101
|
Schlingman DJ, Mack AH, Kamenetska M, Mochrie SGJ, Regan L. Routes to DNA accessibility: alternative pathways for nucleosome unwinding. Biophys J 2015; 107:384-392. [PMID: 25028880 DOI: 10.1016/j.bpj.2014.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/02/2014] [Accepted: 05/23/2014] [Indexed: 01/01/2023] Open
Abstract
The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control.
Collapse
Affiliation(s)
- Daniel J Schlingman
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Andrew H Mack
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Applied Physics, Yale University, New Haven, Connecticut
| | - Masha Kamenetska
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut
| | - Simon G J Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Applied Physics, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut
| | - Lynne Regan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Department of Chemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
102
|
Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci U S A 2015. [PMID: 26224838 DOI: 10.1073/pnas.1507592112] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the fundamental importance of transcription, a comprehensive analysis of RNA polymerase (RNAP) behavior and its role in the nucleoid organization in vivo is lacking. Here, we used superresolution microscopy to study the localization and dynamics of the transcription machinery and DNA in live bacterial cells, at both the single-molecule and the population level. We used photoactivated single-molecule tracking to discriminate between mobile RNAPs and RNAPs specifically bound to DNA, either on promoters or transcribed genes. Mobile RNAPs can explore the whole nucleoid while searching for promoters, and spend 85% of their search time in nonspecific interactions with DNA. On the other hand, the distribution of specifically bound RNAPs shows that low levels of transcription can occur throughout the nucleoid. Further, clustering analysis and 3D structured illumination microscopy (SIM) show that dense clusters of transcribing RNAPs form almost exclusively at the nucleoid periphery. Treatment with rifampicin shows that active transcription is necessary for maintaining this spatial organization. In faster growth conditions, the fraction of transcribing RNAPs increases, as well as their clustering. Under these conditions, we observed dramatic phase separation between the densest clusters of RNAPs and the densest regions of the nucleoid. These findings show that transcription can cause spatial reorganization of the nucleoid, with movement of gene loci out of the bulk of DNA as levels of transcription increase. This work provides a global view of the organization of RNA polymerase and transcription in living cells.
Collapse
|
103
|
O'Sullivan JM, Pai DA, Cridge AG, Engelke DR, Ganley ARD. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure? Biomol Concepts 2015; 4:277-86. [PMID: 25436580 DOI: 10.1515/bmc-2012-0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/21/2012] [Indexed: 11/15/2022] Open
Abstract
The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfill the cellular demand for rRNA, the ribosomal RNA (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review, we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization.
Collapse
|
104
|
Analysis of histone posttranslational modifications in the control of chromatin plasticity observed at estrogen-responsive sites in human breast cancer cells. Methods Mol Biol 2015. [PMID: 25182761 DOI: 10.1007/978-1-4939-1346-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It is well established that histone posttranslational modifications mediate the control of gene expression played by chromatin. Such modifications are commonly reversible and many alternatives are open to drive transcription of inducible genes. Estrogens govern growth and survival of hormone-sensitive cells by inducing expression of genes important for cell cycle progression and apoptosis. Transcription of estrogen-responsive genes is triggered by the lysine-specific demethylase 1 (LSD1)-dependent demethylation of dimethylated lysine 9 in histone H3 (H3K9me2) that accompanies to local generation of oxygen reactive species (ROS). Production of ROS modifies guanines in neighbor DNA with consequent recruitment of base-excision repair (BER) enzymes and formation of breaks that support creation of bridges between sites that, although distant on linear DNA, establish strategic contacts useful for productive transcription.
Collapse
|
105
|
Hagedorn C, Lipps HJ, Rupprecht S. The epigenetic regulation of autonomous replicons. Biomol Concepts 2015; 1:17-30. [PMID: 25961982 DOI: 10.1515/bmc.2010.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in 1979 was considered a milestone in unraveling the regulation of replication in eukaryotic cells. However, shortly afterwards it became obvious that in Saccharomyces pombe and all other higher organisms ARSs were not sufficient to initiate independent replication. Understanding the mechanisms of replication is a major challenge in modern cell biology and is also a prerequisite to developing application-oriented autonomous replicons for gene therapeutic treatments. This review will focus on the development of non-viral episomal vectors, their use in gene therapeutic applications and our current knowledge about their epigenetic regulation.
Collapse
|
106
|
Boulos RE, Drillon G, Argoul F, Arneodo A, Audit B. Structural organization of human replication timing domains. FEBS Lett 2015; 589:2944-57. [PMID: 25912651 DOI: 10.1016/j.febslet.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Recent analysis of genome-wide epigenetic modification data, mean replication timing (MRT) profiles and chromosome conformation data in mammals have provided increasing evidence that flexibility in replication origin usage is regulated locally by the epigenetic landscape and over larger genomic distances by the 3D chromatin architecture. Here, we review the recent results establishing some link between replication domains and chromatin structural domains in pluripotent and various differentiated cell types in human. We reconcile the originally proposed dichotomic picture of early and late constant timing regions that replicate by multiple rather synchronous origins in separated nuclear compartments of open and closed chromatins, with the U-shaped MRT domains bordered by "master" replication origins specified by a localized (∼200-300 kb) zone of open and transcriptionally active chromatin from which a replication wave likely initiates and propagates toward the domain center via a cascade of origin firing. We discuss the relationships between these MRT domains, topologically associated domains and lamina-associated domains. This review sheds a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and the determination of differentiation properties.
Collapse
Affiliation(s)
- Rasha E Boulos
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Guénola Drillon
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.
| |
Collapse
|
107
|
Hao B, Naik AK, Watanabe A, Tanaka H, Chen L, Richards HW, Kondo M, Taniuchi I, Kohwi Y, Kohwi-Shigematsu T, Krangel MS. An anti-silencer- and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development. ACTA ACUST UNITED AC 2015; 212:809-24. [PMID: 25847946 PMCID: PMC4419350 DOI: 10.1084/jem.20142207] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
Abstract
Rag1 and Rag2 gene expression in CD4(+)CD8(+) double-positive (DP) thymocytes depends on the activity of a distant anti-silencer element (ASE) that counteracts the activity of an intergenic silencer. However, the mechanistic basis for ASE activity is unknown. Here, we show that the ASE physically interacts with the distant Rag1 and Rag2 gene promoters in DP thymocytes, bringing the two promoters together to form an active chromatin hub. Moreover, we show that the ASE functions as a classical enhancer that can potently activate these promoters in the absence of the silencer or other locus elements. In thymocytes lacking the chromatin organizer SATB1, we identified a partial defect in Tcra gene rearrangement that was associated with reduced expression of Rag1 and Rag2 at the DP stage. SATB1 binds to the ASE and Rag promoters, facilitating inclusion of Rag2 in the chromatin hub and the loading of RNA polymerase II to both the Rag1 and Rag2 promoters. Our results provide a novel framework for understanding ASE function and demonstrate a novel role for SATB1 as a regulator of Rag locus organization and gene expression in DP thymocytes.
Collapse
Affiliation(s)
- Bingtao Hao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Akiko Watanabe
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Hirokazu Tanaka
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Liang Chen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Hunter W Richards
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Motonari Kondo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ichiro Taniuchi
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinori Kohwi
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Terumi Kohwi-Shigematsu
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
108
|
Gong K, Tjong H, Zhou XJ, Alber F. Comparative 3D genome structure analysis of the fission and the budding yeast. PLoS One 2015; 10:e0119672. [PMID: 25799503 PMCID: PMC4370715 DOI: 10.1371/journal.pone.0119672] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/15/2015] [Indexed: 11/18/2022] Open
Abstract
We studied the 3D structural organization of the fission yeast genome, which emerges from the tethering of heterochromatic regions in otherwise randomly configured chromosomes represented as flexible polymer chains in an nuclear environment. This model is sufficient to explain in a statistical manner many experimentally determined distinctive features of the fission yeast genome, including chromatin interaction patterns from Hi-C experiments and the co-locations of functionally related and co-expressed genes, such as genes expressed by Pol-III. Our findings demonstrate that some previously described structure-function correlations can be explained as a consequence of random chromatin collisions driven by a few geometric constraints (mainly due to centromere-SPB and telomere-NE tethering) combined with the specific gene locations in the chromosome sequence. We also performed a comparative analysis between the fission and budding yeast genome structures, for which we previously detected a similar organizing principle. However, due to the different chromosome sizes and numbers, substantial differences are observed in the 3D structural genome organization between the two species, most notably in the nuclear locations of orthologous genes, and the extent of nuclear territories for genes and chromosomes. However, despite those differences, remarkably, functional similarities are maintained, which is evident when comparing spatial clustering of functionally related genes in both yeasts. Functionally related genes show a similar spatial clustering behavior in both yeasts, even though their nuclear locations are largely different between the yeast species.
Collapse
Affiliation(s)
- Ke Gong
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States of America
| | - Harianto Tjong
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States of America
| | - Xianghong Jasmine Zhou
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States of America
- * E-mail: (FA); (XJZ)
| | - Frank Alber
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States of America
- * E-mail: (FA); (XJZ)
| |
Collapse
|
109
|
Ay F, Vu TH, Zeitz MJ, Varoquaux N, Carette JE, Vert JP, Hoffman AR, Noble WS. Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C. BMC Genomics 2015; 16:121. [PMID: 25887659 PMCID: PMC4369351 DOI: 10.1186/s12864-015-1236-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/12/2015] [Indexed: 12/02/2022] Open
Abstract
Background Several recently developed experimental methods, each an extension of the chromatin conformation capture (3C) assay, have enabled the genome-wide profiling of chromatin contacts between pairs of genomic loci in 3D. Especially in complex eukaryotes, data generated by these methods, coupled with other genome-wide datasets, demonstrated that non-random chromatin folding correlates strongly with cellular processes such as gene expression and DNA replication. Results We describe a genome architecture assay, tethered multiple 3C (TM3C), that maps genome-wide chromatin contacts via a simple protocol of restriction enzyme digestion and religation of fragments upon agarose gel beads followed by paired-end sequencing. In addition to identifying contacts between pairs of loci, TM3C enables identification of contacts among more than two loci simultaneously. We use TM3C to assay the genome architectures of two human cell lines: KBM7, a near-haploid chronic leukemia cell line, and NHEK, a normal diploid human epidermal keratinocyte cell line. We confirm that the contact frequency maps produced by TM3C exhibit features characteristic of existing genome architecture datasets, including the expected scaling of contact probabilities with genomic distance, megabase scale chromosomal compartments and sub-megabase scale topological domains. We also confirm that TM3C captures several known cell type-specific contacts, ploidy shifts and translocations, such as Philadelphia chromosome formation (Ph+) in KBM7. We confirm a subset of the triple contacts involving the IGF2-H19 imprinting control region (ICR) using PCR analysis for KBM7 cells. Our genome-wide analysis of pairwise and triple contacts demonstrates their preference for linking open chromatin regions to each other and for linking regions with higher numbers of DNase hypersensitive sites (DHSs) to each other. For near-haploid KBM7 cells, we infer whole genome 3D models that exhibit clustering of small chromosomes with each other and large chromosomes with each other, consistent with previous studies of the genome architectures of other human cell lines. Conclusion TM3C is a simple protocol for ascertaining genome architecture and can be used to identify simultaneous contacts among three or four loci. Application of TM3C to a near-haploid human cell line revealed large-scale features of chromosomal organization and multi-way chromatin contacts that preferentially link regions of open chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1236-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, 98195, WA, USA.
| | - Thanh H Vu
- Veterans Affairs Palo Alto Health Care System, Stanford University Medical School, Palo Alto, 94304, CA, USA.
| | - Michael J Zeitz
- Veterans Affairs Palo Alto Health Care System, Stanford University Medical School, Palo Alto, 94304, CA, USA.
| | - Nelle Varoquaux
- Mines ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 35 rue St Honoré, Fontainebleau, 77300, France. .,Institut Curie, Paris, F-75248, France. .,U900, INSERM, ParisF-75248, France.
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, 94305, CA, USA.
| | - Jean-Philippe Vert
- Mines ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 35 rue St Honoré, Fontainebleau, 77300, France. .,Institut Curie, Paris, F-75248, France. .,U900, INSERM, ParisF-75248, France.
| | - Andrew R Hoffman
- Veterans Affairs Palo Alto Health Care System, Stanford University Medical School, Palo Alto, 94304, CA, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, 98195, WA, USA. .,Department of Computer Science and Engineering, University of Washington, Seattle, 98195, WA, USA.
| |
Collapse
|
110
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
111
|
Live cell immunogold labelling of RNA polymerase II. Sci Rep 2015; 5:8324. [PMID: 25662860 PMCID: PMC4321181 DOI: 10.1038/srep08324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/14/2015] [Indexed: 01/20/2023] Open
Abstract
Labeling nuclear proteins with electron dense probes in living cells has been a major challenge due to their inability to penetrate into nuclei. We developed a lipid-based approach for delivering antibodies coupled to 0.8 nm ultrasmall gold particles into the nucleus to label RNA polymerase II. Focussed Ion Beam slicing coupled to Scanning Electron Microscopy (FIB/SEM) enabled visualization of entire cells with probe localization accuracy in the 10 nm range.
Collapse
|
112
|
Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency. PLoS Comput Biol 2015; 11:e1003969. [PMID: 25658386 PMCID: PMC4319821 DOI: 10.1371/journal.pcbi.1003969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of the replication program during mammalian cell differentiation remains poorly understood. We performed an integrative analysis of eleven genome-wide epigenetic profiles at 100 kb resolution of Mean Replication Timing (MRT) data in six human cell lines. Compared to the organization in four chromatin states shared by the five somatic cell lines, embryonic stem cell (ESC) line H1 displays (i) a gene-poor but highly dynamic chromatin state (EC4) associated to histone variant H2AZ rather than a HP1-associated heterochromatin state (C4) and (ii) a mid-S accessible chromatin state with bivalent gene marks instead of a polycomb-repressed heterochromatin state. Plastic MRT regions (≲ 20% of the genome) are predominantly localized at the borders of U-shaped timing domains. Whereas somatic-specific U-domain borders are gene-dense GC-rich regions, 31.6% of H1-specific U-domain borders are early EC4 regions enriched in pluripotency transcription factors NANOG and OCT4 despite being GC poor and gene deserts. Silencing of these ESC-specific “master” replication initiation zones during differentiation corresponds to a loss of H2AZ and an enrichment in H3K9me3 mark characteristic of late replicating C4 heterochromatin. These results shed a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and lineage commitment. During development, embryonic stem cell (ESC) enter a program of cell differentiation eventually leading to all the necessary differentiated cell types. Understanding the mechanisms responsible for the underlying modifications of the gene expression program is of fundamental importance, as it will likely have strong impact on the development of regenerative medicine. We show that besides some epigenetic regulation, ubiquitous master replication origins at replication timing U-domain borders shared by 6 human cell types are transcriptionally active open chromatin regions specified by a local enrichment in nucleosome free regions encoded in the DNA sequence suggesting that they have been selected during evolution. In contrast, ESC specific master replication origins bear a unique epigenetic signature (enrichment in CTCF, H2AZ, NANOG, OCT4, …) likely contributing to maintain ESC chromatin in a highly dynamic and accessible state that is refractory to polycomb and HP1 heterochromatin spreading. These ESC specific master origins thus appear as key genomic regions where epigenetic control of chromatin organization is at play to maintain pluripotency of stem cell lineages and to guide lineage commitment to somatic cell types.
Collapse
|
113
|
Cahyani I, Cridge AG, Engelke DR, Ganley ARD, O'Sullivan JM. A sequence-specific interaction between the Saccharomyces cerevisiae rRNA gene repeats and a locus encoding an RNA polymerase I subunit affects ribosomal DNA stability. Mol Cell Biol 2015; 35:544-54. [PMID: 25421713 PMCID: PMC4285424 DOI: 10.1128/mcb.01249-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/08/2014] [Accepted: 11/16/2014] [Indexed: 11/20/2022] Open
Abstract
The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome.
Collapse
Affiliation(s)
- Inswasti Cahyani
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Andrew G Cridge
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - David R Engelke
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan, USA
| | - Austen R D Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | | |
Collapse
|
114
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
115
|
Chatterjee A, Saha S, Chakraborty A, Silva-Fernandes A, Mandal SM, Neves-Carvalho A, Liu Y, Pandita RK, Hegde ML, Hegde PM, Boldogh I, Ashizawa T, Koeppen AH, Pandita TK, Maciel P, Sarkar PS, Hazra TK. The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3'-phosphatase in spinocerebellar ataxia type 3 pathogenesis. PLoS Genet 2015; 11:e1004749. [PMID: 25633985 PMCID: PMC4310589 DOI: 10.1371/journal.pgen.1004749] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023] Open
Abstract
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Saikat Saha
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anabela Silva-Fernandes
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Santi M. Mandal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andreia Neves-Carvalho
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yongping Liu
- Department of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Raj K. Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pavana M. Hegde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Istvan Boldogh
- Department of Microbiology & Immunology; University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Arnulf H. Koeppen
- Department of Neurology, Albany Stratton VA Medical Center, Albany, New York, United States of America
| | - Tej K. Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Patricia Maciel
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Partha S. Sarkar
- Department of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
116
|
Kaikkonen MU, Niskanen H, Romanoski CE, Kansanen E, Kivelä AM, Laitalainen J, Heinz S, Benner C, Glass CK, Ylä-Herttuala S. Control of VEGF-A transcriptional programs by pausing and genomic compartmentalization. Nucleic Acids Res 2014; 42:12570-84. [PMID: 25352550 PMCID: PMC4227755 DOI: 10.1093/nar/gku1036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is a master regulator of angiogenesis, vascular development and function. In this study we investigated the transcriptional regulation of VEGF-A-responsive genes in primary human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using genome-wide global run-on sequencing (GRO-Seq). We demonstrate that half of VEGF-A-regulated gene promoters are characterized by a transcriptionally competent paused RNA polymerase II (Pol II). We show that transition into productive elongation is a major mechanism of gene activation of virtually all VEGF-regulated genes, whereas only ∼40% of the genes are induced at the level of initiation. In addition, we report a comprehensive chromatin interaction map generated in HUVECs using tethered conformation capture (TCC) and characterize chromatin interactions in relation to transcriptional activity. We demonstrate that sites of active transcription are more likely to engage in chromatin looping and cell type-specific transcriptional activity reflects the boundaries of chromatin interactions. Furthermore, we identify large chromatin compartments with a tendency to be coordinately transcribed upon VEGF-A stimulation. We provide evidence that these compartments are enriched for clusters of regulatory regions such as super-enhancers and for disease-associated single nucleotide polymorphisms (SNPs). Collectively, these findings provide new insights into mechanisms behind VEGF-A-regulated transcriptional programs in endothelial cells.
Collapse
Affiliation(s)
- Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Emilia Kansanen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Annukka M Kivelä
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Jarkko Laitalainen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Finland
| |
Collapse
|
117
|
Grand RS, Pichugina T, Gehlen LR, Jones MB, Tsai P, Allison JR, Martienssen R, O'Sullivan JM. Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure. Nucleic Acids Res 2014; 42:12585-99. [PMID: 25342201 PMCID: PMC4227791 DOI: 10.1093/nar/gku965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking.
Collapse
Affiliation(s)
- Ralph S Grand
- Liggins institute, University of Auckland, Grafton Auckland 1032, NZ Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland 0745, NZ
| | - Tatyana Pichugina
- Liggins institute, University of Auckland, Grafton Auckland 1032, NZ
| | - Lutz R Gehlen
- Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland 0745, NZ
| | - M Beatrix Jones
- Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland 0745, NZ
| | - Peter Tsai
- School of Biological Sciences, University of Auckland, Auckland 1023, NZ
| | - Jane R Allison
- Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland 0745, NZ
| | - Robert Martienssen
- HHMI-GBMF, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York, NY 11724, USA
| | | |
Collapse
|
118
|
Chai A, Jiang Y, Zhang Y, He L, Zhang D, Zhang L. Wrapping/unwrapping transition of double-stranded DNA in DNA-nanosphere complexes induced by multivalent anions. SOFT MATTER 2014; 10:4875-4884. [PMID: 24866417 DOI: 10.1039/c4sm00652f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Wrapping and unwrapping behaviors of double-stranded DNA around a positively charged nanosphere in solution are studied by using the coarse-grained molecular dynamics (CGMD) simulation method. When monovalent, divalent and trivalent anions are added to the DNA-nanosphere complex solution, double-stranded DNA binds with a nanosphere owing to strong electrostatic attraction. However, when tetravalent anions are added to the DNA-nanosphere complex solution, local charge inversion is observed for a high anion concentration of tetravalent anions and the double-stranded DNA can be unwrapped from the nanosphere because of the local charge inversion near the nanosphere. Moreover, the helical structure of DNA is damaged when double-stranded DNA wraps around the nanosphere and the helical structure can be rebuilt when the double-stranded DNA unwraps from the nanosphere. This study can help us understand how to control the release of DNA in DNA-nanosphere complexes.
Collapse
Affiliation(s)
- Aihua Chai
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | | | | | | | | | | |
Collapse
|
119
|
Park SK, Xiang Y, Feng X, Garrard WT. Pronounced cohabitation of active immunoglobulin genes from three different chromosomes in transcription factories during maximal antibody synthesis. Genes Dev 2014; 28:1159-64. [PMID: 24888587 PMCID: PMC4052762 DOI: 10.1101/gad.237479.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Here, Park et al. used 3D imaging and ChIP-3C techniques to investigate the topographies of the immunoglobulin (Ig) genes and transcripts during B-cell development. The authors show that active Ig genes residing on three different chromosomes colocalize in transcription factories, often near the nuclear periphery. Furthermore, active Ig genes display trans-chromosomal enhancer interactions and frequently share interchromatin trafficking channels. These results reveal tight interconnections between nuclear organization and gene expression during maximal levels of antibody production in plasma cells. To understand the relationships between nuclear organization and gene expression in a model system, we employed three-dimensional imaging and chromatin immunoprecipitation (ChIP)-chromosome conformation capture (3C) techniques to investigate the topographies of the immunoglobulin (Ig) genes and transcripts during B-cell development. Remarkably, in plasma cells, when antibody synthesis peaks, active Ig genes residing on three different chromosomes exhibit pronounced colocalizations in transcription factories, often near the nuclear periphery, and display trans-chromosomal enhancer interactions, and their transcripts frequently share interchromatin trafficking channels. Conceptually, these features of nuclear organization maximize coordinated transcriptional and transcript trafficking control for potentiating the optimal cytoplasmic assembly of the resulting translation products into protein multimers.
Collapse
Affiliation(s)
- Sung-Kyun Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Xin Feng
- Depatment of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - William T Garrard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
120
|
Gürsoy G, Xu Y, Kenter AL, Liang J. Spatial confinement is a major determinant of the folding landscape of human chromosomes. Nucleic Acids Res 2014; 42:8223-30. [PMID: 24990374 PMCID: PMC4117743 DOI: 10.1093/nar/gku462] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The global architecture of the cell nucleus and the spatial organization of chromatin play important roles in gene expression and nuclear function. Single-cell imaging and chromosome conformation capture-based techniques provide a wealth of information on the spatial organization of chromosomes. However, a mechanistic model that can account for all observed scaling behaviors governing long-range chromatin interactions is missing. Here we describe a model called constrained self-avoiding chromatin (C-SAC) for studying spatial structures of chromosomes, as the available space is a key determinant of chromosome folding. We studied large ensembles of model chromatin chains with appropriate fiber diameter, persistence length and excluded volume under spatial confinement. We show that the equilibrium ensemble of randomly folded chromosomes in the confined nuclear volume gives rise to the experimentally observed higher-order architecture of human chromosomes, including average scaling properties of mean-square spatial distance, end-to-end distance, contact probability and their chromosome-to-chromosome variabilities. Our results indicate that the overall structure of a human chromosome is dictated by the spatial confinement of the nuclear space, which may undergo significant tissue- and developmental stage-specific size changes.
Collapse
Affiliation(s)
- Gamze Gürsoy
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yun Xu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
121
|
Stracy M, Uphoff S, Garza de Leon F, Kapanidis AN. In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett 2014; 588:3585-94. [PMID: 24859634 DOI: 10.1016/j.febslet.2014.05.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/25/2022]
Abstract
In vivo single-molecule experiments offer new perspectives on the behaviour of DNA binding proteins, from the molecular level to the length scale of whole bacterial cells. With technological advances in instrumentation and data analysis, fluorescence microscopy can detect single molecules in live cells, opening the doors to directly follow individual proteins binding to DNA in real time. In this review, we describe key technical considerations for implementing in vivo single-molecule fluorescence microscopy. We discuss how single-molecule tracking and quantitative super-resolution microscopy can be adapted to extract DNA binding kinetics, spatial distributions, and copy numbers of proteins, as well as stoichiometries of protein complexes. We highlight experiments which have exploited these techniques to answer important questions in the field of bacterial gene regulation and transcription, as well as chromosome replication, organisation and repair. Together, these studies demonstrate how single-molecule imaging is transforming our understanding of DNA-binding proteins in cells.
Collapse
Affiliation(s)
- Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; Department of Systems Biology, Harvard Medical School, Boston, MA 02138, USA
| | - Federico Garza de Leon
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
122
|
Francisco FO, Lemos B. How do y-chromosomes modulate genome-wide epigenetic States: genome folding, chromatin sinks, and gene expression. J Genomics 2014; 2:94-103. [PMID: 25057325 PMCID: PMC4105431 DOI: 10.7150/jgen.8043] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Y chromosomes of Drosophila melanogaster and D. simulans contain only a handful of protein-coding genes, which are related to sperm mobility and reproductive fitness. Despite low or absent protein coding polymorphism, the Drosophila Y chromosome has been associated with natural phenotypic variation, including variation in the expression of hundreds to thousands of genes located on autosomes and on the X chromosome. Polymorphisms present in the large blocks of heterochromatin and consisting of differences in the amounts and kinds of sequences for satellite DNA and transposable elements may be the source of this modulation. Here we review the evidence and discuss mechanisms for global epigenetic regulation by repetitious elements in the Y chromosome. We also discuss how the discovery of this new function impacts the current knowledge about Y chromosome origin, its current dynamics, and future fate.
Collapse
Affiliation(s)
- Flávio O Francisco
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
123
|
Sun Y, Chung HH, Woo ARE, Lin VCL. Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor α via distinct mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2067-78. [PMID: 24742914 DOI: 10.1016/j.bbamcr.2014.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022]
Abstract
Recent studies reported that protein arginine methyltransferase 6 (PRMT6) enhances estrogen-induced activity of estrogen receptor α (ERα) and dysfunction of PRMT6 is associated with overall better survival for ERα-positive breast cancer patients. However, it is unclear how PRMT6 promotes ERα activity. Here we report that PRMT6 specifically interacts with ERα at its ligand-binding domain. PRMT6 also methylates ERα both in vitro and in vivo. In addition to enhancing estrogen-induced ERα activity, PRMT6 over-expression up-regulates estrogen-independent activity of ERα and PRMT6 gene silencing in MCF7 cells inhibits ligand-independent ERα activation. More interestingly, the effect of PRMT6 on the ligand-independent ERα activity does not require its methyltransferase activity. Instead, PRMT6 competes with Hsp90 for ERα binding: PRMT6 and Hsp90 bindings to ERα are mutually exclusive and PRMT6 over-expression reduces ERα interaction with Hsp90. In conclusion, PRMT6 requires its methyltransferase activity to enhance ERα's ligand-induced activity, but its effect on ligand-independent activity is likely mediated through competing with Hsp90 for binding to the C-terminal domain of ERα. PRMT6-ERα interaction would prevent ERα-Hsp90 association. Since Hsp90 and associated chaperones serve to maintain ERα conformation for ligand-binding yet functionally inactive, inhibition of ERα-Hsp90 interaction would relieve ERα from the constraint of chaperone complex.
Collapse
Affiliation(s)
- Yang Sun
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Hwa Hwa Chung
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Amanda Rui En Woo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Valerie C-L Lin
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
124
|
Abstract
Chromatin loops are pervasive and permit the tight compaction of DNA within the confined space of the nucleus. Looping enables distal genes and DNA elements to engage in chromosomal contact, to form multigene complexes. Advances in biochemical and imaging techniques reveal that loop-mediated contact is strongly correlated with transcription of interacting DNA. However, these approaches only provide a snapshot of events and therefore are unable to reveal the dynamics of multigene complex assembly. This highlights the necessity to develop single cell-based assays that provide single molecule resolution, and are able to functionally interrogate the role of chromosomal contact on gene regulation. To this end, high-resolution single cell imaging regimes, combined with genome editing approaches, are proving to be pivotal to advancing our understanding of loop-mediated dynamics.
Collapse
Affiliation(s)
- Stephanie Fanucchi
- Gene Expression and Biophysics Group; Synthetic Biology Emerging Research Area; Biosciences Unit; Council for Scientific and Industrial Research; Pretoria, South Africa
| | - Youtaro Shibayama
- Gene Expression and Biophysics Group; Synthetic Biology Emerging Research Area; Biosciences Unit; Council for Scientific and Industrial Research; Pretoria, South Africa
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group; Synthetic Biology Emerging Research Area; Biosciences Unit; Council for Scientific and Industrial Research; Pretoria, South Africa; Unidade de Biofísica e Expressão Genética; Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisboa, Portugal
| |
Collapse
|
125
|
Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M. Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys J 2014; 105:172-81. [PMID: 23823236 DOI: 10.1016/j.bpj.2013.05.048] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/10/2013] [Accepted: 05/29/2013] [Indexed: 12/26/2022] Open
Abstract
Nucleic acid synthesis is spatially organized in many organisms. In bacteria, however, the spatial distribution of transcription remains obscure, owing largely to the diffraction limit of conventional light microscopy (200-300 nm). Here, we use photoactivated localization microscopy to localize individual molecules of RNA polymerase (RNAP) in Escherichia coli with a spatial resolution of ∼40 nm. In cells growing rapidly in nutrient-rich media, we find that RNAP is organized in 2-8 bands. The band number scaled directly with cell size (and so with the chromosome number), and bands often contained clusters of >70 tightly packed RNAPs (possibly engaged on one long ribosomal RNA operon of 6000 bp) and clusters of such clusters (perhaps reflecting a structure like the eukaryotic nucleolus where many different ribosomal RNA operons are transcribed). In nutrient-poor media, RNAPs were located in only 1-2 bands; within these bands, a disproportionate number of RNAPs were found in clusters containing ∼20-50 RNAPs. Apart from their importance for bacterial transcription, our studies pave the way for molecular-level analysis of several cellular processes at the nanometer scale.
Collapse
Affiliation(s)
- Ulrike Endesfelder
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
126
|
Duderstadt KE, Reyes-Lamothe R, van Oijen AM, Sherratt DJ. Replication-fork dynamics. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a010157. [PMID: 23881939 DOI: 10.1101/cshperspect.a010157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proliferation of all organisms depends on the coordination of enzymatic events within large multiprotein replisomes that duplicate chromosomes. Whereas the structure and function of many core replisome components have been clarified, the timing and order of molecular events during replication remains obscure. To better understand the replication mechanism, new methods must be developed that allow for the observation and characterization of short-lived states and dynamic events at single replication forks. Over the last decade, great progress has been made toward this goal with the development of novel DNA nanomanipulation and fluorescence imaging techniques allowing for the direct observation of replication-fork dynamics both reconstituted in vitro and in live cells. This article reviews these new single-molecule approaches and the revised understanding of replisome operation that has emerged.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, Netherlands
| | | | | | | |
Collapse
|
127
|
Shibayama Y, Fanucchi S, Magagula L, Mhlanga MM. lncRNA and gene looping: what's the connection? Transcription 2014; 5:e28658. [PMID: 25764331 PMCID: PMC4215167 DOI: 10.4161/trns.28658] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 12/11/2022] Open
Abstract
Recent functional studies have unveiled the significant role chromatin topology plays in gene regulation. Several lines of evidence suggest genes access necessary factors for transcription by forming chromatin loops. A clearer picture of the players involved in chromatin organization, including lncRNA, is emerging.
Collapse
Affiliation(s)
- Youtaro Shibayama
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Biosciences Unit, Council for Scientific and Industrial Research; Pretoria, Gauteng, South Africa
- These authors contributed equally to this work
| | - Stephanie Fanucchi
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Biosciences Unit, Council for Scientific and Industrial Research; Pretoria, Gauteng, South Africa
- These authors contributed equally to this work
| | - Loretta Magagula
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Biosciences Unit, Council for Scientific and Industrial Research; Pretoria, Gauteng, South Africa
| | | |
Collapse
|
128
|
Computational Models of Large-Scale Genome Architecture. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:275-349. [DOI: 10.1016/b978-0-12-800046-5.00009-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
129
|
Insights into chromatin structure and dynamics in plants. BIOLOGY 2013; 2:1378-410. [PMID: 24833230 PMCID: PMC4009787 DOI: 10.3390/biology2041378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
The packaging of chromatin into the nucleus of a eukaryotic cell requires an extraordinary degree of compaction and physical organization. In recent years, it has been shown that this organization is dynamically orchestrated to regulate responses to exogenous stimuli as well as to guide complex cell-type-specific developmental programs. Gene expression is regulated by the compartmentalization of functional domains within the nucleus, by distinct nucleosome compositions accomplished via differential modifications on the histone tails and through the replacement of core histones by histone variants. In this review, we focus on these aspects of chromatin organization and discuss novel approaches such as live cell imaging and photobleaching as important tools likely to give significant insights into our understanding of the very dynamic nature of chromatin and chromatin regulatory processes. We highlight the contribution plant studies have made in this area showing the potential advantages of plants as models in understanding this fundamental aspect of biology.
Collapse
|
130
|
Follo MY, Faenza I, Piazzi M, Blalock WL, Manzoli L, McCubrey JA, Cocco L. Nuclear PI-PLCβ1: an appraisal on targets and pathology. Adv Biol Regul 2013; 54:2-11. [PMID: 24296032 DOI: 10.1016/j.jbior.2013.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022]
Abstract
Lipid signalling molecules are essential components of the processes that allow one extracellular signal to be transferred inside the nucleus, where specific lipid second messengers elicit reactions capable of regulating gene transcription, DNA replication or repair and DNA cleavage, eventually resulting in cell growth, differentiation, apoptosis or many other cell functions. Nuclear inositides are independently regulated, suggesting that the nucleus constitutes a functionally distinct compartment of inositol lipids metabolism. Indeed, nuclear inositol lipids themselves can modulate nuclear processes, such as transcription and pre-mRNA splicing, growth, proliferation, cell cycle regulation and differentiation. Nuclear PI-PLCβ1 is a key molecule for nuclear inositide signalling, where it plays a role in cell cycle progression, proliferation and differentiation. Here we review the targets and possible involvement of nuclear PI-PLCβ1 in human physiology and pathology.
Collapse
Affiliation(s)
- Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Irene Faenza
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Manuela Piazzi
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - William L Blalock
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare and SC Laboratorio di Biologia Cellulare Muscoloscheletrica, IOR, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
131
|
Jin DJ, Cagliero C, Zhou YN. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 2013; 113:8662-82. [PMID: 23941620 PMCID: PMC3830623 DOI: 10.1021/cr4001429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Yan Ning Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
132
|
Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish. PLoS Genet 2013; 9:e1003852. [PMID: 24204288 PMCID: PMC3814314 DOI: 10.1371/journal.pgen.1003852] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/19/2013] [Indexed: 02/06/2023] Open
Abstract
Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches – ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape. The Zic3 transcription factor regulates early embryonic patterning, and the loss of its function leads to defects in left-right body asymmetry. Previous studies have only identified a small number of Zic3 targets, which renders the molecular mechanism underlying its activity insufficiently understood. Utilizing two genomics technologies, next generation sequencing and microarray, we profile the genome-wide binding sites of Zic3 and identified its target genes in the developing zebrafish embryo. Our results show that Zic3 regulates its target genes predominantly through regulatory elements located far from promoters. Among the targets of Zic3 are the Nodal and Wnt pathways known to regulate gastrulation and left-right body asymmetry, as well as neural pre-pattern genes regulating proliferation of neural progenitors. Using enhancer activity assay, we further show that genomic regions bound by Zic3 function as enhancers. Our study provides a genome-wide view of the regulatory landscape of Zic3 and its changes during vertebrate development.
Collapse
|
133
|
Chromosomal contact permits transcription between coregulated genes. Cell 2013; 155:606-20. [PMID: 24243018 DOI: 10.1016/j.cell.2013.09.051] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/18/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022]
Abstract
Transcription of coregulated genes occurs in the context of long-range chromosomal contacts that form multigene complexes. Such contacts and transcription are lost in knockout studies of transcription factors and structural chromatin proteins. To ask whether chromosomal contacts are required for cotranscription in multigene complexes, we devised a strategy using TALENs to cleave and disrupt gene loops in a well-characterized multigene complex. Monitoring this disruption using RNA FISH and immunofluorescence microscopy revealed that perturbing the site of contact had a direct effect on transcription of other interacting genes. Unexpectedly, this effect on cotranscription was hierarchical, with dominant and subordinate members of the multigene complex engaged in both intra- and interchromosomal contact. This observation reveals the profound influence of these chromosomal contacts on the transcription of coregulated genes in a multigene complex.
Collapse
|
134
|
Julienne H, Zoufir A, Audit B, Arneodo A. Human genome replication proceeds through four chromatin states. PLoS Comput Biol 2013; 9:e1003233. [PMID: 24130466 PMCID: PMC3794905 DOI: 10.1371/journal.pcbi.1003233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. Previous studies revealed spatially coherent and biological-meaningful chromatin mark combinations in human cells. Here, we analyze thirteen epigenetic mark maps in the human cell line K562 at 100 kb resolution of MRT data. The complexity of epigenetic data is reduced to four chromatin states that display remarkable similarities with those reported in fly, worm and plants. These states have different MRT: (C1) is transcriptionally active, early replicating, enriched in CTCF; (C2) is Polycomb repressed, mid-S replicating; (C3) lacks of marks and replicates late and (C4) is a late-replicating gene-poor HP1 repressed heterochromatin state. When mapping these states inside the 876 replication U-domains of K562, the replication fork polarity gradient observed in these U-domains comes along with a remarkable epigenetic organization from C1 at U-domain borders to C2, C3 and ultimately C4 at centers. The remaining genome half displays early replicating, gene rich and high GC domains of intermingled C1 and C2 states segregating from late replicating, gene poor and low GC domains of concatenated C3 and/or C4 states. This constitutes the first evidence of epigenetic compartmentalization of the human genome into replication domains likely corresponding to autonomous units in the 3D chromatin architecture.
Collapse
Affiliation(s)
- Hanna Julienne
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Azedine Zoufir
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Audit
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Alain Arneodo
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
135
|
Toneatto J, Guber S, Charó NL, Susperreguy S, Schwartz J, Galigniana MD, Piwien-Pilipuk G. Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J Cell Sci 2013; 126:5357-68. [PMID: 24101724 DOI: 10.1242/jcs.125799] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoids play an important role in adipogenesis through the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90•Hsp70 and one high molecular weight immunophilin, either FKBP51 or FKBP52. When 3T3-L1 preadipocytes are induced to differentiate, FKBP51 expression progressively increases, whereas FKBP52 decreases, and Hsp90, Hsp70, p23 and Cyp40 remain unchanged. Interestingly, FKBP51 rapidly translocates from mitochondria to the nucleus where it is retained upon its interaction with chromatin and the nuclear matrix. FKBP51 nuclear localization is transient, and after 48 hours it cycles back to mitochondria. Importantly, this dynamic FKBP51 mitochondrial-nuclear shuttling depends on PKA signaling, because its inhibition by PKI or knockdown of PKA-cα by siRNA, prevented FKBP51 nuclear translocation induced by IBMX. In addition, the electrophoretic pattern of migration of FKBP51 is altered by treatment of cells with PKI or knockdown of PKA-cα, suggesting that FKBP51 is a PKA substrate. In preadipocytes, FKBP51 colocalizes with PKA-cα in mitochondria. When adipogenesis is triggered, PKA-cα also moves to the nucleus colocalizing with FKBP51 mainly in the nuclear lamina. Moreover, FKBP51 and GR interaction increases when preadipocytes are induced to differentiate. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced FKBP51 nuclear translocation, but not by a specific activator of EPAC. FKBP51 knockdown facilitates adipogenesis, whereas ectopic expression of FKBP51 blocks adipogenesis. These findings indicate that the dynamic mitochondrial-nuclear shuttling of FKBP51 regulated by PKA may be key in fine-tuning the transcriptional control of GR target genes required for the acquisition of adipocyte phenotype.
Collapse
Affiliation(s)
- Judith Toneatto
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires C1428ADN, Argentina
| | | | | | | | | | | | | |
Collapse
|
136
|
Boulos RE, Arneodo A, Jensen P, Audit B. Revealing long-range interconnected hubs in human chromatin interaction data using graph theory. PHYSICAL REVIEW LETTERS 2013; 111:118102. [PMID: 24074120 DOI: 10.1103/physrevlett.111.118102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Indexed: 06/02/2023]
Abstract
We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome--"master" replication origins--corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.
Collapse
Affiliation(s)
- R E Boulos
- Université de Lyon, F-69000 Lyon, France and Laboratoire de Physique, ENS de Lyon, CNRS UMR5672, F-69007 Lyon, France
| | | | | | | |
Collapse
|
137
|
Rieder D, Ploner C, Krogsdam AM, Stocker G, Fischer M, Scheideler M, Dani C, Amri EZ, Müller WG, McNally JG, Trajanoski Z. Co-expressed genes prepositioned in spatial neighborhoods stochastically associate with SC35 speckles and RNA polymerase II factories. Cell Mol Life Sci 2013; 71:1741-59. [PMID: 24026398 DOI: 10.1007/s00018-013-1465-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/02/2013] [Accepted: 08/28/2013] [Indexed: 11/26/2022]
Abstract
Chromosomally separated, co-expressed genes can be in spatial proximity, but there is still debate about how this nuclear organization is achieved. Proposed mechanisms include global genome organization, preferential positioning of chromosome territories, or gene-gene sharing of various nuclear bodies. To investigate this question, we selected a set of genes that were co-expressed upon differentiation of human multipotent stem cells. We applied a novel multi-dimensional analysis procedure which revealed that prior to gene expression, the relative position of these genes was conserved in nuclei. Upon stem cell differentiation and concomitant gene expression, we found that co-expressed genes were closer together. In addition, we found that genes in the same 1-μm-diameter neighborhood associated with either the same splicing speckle or to a lesser extent with the same transcription factory. Dispersal of speckles by overexpression of the serine-arginine (SR) protein kinase cdc2-like kinase Clk2 led to a significant drop in the number of genes in shared neighborhoods. We demonstrate quantitatively that the frequencies of speckle and factory sharing can be explained by assuming stochastic selection of a nuclear body within a restricted sub-volume defined by the original global gene positioning present prior to gene expression. We conclude that the spatial organization of these genes is a two-step process in which transcription-induced association with nuclear bodies enhances and refines a pre-existing global organization.
Collapse
Affiliation(s)
- Dietmar Rieder
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innrain 80, 6020, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Duch A, de Nadal E, Posas F. Dealing with transcriptional outbursts during S phase to protect genomic integrity. J Mol Biol 2013; 425:4745-55. [PMID: 24021813 DOI: 10.1016/j.jmb.2013.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Transcription during S phase needs to be spatially and temporally regulated to prevent collisions between the transcription and replication machineries. Cells have evolved a number of mechanisms to make both processes compatible under normal growth conditions. When conflict management fails, the head-on encounter between RNA and DNA polymerases results in genomic instability unless conflict resolution mechanisms are activated. Nevertheless, there are specific situations in which cells need to dramatically change their transcriptional landscape to adapt to environmental challenges. Signal transduction pathways, such as stress-activated protein kinases (SAPKs), serve to regulate gene expression in response to environmental insults. Prototypical members of SAPKs are the yeast Hog1 and mammalian p38. In response to stress, p38/Hog1 SAPKs control transcription and also regulate cell cycle progression. When yeast cells are stressed during S phase, Hog1 promotes gene induction and, remarkably, also delays replication by directly affecting early origin firing and fork progression. Therefore, by delaying replication, Hog1 plays a key role in preventing conflicts between RNA and DNA polymerases. In this review, we focus on the genomic determinants and mechanisms that make compatible transcription with replication during S phase to prevent genomic instability, especially in response to environmental changes.
Collapse
Affiliation(s)
- Alba Duch
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | | | | |
Collapse
|
139
|
Abstract
Within a living cell, site-specific DNA-binding proteins need to search the whole genome to find a target of ~10-20 bp. That they find the target, and do so quickly, is vital for the correct functioning of the DNA, and of the cell as a whole. The current understanding is that this search is performed via facilitated diffusion, i.e. by combining three-dimensional bulk diffusion within the cytoplasm or nucleoplasm, with one-dimensional diffusion along the DNA backbone, to which the protein binds non-specifically. After reviewing the standard theory of facilitated diffusion, we discuss in the present article the still rather rare direct computer simulations of this process, focusing on the three-dimensional part of the search, and the effect of DNA looping and the general DNA conformation on its efficiency. We close by highlighting some open questions in this field.
Collapse
|
140
|
Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proc Natl Acad Sci U S A 2013; 110:E3605-11. [PMID: 24003126 DOI: 10.1073/pnas.1302950110] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations are used to model proteins that diffuse to DNA, bind, and dissociate; in the absence of any explicit interaction between proteins, or between templates, binding spontaneously induces local DNA compaction and protein aggregation. Small bivalent proteins form into rows [as on binding of the bacterial histone-like nucleoid-structuring protein (H-NS)], large proteins into quasi-spherical aggregates (as on nanoparticle binding), and cylinders with eight binding sites (representing octameric nucleosomal cores) into irregularly folded clusters (like those seen in nucleosomal strings). Binding of RNA polymerase II and a transcription factor (NFκB) to the appropriate sites on four human chromosomes generates protein clusters analogous to transcription factories, multiscale loops, and intrachromosomal contacts that mimic those found in vivo. We suggest that this emergent behavior of clustering is driven by an entropic bridging-induced attraction that minimizes bending and looping penalties in the template.
Collapse
|
141
|
Kim KD, Tanizawa H, Iwasaki O, Corcoran CJ, Capizzi JR, Hayden JE, Noma KI. Centromeric motion facilitates the mobility of interphase genomic regions in fission yeast. J Cell Sci 2013; 126:5271-83. [PMID: 23986481 DOI: 10.1242/jcs.133678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dispersed genetic elements, such as retrotransposons and Pol-III-transcribed genes, including tRNA and 5S rRNA, cluster and associate with centromeres in fission yeast through the function of condensin. However, the dynamics of these condensin-mediated genomic associations remains unknown. We have examined the 3D motions of genomic loci including the centromere, telomere, rDNA repeat locus, and the loci carrying Pol-III-transcribed genes or long-terminal repeat (LTR) retrotransposons in live cells at as short as 1.5-second intervals. Treatment with carbendazim (CBZ), a microtubule-destabilizing agent, not only prevents centromeric motion, but also reduces the mobility of the other genomic loci during interphase. Further analyses demonstrate that condensin-mediated associations between centromeres and the genomic loci are clonal, infrequent and transient. However, when associated, centromeres and the genomic loci migrate together in a coordinated fashion. In addition, a condensin mutation that disrupts associations between centromeres and the genomic loci results in a concomitant decrease in the mobility of the loci. Our study suggests that highly mobile centromeres pulled by microtubules in cytoplasm serve as 'genome mobility elements' by facilitating physical relocations of associating genomic regions.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- The Wistar Institute, Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
In cells, RNA polymerase (RNAP) must transcribe supercoiled DNA, whose torsional state is constantly changing, but how RNAP deals with DNA supercoiling remains elusive. We report direct measurements of individual Escherichia coli RNAPs as they transcribed supercoiled DNA. We found that a resisting torque slowed RNAP and increased its pause frequency and duration. RNAP was able to generate 11 ± 4 piconewton-nanometers (mean ± standard deviation) of torque before stalling, an amount sufficient to melt DNA of arbitrary sequence and establish RNAP as a more potent torsional motor than previously known. A stalled RNAP was able to resume transcription upon torque relaxation, and transcribing RNAP was resilient to transient torque fluctuations. These results provide a quantitative framework for understanding how dynamic modification of DNA supercoiling regulates transcription.
Collapse
Affiliation(s)
- Jie Ma
- Department of Physics-Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
143
|
Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A, Muresan L, Dugast-Darzacq C, Hajj B, Dahan M, Darzacq X. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 2013; 341:664-7. [PMID: 23828889 DOI: 10.1126/science.1239053] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcription is reported to be spatially compartmentalized in nuclear transcription factories with clusters of RNA polymerase II (Pol II). However, little is known about when these foci assemble or their relative stability. We developed a quantitative single-cell approach to characterize protein spatiotemporal organization, with single-molecule sensitivity in live eukaryotic cells. We observed that Pol II clusters form transiently, with an average lifetime of 5.1 (± 0.4) seconds, which refutes the notion that they are statically assembled substructures. Stimuli affecting transcription yielded orders-of-magnitude changes in the dynamics of Pol II clusters, which implies that clustering is regulated and plays a role in the cell's ability to effect rapid response to external signals. Our results suggest that transient crowding of enzymes may aid in rate-limiting steps of gene regulation.
Collapse
Affiliation(s)
- Ibrahim I Cisse
- Functional Imaging of Transcription, CNRS UMR8197, Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, 75005 France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Mishra RK, Mishra G, Giri D, Kumar S. Scaling of hysteresis loop of interacting polymers under a periodic force. J Chem Phys 2013; 138:244905. [DOI: 10.1063/1.4809985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
145
|
Barbieri M, Fraser J, Lavitas LM, Chotalia M, Dostie J, Pombo A, Nicodemi M. A polymer model explains the complexity of large-scale chromatin folding. Nucleus 2013; 4:267-73. [PMID: 23823730 DOI: 10.4161/nucl.25432] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The underlying global organization of chromatin within the cell nucleus has been the focus of intense recent research. Hi-C methods have allowed for the detection of genome-wide chromatin interactions, revealing a complex large-scale organization where chromosomes tend to partition into megabase-sized "topological domains" of local chromatin interactions and intra-chromosomal contacts extends over much longer scales, in a cell-type and chromosome specific manner. Until recently, the distinct chromatin folding properties observed experimentally have been difficult to explain in a single conceptual framework. We reported that a simple polymer-physics model of chromatin, the strings and binders switch (SBS) model, succeeds in describing the full range of chromatin configurations observed in vivo. The SBS model simulates the interactions between randomly diffusing binding molecules and binding sites on a polymer chain. It explains how polymer architectural patterns can be established, how different stable conformations can be produced and how conformational changes can be reliably regulated by simple strategies, such as protein upregulation or epigenetic modifications, via fundamental thermodynamics mechanisms.
Collapse
Affiliation(s)
- Mariano Barbieri
- Universita' di Napoli "Federico II"; Dipartimento di Fisica; INFN Sezione di Napoli; CNR-SPIN, Complesso Universitario di Monte S. Angelo; Napoli, Italy; Department of Biochemistry and Goodman Cancer Research Center; McGill University; Montréal, Québec Canada; Berlin Institute for Medical Systems Biology; Max Delbrück Center for Molecular Medicine; Berlin-Buch, Germany; Genome Function Group; MRC Clinical Sciences Centre; Imperial College London; Hammersmith Hospital Campus; London, UK
| | | | | | | | | | | | | |
Collapse
|
146
|
Julienne H, Zoufir A, Audit B, Arneodo A. Epigenetic regulation of the human genome: coherence between promoter activity and large-scale chromatin environment. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.832706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
147
|
LaSalle JM, Powell WT, Yasui DH. Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 2013; 36:460-70. [PMID: 23731492 DOI: 10.1016/j.tins.2013.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms convey information above and beyond the sequence of DNA, so it is predicted that they are critical in the complex regulation of brain development and explain the long-lived effects of environmental cues on pre- and early post-natal brain development. Neurons have a complex epigenetic landscape that changes dynamically with transcriptional activity in early life. Here, we summarize progress in our understanding of the discrete layers of the dynamic methylome, chromatin proteome, noncoding RNAs, chromatin loops, and long-range interactions in neuronal development and maturation. Many neurodevelopmental disorders have genetic alterations in these epigenetic modifications or regulators, and these human genetics lessons have demonstrated the importance of these epigenetic players and the epigenetic layers that transcriptional events lay down in the early brain.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, CA, USA.
| | | | | |
Collapse
|
148
|
Azqueta A, Collins AR. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol 2013; 87:949-68. [PMID: 23685795 DOI: 10.1007/s00204-013-1070-0] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/29/2013] [Indexed: 02/08/2023]
Abstract
The comet assay (single cell gel electrophoresis) is the most common method for measuring DNA damage in eukaryotic cells or disaggregated tissues. The assay depends on the relaxation of supercoiled DNA in agarose-embedded nucleoids (the residual bodies remaining after lysis of cells with detergent and high salt), which allows the DNA to be drawn out towards the anode under electrophoresis, forming comet-like images as seen under fluorescence microscopy. The relative amount of DNA in the comet tail indicates DNA break frequency. The assay has been modified to detect various base alterations, by including digestion of nucleoids with a lesion-specific endonuclease. We describe here recent technical developments, theoretical aspects, limitations as well as advantages of the assay, and modifications to measure cellular antioxidant status and different types of DNA repair. We briefly describe the applications of this method in genotoxicity testing, human biomonitoring, and ecogenotoxicology.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain.
| | | |
Collapse
|
149
|
Gibcus JH, Dekker J. The hierarchy of the 3D genome. Mol Cell 2013; 49:773-82. [PMID: 23473598 DOI: 10.1016/j.molcel.2013.02.011] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/17/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Mammalian genomes encode genetic information in their linear sequence, but appropriate expression of their genes requires chromosomes to fold into complex three-dimensional structures. Transcriptional control involves the establishment of physical connections among genes and regulatory elements, both along and between chromosomes. Recent technological innovations in probing the folding of chromosomes are providing new insights into the spatial organization of genomes and its role in gene regulation. It is emerging that folding of large complex chromosomes involves a hierarchy of structures, from chromatin loops that connect genes and enhancers to larger chromosomal domains and nuclear compartments. The larger these structures are along this hierarchy, the more stable they are within cells, while becoming more stochastic between cells. Here, we review the experimental and theoretical data on this hierarchy of structures and propose a key role for the recently discovered topologically associating domains.
Collapse
Affiliation(s)
- Johan H Gibcus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | | |
Collapse
|
150
|
Cagliero C, Grand RS, Jones MB, Jin DJ, O'Sullivan JM. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res 2013; 41:6058-71. [PMID: 23632166 PMCID: PMC3695519 DOI: 10.1093/nar/gkt325] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To fit within the confines of the cell, bacterial chromosomes are highly condensed into a structure called the nucleoid. Despite the high degree of compaction in the nucleoid, the genome remains accessible to essential biological processes, such as replication and transcription. Here, we present the first high-resolution chromosome conformation capture-based molecular analysis of the spatial organization of the Escherichia coli nucleoid during rapid growth in rich medium and following an induced amino acid starvation that promotes the stringent response. Our analyses identify the presence of origin and terminus domains in exponentially growing cells. Moreover, we observe an increased number of interactions within the origin domain and significant clustering of SeqA-binding sequences, suggesting a role for SeqA in clustering of newly replicated chromosomes. By contrast, ‘histone-like’ protein (i.e. Fis, IHF and H-NS) -binding sites did not cluster, and their role in global nucleoid organization does not manifest through the mediation of chromosomal contacts. Finally, genes that were downregulated after induction of the stringent response were spatially clustered, indicating that transcription in E. coli occurs at transcription foci.
Collapse
Affiliation(s)
- Cedric Cagliero
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|