101
|
Caldon CE, Yoong P, March PE. Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 2001; 41:289-97. [PMID: 11489118 DOI: 10.1046/j.1365-2958.2001.02536.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GTPases comprise a protein superfamily of highly conserved molecular switches adapted to many diverse functions. These proteins are found in all domains of life and often perform essential roles in fundamental cellular processes. Analysis of data from genome sequencing projects demonstrates that bacteria possess a core of 11 universally conserved GTPases (elongation factor G and Tu, initiation factor 2, LepA, Era, Obg, ThdF/TrmE, Ffh, FtsY, EngA and YchF). Investigations aimed at understanding the function of GTPases indicate that a second conserved feature of these proteins is that they elicit their function through interaction with RNA and/or ribosomes. An emerging concept suggests that the 11 universal GTPases are either necessary for ribosome function or transmitting information from the ribosome to downstream targets for the purpose of generating specific cellular responses. Furthermore, it is suggested that progenitor GTPases were early regulators of RNA function and may have existed in precursors of cellular systems driven by catalytic RNA. If this is the case, then a corollary of this hypothesis is that GTPases that do not bind RNA arose at a later time from an RNA-binding progenitor that lost the capability to bind RNA.
Collapse
Affiliation(s)
- C E Caldon
- School of Microbiology and Immunology, The University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
102
|
Millman JS, Qi HY, Vulcu F, Bernstein HD, Andrews DW. FtsY binds to the Escherichia coli inner membrane via interactions with phosphatidylethanolamine and membrane proteins. J Biol Chem 2001; 276:25982-9. [PMID: 11353766 DOI: 10.1074/jbc.m011331200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Targeting of many polytopic proteins to the inner membrane of prokaryotes occurs via an essential signal recognition particle-like pathway. FtsY, the Escherichia coli homolog of the eukaryotic signal recognition particle receptor alpha-subunit, binds to membranes via its amino-terminal AN domain. We demonstrate that FtsY assembles on membranes via interactions with phosphatidylethanolamine and with a trypsin-sensitive component. Both interactions are mediated by the AN domain of FtsY. In the absence of phosphatidylethanolamine, the trypsin-sensitive component is sufficient for binding and function of FtsY in the targeting of membrane proteins. We propose a two-step mechanism for the assembly of FtsY on the membrane similar to that of SecA on the E. coli inner membrane.
Collapse
Affiliation(s)
- J S Millman
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
103
|
Fulga TA, Sinning I, Dobberstein B, Pool MR. SRbeta coordinates signal sequence release from SRP with ribosome binding to the translocon. EMBO J 2001; 20:2338-47. [PMID: 11331598 PMCID: PMC125438 DOI: 10.1093/emboj/20.9.2338] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein targeting to the endoplasmic reticulum (ER) membrane is regulated by three GTPases, the 54 kDa subunit of the signal recognition particle (SRP) and the alpha- and beta-subunits of the SRP receptor (SR). Using a soluble form of SR and an XTP-binding mutant of SRbeta, we show that SRbeta is essential for protein translocation across the ER membrane. SRbeta can be cross-linked to a 21 kDa ribosomal protein in its empty and GDP-bound state, but not when GTP is bound. GTP binding to SRbeta is required to induce signal sequence release from SRP. This is achieved by the presence of the translocon, which changes the interaction between the 21 kDa ribosomal protein and SRbeta and thereby allows SRbeta to bind GTP. We conclude that SRbeta coordinates the release of the signal sequence from SRP with the presence of the translocon.
Collapse
Affiliation(s)
| | - Irmgard Sinning
- Structural Biology Programme, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg and
Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), D-69120 Heidelberg, Germany Present address: Biochemiezentrum der Universität Heidelberg (BZH), D-69120 Heidelberg, Germany Corresponding author e-mail:
| | - Bernhard Dobberstein
- Structural Biology Programme, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg and
Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), D-69120 Heidelberg, Germany Present address: Biochemiezentrum der Universität Heidelberg (BZH), D-69120 Heidelberg, Germany Corresponding author e-mail:
| | - Martin R. Pool
- Structural Biology Programme, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg and
Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), D-69120 Heidelberg, Germany Present address: Biochemiezentrum der Universität Heidelberg (BZH), D-69120 Heidelberg, Germany Corresponding author e-mail:
| |
Collapse
|
104
|
Müller M, Koch HG, Beck K, Schäfer U. Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:107-57. [PMID: 11051763 DOI: 10.1016/s0079-6603(00)66028-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteria use several routes to target their exported proteins to the plasma membrane. The majority are exported through pores formed by SecY and SecE. Two different molecular machineries are used to target proteins to the SecYE translocon. Translocated proteins, synthesized as precursors with cleavable signal sequences, require cytoplasmic chaperones, such as SecB, to remain competent for posttranslational transport. In concert with SecB, SecA targets the precursors to SecY and energizes their translocation by its ATPase activity. The latter function involves a partial insertion of SecA itself into the SecYE translocon, a process that is strongly assisted by a couple of membrane proteins, SecG, SecD, SecF, YajC, and the proton gradient across the membrane. Integral membrane proteins, however, are specifically recognized by a direct interaction between their noncleaved signal anchor sequences and the bacterial signal recognition particle (SRP) consisting of Ffh and 4.5S RNA. Recognition occurs during synthesis at the ribosome and leads to a cotranslational targeting to SecYE that is mediated by FtsY and the hydrolysis of GTP. No other Sec protein is required for integration unless the membrane protein also contains long translocated domains that engage the SecA machinery. Discrimination between SecA/SecB- and SRP-dependent targeting involves the specificity of SRP for hydrophobic signal anchor sequences and the exclusion of SRP from nascent chains of translocated proteins by trigger factor, a ribosome-associated chaperone. The SecYE pore accepts only unfolded proteins. In contrast, a class of redox factor-containing proteins leaves the cell only as completely folded proteins. They are distinguished by a twin arginine motif of their signal sequences that by an unknown mechanism targets them to specific pores. A few membrane proteins insert spontaneously into the bacterial plasma membrane without the need for targeting factors and SecYE. Insertion depends only on hydrophobic interactions between their transmembrane segments and the lipid bilayer and on the transmembrane potential. Finally, outer membrane proteins of Gram-negative bacteria after having crossed the plasma membrane are released into the periplasm, where they undergo distinct folding events until they insert as trimers into the outer membrane. These folding processes require distinct molecular chaperones of the periplasm, such as Skp, SurA, and PpiD.
Collapse
Affiliation(s)
- M Müller
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Germany
| | | | | | | |
Collapse
|
105
|
Bishop A, Buzko O, Heyeck-Dumas S, Jung I, Kraybill B, Liu Y, Shah K, Ulrich S, Witucki L, Yang F, Zhang C, Shokat KM. Unnatural ligands for engineered proteins: new tools for chemical genetics. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:577-606. [PMID: 10940260 DOI: 10.1146/annurev.biophys.29.1.577] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecules that modulate the activity of biological signaling molecules can be powerful probes of signal transduction pathways. Highly specific molecules with high affinity are difficult to identify because of the conserved nature of many protein active sites. A newly developed approach to discovery of such small molecules that relies on protein engineering and chemical synthesis has yielded powerful tools for the study of a wide variety of proteins involved in signal transduction (G-proteins, protein kinases, 7-transmembrane receptors, nuclear hormone receptors, and others). Such chemical genetic tools combine the advantages of traditional genetics and the unparalleled temporal control over protein function afforded by small molecule inhibitors/activators that act at diffusion controlled rates with targets.
Collapse
Affiliation(s)
- A Bishop
- Department of Chemistry, Princeton University, New Jersey 08544, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Herskovits AA, Bochkareva ES, Bibi E. New prospects in studying the bacterial signal recognition particle pathway. Mol Microbiol 2000; 38:927-39. [PMID: 11123669 DOI: 10.1046/j.1365-2958.2000.02198.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vivo and in vitro studies have suggested that the bacterial version of the mammalian signal recognition particle (SRP) system plays an essential and selective role in protein biogenesis. The bacterial SRP system consists of at least two proteins and an RNA molecule (termed Ffh, FtsY and 4.5S RNA, respectively, in Escherichia coli). Recent evidence suggests that other putative bacterial-specific SRP components may also exist. In vitro experiments confirmed the expected basic features of the bacterial SRP system by demonstrating interactions among the SRP components themselves, between them and ribosomes, ribosome-linked hydrophobic nascent polypeptides or inner membranes. The availability of a conserved (and essential) bacterial SRP version has facilitated the implementation of powerful genetic and biochemical approaches for studying the cascade of events during the SRP-mediated targeting process in vivo and in vitro as well as the three-dimensional structures and the properties of each SRP component and complex.
Collapse
Affiliation(s)
- A A Herskovits
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
107
|
|
108
|
|
109
|
Via A, Ferrè F, Brannetti B, Valencia A, Helmer-Citterich M. Three-dimensional view of the surface motif associated with the P-loop structure: cis and trans cases of convergent evolution. J Mol Biol 2000; 303:455-65. [PMID: 11054283 DOI: 10.1006/jmbi.2000.4151] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we identify the determinants of the nucleotide-binding ability associated with the P-loop-containing proteins, inferring their functional importance from their structural convergence to a unique three- dimensional (3D) motif. (1) A new surface 3D pattern is identified for the P-loop nucleotide-binding region, which is more selective than the corresponding sequence pattern; (2) the signature displays one residue that we propose is the determinant for the guanine-binding ability (the residues aligned to ras D119; this residue is known to be important only in the G-proteins, we extend the prediction to all the other P-loop- containing proteins); and (3) two cases of convergent evolution at the molecular level are highlighted in the analysis of the active site: the positive charge aligned to ras K117 and the arginine residues aligned to the GAP arginine finger. The analysis of the residues conserved on protein surfaces allows one to identify new functional or evolutionary relationships among protein structures that would not be detectable by conventional sequence or structure comparison methods.
Collapse
Affiliation(s)
- A Via
- Centro di Bioinformatica Molecolare, Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, Rome, 00133, Italy
| | | | | | | | | |
Collapse
|
110
|
Peluso P, Herschlag D, Nock S, Freymann DM, Johnson AE, Walter P. Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science 2000; 288:1640-3. [PMID: 10834842 DOI: 10.1126/science.288.5471.1640] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanism by which a signal recognition particle (SRP) and its receptor mediate protein targeting to the endoplasmic reticulum or to the bacterial plasma membrane is evolutionarily conserved. In Escherichia coli, this reaction is mediated by the Ffh/4.5S RNA ribonucleoprotein complex (Ffh/4.5S RNP; the SRP) and the FtsY protein (the SRP receptor). We have quantified the effects of 4.5S RNA on Ffh-FtsY complex formation by monitoring changes in tryptophan fluorescence. Surprisingly, 4.5S RNA facilitates both assembly and disassembly of the Ffh-FtsY complex to a similar extent. These results provide an example of an RNA molecule facilitating protein-protein interactions in a catalytic fashion.
Collapse
Affiliation(s)
- P Peluso
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
111
|
Jovine L, Hainzl T, Oubridge C, Scott WG, Li J, Sixma TK, Wonacott A, Skarzynski T, Nagai K. Crystal structure of the ffh and EF-G binding sites in the conserved domain IV of Escherichia coli 4.5S RNA. Structure 2000; 8:527-40. [PMID: 10801497 DOI: 10.1016/s0969-2126(00)00137-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bacterial signal recognition particle (SRP), consisting of 4.5S RNA and Ffh protein, plays an essential role in targeting signal-peptide-containing proteins to the secretory apparatus in the cell membrane. The 4.5S RNA increases the affinity of Ffh for signal peptides and is essential for the interaction between SRP and its receptor, protein FtsY. The 4.5S RNA also interacts with elongation factor G (EF-G) in the ribosome and this interaction is required for efficient translation. RESULTS We have determined by multiple anomalous dispersion (MAD) with Lu(3+) the 2.7 A crystal structure of a 4.5S RNA fragment containing binding sites for both Ffh and EF-G. This fragment consists of three helices connected by a symmetric and an asymmetric internal loop. In contrast to NMR-derived structures reported previously, the symmetric loop is entirely constituted by non-canonical base pairs. These pairs continuously stack and project unusual sets of hydrogen-bond donors and acceptors into the shallow minor groove. The structure can therefore be regarded as two double helical rods hinged by the asymmetric loop that protrudes from one strand. CONCLUSIONS Based on our crystal structure and results of chemical protection experiments reported previously, we predicted that Ffh binds to the minor groove of the symmetric loop. An identical decanucleotide sequence is found in the EF-G binding sites of both 4.5S RNA and 23S rRNA. The decanucleotide structure in the 4.5S RNA and the ribosomal protein L11-RNA complex crystals suggests how 4.5S RNA and 23S rRNA might interact with EF-G and function in translating ribosomes.
Collapse
Affiliation(s)
- L Jovine
- MRC Laboratory of Molecular Biology, Cambridge, England.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Montoya G, Kaat K, Moll R, Schäfer G, Sinning I. The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex. Structure 2000; 8:515-25. [PMID: 10801496 DOI: 10.1016/s0969-2126(00)00131-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Protein targeting to the endoplasmic reticulum in eukaryotes and to the cell membrane in prokaryotes is mediated by the signal recognition particle (SRP) and its receptor (SR). Both contain conserved GTPase domains in the signal-peptide-binding proteins (SRP54 and Ffh) and the SR proteins (SRalpha and FtsY). These GTPases are involved in the regulation of protein targeting. Most studies so far have focussed on the SRP machinery of mammals and bacteria, leaving the SRP system of archaea less well understood. RESULTS We report the crystal structure of the conserved GTPase (NG-Ffh) from the thermophilic archaeon Acidianus ambivalens at 2.0 A resolution and of the Thr112-->Ala mutant, which is inactive in GTP hydrolysis. This is the first structure of an SRP component from an archaeon and allows for a detailed comparison with related structures from Escherichia coli and thermophilic bacteria. In particular, differences in the conserved consensus regions for nucleotide binding and the subdomain interfaces are observed, which provide information about the regulation of the GTPase. These interactions allow us to propose a common signalling mechanism for the SRP-SR system. CONCLUSIONS The overall structure of SRP-GTPases is well conserved between bacteria and archaea, which indicates strong similarities in the regulation of the SRP-targeting pathway. Surprisingly, structure comparisons identified a homodimeric ATP-binding protein as the closest relative. A heterodimer model for the SRP-SR interaction is presented.
Collapse
Affiliation(s)
- G Montoya
- European Molecular Biology Laboratory, Structural Biology Programme, Heidelberg, D-69017, Germany
| | | | | | | | | |
Collapse
|
113
|
Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 2000; 287:1232-9. [PMID: 10678824 DOI: 10.1126/science.287.5456.1232] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The signal recognition particle (SRP), a protein-RNA complex conserved in all three kingdoms of life, recognizes and transports specific proteins to cellular membranes for insertion or secretion. We describe here the 1.8 angstrom crystal structure of the universal core of the SRP, revealing protein recognition of a distorted RNA minor groove. Nucleotide analog interference mapping demonstrates the biological importance of observed interactions, and genetic results show that this core is functional in vivo. The structure explains why the conserved residues in the protein and RNA are required for SRP assembly and defines a signal sequence recognition surface composed of both protein and RNA.
Collapse
Affiliation(s)
- R T Batey
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
114
|
de Leeuw E, te Kaat K, Moser C, Menestrina G, Demel R, de Kruijff B, Oudega B, Luirink J, Sinning I. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J 2000; 19:531-41. [PMID: 10675322 PMCID: PMC305591 DOI: 10.1093/emboj/19.4.531] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FtsY, the Escherichia coli homologue of the eukaryotic signal recognition particle (SRP) receptor alpha-subunit, is located in both the cytoplasm and inner membrane. It has been proposed that FtsY has a direct targeting function, but the mechanism of its association with the membrane is unclear. FtsY is composed of two hydrophilic domains: a highly charged N-terminal domain (the A-domain) and a C-terminal GTP-binding domain (the NG-domain). FtsY does not contain any hydrophobic sequence that might explain its affinity for the inner membrane, and a membrane-anchoring protein has not been detected. In this study, we provide evidence that FtsY interacts directly with E.coli phospholipids, with a preference for anionic phospholipids. The interaction involves at least two lipid-binding sites, one of which is present in the NG-domain. Lipid association induced a conformational change in FtsY and greatly enhanced its GTPase activity. We propose that lipid binding of FtsY is important for the regulation of SRP-mediated protein targeting.
Collapse
Affiliation(s)
- E de Leeuw
- Department of Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Song W, Raden D, Mandon EC, Gilmore R. Role of Sec61alpha in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell 2000; 100:333-43. [PMID: 10676815 DOI: 10.1016/s0092-8674(00)80669-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Targeting of ribosome-nascent chain complexes to the translocon in the endoplasmic reticulum is mediated by the concerted action of the signal recognition particle (SRP) and the SRP receptor (SR). Ribosome-stripped microsomes were digested with proteases to sever cytoplasmic domains of SRalpha, SRbeta, TRAM, and the Sec61 complex. We characterized protein translocation intermediates that accumulate when Sec61alpha or SRbeta is inactivated by proteolysis. In the absence of a functional Sec61 complex, dissociation of SRP54 from the signal sequence is blocked. Experiments using SR proteoliposomes confirmed the assembly of a membrane-bound posttargeting intermediate. These results strongly suggest that the Sec61 complex regulates the GTP hydrolysis cycle of the SRP-SR complex at the stage of signal sequence dissociation from SRP54.
Collapse
Affiliation(s)
- W Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01655-0103, USA
| | | | | | | |
Collapse
|
116
|
Jagath JR, Rodnina MV, Wintermeyer W. Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP. J Mol Biol 2000; 295:745-53. [PMID: 10656787 DOI: 10.1006/jmbi.1999.3427] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In cotranslational preprotein targeting in Escherichia coli, the signal recognition particle (SRP) binds to the signal peptide emerging from the ribosome and, subsequently, interacts with the signal recognition particle receptor, FtsY, at the plasma membrane. Both FtsY and the protein moiety of the signal recognition particle, Ffh, are GTPases, and GTP is required for the formation of the SRP-FtsY complex. We have studied the binding of GTP/GDP to FtsY as well as the SRP-FtsY complex formation by monitoring the fluorescence of tryptophan 343 in the I box of mutant FtsY. Thermodynamic and kinetic parameters of the FtsY complexes with GDP, GTP, and signal recognition particle are reported. Upon SRP-FtsY complex formation in the presence of GTP, the fluorescence of tryptophan 343 increased by 50 % and was blue-shifted by 10 nm. We conclude that GTP-dependent SRP-FtsY complex formation leads to an extensive conformational change in the I box insertion in the effector region of FtsY.
Collapse
Affiliation(s)
- J R Jagath
- Institut für Molekularbiologie, Universität Witten/Herdecke, Witten, 58448, Germany
| | | | | |
Collapse
|
117
|
Abstract
Cotranslational protein translocation across and integration into the membrane of the endoplasmic reticulum (ER) occur at sites termed translocons. Translocons are composed of several ER membrane proteins that associate to form an aqueous pore through which secretory proteins and lumenal domains of membrane proteins pass from the cytoplasm to the ER lumen. These sites are not passive holes in the bilayer, but instead are quite dynamic both structurally and functionally. Translocons cycle between ribosome-bound and ribosome-free states, and convert between translocation and integration modes of operation. These changes in functional state are accompanied by structural rearrangements that alter translocon conformation, composition, and interactions with ligands such as the ribosome and BiP. Recent studies have revealed that the translocon is a complex and sophisticated molecular machine that regulates the movement of polypeptides through the bilayer, apparently in both directions as well as laterally into the bilayer, all while maintaining the membrane permeability barrier.
Collapse
Affiliation(s)
- A E Johnson
- Department of Medical Biochemistry, Texas A&M University, College Station 77843, USA.
| | | |
Collapse
|
118
|
Millman JS, Andrews DW. A site-specific, membrane-dependent cleavage event defines the membrane binding domain of FtsY. J Biol Chem 1999; 274:33227-34. [PMID: 10559196 DOI: 10.1074/jbc.274.47.33227] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Targeting of many polytopic proteins to the inner membrane of prokaryotes occurs via an essential signal recognition particle-like pathway. Unlike the general secretory pathway, the proteins involved in this pathway and their activities appear in many respects to mirror closely those of their eukaryotic homologues. However, the Escherichia coli signal recognition particle receptor, FtsY, differs significantly at the amino terminus from the eukaryote homologue alpha-subunit of the signal recognition particle receptor. In addition, there is no prokaryote homologue of the transmembrane beta-subunit of the receptor. Therefore, FtsY must assemble on the membrane in a unique manner. Using assays designed to accurately discriminate membrane-bound proteins from aggregated material, we found that in contrast to a previous report, only amino acids 1-284 of FtsY are necessary and sufficient for membrane assembly. These amino acids together constitute a bona fide membrane binding domain that includes both the regions originally designated A and N based on sequence comparisons. Furthermore, we found that a membrane-bound factor mediates specific cleavage of some membrane-bound FtsY molecules between the N and G regions previously believed to be functionally linked to generate a novel membrane-bound isoform composed of only the AN domain.
Collapse
Affiliation(s)
- J S Millman
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
119
|
Gillespie PG, Gillespie SK, Mercer JA, Shah K, Shokat KM. Engineering of the myosin-ibeta nucleotide-binding pocket to create selective sensitivity to N(6)-modified ADP analogs. J Biol Chem 1999; 274:31373-81. [PMID: 10531338 DOI: 10.1074/jbc.274.44.31373] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinguishing the cellular functions carried out by enzymes of highly similar structure would be simplified by the availability of isozyme-selective inhibitors. To determine roles played by individual members of the large myosin superfamily, we designed a mutation in myosin's nucleotide-binding pocket that permits binding of adenine nucleotides modified with bulky N(6) substituents. Introduction of this mutation, Y61G in rat myosin-Ibeta, did not alter the enzyme's affinity for ATP or actin and actually increased its ATPase activity and actin-translocation rate. We also synthesized several N(6)-modified ADP analogs that should bind to and inhibit mutant, but not wild-type, myosin molecules. Several of these N(6)-modified ADP analogs were more than 40-fold more potent at inhibiting ATP hydrolysis by Y61G than wild-type myosin-Ibeta; in doing so, these analogs locked Y61G myosin-Ibeta tightly to actin. N(6)-(2-methylbutyl) ADP abolished actin filament motility mediated by Y61G, but not wild-type, myosin-Ibeta. Furthermore, a small fraction of inhibited Y61G molecules was sufficient to block filament motility mediated by mixtures of wild-type and Y61G myosin-Ibeta. Introduction of Y61G myosin-Ibeta molecules into a cell should permit selective inhibition by N(6)-modified ADP analogs of cellular processes dependent on myosin-Ibeta.
Collapse
Affiliation(s)
- P G Gillespie
- Department of Physiology, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
120
|
Scotti PA, Valent QA, Manting EH, Urbanus ML, Driessen AJ, Oudega B, Luirink J. SecA is not required for signal recognition particle-mediated targeting and initial membrane insertion of a nascent inner membrane protein. J Biol Chem 1999; 274:29883-8. [PMID: 10514469 DOI: 10.1074/jbc.274.42.29883] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, signal recognition particle (SRP)-dependent targeting of inner membrane proteins has been described. In vitro cross-linking studies have demonstrated that short nascent chains exposing a highly hydrophobic targeting signal interact with the SRP. This SRP, assisted by its receptor, FtsY, mediates the transfer to a common translocation site in the inner membrane that contains SecA, SecG, and SecY. Here we describe a further in vitro reconstitution of SRP-mediated membrane insertion in which purified ribosome-nascent chain-SRP complexes are targeted to the purified SecYEG complex contained in proteoliposomes in a process that requires the SRP-receptor FtsY and GTP. We found that in this system SecA and ATP are dispensable for both the transfer of the nascent inner membrane protein FtsQ to SecY and its stable membrane insertion. Release of the SRP from nascent FtsQ also occurred in the absence of SecYEG complex indicating a functional interaction of FtsY with lipids. These data suggest that SRP/FtsY and SecB/SecA constitute distinct targeting routes.
Collapse
Affiliation(s)
- P A Scotti
- Department of Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
121
|
Pieper U, Schweitzer T, Groll DH, Gast FU, Pingoud A. The GTP-binding domain of McrB: more than just a variation on a common theme? J Mol Biol 1999; 292:547-56. [PMID: 10497020 DOI: 10.1006/jmbi.1999.3103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The methylation-dependent restriction endonuclease McrBC from Escherichia coli K12 cleaves DNA containing two R(m)C dinucleotides separated by about 40 to 2000 base-pairs. McrBC is unique in that cleavage is totally dependent on GTP hydrolysis. McrB is the GTP binding and hydrolyzing subunit, whereas MrC stimulates its GTP hydrolysis. The C-terminal part of McrB contains the sequences characteristic for GTP-binding proteins, consisting of the GxxxxGK(S/T) motif (position 201-208), followed by the DxxG motif (position 300-303). The third motif (NKxD) is present only in a non-canonical form (NTAD 333-336). Here we report a mutational analysis of the putative GTP-binding domain of McrB. Amino acid substitutions were initially performed in the three proposed GTP-binding motifs. Whereas substitutions in motif 1 (P203V) and 2 (D300N) show the expected, albeit modest effects, mutation in the motif 3 is at variance with the expectations. Unlike the corresponding EF-Tu and ras -p21 variants, the D336N mutation in McrB does not change the nucleotide specificity from GTP to XTP, but results in a lack of GTPase stimulation by McrC. The finding that McrB is not a typical G protein motivated us to perform a search for similar sequences in DNA databases. Eight microbial sequences were found, mainly from unfinished sequencing projects, with highly conserved sequence blocks within a presumptive GTP-binding domain. From the five sequences showing the highest homology, 17 invariant charged or polar residues outside the classical three GTP-binding motifs were identified and subsequently exchanged to alanine. Several mutations specifically affect GTP affinity and/or GTPase activity. Our data allow us to conclude that McrB is not a typical member of the superfamily of GTP-binding proteins, but defines a new subfamily within the superfamily of GTP-binding proteins, together with similar prokaryotic proteins of as yet unidentified function.
Collapse
Affiliation(s)
- U Pieper
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, Giessen, D-35392, Germany.
| | | | | | | | | |
Collapse
|
122
|
Tu CJ, Schuenemann D, Hoffman NE. Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconstitute the soluble phase of light-harvesting chlorophyll protein transport into thylakoid membranes. J Biol Chem 1999; 274:27219-24. [PMID: 10480939 DOI: 10.1074/jbc.274.38.27219] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integration of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane proceeds in two steps. First, LHCP interacts with a chloroplast signal recognition particle (cpSRP) to form a soluble targeting intermediate called the transit complex. Second, LHCP integrates into the thylakoid membrane in the presence of GTP, at least one other soluble factor, and undefined membrane components. We previously determined that cpSRP is composed of 43- and 54-kDa polypeptides. We have examined the subunit stoichiometry of cpSRP and find that it is trimeric and composed of two subunits of cpSRP43/subunit of cpSRP54. A chloroplast homologue of FtsY, an Escherichia coli protein that is critical for the function of E. coli SRP, was found largely in the stroma unassociated with cpSRP. When chloroplast FtsY was combined with cpSRP and GTP, the three factors promoted efficient LHCP integration into thylakoid membranes in the absence of stroma, demonstrating that they are all required for reconstituting the soluble phase of LHCP transport.
Collapse
Affiliation(s)
- C J Tu
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305, USA
| | | | | |
Collapse
|
123
|
Young ME, Keegstra K, Froehlich JE. GTP promotes the formation of early-import intermediates but is not required during the translocation step of protein import into chloroplasts. PLANT PHYSIOLOGY 1999; 121:237-44. [PMID: 10482679 PMCID: PMC59372 DOI: 10.1104/pp.121.1.237] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/1999] [Accepted: 05/18/1999] [Indexed: 05/20/2023]
Abstract
Protein import into chloroplasts is an energy-requiring process mediated by a proteinaceous import apparatus. Although previous work has shown that low levels of ATP or GTP can support precursor binding, the role of GTP during the import process remains unclear. Specifically, it is unknown whether GTP plays a separate role from ATP during the early stages of protein import and whether GTP has any role in the later stages of transport. We investigated the role of GTP during the various stages of protein import into chloroplasts by using purified GTP analogs and an in vitro import assay. GTP, GDP, the nonhydrolyzable analog GMP-PNP, and the slowly hydrolyzable analogs guanosine 5'-O-(2-thiodiphosphate) and guanosine 5'-O-(3-thiotriphosphate) were used in this study. Chromatographically purified 5'-guanylyl-imido-diphosphate and guanosine 5'-O-(3-thiotriphosphate) were found to inhibit the formation of early-import intermediates, even in the presence of ATP. We also observed that GTP does not play a role during the translocation of precursors from the intermediate state. We conclude that GTP hydrolysis influences events leading to the formation of early-import intermediates, but not subsequent steps such as precursor translocation.
Collapse
Affiliation(s)
- M E Young
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
124
|
Bacher G, Pool M, Dobberstein B. The ribosome regulates the GTPase of the beta-subunit of the signal recognition particle receptor. J Cell Biol 1999; 146:723-30. [PMID: 10459008 PMCID: PMC2156146 DOI: 10.1083/jcb.146.4.723] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein targeting to the membrane of the ER is regulated by three GTPases, the 54-kD subunit of the signal recognition particle (SRP) and the alpha- and beta-subunit of the SRP receptor (SR). Here, we report on the GTPase cycle of the beta-subunits of the SR (SRbeta). We found that SRbeta binds GTP with high affinity and interacts with ribosomes in the GTP-bound state. Subsequently, the ribosome increases the GTPase activity of SRbeta and thus functions as a GTPase activating protein for SRbeta. Furthermore, the interaction between SRbeta and the ribosome leads to a reduction in the affinity of SRbeta for guanine nucleotides. We propose that SRbeta regulates the interaction of SR with the ribosome and thereby allows SRalpha to scan membrane-bound ribosomes for the presence of SRP. Interaction between SRP and SRalpha then leads to release of the signal sequence from SRP and insertion into the translocon. GTP hydrolysis then results in dissociation of SR from the ribosome, and SRP from the SR.
Collapse
Affiliation(s)
- Gerald Bacher
- Zentrum für Molekulare Biologie der Universität Heidelberg, D-69052 Heidelberg, Germany
| | - Martin Pool
- Zentrum für Molekulare Biologie der Universität Heidelberg, D-69052 Heidelberg, Germany
| | - Bernhard Dobberstein
- Zentrum für Molekulare Biologie der Universität Heidelberg, D-69052 Heidelberg, Germany
| |
Collapse
|
125
|
Abstract
Members of the kinesin superfamily are force-generating ATPases that drive movement and influence cytoskeleton organization in cells. Often, more than one kinesin is implicated in a cellular process, and many kinesins are proposed to have overlapping functions. By using conventional kinesin as a model system, we have developed an approach to activate or inhibit a specific kinesin allele in the presence of other similar motor proteins. Modified ATP analogs are described that do not activate either conventional kinesin or another superfamily member, Eg5. However, a kinesin allele with Arg-14 in its nucleotide binding pocket mutated to alanine can use a subset of these nucleotide analogs to drive microtubule gliding. Cyclopentyl-ATP is one such analog. Cyclopentyl-adenylylimidodiphosphate, a nonhydrolyzable form of this analog, inhibits the mutant allele in microtubule-gliding assays, but not wild-type kinesin or Eg5. We anticipate that the incorporation of kinesin mutants and allele-specific activators and inhibitors in in vitro assays should clarify the role of individual motor proteins in complex cellular processes.
Collapse
Affiliation(s)
- T M Kapoor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
126
|
Gruss OJ, Feick P, Frank R, Dobberstein B. Phosphorylation of components of the ER translocation site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:785-93. [PMID: 10103008 DOI: 10.1046/j.1432-1327.1999.00215.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In many eukaryotic cells, protein secretion is regulated by extracellular signalling molecules giving rise to increased intracellular Ca2+ and activation of kinases and phosphatases. To test whether components involved in the first step of secretion, the translocation of proteins across the endoplasmic reticulum (ER) membrane, are regulated by Ca2+-dependent phosphorylation and dephosphorylation, we have investigated the effect of Ca2+ on kinases associated with the rough ER. Using purified rough microsomes from dog pancreas we found that Ca2+-dependent isoforms of protein kinase C (PKC) are associated with the rough ER and phosphorylate essential components of the protein translocation machinery. Phosphorylation of microsomal proteins by PKCs increased protein translocation efficiency in vitro. We also found that proteins of the translocation machinery became phosphorylated in intact cells. This suggests a further level of regulation of protein translocation across the ER membrane.
Collapse
Affiliation(s)
- O J Gruss
- Zentrum für Molekulare Biologie der Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
127
|
Abstract
The pilA gene of Neisseria gonorrhoeae was initially identified in a screen for transcriptional regulators of pilE, the expression locus for pilin, the major structural component of gonococcal pili. The predicted protein sequence for PilA has significant homology to two GTPases of the mammalian signal recognition particle (SRP), SRP54 and SRalpha. Homologs of SRP54 and SRalpha were subsequently identified in bacteria (Ffh and FtsY, respectively) and appear to form an SRP-like apparatus in prokaryotes. Of the two proteins, PilA is the most similar to FtsY (47% identical and 67% similar at the amino acid level). Like FtsY, PilA is essential for viability and hydrolyzes GTP. The similarities between PilA and the bacterial FtsY led us to ask whether PilA might function as the gonococcal FtsY. In this work, we show that overproduction of PilA in Escherichia coli leads to an accumulation of pre-beta-lactamase, similar to previous observations with other bacterial SRP components. Low-level expression of pilA in an ftsY conditional mutant can complement the ftsY mutation and restore normal growth to this strain under nonpermissive conditions. In addition, purified PilA can replace FtsY in an in vitro translocation assay using purified E. coli SRP components. A PilA mutant that is severely affected in its GTPase activity cannot replace FtsY in vivo or in vitro. However, overexpression of the GTPase mutant leads to the accumulation of pre-beta-lactamase, suggesting that the mutant protein may interact with the SRP apparatus to affect protein maturation. Taken together, these results show that the gonococcal PilA is an FtsY homolog and that the GTPase activity is necessary for its function.
Collapse
Affiliation(s)
- C G Arvidson
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, L220, Portland, Oregon 97201-3098, USA. arvidson@ohsu
| | | | | | | |
Collapse
|
128
|
Moll R, Schmidtke S, Schäfer G. Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:441-8. [PMID: 9914525 DOI: 10.1046/j.1432-1327.1999.00065.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we provide, for the first time, experimental evidence that a protein homologous to bacterial Ffh is part of an SRP-like ribonucleoprotein complex in hyperthermophilic archaea. The gene encoding the Ffh homologue in the hyperthermophilic archaeote Acidianus ambivalens has been cloned and sequenced. Recombinant Ffh protein was expressed in E. coli and subjected to biochemical and functional studies. A. ambivalens Ffh encodes a 50.4-kDa protein that is structured by three distinct regions: the N-terminal hydrophilic N-region (N), the GTP/GDP-binding domain (G) and a C-terminal located C-domain (C). The A. ambivalens Ffh sequence shares 44-46% sequence similarity with Ffh of methanogenic archaea, 34-36% similarity with eukaryal SRP54 and 30-34% similarity with bacterial Ffh. A polyclonal antiserum raised against the first two domains of A. ambivalens Ffh reacts specifically with a single protein (apparent molecular mass: 46 kDa, termed p46) present in cytosolic and in plasmamembrane cell fractions of A. ambivalens. Recombinant Ffh has a melting point of tm = 89 degreesC. Its intrinsic GTPase activity obviously depends on neutral pH and low ionic strength with a preference for chloride and acetate salts. Highest rates of GTP hydrolysis have been achieved at 81 degreesC in presence of 0.1-1 mm Mg2+. GTP hydrolysis is significantly inhibited by high glycerol concentrations, and the GTP hydrolysis rate also markedly decreases by addition of detergents. The Km for GTP is 13.7 microm at 70 degreesC and GTP hydrolysis is strongly inhibited by GDP (Ki = 8 microm). A. ambivalens Ffh, which includes an RNA-binding motif in the C-terminal domain, is shown to bind specifically to 7S RNA of the related crenarchaeote Sulfolobus solfataricus. Comparative sequence analysis reveals the presence of typical signal sequences in plasma membrane as well as extracellular proteins of hyperthermophilic crenarchaea which strongly supposes recognition events by an Ffh containing SRP-like particle in these organisms.
Collapse
Affiliation(s)
- R Moll
- Institute of Biochemistry, Medical University of Lübeck, Germany.
| | | | | |
Collapse
|
129
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
130
|
Schuenemann D, Gupta S, Persello-Cartieaux F, Klimyuk VI, Jones JD, Nussaume L, Hoffman NE. A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Proc Natl Acad Sci U S A 1998; 95:10312-6. [PMID: 9707644 PMCID: PMC21505 DOI: 10.1073/pnas.95.17.10312] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms involved in the posttranslational targeting of membrane proteins are not well understood. The light-harvesting chlorophyll proteins (LHCP) of the thylakoid membrane are a large family of hydrophobic proteins that are targeted in this manner. They are synthesized in the cytoplasm, translocated across the chloroplast envelope membranes into the stroma, bound by a stromal factor to form a soluble intermediate, "transit complex", and then integrated into the thylakoid membrane by a GTP dependent reaction. Signal recognition particle (SRP), a cytoplasmic ribonucleoprotein, is known to mediate the GTP dependent cotranslational targeting of proteins to the endoplasmic reticulum. We show that chloroplasts contain an SRP consisting of, cpSRP54, a homologue of SRP54 and a previously undescribed 43-kDa polypeptide (cpSRP43) instead of an RNA. We demonstrate that both subunits of cpSRP are required for the formation of the transit complex with LHCP. Furthermore, cpSRP54, cpSRP43, and LHCP are sufficient to form a complex that appears to be identical to authentic transit complex. We also show that the complex formed between LHCP and cpSRP, together with an additional soluble factor(s) are required for the proper integration of LHCP into the thylakoid membrane. It appears that the expanded role of cpSRP in posttranslational targeting of LHCP has arisen through the evolution of the 43-kDa protein.
Collapse
Affiliation(s)
- D Schuenemann
- Carnegie Institution of Washington, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Ogg SC, Barz WP, Walter P. A functional GTPase domain, but not its transmembrane domain, is required for function of the SRP receptor beta-subunit. J Biophys Biochem Cytol 1998; 142:341-54. [PMID: 9679135 PMCID: PMC2133050 DOI: 10.1083/jcb.142.2.341] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The signal recognition particle and its receptor (SR) target nascent secretory proteins to the ER. SR is a heterodimeric ER membrane protein whose subunits, SRalpha and SRbeta, are both members of the GTPase superfamily. Here we characterize a 27-kD protein in Saccharomyces cerevisiae (encoded by SRP102) as a homologue of mammalian SRbeta. This notion is supported (a) by Srp102p's sequence similarity to SRbeta; (b) by its disposition as an ER membrane protein; (c) by its interaction with Srp101p, the yeast SRalpha homologue; and (d) by its role in SRP-dependent protein targeting in vivo. The GTP-binding site in Srp102p is surprisingly insensitive to single amino acid substitutions that inactivate other GTPases. Multiple mutations in the GTP-binding site, however, inactivate Srp102p. Loss of activity parallels a loss of affinity between Srp102p and Srp101p, indicating that the interaction between SR subunits is important for function. Deleting the transmembrane domain of Srp102p, the only known membrane anchor in SR, renders SR soluble in the cytosol, which unexpectedly does not significantly impair SR function. This result suggests that SR functions as a regulatory switch that needs to associate with the ER membrane only transiently through interactions with other components.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Base Sequence
- Binding Sites/genetics
- Cloning, Molecular
- DNA, Fungal/genetics
- Endoplasmic Reticulum/metabolism
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- GTP Phosphohydrolases/chemistry
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Genes, Fungal
- Mutagenesis, Site-Directed
- Protein Conformation
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Sequence Deletion
- Signal Recognition Particle/metabolism
Collapse
Affiliation(s)
- S C Ogg
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California School of Medicine, San Francisco, California 94143-0448, USA
| | | | | |
Collapse
|
132
|
Keenan RJ, Freymann DM, Walter P, Stroud RM. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 1998; 94:181-91. [PMID: 9695947 DOI: 10.1016/s0092-8674(00)81418-x] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The crystal structure of the signal sequence binding subunit of the signal recognition particle (SRP) from Thermus aquaticus reveals a deep groove bounded by a flexible loop and lined with side chains of conserved hydrophobic residues. The groove defines a flexible, hydrophobic environment that is likely to contribute to the structural plasticity necessary for SRP to bind signal sequences of different lengths and amino acid sequence. The structure also reveals a helix-turn-helix motif containing an arginine-rich alpha helix that is required for binding to SRP RNA and is implicated in forming the core of an extended RNA binding surface.
Collapse
Affiliation(s)
- R J Keenan
- Department of Biochemistry and Biophysics, School of Medicine, University of California, San Francisco 94143-0448, USA
| | | | | | | |
Collapse
|
133
|
Scheffzek K, Ahmadian MR, Wittinghofer A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem Sci 1998; 23:257-62. [PMID: 9697416 DOI: 10.1016/s0968-0004(98)01224-9] [Citation(s) in RCA: 311] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stimulation of the intrinsic GTPase activity of GTP-binding proteins by GTPase-activating proteins (GAPs) is a basic principle of GTP-binding-protein downregulation. Recently, the molecular mechanism behind this reaction has been elucidated by studies on Ras and Rho, and their respective GAPs. The basic features involve stabilizing the existing catalytic machinery and supplementing it by an external arginine residue. This represents a novel mechanism for enzyme active-site formation.
Collapse
Affiliation(s)
- K Scheffzek
- Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany
| | | | | |
Collapse
|
134
|
Farmery M, Macao B, Larsson T, Samuelsson T. Binding of GTP and GDP induces a significant conformational change in the GTPase domain of Ffh, a bacterial homologue of the SRP 54 kDa subunit. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:61-8. [PMID: 9630516 DOI: 10.1016/s0167-4838(98)00045-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bacterial Ffh protein is homologous to the SRP54 subunit of the signal recognition particle. Ffh plays a key role in the targeting of proteins to the membrane and it is composed of a N-terminal domain (N), a middle GTPase (G) domain and a C-terminal M domain which has binding sites for SRP RNA and signal peptide. The GTP binding and hydrolysis of Ffh is critical to its function. We have used protease digestion to probe the conformation of the Mycoplasma mycoides Ffh N+G domain. In the absence of nucleotide the protein was comparatively sensitive to protease cleavage and we identified sites particularly prone to cleavage in a region near the C-terminus of the GTPase domain. However, in the presence of GTPgammaS or GDP this region is stabilized and the protein adopts a more ordered structure. The pattern of cleavage with GTPgammaS was indistinguishable from that when GDP was bound, indicating that the conformation of the nucleotide-free form is distinct from that when either GTPgammaS or GDP is bound to the protein. The possible functional role of this significant conformational change is discussed.
Collapse
Affiliation(s)
- M Farmery
- Department of Medical Biochemistry, Göteborg University Medicinaregatan 9A, S-413 90 Göteborg, Sweden
| | | | | | | |
Collapse
|
135
|
Valent QA, Scotti PA, High S, de Gier JW, von Heijne G, Lentzen G, Wintermeyer W, Oudega B, Luirink J. The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J 1998; 17:2504-12. [PMID: 9564033 PMCID: PMC1170592 DOI: 10.1093/emboj/17.9.2504] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Two distinct protein targeting pathways can direct proteins to the Escherichia coli inner membrane. The Sec pathway involves the cytosolic chaperone SecB that binds to the mature region of pre-proteins. SecB targets the pre-protein to SecA that mediates pre-protein translocation through the SecYEG translocon. The SRP pathway is probably used primarily for the targeting and assembly of inner membrane proteins. It involves the signal recognition particle (SRP) that interacts with the hydrophobic targeting signal of nascent proteins. By using a protein cross-linking approach, we demonstrate here that the SRP pathway delivers nascent inner membrane proteins at the membrane. The SRP receptor FtsY, GTP and inner membranes are required for release of the nascent proteins from the SRP. Upon release of the SRP at the membrane, the targeted nascent proteins insert into a translocon that contains at least SecA, SecY and SecG. Hence, as appears to be the case for several other translocation systems, multiple targeting mechanisms deliver a variety of precursor proteins to a common membrane translocation complex of the E.coli inner membrane.
Collapse
Affiliation(s)
- Q A Valent
- Department of Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Zhong X, Tai PC. When an ATPase is not an ATPase: at low temperatures the C-terminal domain of the ABC transporter CvaB is a GTPase. J Bacteriol 1998; 180:1347-53. [PMID: 9515899 PMCID: PMC107029 DOI: 10.1128/jb.180.6.1347-1353.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins which share a common function and a common nucleotide-binding domain. The CvaB protein from Escherichia coli is a member of the bacterial ABC exporter subfamily and is essential for the export of the peptide antibiotic colicin V. Here we report that, surprisingly, the CvaB carboxyl-terminal nucleotide-binding domain (BCTD) can be preferentially cross-linked to GTP but not to ATP at low temperatures. The cross-linking is Mg2+ and Mn2+ dependent. However, BCTD possesses similar GTPase and ATPase activities at 37 degrees C, with the same kinetic parameters and with similar responses to inhibitors. Moreover, a point mutation (D654H) in CvaB that completely abolishes colicin V secretion severely impairs both GTPase and ATPase activities in the corresponding BCTD, indicating that the two activities are from the same enzyme. Interestingly, hydrolysis activity of ATP is much more cold sensitive than that of GTP: BCTD possesses mainly GTP hydrolysis activity at 10 degrees C, consistent with the cross-linking results. These findings suggest a novel mechanism for an ABC protein-mediated transport with specificity for GTP hydrolysis.
Collapse
Affiliation(s)
- X Zhong
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | |
Collapse
|
137
|
Brodsky JL. Translocation of proteins across the endoplasmic reticulum membrane. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 178:277-328. [PMID: 9348672 DOI: 10.1016/s0074-7696(08)62139-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Secretory protein biogenesis begins with the insertion of a preprotein into the lumen of the endoplasmic reticulum (ER). This insertion event, known as ER protein translocation, can occur either posttranslationally, in which the preprotein is completely synthesized on cytosolic ribosomes before being translocated, or cotranslationally, in which membrane-associated ribosomes direct the nascent polypeptide chain into the ER concomitant with polypeptide elongation. In either case, preproteins are targeted to the ER membrane through specific interactions with cytosolic and/or ER membrane factors. The preprotein is then transferred to a multiprotein translocation machine in the ER membrane that includes a pore through which the preprotein passes into the ER lumen. The energy required to drive protein translocation may derive either from the coupling of translation to translocation (during cotranslational translocation) or from ER lumenal molecular chaperones that may harness the preprotein or regulate the translocation machinery (during posttranslational translocation).
Collapse
Affiliation(s)
- J L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
138
|
Settles AM, Yonetani A, Baron A, Bush DR, Cline K, Martienssen R. Sec-independent protein translocation by the maize Hcf106 protein. Science 1997; 278:1467-70. [PMID: 9367960 DOI: 10.1126/science.278.5342.1467] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The bacterial Sec and signal recognition particle (ffh-dependent) protein translocation mechanisms are conserved between prokaryotes and higher plant chloroplasts. A third translocation mechanism in chloroplasts [the proton concentration difference (DeltapH) pathway] was previously thought to be unique. The hcf106 mutation of maize disrupts the localization of proteins transported through this DeltapH pathway in isolated chloroplasts. The Hcf106 gene encodes a receptor-like thylakoid membrane protein, which shows homology to open reading frames from all completely sequenced bacterial genomes, which suggests that the DeltapH pathway has been conserved since the endosymbiotic origin of chloroplasts. Thus, the third protein translocation pathway, of which HCF106 is a component, is found in both bacteria and plants.
Collapse
Affiliation(s)
- A M Settles
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | |
Collapse
|
139
|
Moser C, Mol O, Goody RS, Sinning I. The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Proc Natl Acad Sci U S A 1997; 94:11339-44. [PMID: 9326611 PMCID: PMC23460 DOI: 10.1073/pnas.94.21.11339] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Targeting of many secretory and membrane proteins to the inner membrane in Escherichia coli is achieved by the signal recognition particle (SRP) and its receptor (FtsY). In E. coli SRP consists of only one polypeptide (Ffh), and a 4.5S RNA. Ffh and FtsY each contain a conserved GTPase domain (G domain) with an alpha-helical domain on its N terminus (N domain). The nucleotide binding kinetics of the NG domain of the SRP receptor FtsY have been investigated, using different fluorescence techniques. Methods to describe the reaction kinetically are presented. The kinetics of interaction of FtsY with guanine nucleotides are quantitatively different from those of other GTPases. The intrinsic guanine nucleotide dissociation rates of FtsY are about 10(5) times higher than in Ras, but similar to those seen in GTPases in the presence of an exchange factor. Therefore, the data presented here show that the NG domain of FtsY resembles a GTPase-nucleotide exchange factor complex not only in its structure but also kinetically. The I-box, an insertion present in all SRP-type GTPases, is likely to act as an intrinsic exchange factor. From this we conclude that the details of the GTPase cycle of FtsY and presumably other SRP-type GTPases are fundamentally different from those of other GTPases.
Collapse
Affiliation(s)
- C Moser
- Structural Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69012 Heidelberg, Germany
| | | | | | | |
Collapse
|
140
|
Klinker JF, Seifert R. Functionally nonequivalent interactions of guanosine 5'-triphosphate, inosine 5'-triphosphate, and xanthosine 5'-triphosphate with the retinal G-protein, transducin, and with Gi-proteins in HL-60 leukemia cell membranes. Biochem Pharmacol 1997; 54:551-62. [PMID: 9337071 DOI: 10.1016/s0006-2952(97)00205-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
G-proteins mediate signal transfer from receptors to effector systems. In their guanosine 5'-triphosphate (GTP)-bound form, G-protein alpha-subunits activate effector systems. Termination of G-protein activation is achieved by the high-affinity GTPase [E.C. 3.6.1.-] of their alpha-subunits. Like GTP, inosine 5'-triphosphate (ITP) and xanthosine 5'-triphosphate (XTP) can support effector system activation. We studied the interactions of GTP, ITP, and XTP with the retinal G-protein, transducin (TD), and with G-proteins in HL-60 leukemia cell membranes. TD hydrolyzed nucleoside 5'-triphosphates (NTPs) in the order of efficacy GTP > ITP > XTP. NTPs eluted TD from rod outer segment disk membranes in the same order of efficacy. ITP and XTP competitively inhibited TD-catalyzed GTP hydrolysis. In HL-60 membranes, the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and leukotriene B4 (LTB4) effectively activated GTP and ITP hydrolysis by Gi-proteins. fMLP and LTB4 were at least 10-fold more potent activators of ITPase than of GTPase. Complement C5a effectively activated the GTPase of Gi-proteins but was only a weak stimulator of ITPase. The potency of C5a to activate GTP and ITP hydrolysis was similar. The fMLP-stimulated GTPase had a lower Km value than the fMLP-stimulated ITPase, whereas the opposite was true for the Vmax values. fMLP, C5a, and LTB4 did not stimulate XTP hydrolysis. Collectively, our data show that GTP, ITP, and XTP bind to G-proteins with different affinities, that G-proteins hydrolyze NTPs with different efficacies, and that chemoattractants stimulate GTP and ITP hydrolysis by Gi-proteins in a receptor-specific manner. On the basis of our results and the data in the literature, we put forward the hypothesis that GTP, ITP, and XTP act as differential signal amplifiers and signal sorters at the G-protein level.
Collapse
Affiliation(s)
- J F Klinker
- Institut für Neuropsychopharmakologie, Freie Universität Berlin, Germany
| | | |
Collapse
|
141
|
Powers T, Walter P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J 1997; 16:4880-6. [PMID: 9305630 PMCID: PMC1170123 DOI: 10.1093/emboj/16.16.4880] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ffh-4.5S ribonucleoprotein particle (RNP) and FtsY from Escherichia coli are homologous to essential components of the mammalian signal recognition particle (SRP) and SRP receptor, respectively. The ability of these E. coli components to function in a bona fide co-translational targeting pathway remains unclear. Here we demonstrate that the Ffh-4.5S RNP and FtsY can efficiently replace their mammalian counterparts in targeting nascent secretory proteins to microsomal membranes in vitro. Targeting in the heterologous system requires a hydrophobic signal sequence, utilizes GTP and, moreover, occurs co-translationally. Unlike mammalian SRP, however, the Ffh-4.5S RNP is unable to arrest translational elongation, which results in a narrow time window for the ribosome nascent chain to interact productively with the membrane-bound translocation machinery. The highly negatively charged N-terminal domain of FtsY, which is a conserved feature among prokaryotic SRP receptor homologs, is important for translocation and acts to localize the protein to the membrane. Our data illustrate the extreme functional conservation between prokaryotic and eukaryotic SRP and SRP receptors and suggest that the basic mechanism of co-translational protein targeting is conserved between bacteria and mammals.
Collapse
Affiliation(s)
- T Powers
- Department of Biochemistry and Biophysics, University of California, School of Medicine, San Francisco 94143, USA.
| | | |
Collapse
|
142
|
Yu B, Slepak VZ, Simon MI. Characterization of a Goalpha mutant that binds xanthine nucleotides. J Biol Chem 1997; 272:18015-9. [PMID: 9218429 DOI: 10.1074/jbc.272.29.18015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several GTP binding proteins, including EF-Tu, Ypt1, rab-5, and FtsY, and adenylosuccinate synthetase have been reported to bind xanthine nucleotides when the conserved aspartate residue in the NKXD motif was changed to asparagine. However, the corresponding single Goalpha mutant protein (D273N) did not bind either xanthine nucleotides or guanine nucleotides. Interestingly, the introduction of a second mutation to generate the Goalpha subunit D273N/Q205L switched nucleotide binding specificity to xanthine nucleotide. The double mutant protein GoalphaD273N/Q205L (GoalphaX) bound xanthine triphosphate, but not guanine triphosphate. Recombinant GoalphaX (GoalphaD273N/Q205L) formed heterotrimers with betagamma complexes only in the presence of xanthine diphosphate (XDP), and the binding to betagamma was inhibited by xanthine triphosphate (XTP). Furthermore, as a result of binding to XTP, the GoalphaX protein underwent a conformational change similar to that of the activated wild-type Goalpha. In transfected COS-7 cells, we demonstrate that the interaction between GoalphaX and betagamma occurred only when cell membranes were permeabilized to allow the uptake of xanthine diphosphate. This is the first example of a switch in nucleotide binding specificity from guanine to xanthine nucleotides in a heterotrimeric G protein alpha subunit.
Collapse
Affiliation(s)
- B Yu
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
143
|
Mul YM, Rio DC. Reprogramming the purine nucleotide cofactor requirement of Drosophila P element transposase in vivo. EMBO J 1997; 16:4441-7. [PMID: 9250688 PMCID: PMC1170070 DOI: 10.1093/emboj/16.14.4441] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Guanosine triphosphate (GTP)-binding proteins are involved in controlling a wide range of fundamental cellular processes. In vitro studies have indicated a role for GTP during Drosophila P element transposition. Here we show that P element transposase contains a non-canonical GTP-binding domain that is critical for its ability to mediate transposition in Drosophila cells. Moreover, a single amino acid substitution could switch the nucleotide binding-specificity of transposase from GTP to xanthosine triphosphate (XTP). Importantly, this mutant protein could no longer function effectively in transposition in vivo but required addition of exogenous xanthine or xanthosine for reactivation. These results suggest that transposition may be controlled by physiological GTP levels and demonstrate that a single mutation can switch the nucleotide specificity for a complex cellular process in vivo.
Collapse
Affiliation(s)
- Y M Mul
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | |
Collapse
|
144
|
Montoya G, Svensson C, Luirink J, Sinning I. Expression, crystallization and preliminary X-ray diffraction study of FtsY, the docking protein of the signal recognition particle of E. coli. Proteins 1997; 28:285-8. [PMID: 9188744 DOI: 10.1002/(sici)1097-0134(199706)28:2<285::aid-prot15>3.0.co;2-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FtsY is the docking protein or SR alpha homologue in E. coli. It is involved in targeting secretory proteins to the cytoplasmic membrane by interacting with the signal recognition particle, controlled by guanosine 5'-triphosphate. Two different constructs have been used in crystallization studies: the full-length protein and a truncated fragment with a his-tag at the C terminus. Only the second construct resulted in crystals suitable for x-ray diffraction. The crystals belong to the monoclinic space group P2(1) with cell dimensions a = 32.20 A, b = 79.57 A, c = 59.21 A, and beta = 94.45, and contain one molecule per asymmetric unit. At cryogenic temperatures the crystals diffract to a resolution limit of 2.5 A by using a rotating anode, and beyond 1.8 A by using synchrotron radiation.
Collapse
Affiliation(s)
- G Montoya
- European Molecular Biology Laboratory, Structural Biology Programme, Heidelberg, Germany
| | | | | | | |
Collapse
|
145
|
van Doorn LJ, Giesendorf BA, Bax R, van der Zeijst BA, Vandamme P, Quint WG. Molecular discrimination between Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter upsaliensis by polymerase chain reaction based on a novel putative GTPase gene. Mol Cell Probes 1997; 11:177-85. [PMID: 9232616 DOI: 10.1006/mcpr.1997.0100] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polymerase chain reaction (PCR) mediated DNA fingerprinting has resulted in the identification of a novel Campylobacter jejuni gene, encoding a GTPase protein. The gene, consisting of 383 amino acids contained semi-conserved GTP-binding sites (designated G-1 to G-4), that are characteristic for members of the GTPase protein superfamily. Remarkably, this gene from C. Jejuni appears to encode a member of a novel family of GTP-binding proteins, containing two separate putative GTP-binding domains, each comprising a series of semi-conserved GTP-binding motifs. Spacing between these motifs is highly conserved. Based on this novel gene, a general PCR strategy for the identification of C. jejuni, C. coli, C. lari and C. upsaliensis was developed. PCR primers were deduced from GTP-binding motifs G-1 and G-3 of the first GTP-binding domain. These GTP-binding sites flank a variable region of precisely 117 bp in the four Campylobacter spp. that allowed the development of species-specific probes. This PCR-hybridization assay offers a novel tool for rapid molecular detection and specific identification of the thermophilic Campylobacter spp.
Collapse
|
146
|
Affiliation(s)
- J S Millman
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
147
|
Rapiejko PJ, Gilmore R. Empty site forms of the SRP54 and SR alpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell 1997; 89:703-13. [PMID: 9182758 DOI: 10.1016/s0092-8674(00)80253-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The SRP54 and SR alpha subunits of the signal recognition particle (SRP) and the SRP receptor (SR) undergo a tightly coupled GTPase cycle that mediates the signal sequence-dependent attachment of ribosomes to the Sec61 complex. Here, we show that SRP54 and SR alpha are in the empty site conformation prior to contact between the SRP-ribosome complex and the membrane-bound SR. Cooperative binding of GTP to SRP54 and SR alpha stabilizes the SRP-SR complex and initiates signal sequence transfer from SRP54 to Sec61 alpha. The GTP-bound conformations of SR alpha and SRP54 perform distinct roles, with SR alpha performing a predominant role in complex stabilization. Hydrolysis by both SRP54 and SR alpha is a prerequisite for dissociation of the SRP-SR complex.
Collapse
Affiliation(s)
- P J Rapiejko
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01655-0103, USA
| | | |
Collapse
|
148
|
Newitt JA, Bernstein HD. The N-domain of the signal recognition particle 54-kDa subunit promotes efficient signal sequence binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:720-9. [PMID: 9183011 DOI: 10.1111/j.1432-1033.1997.00720.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The signal recognition particle 54-kDa subunit (SRP54) binds to the signal sequences of nascent presecretory and transmembrane proteins. Previous studies have shown that signal sequences bind to the C-terminal methionine-rich domain of the protein (M-domain), but have raised the possibility that either the N-terminal domain (N-domain) or the central guanosine triphosphatase module (GTPase-domain) also contribute to signal-sequence-binding activity. We have generated a series of N-domain and GTPase-domain mutants to investigate this issue further. Mutations in a conserved N-domain motif (ALLEADV) produced significant defects in signal sequence binding that correlate with the severity of the mutation. The magnitude of the defect was independent of the preprotein substrate, which suggested that the mutations do not alter the specificity of signal sequence recognition. The N-domain mutants also showed defects in promoting the translocation of presecretory proteins across the membrane of microsomal vesicles, but these defects appeared to be a direct consequence of the reduction in signal-sequence-binding activity and not separate effects of the mutations. By contrast, mutations in the guanosine triphosphatase consensus sequence had no effect on signal sequence binding, but instead severely impaired protein translocation activity. These results indicate that a principal function of the SRP54 N-domain is to promote efficient signal sequence binding. These data also suggest that the SRP54 GTPase regulates the cycle of signal sequence binding and release, perhaps by modulating the relative orientation of the N- and M-domains.
Collapse
Affiliation(s)
- J A Newitt
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1810, USA
| | | |
Collapse
|
149
|
Moll R, Schmidtke S, Petersen A, Schäfer G. The signal recognition particle receptor alpha subunit of the hyperthermophilic archaeon Acidianus ambivalens exhibits an intrinsic GTP-hydrolyzing activity. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1335:218-30. [PMID: 9133659 DOI: 10.1016/s0304-4165(96)00141-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two adjacent genes of the acidophilic and hyperthermophilic crenarchaeon Acidianus ambivalens were cloned and sequenced. The 1.6 kb genomic nucleotide sequence under investigation consists of the 1.12 kb SRa gene encoding the putative signal recognition particle receptor alpha subunit (SR alpha, 42.2 kDa) and the 186 basepair secE gene coding for the putative secretory component secE subunit (6800 Da). The SR alpha protein is structured by three distinct regions: the N-terminal hydrophilic H-region, the following X-region and the C-terminal GTP-binding domain. A polyclonal anti-E. coli lacZ/A. ambivalens SR alpha antiserum detects a 51 kDa cell protein (p51) on immunoblots. Proteolysis of the recombinant SR alpha protein by Proteinase K produces a 31.6 kDa protease-resistant protein fragment comprising X-region and G-domain. The protein binds tightly to the GTP-agarose affinity matrix in a temperature-dependent manner. It hydrolyzes GTP readily at higher temperatures only in the presence of Mg2+. Point mutations (T326N) and (D329A) in the G-4 element of A. ambivalens SR alpha G-domain diminish the GTPase activity significantly. In contrast, the deletion mutant protein SR alpha (delta1-92) lacking the hydrophilic H-region displays a higher GTP-hydrolyzing activity when compared to the unmodified recombinant protein. Addition of GDP greatly inhibits GTP hydrolysis in mutant and unmodified A. ambivalens SR alpha.
Collapse
Affiliation(s)
- R Moll
- Institut für Biochemie, Medizinische Universität zu Lübeck,
| | | | | | | |
Collapse
|
150
|
Guo S, Ma N, Ives DH. cis-Active Ras G2-like sequence implicated in the heterotropic activation of the deoxyadenosine kinase of Lactobacillus acidophilus R-26. J Biol Chem 1997; 272:6890-7. [PMID: 9054375 DOI: 10.1074/jbc.272.11.6890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deoxyadenosine kinase (dAK) forms a heterodimer with either deoxyguanosine kinase (dGK) or deoxycytidine kinase (dCK), and is heterotropically activated 3-5 times by dGuo or dCyd. Expressed alone, dAK is inactive and exhibits no response to dGuo or dCyd; activity and heterotropic response are fully restored upon reassociation with dGK or dCK. However, turnover of independently expressed dGK or dCK is nearly maximal, being further activated only 50-100% upon reassociation with dAK. In neither case is the heterotropic activation due to ligand-induced heterodimer formation. A proline/alanine substitution within a dAK segment homologous to loop G2 of Ras proteins yielded a heterodimer with dAK permanently cis-activated 2-fold, with a corresponding reduction in heterotropic activation by dGuo. A chimeric dAK, with 25% of its C terminus substituted by the homologous sequence from dGK, was inactive alone, and its characteristics were unchanged in the reconstituted heterodimer. Superimposing the Pro/Ala substitution on this chimera also reduced heterotropic activation by half. Cross-linking the dimer by 1,5-difluoro-2,4-dinitrobenzene was inhibited by ATP, dATP, dGTP, and dAdo, suggesting the proximity of the active site(s) to the interface. These data suggest that dAK depends on dGK or dCK in a manner resembling the reliance of Ras upon GTPase activating protein.
Collapse
Affiliation(s)
- S Guo
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|