen in vitro, and identified two residues necessary to the catalytic activity. In the present work, we solved the solution structure of Zmp1 by Nuclear Magnetic Resonance (NMR) and compared it with the recently solved X-ray structures of substrate-bound and substrate-free Zmp1, highlighting similarities and differences. We also combined the structural characterization to biochemical assays and site-directed mutagenesis, to provide new insights into the catalytic site and on the residues responsible for substrate specificity. The Zmp1 structure showed similarity to the catalytic domain of Anthrax Lethal Factor of Bacillus anthracis. Analogies and differences in the catalytic and in the substrate-binding sites of the two proteins are discussed.
Collapse
Affiliation(s)
- Jeffrey T Rubino
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | | | - Francesca Cantini
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Andrea Castagnetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Rosanna Leuzzi
- GSK Vaccines SrL, Via Fiorentina, 1, 53100, Siena, Italy
| | - Lucia Banci
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | | |
Collapse
|
111
|
In vivo dynamics of active edema and lethal factors during anthrax. Sci Rep 2016; 6:23346. [PMID: 26996161 PMCID: PMC4800402 DOI: 10.1038/srep23346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/26/2016] [Indexed: 01/21/2023] Open
Abstract
Lethal and edema toxins are critical virulence factors of Bacillus anthracis. However, little is known about their in vivo dynamics of production during anthrax. In this study, we unraveled for the first time the in vivo kinetics of production of the toxin components EF (edema factor) and LF (lethal factor) during cutaneous infection with a wild-type toxinogenic encapsulated strain in immuno-competent mice. We stratified the asynchronous infection process into defined stages through bioluminescence imaging (BLI), while exploiting sensitive quantitative methods by measuring the enzymatic activity of LF and EF. LF was produced in high amounts, while EF amounts steadily increased during the infectious process. This led to high LF/EF ratios throughout the infection, with variations between 50 to a few thousands. In the bloodstream, the early detection of active LF and EF despite the absence of bacteria suggests that they may exert long distance effects. Infection with a strain deficient in the protective antigen toxin component enabled to address its role in the diffusion of LF and EF within the host. Our data provide a picture of the in vivo complexity of the infectious process.
Collapse
|
112
|
Animal Models for the Pathogenesis, Treatment, and Prevention of Infection by Bacillus anthracis. Microbiol Spectr 2016; 3:TBS-0001-2012. [PMID: 26104551 DOI: 10.1128/microbiolspec.tbs-0001-2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article reviews the characteristics of the major animal models utilized for studies on Bacillus anthracis and highlights their contributions to understanding the pathogenesis and host responses to anthrax and its treatment and prevention. Advantages and drawbacks associated with each model, to include the major models (murine, guinea pig, rabbit, nonhuman primate, and rat), and other less frequently utilized models, are discussed. Although the three principal forms of anthrax are addressed, the main focus of this review is on models for inhalational anthrax. The selection of an animal model for study is often not straightforward and is dependent on the specific aims of the research or test. No single animal species provides complete equivalence to humans; however, each species, when used appropriately, can contribute to a more complete understanding of anthrax and its etiologic agent.
Collapse
|
113
|
Friebe S, van der Goot FG, Bürgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8030069. [PMID: 26978402 PMCID: PMC4810214 DOI: 10.3390/toxins8030069] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - F Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Jérôme Bürgi
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
114
|
Al-Dimassi S, Salloum G, Saykali B, Khoury O, Liu S, Leppla SH, Abi-Habib R, El-Sibai M. Targeting the MAP kinase pathway in astrocytoma cells using a recombinant anthrax lethal toxin as a way to inhibit cell motility and invasion. Int J Oncol 2016; 48:1913-20. [PMID: 26984023 DOI: 10.3892/ijo.2016.3431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/05/2015] [Indexed: 01/30/2023] Open
Abstract
Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Understanding and targeting cancer cell invasion is an important therapeutic approach. Cell invasion is a complex process that replies on many signaling pathways including the mitogen-activated protein (MAP) kinase (MAPK). In many cell lines, the use of MAPK-targeted drugs proved to be a potential method to inhibit cancer cell motility. In the present study, we use a recombinant anthrax lethal toxin (LeTx), which selectively inhibits the MAPK pathway, in order to target invasion. LeTx proved ineffective on cell survival in astrocytoma (as well as normal cells). However, astrocytoma cells that were treated with LeTx showed a significant decrease in cell motility as seen by wound healing as well as random 2D motility in serum. The cells also showed a decrease in invasion across a collagen matrix. The effect of LeTx on cell migration was mediated though the deregulation of Rho GTPases, which play a role in cell motility. Finally, the effect of LeTx on cell migration and Rho GTPases was mimicked by the inhibition of the MAPK pathway. In this study, we describe for the first time the effect of the LeTx on cancer cell motility and invasion not cell survival making it a potentially selective brain tumor invasion inhibitor.
Collapse
Affiliation(s)
- Saleh Al-Dimassi
- Department of Natural Sciences, The Lebanese American University, Beirut 1102 2801, Lebanon
| | - Gilbert Salloum
- Department of Natural Sciences, The Lebanese American University, Beirut 1102 2801, Lebanon
| | - Bechara Saykali
- Department of Natural Sciences, The Lebanese American University, Beirut 1102 2801, Lebanon
| | - Oula Khoury
- Department of Natural Sciences, The Lebanese American University, Beirut 1102 2801, Lebanon
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ralph Abi-Habib
- Department of Natural Sciences, The Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, The Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
115
|
Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli. Mol Biol Int 2016; 2016:4732791. [PMID: 26966576 PMCID: PMC4761392 DOI: 10.1155/2016/4732791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L(-1)) compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein's functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform.
Collapse
|
116
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
117
|
Sun J, Jacquez P. Roles of Anthrax Toxin Receptor 2 in Anthrax Toxin Membrane Insertion and Pore Formation. Toxins (Basel) 2016; 8:34. [PMID: 26805886 PMCID: PMC4773787 DOI: 10.3390/toxins8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/04/2022] Open
Abstract
Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA) binds to the cell surface receptor, enters the cell through receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anthrax toxin in vivo, anthrax toxin receptor 2 (ANTXR2) plays an essential role in anthrax toxin action by providing the toxin with a high-affinity binding anchor on the cell membrane and a path of entry into the host cell. ANTXR2 also acts as a molecular clamp by shifting the pH threshold of PA pore formation to a more acidic pH range, which prevents premature pore formation at neutral pH before the toxin reaches the designated intracellular location. Most recent studies have suggested that the disulfide bond in the immunoglobulin (Ig)-like domain of ANTXR2 plays an essential role in anthrax toxin action. Here we will review the roles of ANTXR2 in anthrax toxin action, with an emphasis on newly updated knowledge.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Pedro Jacquez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
118
|
Li L, Guo Q, Liu J, Zhang J, Yin Y, Dong D, Fu L, Xu J, Chen W. Recombinant HSA-CMG2 Is a Promising Anthrax Toxin Inhibitor. Toxins (Basel) 2016; 8:toxins8010028. [PMID: 26805881 PMCID: PMC4728550 DOI: 10.3390/toxins8010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/25/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
Anthrax toxin is the major virulence factor produced by Bacillus anthracis. Protective antigen (PA) is the key component of the toxin and has been confirmed as the main target for the development of toxin inhibitors. The inhibition of the binding of PA to its receptor, capillary morphogenesis protein-2 (CMG2), can effectively block anthrax intoxication. The recombinant, soluble von Willebrand factor type A (vWA) domain of CMG2 (sCMG2) has demonstrated potency against anthrax toxin. However, the short half-life of sCMG2 in vivo is a disadvantage for its development as a new anthrax drug. In the present study, we report that HSA-CMG2, a protein combining human serum albumin (HSA) and sCMG2, produced in the Pichia pastoris expression system prolonged the half-life of sCMG2 while maintaining PA binding ability. The IC50 of HSA-CMG2 is similar to those of sCMG2 and CMG2-Fc in in vitro toxin neutralization assays, and HSA-CMG2 completely protects rats from lethal doses of anthrax toxin challenge; these same challenge doses exceed sCMG2 at a sub-equivalent dose ratio and overwhelm CMG2-Fc. Our results suggest that HSA-CMG2 is a promising inhibitor of anthrax toxin and may contribute to the development of novel anthrax drugs.
Collapse
Affiliation(s)
- Liangliang Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
- Center for Disease Control and Prevention of Navy, Beijing 101113, China.
| | - Qiang Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ju Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Dayong Dong
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
119
|
Host Cell Chaperones Hsp70/Hsp90 and Peptidyl-Prolyl Cis/Trans Isomerases Are Required for the Membrane Translocation of Bacterial ADP-Ribosylating Toxins. Curr Top Microbiol Immunol 2016; 406:163-198. [PMID: 27197646 DOI: 10.1007/82_2016_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial ADP-ribosylating toxins are the causative agents for several severe human and animal diseases such as diphtheria, cholera, or enteric diseases. They display an AB-type structure: The enzymatically active A-domain attaches to the binding/translocation B-domain which then binds to a receptor on the cell surface. After receptor-mediated endocytosis, the B-domain facilitates the membrane translocation of the unfolded A-domain into the host cell cytosol. Here, the A-domain transfers an ADP-ribose moiety onto its specific substrate which leads to characteristic cellular effects and thus to severe clinical symptoms. Since the A-domain has to reach the cytosol to achieve a cytotoxic effect, the membrane translocation represents a crucial step during toxin uptake. Host cell chaperones including Hsp90 and protein-folding helper enzymes of the peptidyl-prolyl cis/trans isomerase (PPIase) type facilitate this membrane translocation of the unfolded A-domain for ADP-ribosylating toxins but not for toxins with a different enzyme activity. This review summarizes the uptake mechanisms of the ADP-ribosylating clostridial binary toxins, diphtheria toxin (DT) and cholera toxin (CT), with a special focus on the interaction of these toxins with the chaperones Hsp90 and Hsp70 and PPIases of the cyclophilin and FK506-binding protein families during the membrane translocation of their ADP-ribosyltransferase domains into the host cell cytosol. Moreover, the medical implications of host cell chaperones and PPIases as new drug targets for the development of novel therapeutic strategies against diseases caused by bacterial ADP-ribosylating toxins are discussed.
Collapse
|
120
|
Abstract
The virulence of highly pathogenic bacteria such as Salmonella, Yersinia, Staphylococci, Clostridia, and pathogenic strains of Escherichia coli involves intimate cross-talks with the host actin cytoskeleton and its upstream regulators. A large number of virulence factors expressed by these pathogens modulate Rho GTPase activities either by mimicking cellular regulators or by catalyzing posttranslational modifications of these small proteins. This impressive convergence of virulence toward Rho GTPases and actin indeed offers pathogens the capacity to breach host defenses and invade their host, while it promotes inflammatory reactions. In return, the study of this targeting of Rho GTPases in infection has been an invaluable source of information in cell signaling, cell biology, and biomechanics, as well as in immunology. Through selected examples, I highlight the importance of recent studies on this crosstalk, which have unveiled new mechanisms of regulation of Rho GTPases; the relationship between cell shape and actin cytoskeleton organization; and the relationship between Rho GTPases and innate immune signaling.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- UCA, Inserm, C3M, U1065, Team Microbial Toxins in Host Pathogen Interactions, Equipe Labellisée la Ligue Contre le Cancer, Nice, 06204, France.
- UFR Médecine, Université de Nice-Sophia-Antipolis, Nice, France.
| |
Collapse
|
121
|
Molecular assembly of lethal factor enzyme and pre-pore heptameric protective antigen in early stage of translocation. J Mol Model 2015; 22:7. [PMID: 26659402 DOI: 10.1007/s00894-015-2878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
During intoxication, the anthrax toxin lethal (LF) and edema (EF) factors initially assemble with the protective antigen (PA) on the plasma membrane of cells expressing the membrane-bound surface-exposed anthrax toxin receptor (ATR). This takes place at the physiological pH prior to entering the acidic environment of the endosome. We elucidated the molecular dynamics (MD) behaviors of the three-dimensional structure of the (PA63)7LF3 complex in various conformations and analyzed the dynamical properties of the fully loaded pre-pore complex on the plasma membrane at the physiological pH. The analysis points to the interaction networks of amino acids conserved between PA63 octamer and heptamer, which are not affected during the initial stage of the LFs binding. The simulations show an asymmetrical movement of the complex domains that directly affect LFs conformations. The conformational and structural alterations of the 2β2-2β3 loops of PA subunits are associated with pore formation. The early conformational changes of the loops appear as they peel off from the domain 2 toward domain 4 of each PA subunit. The LFs unfold in 1α1 segments of their N-terminal initiating the early stage of the pre-pore formation. The results indicate instable regions within the complex and provide important clues concerning the detail of fluctuating residues of the LF-PA interface regions at the early steps of toxins translocation.
Collapse
|
122
|
McGuire VA, Arthur JSC. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens. Front Immunol 2015; 6:607. [PMID: 26648936 PMCID: PMC4664646 DOI: 10.3389/fimmu.2015.00607] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection.
Collapse
Affiliation(s)
- Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
123
|
An anthrax toxin variant with an improved activity in tumor targeting. Sci Rep 2015; 5:16267. [PMID: 26584669 PMCID: PMC4653645 DOI: 10.1038/srep16267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022] Open
Abstract
Anthrax lethal toxin (LT) is an A-B type toxin secreted by Bacillus anthracis, consisting of the cellular binding moiety, protective antigen (PA), and the catalytic moiety, lethal factor (LF). To target cells, PA binds to cell-surface receptors and is then proteolytically processed forming a LF-binding competent PA oligomer where each LF binding site is comprised of three subsites on two adjacent PA monomers. We previously generated PA-U2-R200A, a urokinase-activated PA variant with LF-binding subsite II residue Arg200 mutated to Ala, and PA-L1-I210A, a matrix metalloproteinase-activated PA variant with subsite III residue Ile210 mutated to Ala. PA-U2-R200A and PA-L1-I210A displayed reduced cytotoxicity when used singly. However, when combined, they formed LF-binding competent heterogeneous oligomers by intermolecular complementation, and achieved high specificity in tumor targeting. Nevertheless, each of these proteins, in particular PA-L1-I210A, retained residual LF-binding ability. In this work, we screened a library containing all possible amino acid substitutions for LF-binding site to find variants with activity strictly dependent upon intermolecular complementation. PA-I207R was identified as an excellent replacement for the original clockwise-side variant, PA-I210A. Consequently, the new combination of PA-L1-I207R and PA-U2-R200A showed potent anti-tumor activity and low toxicity, exceeding the performance of the original combination, and warranting further investigation.
Collapse
|
124
|
Rolando M, Stefani C, Doye A, Acosta MI, Visvikis O, Yevick HG, Buchrieser C, Mettouchi A, Bassereau P, Lemichez E. Contractile actin cables induced by Bacillus anthracis lethal toxin depend on the histone acetylation machinery. Cytoskeleton (Hoboken) 2015; 72:542-56. [PMID: 26403219 DOI: 10.1002/cm.21256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/25/2022]
Abstract
It remains a challenge to decode the molecular basis of the long-term actin cytoskeleton rearrangements that are governed by the reprogramming of gene expression. Bacillus anthracis lethal toxin (LT) inhibits mitogen-activated protein kinase (MAPK) signaling, thereby modulating gene expression, with major consequences for actin cytoskeleton organization and the loss of endothelial barrier function. Using a laser ablation approach, we characterized the contractile and tensile mechanical properties of LT-induced stress fibers. These actin cables resist pulling forces that are transmitted at cell-matrix interfaces and at cell-cell discontinuous adherens junctions. We report that treating the cells with trichostatin A (TSA), a broad range inhibitor of histone deacetylases (HDACs), or with MS-275, which targets HDAC1, 2 and 3, induces stress fibers. LT decreased the cellular levels of HDAC1, 2 and 3 and reduced the global HDAC activity in the nucleus. Both the LT and TSA treatments induced Rnd3 expression, which is required for the LT-mediated induction of actin stress fibers. Furthermore, we reveal that treating the LT-intoxicated cells with garcinol, an inhibitor of histone acetyl-transferases (HATs), disrupts the stress fibers and limits the monolayer barrier dysfunctions. These data demonstrate the importance of modulating the flux of protein acetylation in order to control actin cytoskeleton organization and the endothelial cell monolayer barrier.
Collapse
Affiliation(s)
- Monica Rolando
- Microbial Toxins in Host-Pathogen Interactions, Equipe Labellisée La Ligue Contre Le Cancer, INSERM, U1065, Centre Méditerranéen De Médecine Moléculaire (C3M), 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France.,UFR Médecine, IFR50, Faculté De Médecine, Université De Nice-Sophia Antipolis, Nice, France.,Biologie Des Bactéries Intracellulaires, Institut Pasteur, Paris, France.,UMR 3525, CNRS, Paris, France
| | - Caroline Stefani
- Microbial Toxins in Host-Pathogen Interactions, Equipe Labellisée La Ligue Contre Le Cancer, INSERM, U1065, Centre Méditerranéen De Médecine Moléculaire (C3M), 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France.,UFR Médecine, IFR50, Faculté De Médecine, Université De Nice-Sophia Antipolis, Nice, France.,Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Anne Doye
- Microbial Toxins in Host-Pathogen Interactions, Equipe Labellisée La Ligue Contre Le Cancer, INSERM, U1065, Centre Méditerranéen De Médecine Moléculaire (C3M), 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France.,UFR Médecine, IFR50, Faculté De Médecine, Université De Nice-Sophia Antipolis, Nice, France
| | - Maria I Acosta
- Microbial Toxins in Host-Pathogen Interactions, Equipe Labellisée La Ligue Contre Le Cancer, INSERM, U1065, Centre Méditerranéen De Médecine Moléculaire (C3M), 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France.,UFR Médecine, IFR50, Faculté De Médecine, Université De Nice-Sophia Antipolis, Nice, France
| | - Orane Visvikis
- Microbial Toxins in Host-Pathogen Interactions, Equipe Labellisée La Ligue Contre Le Cancer, INSERM, U1065, Centre Méditerranéen De Médecine Moléculaire (C3M), 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France.,UFR Médecine, IFR50, Faculté De Médecine, Université De Nice-Sophia Antipolis, Nice, France
| | - Hannah G Yevick
- Institut Curie-Centre de Recherche, Membrane and Cell Functions Group; CNRS UMR 168, Physico-Chimie Curie, Université Pierre et Marie Curie, 26 Rue d'ulm, Paris Cedex 05, 75248, France
| | - Carmen Buchrieser
- Biologie Des Bactéries Intracellulaires, Institut Pasteur, Paris, France.,UMR 3525, CNRS, Paris, France
| | - Amel Mettouchi
- Microbial Toxins in Host-Pathogen Interactions, Equipe Labellisée La Ligue Contre Le Cancer, INSERM, U1065, Centre Méditerranéen De Médecine Moléculaire (C3M), 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France.,UFR Médecine, IFR50, Faculté De Médecine, Université De Nice-Sophia Antipolis, Nice, France
| | - Patricia Bassereau
- Institut Curie-Centre de Recherche, Membrane and Cell Functions Group; CNRS UMR 168, Physico-Chimie Curie, Université Pierre et Marie Curie, 26 Rue d'ulm, Paris Cedex 05, 75248, France
| | - Emmanuel Lemichez
- Microbial Toxins in Host-Pathogen Interactions, Equipe Labellisée La Ligue Contre Le Cancer, INSERM, U1065, Centre Méditerranéen De Médecine Moléculaire (C3M), 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France.,UFR Médecine, IFR50, Faculté De Médecine, Université De Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
125
|
Pontier-Bres R, Rampal P, Peyron JF, Munro P, Lemichez E, Czerucka D. The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the B. anthracis LT toxin. Toxins (Basel) 2015; 7:4455-67. [PMID: 26529015 PMCID: PMC4663514 DOI: 10.3390/toxins7114455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/15/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.
Collapse
Affiliation(s)
| | - Patrick Rampal
- Centre Scientifique de Monaco, Monaco 98000, Monaco; E-Mails: (R.P.-B.); (P.R.)
| | - Jean-François Peyron
- Team Inflammation, Cancer, Cancer Stem Cells, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, U1065, Nice 06204, France; E-Mail:
- Faculté de Médecine, UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, UNSA, Nice 06204, France; E-Mails: (P.M.); (E.L.)
| | - Patrick Munro
- Faculté de Médecine, UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, UNSA, Nice 06204, France; E-Mails: (P.M.); (E.L.)
- Team Microbial Toxins in Host Pathogen Interactions, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, U1065, Nice 06204, France
| | - Emmanuel Lemichez
- Faculté de Médecine, UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, UNSA, Nice 06204, France; E-Mails: (P.M.); (E.L.)
- Team Microbial Toxins in Host Pathogen Interactions, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, U1065, Nice 06204, France
| | - Dorota Czerucka
- Centre Scientifique de Monaco, Monaco 98000, Monaco; E-Mails: (R.P.-B.); (P.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +377-97-77-44-35
| |
Collapse
|
126
|
Kurbanov EK, Chiu TL, Solberg J, Francis S, Maize KM, Fernandez J, Johnson RL, Hawkinson JE, Walters MA, Finzel BC, Amin EA. Probing the S2′ Subsite of the Anthrax Toxin Lethal Factor Using Novel N-Alkylated Hydroxamates. J Med Chem 2015; 58:8723-33. [DOI: 10.1021/acs.jmedchem.5b01446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elbek K. Kurbanov
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Ting-Lan Chiu
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jonathan Solberg
- Institute
for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Subhashree Francis
- Institute
for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Kimberly M. Maize
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jenna Fernandez
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rodney L. Johnson
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jon E. Hawkinson
- Institute
for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael A. Walters
- Institute
for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Barry C. Finzel
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Elizabeth Ambrose Amin
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
- Minnesota
Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
127
|
Bekdash A, Darwish M, Timsah Z, Kassab E, Ghanem H, Najjar V, Ghosn M, Nasser S, El-Hajj H, Bazerbachi A, Liu S, Leppla SH, Frankel AE, Abi-Habib RJ. Phospho-MEK1/2 and uPAR Expression Determine Sensitivity of AML Blasts to a Urokinase-Activated Anthrax Lethal Toxin (PrAgU2/LF). Transl Oncol 2015; 8:347-357. [PMID: 26500025 PMCID: PMC4630967 DOI: 10.1016/j.tranon.2015.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 02/04/2023] Open
Abstract
In this study, we attempt to target both the urokinase plasminogen activator and the mitogen-activated protein kinase pathway in acute myeloid leukemia (AML) cell lines and primary AML blasts using PrAgU2/LF, a urokinase-activated anthrax lethal toxin. PrAgU2/LF was cytotoxic to five out of nine AML cell lines. Cytotoxicity of PrAgU2/LF appeared to be nonapoptotic and was associated with MAPK activation and urokinase activity because all the PrAgU2/LF-sensitive cell lines showed both uPAR expression and high levels of MEK1/2 phosphorylation. Inhibition of uPAR or desensitization of cells to MEK1/2 inhibition blocked toxicity of PrAgU2/LF, indicating requirement for both uPAR expression and MAPK activation for activity. PrAgU2/LF was also cytotoxic to primary blasts from AML patients, with blasts from four out of five patients showing a cytotoxic response to PrAgU2/LF. Cytotoxicity of primary AML blasts was also dependent on uPAR expression and phos-MEK1/2 levels. CD34(+) bone marrow blasts and peripheral blood mononuclear cells lacked uPAR expression and were resistant to PrAgU2/LF, demonstrating the lack of toxicity to normal hematological cells and, therefore, the tumor selectivity of this approach. Dose escalation in mice revealed that the maximal tolerated dose of PrAgU2/LF is at least 5.7-fold higher than that of the wild-type anthrax lethal toxin, PrAg/LF, further demonstrating the increased safety of this molecule. We have shown, in this study, that PrAgU2/LF is a novel, dual-specific molecule for the selective targeting of AML.
Collapse
Affiliation(s)
- Amira Bekdash
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Manal Darwish
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Zahra Timsah
- School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Elias Kassab
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hadi Ghanem
- Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Vicky Najjar
- Department of Pathology, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Marwan Ghosn
- Department of Pathology, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Selim Nasser
- Department of Pathology, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Hiba El-Hajj
- Department of Internal Medicine and Experimental Pathology, School of Medicine, American University of Beirut, Lebanon; Department of Immunology and Microbiology, School of Medicine, American University of Beirut, Lebanon
| | - Ali Bazerbachi
- Department of Internal Medicine, School of Medicine, American University of Beirut, Lebanon; Department of Anatomy, School of Medicine, American University of Beirut, Lebanon; Department of Cell Biology and Physiological Sciences, School of Medicine, American University of Beirut, Lebanon
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Arthur E Frankel
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Ralph J Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon.
| |
Collapse
|
128
|
McComb RC, Ho CL, Bradley KA, Grill LK, Martchenko M. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine. Vaccine 2015; 33:6745-51. [PMID: 26514421 DOI: 10.1016/j.vaccine.2015.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/26/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines.
Collapse
Affiliation(s)
| | - Chi-Lee Ho
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth A Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
129
|
Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun 2015; 5:3209. [PMID: 24492532 PMCID: PMC3926011 DOI: 10.1038/ncomms4209] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/07/2014] [Indexed: 01/03/2023] Open
Abstract
Despite its clinical importance in infection and autoimmunity, the activation mechanisms of the NLRP1b inflammasome remain enigmatic. Here we show that deletion of the inflammasome adaptor ASC in BALB/c mice and in C57BL/6 macrophages expressing a functional NLRP1b prevents anthrax lethal toxin (LeTx)-induced caspase-1 autoproteolysis and speck formation. However, ASC−/− macrophages undergo normal LeTx-induced pyroptosis and secrete significant amounts of interleukin (IL)-1β. In contrast, ASC is critical for caspase-1 autoproteolysis and IL-1β secretion by the NLRC4, NLRP3 and AIM2 inflammasomes. Notably, LeTx-induced inflammasome activation is associated with caspase-1 ubiquitination, which is unaffected in ASC-deficient cells. In vivo, ASC-deficient mice challenged with LeTx produce significant levels of IL-1β, IL-18 and HMGB1 in circulation, although caspase-1 autoproteolysis is abolished. As a result, ASC−/− mice are sensitive to rapid LeTx-induced lethality. Together, these results demonstrate that ASC-driven caspase-1 autoprocessing and speck formation are dispensable for the activation of caspase-1 and the NLRP1b inflammasome. The NLRP1b inflammasome activation may lead to pyroptosis and secretion of the inflammatory cytokines IL-1ß and IL-18 but the mechanisms behind these processes are not fully understood. Here, the authors show that they can occur independently of the inflammasome adaptor ASC and without caspase-1 autoprocessing.
Collapse
|
130
|
Passive Immunotherapy Protects against Enteric Invasion and Lethal Sepsis in a Murine Model of Gastrointestinal Anthrax. Toxins (Basel) 2015; 7:3960-76. [PMID: 26426050 PMCID: PMC4626714 DOI: 10.3390/toxins7103960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
The principal portal for anthrax infection in natural animal outbreaks is the digestive tract. Enteric exposure to anthrax, which is difficult to detect or prevent in a timely manner, could be exploited as an act of terror through contamination of human or animal food. Our group has developed a novel animal model of gastrointestinal (GI) anthrax for evaluation of disease pathogenesis and experimental therapeutics, utilizing vegetative Bacillus anthracis (Sterne strain) administered to A/J mice (a complement-deficient strain) by oral gavage. We hypothesized that a humanized recombinant monoclonal antibody (mAb) * that neutralizes the protective antigen (PA) component of B. anthracis lethal toxin (LT) and edema toxin (ET) could be an effective treatment. Although the efficacy of this anti-anthrax PA mAb has been shown in animal models of inhalational anthrax, its activity in GI infection had not yet been ascertained. We hereby demonstrate that passive immunotherapy with anti-anthrax PA mAb, administered at the same time as gastrointestinal exposure to B. anthracis, prevents lethal sepsis in nearly all cases (>90%), while a delay of up to forty-eight hours in treatment still greatly reduces mortality following exposure (65%). Moreover, passive immunotherapy protects against enteric invasion, associated mucosal injury and subsequent dissemination by gastrointestinal B. anthracis, indicating that it acts to prevent the initial stages of infection. * Expired raxibacumab being cycled off the Strategic National Stockpile; biological activity confirmed by in vitro assay.
Collapse
|
131
|
Schacherl M, Pichlo C, Neundorf I, Baumann U. Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile. Structure 2015. [DOI: 10.1016/j.str.2015.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
132
|
Zilbermintz L, Leonardi W, Jeong SY, Sjodt M, McComb R, Ho CLC, Retterer C, Gharaibeh D, Zamani R, Soloveva V, Bavari S, Levitin A, West J, Bradley KA, Clubb RT, Cohen SN, Gupta V, Martchenko M. Identification of agents effective against multiple toxins and viruses by host-oriented cell targeting. Sci Rep 2015; 5:13476. [PMID: 26310922 PMCID: PMC4550849 DOI: 10.1038/srep13476] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.
Collapse
Affiliation(s)
| | | | - Sun-Young Jeong
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Megan Sjodt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095
| | - Ryan McComb
- Keck Graduate Institute, Claremont, CA 91711
| | - Chi-Lee C Ho
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095
| | - Cary Retterer
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | - Dima Gharaibeh
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | - Rouzbeh Zamani
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | - Veronica Soloveva
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702
| | | | - Joel West
- Keck Graduate Institute, Claremont, CA 91711
| | - Kenneth A Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095
| | - Stanley N Cohen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Vivek Gupta
- Keck Graduate Institute, Claremont, CA 91711
| | | |
Collapse
|
133
|
Greaney AJ, Maier NK, Leppla SH, Moayeri M. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism. J Leukoc Biol 2015; 99:189-99. [PMID: 26269198 DOI: 10.1189/jlb.3a0415-155rr] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/28/2015] [Indexed: 12/18/2022] Open
Abstract
The inflammasomes are intracellular complexes that have an important role in cytosolic innate immune sensing and pathogen defense. Inflammasome sensors detect a diversity of intracellular microbial ligands and endogenous danger signals and activate caspase-1, thus initiating maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18. These events, although crucial to the innate immune response, have also been linked to the pathology of several inflammatory and autoimmune disorders. The natural isothiocyanate sulforaphane, present in broccoli sprouts and available as a dietary supplement, has gained attention for its antioxidant, anti-inflammatory, and chemopreventive properties. We discovered that sulforaphane inhibits caspase-1 autoproteolytic activation and interleukin-1β maturation and secretion downstream of the nucleotide-binding oligomerization domain-like receptor leucine-rich repeat proteins NLRP1 and NLRP3, NLR family apoptosis inhibitory protein 5/NLR family caspase-1 recruitment domain-containing protein 4 (NAIP5/NLRC4), and absent in melanoma 2 (AIM2) inflammasome receptors. Sulforaphane does not inhibit the inflammasome by direct modification of active caspase-1 and its mechanism is not dependent on protein degradation by the proteasome or de novo protein synthesis. Furthermore, sulforaphane-mediated inhibition of the inflammasomes is independent of the transcription factor nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and the antioxidant response-element pathway, to which many of the antioxidant and anti-inflammatory effects of sulforaphane have been attributed. Sulforaphane was also found to inhibit cell recruitment to the peritoneum and interleukin-1β secretion in an in vivo peritonitis model of acute gout and to reverse NLRP1-mediated murine resistance to Bacillus anthracis spore infection. These findings demonstrate that sulforaphane inhibits the inflammasomes through a novel mechanism and contributes to our understanding of the beneficial effects of sulforaphane.
Collapse
Affiliation(s)
- Allison J Greaney
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Nolan K Maier
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
134
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
135
|
Schiffmiller A, Anderson D, Finkelstein A. Ion selectivity of the anthrax toxin channel and its effect on protein translocation. ACTA ACUST UNITED AC 2015; 146:183-92. [PMID: 26170174 PMCID: PMC4516782 DOI: 10.1085/jgp.201511388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022]
Abstract
Anthrax toxin consists of three ∼ 85-kD proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). PA63 (the 63-kD, C-terminal portion of PA) forms heptameric channels ((PA63)7) in planar phospholipid bilayer membranes that enable the translocation of LF and EF across the membrane. These mushroom-shaped channels consist of a globular cap domain and a 14-stranded β-barrel stem domain, with six anionic residues lining the interior of the stem to form rings of negative charges. (PA63)7 channels are highly cation selective, and, here, we investigate the effects on both cation selectivity and protein translocation of mutating each of these anionic residues to a serine. We find that although some of these mutations reduce cation selectivity, selectivity alone does not directly predict the rate of protein translocation; local changes in electrostatic forces must be considered as well.
Collapse
Affiliation(s)
- Aviva Schiffmiller
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Alan Finkelstein
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
136
|
Jacquez P, Avila G, Boone K, Altiyev A, Puschhof J, Sauter R, Arigi E, Ruiz B, Peng X, Almeida I, Sherman M, Xiao C, Sun J. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore. PLoS One 2015; 10:e0130832. [PMID: 26107617 PMCID: PMC4479931 DOI: 10.1371/journal.pone.0130832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/25/2015] [Indexed: 11/19/2022] Open
Abstract
Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.
Collapse
Affiliation(s)
- Pedro Jacquez
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Gustavo Avila
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Kyle Boone
- Bioinformatics Program of University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Agamyrat Altiyev
- Bioinformatics Program of University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Jens Puschhof
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Roland Sauter
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Emma Arigi
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Blanca Ruiz
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Xiuli Peng
- China National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, P. R. China
| | - Igor Almeida
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Michael Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, 77555, United States of America
| | - Chuan Xiao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
- * E-mail: (CX); (JS)
| | - Jianjun Sun
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
- * E-mail: (CX); (JS)
| |
Collapse
|
137
|
Uversky VN. The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 2015; 589:2498-506. [PMID: 26073257 DOI: 10.1016/j.febslet.2015.06.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are important constituents of many protein complexes, playing various structural, functional, and regulatory roles. In such disorder-based protein complexes, functional disorder is used both internally (for assembly, movement, and functional regulation of the different parts of a given complex) and externally (for interactions of a complex with its external regulators). In complex assembly, IDPs/IDPRs serve as the molecular glue that cements complexes or as highly flexible scaffolds. Disorder defines the order of complex assembly and the ability of a protein to be involved in polyvalent interactions. It is at the heart of various binding mechanisms and interaction modes ascribed to IDPs. Disorder in protein complexes is related to multifarious applications of induced folding and induced functional unfolding, or defines the entropic chain activities, such as stochastic machines and binding rheostats. This review opens a FEBS Letters Special Issue on Dynamics, Flexibility, and Intrinsic Disorder in protein assemblies and represents a brief overview of intricate roles played by IDPs and IDPRs in various aspects of protein complexes.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation; Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
138
|
Advances in Anthrax Detection: Overview of Bioprobes and Biosensors. Appl Biochem Biotechnol 2015; 176:957-77. [PMID: 25987133 DOI: 10.1007/s12010-015-1625-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Anthrax is an infectious disease caused by Bacillus anthracis. Although anthrax commonly affects domestic and wild animals, it causes a rare but lethal infection in humans. A variety of techniques have been introduced and evaluated to detect anthrax using cultures, polymerase chain reaction, and immunoassays to address the potential threat of anthrax being used as a bioweapon. The high-potential harm of anthrax in bioterrorism requires sensitive and specific detection systems that are rapid, field-ready, and real-time monitoring. Here, we provide a systematic overview of anthrax detection probes with their potential applications in various ultra-sensitive diagnostic systems.
Collapse
|
139
|
Andersen NJ, Boguslawski EB, Kuk CY, Chambers CM, Duesbery NS. Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts. Int J Oncol 2015; 47:71-80. [PMID: 25955301 PMCID: PMC4485647 DOI: 10.3892/ijo.2015.2989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022] Open
Abstract
Angiosarcoma (AS) is a rare neoplasm of endothelial origin that has limited treatment options and poor five-year survival. Using tumorgraft models, we previously showed that AS is sensitive to small-molecule inhibitors that target mitogen-activated/extracellular-signal-regulated protein kinase kinases 1 and 2 (MEK). The objective of this study was to identify drugs that combine with MEK inhibitors to more effectively inhibit AS growth. We examined the in vitro synergy between the MEK inhibitor PD0325901 and inhibitors of eleven common cancer pathways in melanoma cell lines and canine angiosarcoma cell isolates. Combination indices were calculated using the Chou-Talalay method. Optimized combination therapies were evaluated in vivo for toxicity and efficacy using canine angiosarcoma tumorgrafts. Among the drugs we tested, rapamycin stood out because it showed strong synergy with PD0325901 at nanomolar concentrations. We observed that angiosarcomas are insensitive to mTOR inhibition. However, treatment with nanomolar levels of mTOR inhibitor renders these cells as sensitive to MEK inhibition as a melanoma cell line with mutant BRAF. Similar results were observed in B-Raf wild-type melanoma cells as well as in vivo, where treatment of canine AS tumorgrafts with MEK and mTOR inhibitors was more effective than monotherapy. Our data show that a low dose of an mTOR inhibitor can dramatically enhance angiosarcoma and melanoma response to MEK inhibition, potentially widening the field of applications for MEK-targeted therapy.
Collapse
Affiliation(s)
- Nicholas J Andersen
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Elissa B Boguslawski
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Cynthia Y Kuk
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Christopher M Chambers
- Frederik Meijer Heart and Vascular Institute, Spectrum Health Hospital, Grand Rapids, MI 49503, USA
| | - Nicholas S Duesbery
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
140
|
Noskov AN. [Molecular model of anthrax toxin translocation into target-cells]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:399-404. [PMID: 25898749 DOI: 10.1134/s1068162014040098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anthrax toxin is formed from three components: protective antigen (PA), lethal (LF) and edema (EF) factors. PA83 is cleaved by cell surface protease furin to produce a 63-kDa fragment (PA63). PA63 and LF/EF molecules are assembled to anthrax toxin complexes: oligomer PA63 x 7 + LF/EF x 3. Assembly is occurred during of binding with cellular receptor or near surface of target-cell. This toxin complex forms pore and induces receptor-mediated endocytosis. Formed endosome consists extracellular liquid with LF/EF and membrane-associated ferments (H+ and K+/Na+-ATPases) and proteins (receptors and others). H+ concentration is increased into endosome as result of K/Na-ATPase-dependent- activity of H+-ATPase. Difference of potentials (between endosome and intracellular liquid) is increased and LF/EF molecules are moved to pore and bound with PA63-oligomer to PA63 x 7 + LF/EF x 7 and full block pore (ion-selective channel). Endosome is increased in volume and induces increasing of PA63-oligomer pore to.size of effector complex: LF/EF x 7 + PAl7 x 7 = 750 kDa. Effector complex is translocated from endosome to cytosol by means high difference of potentials (H+) and dissociates from PA47 x 7 complex after cleavage of FFD315-sait by intracellular chymotrypsin-like proteases in all 7 molecules PA63. PA47 x 7 complex (strongly fixed in membrane with debris of hydrophobic loops) return into endosome and pore is destroyed. Endosome pH is decreased rapidly and PA47 x 7 complex is destroyed by endosomal/lysosomal proteases. Receptor-mediated endocytosis is ended by endosome recycling in cell-membrane.
Collapse
|
141
|
Saavedra PHV, Demon D, Van Gorp H, Lamkanfi M. Protective and detrimental roles of inflammasomes in disease. Semin Immunopathol 2015; 37:313-22. [PMID: 25895577 DOI: 10.1007/s00281-015-0485-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Over recent years, inflammasomes have emerged as key regulators of immune and inflammatory responses. They induce programmed cell death and direct the release of danger signals and the inflammatory cytokines interleukin (IL)-1β and IL-18. The concerted actions of inflammasomes are of utmost importance for responding adequately to harmful environmental agents and infections. However, deregulated inflammasome signaling is increasingly linked to a diversity of human pathologies, including rheumatoid arthritis, inflammatory bowel disease, and rare, hereditary periodic fever syndromes. In this review, we discuss recent insight in the protective and detrimental roles of inflammasomes in selected infectious, autoinflammatory and autoimmune diseases, and cover clinically approved therapies that interfere with inflammasome signaling. These findings highlight the importance of fine-balancing the Ying and Yang activities of inflammasomes for sustained homeostasis and suggest that further understanding of inflammasome mechanisms may offer new cures for human diseases.
Collapse
Affiliation(s)
- Pedro H V Saavedra
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | | | | | | |
Collapse
|
142
|
Li Y, Abu-Asab M, Su J, Qiu P, Feng J, Ohanjanian L, Kumar HS, Fitz Y, Eichacker PQ, Cui X. Bacillus anthracis edema but not lethal toxin challenge in rats is associated with depressed myocardial function in hearts isolated and tested in a Langendorff system. Am J Physiol Heart Circ Physiol 2015; 308:H1592-602. [PMID: 25862834 DOI: 10.1152/ajpheart.00851.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/30/2015] [Indexed: 11/22/2022]
Abstract
Although direct myocardial depression has been implicated in the lethal effects of Bacillus anthracis lethal toxin (LT), in hearts isolated from healthy rats and perfused under constant pressure, neither LT or edema toxin (ET) in typically lethal concentrations depressed myocardial function. In the present study, we challenged rats with LT and ET and performed in vivo and ex vivo heart measures. Sprague-Dawley rats infused over 24 h with LT (n = 94), ET (n = 99), or diluent (controls; n = 50) were studied at 8, 24, or 48 h. Compared with control rats (all survived), survival rates with LT (56.1%) and ET (37.3%) were reduced (P < 0.0001) similarly (P = 0.66 for LT vs. ET). LT decreased mean arterial blood pressure from 12 to 20 h (P ≤ 0.05), whereas ET decreased it progressively throughout (P < 0.05). On echocardiography, LT decreased left ventricular (LV) ejection fraction at 8 and 48 h but increased it at 24 h and decreased cardiac output (P ≤ 0.05 for the time interaction or averaged over time). ET decreased systolic and diastolic volumes and increased LV ejection fraction at 24 h (P ≤ 0.05). In isolated hearts perfused for 120 min under constant pressure, LT did not significantly alter LV systolic or developed pressures at any time point, whereas ET decreased both of these at 24 h (P < 0.0001 initially). ET but not LT progressively increased plasma creatine phosphokinase and cardiac troponin levels (P < 0.05). In conclusion, despite echocardiographic changes, in vivo lethal LT challenge did not produce evidence of myocardial depression in isolated rat hearts. While lethal ET challenge did depress isolated heart function, this may have resulted from prior hypotension and ischemia.
Collapse
Affiliation(s)
- Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mones Abu-Asab
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Junwu Su
- Anzhen Hospital, Capital Medical University, Beijing, China; and
| | - Ping Qiu
- OncoImmune, Incorporated, Rockville, Maryland
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Lernik Ohanjanian
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Hanish Sampath Kumar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yvonne Fitz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland;
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
143
|
Lo SY, Säbel CE, Mapletoft JP, Siemann S. Influence of chemical denaturants on the activity, fold and zinc status of anthrax lethal factor. Biochem Biophys Rep 2015; 1:68-77. [PMID: 29124135 PMCID: PMC5668564 DOI: 10.1016/j.bbrep.2015.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/17/2022] Open
Abstract
Anthrax lethal factor (LF) is a zinc-dependent endopeptidase which, through a process facilitated by protective antigen, translocates to the host cell cytosol in a partially unfolded state. In the current report, the influence of urea and guanidine hydrochloride (GdnHCl) on LF׳s catalytic function, fold and metal binding was assessed at neutral pH. Both urea and GdnHCl were found to inhibit LF prior to the onset of unfolding, with the inhibition by the latter denaturant being a consequence of its ionic strength. With the exception of demetallated LF (apoLF) in urea, unfolding, as monitored by tryptophan fluorescence spectroscopy, was found to follow a two-state (native to unfolded) mechanism. Analysis of the metal status of LF with 4-(2-pyridylazoresorcinol) (PAR) following urea or GdnHCl exposure suggests the enzyme to be capable of maintaining its metal ion passed the observed unfolding transition in a chelator-inaccessible form. Although an increase in the concentration of the denaturants eventually allowed the chelator access to the protein׳s zinc ion, such process is not correlated with the release of the metal ion. Indeed, significant dissociation of the zinc ion from LF was not observed even at 6 M urea, and only high concentrations of GdnHCl (>3 M) were capable of inducing the release of the metal ion from the protein. Hence, the current study demonstrates not only the propensity of LF to tightly bind its zinc ion beyond the spectroscopically determined unfolding transition, but also the utility of PAR as a structural probe. Lethal factor (LF) is strongly inhibited by guanidine hydrochloride. Except of apoLF in urea, unfolding follows a two-state mechanism. LF shields and retains its zinc ion in an unfolded state. Pyridylazoresorcinol is a useful probe to assess metal accessibility and release.
Collapse
Key Words
- 4-(2-pyridylazo)resorcinol
- CD, circular dichroism
- Chemical denaturants
- DPA, dipicolinic acid
- EDTA, ethylenediaminetetraacetic acid
- EF, edema factor
- LF, anthrax lethal factor
- Lethal factor
- MWCO, molecular weight cut-off
- PA, protective antigen
- PAR, 4-(2-pyridylazo)resorcinol
- Protein folding
- S-pNA, lethal factor substrate
- SASA, solvent-accessible surface area
- SOD, superoxide dismutase
- Tryptophan fluorescence
- Zinc
- ZnLF, zinc-containing lethal factor
- cps, counts per second
Collapse
Affiliation(s)
- Suet Y. Lo
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Crystal E. Säbel
- Bharti School of Engineering, Laurentian University, Sudbury, Ontario, Canada
| | | | - Stefan Siemann
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Correspondence to: Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6. Tel.: +1 705 675 1151; fax: +1 705 675 4844.
| |
Collapse
|
144
|
Maier NK, Leppla SH, Moayeri M. The cyclopentenone prostaglandin 15d-PGJ2 inhibits the NLRP1 and NLRP3 inflammasomes. THE JOURNAL OF IMMUNOLOGY 2015; 194:2776-85. [PMID: 25681332 DOI: 10.4049/jimmunol.1401611] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammasomes are cytosolic protein complexes that respond to diverse danger signals by activating caspase-1. The sensor components of the inflammasome, often proteins of the nucleotide-binding oligomerization domain-like receptor (NLR) family, detect stress, danger stimuli, and pathogen-associated molecular patterns. We report that the eicosanoid 15-deoxy-Δ(12,14)-PGJ2 (15d-PGJ2) and related cyclopentenone PGs inhibit caspase-1 activation by the NLR family leucine-rich repeat protein (NLRP)1 and NLRP3 inflammasomes. This inhibition was independent of the well-characterized role of 15d-PGJ2 as a peroxisome proliferator receptor-γ agonist, its activation of NF erythroid 2-related factor 2, or its anti-inflammatory function as an inhibitor of NF-κB. Instead, 15d-PGJ2 prevents the autoproteolytic activation of caspase-1 and the maturation of IL-1β through induction of a cellular state inhibitory to caspase-1 proteolytic function. The eicosanoid does not directly modify or inactivate the caspase-1 enzyme. Rather, inhibition is dependent on de novo protein synthesis. In a mouse peritonitis model of gout, using monosodium urate crystals to activate NLRP3, 15d-PGJ2 caused a significant inhibition of cell recruitment and associated IL-1β release. Furthermore, in a murine anthrax infection model, 15d-PGJ2 reversed anthrax lethal toxin-mediated NLRP1-dependent resistance. The findings reported in this study suggest a novel mechanism for the anti-inflammatory properties of the cyclopentenone PGs through inhibition of caspase-1 and the inflammasome.
Collapse
Affiliation(s)
- Nolan K Maier
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
145
|
High-sensitivity MALDI-TOF MS quantification of anthrax lethal toxin for diagnostics and evaluation of medical countermeasures. Anal Bioanal Chem 2015; 407:2847-58. [PMID: 25673244 PMCID: PMC4369318 DOI: 10.1007/s00216-015-8509-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 11/15/2022]
Abstract
Inhalation anthrax has a rapid progression and high fatality rate. Pathology and death from inhalation of Bacillus anthracis spores are attributed to the actions of secreted protein toxins. Protective antigen (PA) binds and imports the catalytic component lethal factor (LF), a zinc endoprotease, and edema factor (EF), an adenylyl cyclase, into susceptible cells. PA-LF is termed lethal toxin (LTx) and PA-EF, edema toxin. As the universal transporter for both toxins, PA is an important target for vaccination and immunotherapeutic intervention. However, its quantification has been limited to methods of relatively low analytic sensitivity. Quantification of LTx may be more clinically relevant than LF or PA alone because LTx is the toxic form that acts on cells. A method was developed for LTx-specific quantification in plasma using anti-PA IgG magnetic immunoprecipitation of PA and quantification of LF activity that co-purified with PA. The method was fast (<4 h total time to detection), sensitive at 0.033 ng/mL LTx in plasma for the fast analysis (0.0075 ng/mL LTx in plasma for an 18 h reaction), precise (6.3–9.9 % coefficient of variation), and accurate (0.1–12.7 %error; n ≥ 25). Diagnostic sensitivity was 100 % (n = 27 animal/clinical cases). Diagnostic specificity was 100 % (n = 141). LTx was detected post-antibiotic treatment in 6/6 treated rhesus macaques and 3/3 clinical cases of inhalation anthrax and as long as 8 days post-treatment. Over the course of infection in two rhesus macaques, LTx was first detected at 0.101 and 0.237 ng/mL at 36 h post-exposure and increased to 1147 and 12,107 ng/mL in late-stage anthrax. This demonstrated the importance of LTx as a diagnostic and therapeutic target. This method provides a sensitive, accurate tool for anthrax toxin detection and evaluation of PA-directed therapeutics. Method schematic for analysis of anthrax lethal toxin activity by ID-MALDI-TOF MS ![]()
Collapse
|
146
|
Rosadini CV, Kagan JC. Microbial strategies for antagonizing Toll-like-receptor signal transduction. Curr Opin Immunol 2015; 32:61-70. [PMID: 25615700 PMCID: PMC4336813 DOI: 10.1016/j.coi.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022]
Abstract
Within a few years of the discovery of Toll-like receptors (TLRs) and their role in innate immunity, viral and bacterial proteins were recognized to antagonize TLR signal transduction. Since then, as TLR signaling networks were unraveled, microbial systems have been discovered that target nearly every component within these pathways. However, recent findings as well as some notable exceptions promote the idea that more of these systems have yet to be discovered. For example, we know very little about microbial systems for directly targeting non-cytoplasmic portions of TLR signaling pathways, that is, the ligand interacting portions of the receptor itself. In this review, we compare and contrast strategies by which bacteria and viruses antagonize TLR signaling networks to identify potential areas for future research.
Collapse
Affiliation(s)
- Charles V Rosadini
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
147
|
Goel AK. Anthrax: A disease of biowarfare and public health importance. World J Clin Cases 2015; 3:20-33. [PMID: 25610847 PMCID: PMC4295216 DOI: 10.12998/wjcc.v3.i1.20] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/05/2023] Open
Abstract
Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce and exhibit widespread fear and panic than the actual potential of physical damage. Bacillus anthracis (B. anthracis), the etiologic agent of anthrax is a Gram positive, spore forming, non-motile bacterium. This is supposed to be one of the most potent BW agents because its spores are extremely resistant to natural conditions and can survive for several decades in the environment. B. anthracis spores enter the body through skin lesion (cutaneous anthrax), lungs (pulmonary anthrax), or gastrointestinal route (gastrointestinal anthrax) and germinate, giving rise to the vegetative form. Anthrax is a concern of public health also in many countries where agriculture is the main source of income including India. Anthrax has been associated with human history for a very long time and regained its popularity after Sept 2001 incidence in United States. The present review article describes the history, biology, life cycle, pathogenicity, virulence, epidemiology and potential of B. anthracis as biological weapon.
Collapse
|
148
|
Owen JL, Yang T, Mohamadzadeh M. New insights into gastrointestinal anthrax infection. Trends Mol Med 2014; 21:154-63. [PMID: 25577136 DOI: 10.1016/j.molmed.2014.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/16/2014] [Accepted: 12/11/2014] [Indexed: 02/08/2023]
Abstract
Bacterial infections are the primary cause of gastrointestinal (GI) disorders in both developing and developed countries, and are particularly dangerous for infants and children. Bacillus anthracis is the 'archetype zoonotic' pathogen; no other infectious disease affects such a broad range of species, including humans. Importantly, there are more case reports of GI anthrax infection in children than inhalational disease. Early diagnosis is difficult and widespread systemic disease develops rapidly. This review highlights new findings concerning the roles of the gut epithelia, commensal microbiota, and innate lymphoid cells (ILCs) in initiation of disease and systemic dissemination in animal models of GI anthrax, the understanding of which is crucial to designing alternative therapies that target the establishment of infection.
Collapse
Affiliation(s)
- Jennifer L Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tao Yang
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
149
|
Zambelloni R, Marquez R, Roe AJ. Development of Antivirulence Compounds: A Biochemical Review. Chem Biol Drug Des 2014; 85:43-55. [DOI: 10.1111/cbdd.12430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Riccardo Zambelloni
- Institute of Infection Immunity and Inflammation; University of Glasgow; Sir Graeme Davies Building 120 University Place Glasgow G12 8TA UK
- Institute of Molecular and Cell Biology and Chemistry; University of Glasgow; Joseph Black Building Glasgow G12 8QQ UK
| | - Rudi Marquez
- Institute of Molecular and Cell Biology and Chemistry; University of Glasgow; Joseph Black Building Glasgow G12 8QQ UK
| | - Andrew J. Roe
- Institute of Molecular and Cell Biology and Chemistry; University of Glasgow; Joseph Black Building Glasgow G12 8QQ UK
| |
Collapse
|
150
|
Oscherwitz J, Feldman D, Yu F, Cease KB. Epitope-focused peptide immunogens in human use adjuvants protect rabbits from experimental inhalation anthrax. Vaccine 2014; 33:430-6. [PMID: 25454087 DOI: 10.1016/j.vaccine.2014.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/28/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Anthrax represents a formidable bioterrorism threat for which new, optimized vaccines are required. We previously demonstrated that epitope-focused multiple antigenic peptides or a recombinant protein in Freund's adjuvant can elicit Ab against the loop neutralizing determinant (LND), a cryptic linear neutralizing epitope in the 2ß2-2ß3 loop of protective antigen from Bacillus anthracis, which mediated protection of rabbits from inhalation challenge with B. anthracis Ames strain. However, demonstration of efficacy using human-use adjuvants is required before proceeding with further development of an LND vaccine for testing in non-human primates and humans. METHODS To optimize the LND immunogen, we first evaluated the protective efficacy and immune correlates associated with immunization of rabbits with mixtures containing two molecular variants of multiple antigenic peptides in Freunds adjuvant, termed BT-LND(2) and TB-LND(2). TB-LND(2) was then further evaluated for protective efficacy in rabbits employing human-use adjuvants. RESULTS Immunization of rabbits with TB-LND(2) in human-use adjuvants elicited protection from Ames strain spore challenge which was statistically indistinguishable from that elicited through immunization with protective antigen. All TB-LND(2) rabbits with any detectable serum neutralization prior to challenge were protected from aerosolized spore exposure. Remarkably, rabbits immunized with TB-LND(2) in Alhydrogel/CpG had significant anamnestic increases in post-challenge LND-specific Ab and neutralization titers despite little evidence of spore germination in these rabbits. CONCLUSIONS An LND-specific epitope-focused vaccine may complement PA-based vaccines and may represent a complementary stand-alone vaccine for anthrax.
Collapse
Affiliation(s)
- Jon Oscherwitz
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Veterans Administration Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | - Daniel Feldman
- University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Fen Yu
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Kemp B Cease
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Veterans Administration Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA
| |
Collapse
|