101
|
Abstract
Polyketide natural products show great promise as medicinal agents. Typically the products of microbial secondary biosynthesis, polyketides are synthesized by an evolutionarily related but architecturally diverse family of multifunctional enzymes called polyketide synthases. A principal limitation for fundamental biochemical studies of these modular megasynthases, as well as for their applications in biotechnology, is the challenge associated with manipulating the natural microorganism that produces a polyketide of interest. To ameliorate this limitation, over the past decade several genetically amenable microbes have been developed as heterologous hosts for polyketide biosynthesis. Here we review the state of the art as well as the difficulties associated with heterologous polyketide production. In particular, we focus on two model hosts, Streptomyces coelicolor and Escherichia coli. Future directions for this relatively new but growing technological opportunity are also discussed.
Collapse
Affiliation(s)
- B A Pfeifer
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA
| | | |
Collapse
|
102
|
Carreras CW, Ashley GW. Manipulation of polyketide biosynthesis for new drug discovery. EXS 2001; 89:89-108. [PMID: 10997284 DOI: 10.1007/978-3-0348-8393-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modular polyketide synthases (PKS) are large multifunctional proteins which direct the condensation of activated short chain carboxylic acids into products of defined length and functionality using a dedicated set of active sites, or module, for each step in the polymerization. The structure of the product is directly related to the number, content and sequence of modules in a PKS. Technology is described which allows the rational manipulation of the biosynthesis of these compounds and enables the generation of specific novel polyketide structures. Examples of polyketide drugs whose structures may be manipulated using this technology are given.
Collapse
Affiliation(s)
- C W Carreras
- Department of New Technologies, Kosan Biosciences, Inc., Hayward, CA 94545, USA
| | | |
Collapse
|
103
|
Abstract
Metabolic engineering of natural products is a science that has been built on the goals of traditional strain improvement with the availability of modern molecular biological technologies. In the past 15 years, the state of the art in metabolic engineering of natural products has advanced from the first proof-of-principle experiment based on minimal known genetics to a commonplace event using highly specific and sophisticated gene manipulation methods. With the availability of genes, host organisms, vector systems, and standard molecular biological tools, it is expected that metabolic engineering will be translated into industrial reality.
Collapse
Affiliation(s)
- W R Strohl
- Natural Products Drug Discovery-Microbiology, Merck Research Labs, Rahway, New Jersey 07065, USA.
| |
Collapse
|
104
|
Xue Y, Sherman DH. Biosynthesis and combinatorial biosynthesis of pikromycin-related macrolides in Streptomyces venezuelae. Metab Eng 2001; 3:15-26. [PMID: 11162229 DOI: 10.1006/mben.2000.0167] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pikromycin-related macrolides have recently attracted significant research interest because they are structurally related to the semisynthetic ketolide antibiotics that have demonstrated promising potential in combating multi-drug-resistant respiratory pathogens. Cloning and in-depth studies of the pikromycin biosynthetic gene cluster from Streptomyces venezuelae have led to new avenues in modular polyketide synthases, deoxysugar biosynthesis, cytochrome P450 hydroxylase, secondary metabolite gene regulation, and antibiotic resistance. Moreover, the knowledge and tools used for these studies are proving to be valuable in the development of advanced technologies for combinatorial biosynthesis of new macrolide antibiotics. This review summarizes these new developments and introduces S. venezuelae as a powerful new system for secondary metabolite pathway engineering from bench-top genetic manipulation to product fermentation.
Collapse
Affiliation(s)
- Y Xue
- Midwest Molecular, Inc., 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
105
|
Volchegursky Y, Hu Z, Katz L, McDaniel R. Biosynthesis of the anti-parasitic agent megalomicin: transformation of erythromycin to megalomicin in Saccharopolyspora erythraea. Mol Microbiol 2000; 37:752-62. [PMID: 10972798 DOI: 10.1046/j.1365-2958.2000.02059.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Megalomicin is a therapeutically diverse compound which possesses antiparasitic, antiviral and antibacterial properties. It is produced by Micromonospora megalomicea and differs from the well-known macrolide antibiotic erythromycin by the addition of a unique deoxyamino sugar, megosamine, to the C-6 hydroxyl. We have cloned and sequenced a 48 kb segment of the megalomicin (meg) biosynthetic gene cluster which contains the modular polyketide synthase (PKS) and the complete pathway for megosamine biosynthesis. The similarities and distinctions between the related megalomicin and erythromycin gene clusters are discussed. Heterologous expression of the megalomicin PKS in Streptomyces lividans led to production of 6-deoxyerythronolide B, the same macrolactone intermediate for erythromycin. A 12 kb fragment harbouring the putative megosamine pathway was expressed in Saccharopolyspora erythraea, resulting in the conversion of erythromycin to megalomicin. Considering the extensive knowledge surrounding the genetic engineering of the erythromycin PKS and the familiarity with genetic manipulation and fermentation of S. erythraea, the ability to produce megalomicin in this strain should allow the engineering of novel megalomicin analogues with potentially improved therapeutic activities.
Collapse
|
106
|
Abstract
Polyketide synthases catalyze the assembly of complex natural products from simple precursors such as propionyl-CoA and methylmalonyl-CoA in a biosynthetic process that closely parallels fatty acid biosynthesis. Like fatty acids, polyketides are assembled by successive decarboxylative condensations of simple precursors. But whereas the intermediates in fatty acid biosynthesis are fully reduced to generate unfunctionalized alkyl chains, the intermediates in polyketide biosynthesis may be only partially processed, giving rise to complex patterns of functional groups. Additional complexity arises from the use of different starter and chain extension substrates, the generation of chiral centers, and further functional group modifications, such as cyclizations. The structural and functional modularity of these multienzyme systems has raised the possibility that polyketide biosynthetic pathways might be rationally reprogrammed by combinatorial manipulation. An essential prerequisite for harnessing this biosynthetic potential is a better understanding of the molecular recognition features of polyketide synthases. Within this decade, a variety of genetic, biochemical, and chemical investigations have yielded insights into the tolerance and specificity of several architecturally different polyketide synthases. The results of these studies, together with their implications for biosynthetic engineering, are summarized in this review.
Collapse
Affiliation(s)
- C Khosla
- Department of Chemical Engineering, Stanford University, California 94305-5025, USA.
| | | | | | | |
Collapse
|
107
|
Lal R, Kumari R, Kaur H, Khanna R, Dhingra N, Tuteja D. Regulation and manipulation of the gene clusters encoding type-I PKSs. Trends Biotechnol 2000; 18:264-74. [PMID: 10802562 DOI: 10.1016/s0167-7799(00)01443-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Modular polyketide synthases are large, multifunctional enzyme complexes that are involved in the biosynthesis of important polyketides. Recent studies have revolutionized our understanding of the linear organization of polyketide-synthase-gene clusters. They have provided crucial information on the initiation, elongation and termination of polyketide chains, and thus a rational basis for the generation of novel compounds. Combinatorial libraries have helped this field to move from a random approach to a more empirical phase. The large number of diverse analogs of antibiotics that are presently produced demonstrate the enormous potential of combinatorial biosynthesis.
Collapse
Affiliation(s)
- R Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | | | | | | | | | | |
Collapse
|
108
|
Sosio M, Giusino F, Cappellano C, Bossi E, Puglia AM, Donadio S. Artificial chromosomes for antibiotic-producing actinomycetes. Nat Biotechnol 2000; 18:343-5. [PMID: 10700154 DOI: 10.1038/73810] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacteria belonging to the order Actinomycetales produce most microbial metabolites thus far described, several of which have found applications in medicine and agriculture. However, most strains were discovered by their ability to produce a given molecule and are, therefore, poorly characterized physiologically and genetically. Thus, methodologies for genetic manipulation of actinomycetes are not available and efficient tools have been developed for just a few strains. This constitutes a serious limitation to applying molecular genetics approaches to strain development and structural manipulation of microbial metabolites. To overcome this hurdle, we have developed bacterial artificial chromosomes (BAC) that can be shuttled among Escherichia coli, where they replicate autonomously, and a suitable Streptomyces host, where they integrate site-specifically into the chromosome. The existence of gene clusters and of genetically amenable host strains, such as Streptomyces coelicolor or Streptomyces lividans, makes this a sensible approach. We report here that 100 kb segments of actinomycete DNA can be cloned into these vectors and introduced into genetically accessible S. lividans, where they are stably maintained in integrated form in its chromosome.
Collapse
Affiliation(s)
- M Sosio
- Biosearch Italia SpA, 21040 Gerenzano, Italy
| | | | | | | | | | | |
Collapse
|
109
|
Tang L, Fu H, McDaniel R. Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases. CHEMISTRY & BIOLOGY 2000; 7:77-84. [PMID: 10662693 DOI: 10.1016/s1074-5521(00)00073-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recently developed tools for the genetic manipulation of modular polyketide synthases (PKSs) have advanced the development of combinatorial biosynthesis technologies for drug discovery. Although many of the current techniques involve engineering individual domains or modules of the PKS, few experiments have addressed the ability to combine entire protein subunits from different modular PKSs to create hybrid polyketide pathways. We investigated this possibility by in vivo assembly of heterologous PKS complexes using natural and altered subunits from related macrolide PKSs. RESULTS The pikAI and pikAII genes encoding subunits 1 and 2 (modules 1-4) of the picromycin PKS (PikPKS) and the eryAIII gene encoding subunit 3 (modules 5-6) of the 6-deoxyerythronolide B synthase (DEBS) were cloned in two compatible Streptomyces expression vectors. A strain of Streptomyces lividans co-transformed with the two vectors produced the hybrid macrolactone 3-hydroxynarbonolide. Co-expression of the same pik genes with the gene for subunit 3 of the oleandomycin PKS (OlePKS) was also successful. A series of hybrid polyketide pathways was then constructed by combining PikPKS subunits 1 and 2 with modified DEBS3 subunits containing engineered domains in modules 5 or 6. We also report the effect of junction location in a set of DEBS-PikPKS fusions. CONCLUSIONS We show that natural as well as engineered protein subunits from heterologous modular PKSs can be functionally assembled to create hybrid polyketide pathways. This work represents a new strategy that complements earlier domain engineering approaches for combinatorial biosynthesis in which complete modules or PKS protein subunits, in addition to individual enzymatic domains, are used as building blocks for PKS engineering.
Collapse
Affiliation(s)
- L Tang
- Incorporated, KOSAN Biosciences, Hayward, CA 94545, USA. tang@kosan. com
| | | | | |
Collapse
|
110
|
Tang L, Shah S, Chung L, Carney J, Katz L, Khosla C, Julien B. Cloning and heterologous expression of the epothilone gene cluster. Science 2000; 287:640-2. [PMID: 10649995 DOI: 10.1126/science.287.5453.640] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The polyketide epothilone is a potential anticancer agent that stabilizes microtubules in a similar manner to Taxol. The gene cluster responsible for epothilone biosynthesis in the myxobacterium Sorangium cellulosum was cloned and completely sequenced. It encodes six multifunctional proteins composed of a loading module, one nonribosomal peptide synthetase module, eight polyketide synthase modules, and a P450 epoxidase that converts desoxyepothilone into epothilone. Concomitant expression of these genes in the actinomycete Streptomyces coelicolor produced epothilones A and B. Streptomyces coelicolor is more amenable to strain improvement and grows about 10-fold as rapidly as the natural producer, so this heterologous expression system portends a plentiful supply of this important agent.
Collapse
Affiliation(s)
- L Tang
- KOSAN Biosciences, 3832 Bay Center Place, Hayward, CA 94545, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Bioactive Fungal Natural Products Through Classic and Biocombinatorial Approaches. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1572-5995(00)80027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
112
|
Abstract
Erythromycin, a complex polyketide antibiotic belonging to the macrolide class, is produced as a natural product by the bacterium Saccharopolyspora erythraea. The genes encoding the enzymes responsible for the synthesis of the antibiotic have been cloned and sequenced, revealing that the polyketide backbone of the molecule in produced by a polyketide synthase (PKS) composed of multifunctional proteins that contain discrete functional domains for each step of synthesis. Genetic manipulation of the PKS-encoding genes can result in predictable changes in the structure of the polyketide component of erythromycin, many of which are not easily achievable through standard chemical derivatization or synthesis. Many of the changes can be combined to lead to the further generation of navel structures. Whereas genetic engineering of the erythromycin structure has been practiced for a number of years, the re cent and continuing discoveries of modular PKSs for the synthesis of many other important complex polyketides has raised the possibility of generating novel structures in these molecules by genetic manipulation, as well.
Collapse
Affiliation(s)
- L Katz
- Kosan Biosciences, Inc., Hayward, California 94545, USA.
| | | |
Collapse
|
113
|
Xue Q, Ashley G, Hutchinson CR, Santi DV. A multiplasmid approach to preparing large libraries of polyketides. Proc Natl Acad Sci U S A 1999; 96:11740-5. [PMID: 10518520 PMCID: PMC18356 DOI: 10.1073/pnas.96.21.11740] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A three-plasmid system for heterologous expression of 6-deoxyerythronolide B synthase (DEBS) has been developed to facilitate combinatorial biosynthesis of polyketides made by type I modular polyketide synthases (PKSs). The eryA PKS genes encoding the three DEBS subunits were individually cloned into three compatible Streptomyces vectors carrying mutually selectable antibiotic resistance markers. A strain of Streptomyces lividans transformed with all three plasmids produced 6-deoxyerythronolide B at a level similar to that of a strain transformed with a single plasmid containing all three genes. The utility of this system in combinatorial biosynthesis was demonstrated through production of a library of modified polyketide macrolactones by using versions of each plasmid constructed to contain defined mutations. Combinations of these vector sets were introduced into S. lividans, resulting in strains producing a wide range of 6-deoxyerythronolide B analogs. This method can be extended to any modular PKS and has the potential to produce thousands of novel natural products, including ones derived from further modification of the PKS products by tailoring enzymes.
Collapse
Affiliation(s)
- Q Xue
- Kosan Biosciences, 3832 Bay Center Place, Hayward, CA 94545, USA
| | | | | | | |
Collapse
|
114
|
Hu Z, Hunziker D, Hutchinson CR, Khosla C. A host-vector system for analysis and manipulation of rifamycin polyketide biosynthesis in Amycolatopsis mediterranei. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2335-2341. [PMID: 10517586 DOI: 10.1099/00221287-145-9-2335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modular polyketide synthases (PKSs) are a large family of multifunctional enzymes responsible for the biosynthesis of numerous bacterial natural products such as erythromycin and rifamycin. Advanced genetic analysis of these remarkable systems is often seriously hampered by the large size (>40 kb) of PKS gene clusters, and, notwithstanding their considerable fundamental and biotechnological significance, by the lack of suitable methods for engineering non-selectable modifications in chromosomally encoded PKS genes. The development of a facile host-vector strategy for genetic engineering of the rifamycin PKS in the producing organism, Amycolatopsis mediterranei S699, is described here. The genes encoding all 10 modules of the rifamycin PKS were replaced with a hygromycin-resistance marker gene. In a similar construction, only the first six modules of the PKS were replaced. The deletion hosts retained the ability to synthesize the primer unit 3-amino-5-hydroxybenzoic acid (AHBA), as judged by co-synthesis experiments with a mutant strain lacking AHBA synthase activity. Suicide plasmids carrying a short fragment from the 5' flanking end of the engineered deletion, an apramycin-resistance marker gene, and suitably engineered PKS genes could be introduced via electroporation into the deletion hosts, resulting in the integration of PKS genes and biosynthesis of a reporter polyketide in quantities comparable to those produced by the wild-type organism. Since this strategy for engineering recombinant PKSs in A. mediterranei requires only a selectable single crossover and eliminates the need for tedious non-selectable double-crossover experiments, it makes rifamycin PKS an attractive target for extensive genetic manipulation.
Collapse
Affiliation(s)
- Zhihao Hu
- Departments of Chemical Engineering1, Chemistry and Biochemistry2, Stanford University, Stanford, CA 94305-5025, USA
| | - Daniel Hunziker
- Departments of Chemical Engineering1, Chemistry and Biochemistry2, Stanford University, Stanford, CA 94305-5025, USA
| | - C Richard Hutchinson
- Departments of Chemical Engineering1, Chemistry and Biochemistry2, Stanford University, Stanford, CA 94305-5025, USA
| | - Chaitan Khosla
- Departments of Chemical Engineering1, Chemistry and Biochemistry2, Stanford University, Stanford, CA 94305-5025, USA
| |
Collapse
|
115
|
Tang L, Fu H, Betlach MC, McDaniel R. Elucidating the mechanism of chain termination switching in the picromycin/methymycin polyketide synthase. CHEMISTRY & BIOLOGY 1999; 6:553-8. [PMID: 10421766 DOI: 10.1016/s1074-5521(99)80087-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND A single modular polyketide synthase (PKS) gene cluster is responsible for production of both the 14-membered macrolide antibiotic picromycin and the 12-membered macrolide antibiotic methymycin in Streptomyces venezuelae. Building on the success of the heterologous expression system engineered using the erythromycin PKS, we have constructed an analogous system for the picromycin/methymycin PKS. Through heterologous expression and construction of a hybrid PKS, we have examined the contributions that the PKS, its internal thioesterase domain (pikTE) and the Pik TEII thioesterase domain make in termination and cyclization of the two polyketide intermediates. RESULTS The picromycin/methymycin PKS genes were functionally expressed in the heterologous host Streptomyces lividans, resulting in production of both narbonolide and 10-deoxymethynolide (the precursors of picromycin and methymycin, respectively). Co-expression with the Pik TEII thioesterase led to increased production levels, but did not change the ratio of the two compounds produced, leaving the function of this protein largely unknown. Fusion of the PKS thioesterase domain (pikTE) to 6-deoxyerythronolide B synthase (DEBS) resulted in formation of only 14-membered macrolactones. CONCLUSIONS These experiments demonstrate that the PKS alone is capable of catalyzing the synthesis of both 14- and 12-membered macrolactones and favor a model by which different macrolactone rings result from a combination of the arrangement between the module 5 and module 6 subunits in the picromycin PKS complex and the selectivity of the pikTE domain.
Collapse
Affiliation(s)
- L Tang
- KOSAN Biosciences, Inc., 3832 Bay Center Place, Hayward, CA 94545, USA
| | | | | | | |
Collapse
|
116
|
Sandmann G, Albrecht M, Schnurr G, Knörzer O, Böger P. The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol 1999; 17:233-7. [PMID: 10354560 DOI: 10.1016/s0167-7799(99)01307-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Carotenoids are antioxidants with considerable pharmaceutical potential. More than 600 carotenoid structures are known but their availability is limited owing to practical difficulties associated with chemical synthesis and isolation from microorganisms or plant tissue. To overcome some of these problems, heterologous expression of carotenoid genes in Escherichia coli can be used for the synthesis of rare derivatives or even of novel carotenoids. Novel and rare carotenoids can be obtained by combining carotenoid genes from different host species in E. coli.
Collapse
Affiliation(s)
- G Sandmann
- Biosynthesis Group, Botanical Institute, J.W. Goethe Universität, PO Box 111932, D-60054 Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
117
|
Bender CL, Alarcón-Chaidez F, Gross DC. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 1999; 63:266-92. [PMID: 10357851 PMCID: PMC98966 DOI: 10.1128/mmbr.63.2.266-292.1999] [Citation(s) in RCA: 538] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents.
Collapse
Affiliation(s)
- C L Bender
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078-3032, USA.
| | | | | |
Collapse
|
118
|
Gokhale RS, Tsuji SY, Cane DE, Khosla C. Dissecting and exploiting intermodular communication in polyketide synthases. Science 1999; 284:482-5. [PMID: 10205055 DOI: 10.1126/science.284.5413.482] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modular polyketide synthases catalyze the biosynthesis of medicinally important natural products through an assembly-line mechanism. Although these megasynthases display very precise overall selectivity, we show that their constituent modules are remarkably tolerant toward diverse incoming acyl chains. By appropriate engineering of linkers, which exist within and between polypeptides, it is possible to exploit this tolerance to facilitate the transfer of biosynthetic intermediates between unnaturally linked modules. This protein engineering strategy also provides insights into the evolution of modular polyketide synthases.
Collapse
Affiliation(s)
- R S Gokhale
- Department of Chemical Engineering, Stanford University, Stanford CA 94305-5025, USA
| | | | | | | |
Collapse
|
119
|
|
120
|
McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Ashley G. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products. Proc Natl Acad Sci U S A 1999; 96:1846-51. [PMID: 10051557 PMCID: PMC26699 DOI: 10.1073/pnas.96.5.1846] [Citation(s) in RCA: 328] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structures of complex polyketide natural products, such as erythromycin, are programmed by multifunctional polyketide synthases (PKSs) that contain modular arrangements of functional domains. The colinearity between the activities of modular PKS domains and structure of the polyketide product portends the generation of novel organic compounds-"unnatural" natural products-by genetic manipulation. We have engineered the erythromycin polyketide synthase genes to effect combinatorial alterations of catalytic activities in the biosynthetic pathway, generating a library of >50 macrolides that would be impractical to produce by chemical methods. The library includes examples of analogs with one, two, and three altered carbon centers of the polyketide products. The manipulation of multiple biosynthetic steps in a PKS is an important milestone toward the goal of producing large libraries of unnatural natural products for biological and pharmaceutical applications.
Collapse
Affiliation(s)
- R McDaniel
- KOSAN Biosciences, Inc., 1450 Rollins Road, Burlingame, CA 94010, USA.
| | | | | | | | | | | |
Collapse
|
121
|
Abstract
Fungi have been important in both ancient and modern biotechnological processes. Processes and products that utilize fungi include baking, brewing, and the production of antibiotics, alcohols, enzymes, organic acids, and numerous pharmaceuticals. The advent of recombinant DNA technology and large scale genomics analysis has placed yeasts and filamentous fungi in the forefront of contemporary commercial applications. The term 'mycotechnology' is introduced here to describe the enormous impact of fungi on biotechnology.
Collapse
Affiliation(s)
- J W Bennett
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
122
|
Abstract
Polyketides and non-ribosomal peptides are two large families of complex natural products that are built from simple carboxylic acid or amino acid monomers, respectively, and that have important medicinal or agrochemical properties. Despite the substantial differences between these two classes of natural products, each is synthesized biologically under the control of exceptionally large, multifunctional proteins termed polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) that contain repeated, coordinated groups of active sites called modules, in which each module is responsible for catalysis of one complete cycle of polyketide or polypeptide chain elongation and associated functional group modifications. It has recently become possible to use molecular genetic methodology to alter the number, content, and order of such modules and, in so doing, to alter rationally the structure of the resultant products. This review considers the promise and challenges inherent in the combinatorial manipulation of PKS and NRPS structure in order to generate entirely "unnatural" products.
Collapse
Affiliation(s)
- D E Cane
- Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108, USA
| | | | | |
Collapse
|
123
|
|
124
|
Rowe CJ, Cortés J, Gaisser S, Staunton J, Leadlay PF. Construction of new vectors for high-level expression in actinomycetes. Gene 1998; 216:215-23. [PMID: 9714812 DOI: 10.1016/s0378-1119(98)00327-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A new integrative vector (pCJR24) was constructed for use in the erythromycin producer Saccharopolyspora erythraea and in other actinomycetes. It includes the pathway-specific activator gene actII-ORF4 from the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor. The actI promoter and the associated ribosome binding site are located upstream of an NdeI site (5'-CATATG-3') which encompasses the actI start codon allowing protein(s) to be produced at high levels in response to nutritional signals if these signals are faithfully mediated by the ActII-ORF4 activator. Several polyketide synthase genes were cloned in pCJR24 and overexpressed in S. erythraea after integration of the vector into the chromosome by homologous recombination, indicating the possibility that the S. coelicolor promoter/activator functions appropriately in S. erythraea. pCJR24-mediated recombination was also used to place the entire gene set for the erythromycin-producing polyketide synthase under the control of the actI promoter. The resulting strain produced copious quantities of erythromycins and precursor macrolides when compared with wild-type S. erythraea. The use of this system provides the means for rational strain improvement of antibiotic-producing actinomycetes.
Collapse
Affiliation(s)
- C J Rowe
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
125
|
Carreras CW, Santi DV. Engineering of modular polyketide synthases to produce novel polyketides. Curr Opin Biotechnol 1998; 9:403-411. [PMID: 9751637 DOI: 10.1016/s0958-1669(98)80015-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyketides are important natural products produced by Actinomycetes and other organisms via the polymerization of coenzyme A-activated carboxylic acids. Modular polyketide synthases are large multifunctional enzymes that direct the biosynthetic process using a dedicated 'module' for each polymerization reaction, which specifies the unit to be polymerized, its oxidation state and stereochemistry. Over the past two years proof-of-principle has been demonstrated for technologies that modify or exchange modules to create hybrid enzymes that catalyze the biosynthesis of novel polyketides.
Collapse
Affiliation(s)
- CW Carreras
- Kosan Biosciences, Inc 1450 Rollins Road, Burlingame, CA 04010, USA
| | | |
Collapse
|
126
|
Abstract
In the production of secondary metabolites yield and productivity are the most important design parameters. The focus is therefore to direct the carbon fluxes towards the product of interest, and this can be obtained through metabolic engineering whereby directed genetic changes are introduced into the production strain. In this process it is, however, important to analyze the metabolic network through measurement of the intracellular metabolites and the flux distributions. Besides playing an important role in the optimization of existing processes, metabolic engineering also offers the possibility to construct strains that produce novel metabolites, either through the recruitment of heterologous enzyme activities or through introduction of specific mutations in catalytic activities.
Collapse
Affiliation(s)
- J Nielsen
- Center for Process, Biotechnology Department of Biotechnology, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
127
|
Bender CL, Palmer DA, Peñaloza-Vázquez A, Rangaswamy V, Ullrich M. Biosynthesis and regulation of coronatine, a non-host-specific phytotoxin produced by Pseudomonas syringae. Subcell Biochem 1998; 29:321-41. [PMID: 9594652 DOI: 10.1007/978-1-4899-1707-2_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many P. syringae pathovars are known to produce low-molecular-weight, diffusible toxins in infected host plants. These phytotoxins reproduce some of the symptoms of the relevant bacterial disease and are effective at very low concentrations. Phytotoxins generally enhance the virulence of the P. syringae pathovar which produces them, but are not required for pathogenesis. Genes encoding phytotoxin production have been identified and cloned from several P. syringae pathovars. With the exception of coronatine, toxin biosynthetic gene clusters are generally chromosomally encoded. In several pathovars, the toxin biosynthetic gene cluster also contains a resistance gene which functions to protect the producing strain from the biocidal effects of the toxin. In the case of phaseolotoxin, a resistance gene (argK) has been utilized to engineer phaseolotoxin-resistant tobacco plants. Although P. syringae phytotoxins can induce very similar effects in plants (chlorosis and necrosis), their biosynthesis and mode of action can be quite different. Knowledge of the biosynthetic pathways to these toxins and the cloning of the structural genes for their biosynthesis has relevance to the development of new bioactive compounds with altered specificity. For example, polyketides constitute a huge family of structurally diverse natural products including antibiotics, chemotherapeutic compounds, and antiparasitics. Most of the research on polyketide synthesis in bacteria has focused on compounds synthesized by Streptomyces or other actinomycetes. It is also important to note that it is now possible to utilize a genetic rather than synthetic approach to biosynthesize novel polyketides with altered biological properties (Hutchinson and Fujii, 1995; Kao et al., 1994; Donadio et al., 1993; Katz and Donadio, 1993). Most of the reprogramming or engineering of novel polyketides has been done using actinomycete PKSs, but much of this technology could also be applied to polyketides synthesized by Pseudomonas when sufficient sequence information is available. It is important to note that Pseudomonas produces a variety of antimicrobial compounds from the polyketide pathway, including mupirocin (pseudomonic acid) (Feline et al., 1977), pyoluteorin (Cuppels et al., 1986), and 2-4 diacetylphloroglucinol (Phl) (Bangera and Thomashow, 1996). Pseudomonic acid is valued for its pharmaceutical properties as an antibiotic (Aldridge, 1992), whereas pyoluteorin and Phl have antifungal properties (Howell and Stipanovic, 1980; Keel et al., 1992). A thorough understanding of the biosynthetic pathway to polyketide phytotoxins such as coronatine may ultimately lead to the development of novel compounds with altered biological properties. Thus, specific genes in the biosynthetic pathways of P. syringae phytotoxins could be deployed in other systems to develop new compounds with a wide range of activities.
Collapse
Affiliation(s)
- C L Bender
- Department of Plant Pathology, Oklahoma State University, Stillwater 74078-3032, USA
| | | | | | | | | |
Collapse
|
128
|
Pereda A, Summers RG, Stassi DL, Ruan X, Katz L. The loading domain of the erythromycin polyketide synthase is not essential for erythromycin biosynthesis in Saccharopolyspora erythraea. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):543-553. [PMID: 9493390 DOI: 10.1099/00221287-144-2-543] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
6-Deoxyerythronolide B synthase (DEBS) is a large multifunctional enzyme that catalyses the biosynthesis of the erythromycin polyketide aglycone. DEBS is organized into six modules, each containing the enzymic domains required for a single condensation of carboxylic acid residues which make up the growing polyketide chain. Module 1 is preceded by loading acyltransferase (AT-L) and acyl carrier protein (ACP-L) domains, hypothesized to initiate polyketide chain growth with a propionate-derived moiety. Using recombinant DNA technology several mutant strains of Saccharopolyspora erythraea were constructed that lack the initial AT-L domain or that lack both the AT-L and ACP-L domains. These strains were still able to produce erythromycin, although at much lower levels than that produced by the wild-type strain. In addition, the AT-L domain expressed as a monofunctional enzyme was able to complement the deletion of this domain from the PKS, resulting in increased levels of erythromycin production. These findings indicate that neither the initial AT-L nor the ACP-L domains are required to initiate erythromycin biosynthesis; however, without these domains the efficiency of erythromycin biosynthesis is decreased significantly. It is proposed that in these mutants the first step in erythromycin biosynthesis is the charging of KS1 with propionate directly from propionyl-CoA.
Collapse
Affiliation(s)
- Ana Pereda
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| | - Richard G Summers
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| | - Diane L Stassi
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| | - Xiaoan Ruan
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| | - Leonard Katz
- Antibacterial Discovery Research, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| |
Collapse
|
129
|
Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci U S A 1998; 95:505-9. [PMID: 9435221 PMCID: PMC18449 DOI: 10.1073/pnas.95.2.505] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The polyketides are a diverse group of natural products with great significance as human and veterinary pharmaceuticals. A significant barrier to the production of novel genetically engineered polyketides has been the lack of available heterologous expression systems for functional polyketide synthases (PKSs). Herein, we report the expression of an intact functional PKS in Escherichia coli and Saccharomyces cerevisiae. The fungal gene encoding 6-methylsalicylic acid synthase from Penicillium patulum was expressed in E. coli and S. cerevisiae and the polyketide 6-methylsalicylic acid (6-MSA) was produced. In both bacterial and yeast hosts, polyketide production required coexpression of 6-methylsalicylic acid synthase and a heterologous phosphopantetheinyl transferase that was required to convert the expressed apo-PKS to its holo form. Production of 6-MSA in E. coli was both temperature- and glycerol-dependent and levels of production were lower than those of P. patulum, the native host. In yeast, however, 6-MSA levels greater than 2-fold higher than the native host were observed. The heterologous expression systems described will facilitate the manipulation of PKS genes and consequent production of novel engineered polyketides and polyketide libraries.
Collapse
Affiliation(s)
- J T Kealey
- Kosan Biosciences, Inc., Burlingame, CA 94010, USA.
| | | | | | | | | |
Collapse
|
130
|
Marsden AF, Wilkinson B, Cortés J, Dunster NJ, Staunton J, Leadlay PF. Engineering broader specificity into an antibiotic-producing polyketide synthase. Science 1998; 279:199-202. [PMID: 9422686 DOI: 10.1126/science.279.5348.199] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The wide-specificity loading module for the avermectin-producing polyketide synthase was grafted onto the first multienzyme component (DEBS1) of the erythromycin-producing polyketide synthase in place of the normal loading module. Expression of this hybrid enzyme in the erythromycin producer Saccharopolyspora erythraea produced several novel antibiotic erythromycins derived from endogenous branched-chain acid starter units typical of natural avermectins. Because the avermectin polyketide synthase is known to accept more than 40 alternative carboxylic acids as starter units, this approach opens the way to facile production of novel analogs of antibiotic macrolides.
Collapse
Affiliation(s)
- A F Marsden
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | | | | | | | | |
Collapse
|
131
|
|
132
|
Affiliation(s)
- James Staunton
- Bioprocessing Research Unit, GlaxoWellcome Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | | |
Collapse
|
133
|
Affiliation(s)
- Leonard Katz
- Abbott Laboratories, Abbott Park, Illinois 60064-3500
| |
Collapse
|
134
|
Affiliation(s)
- David A. Hopwood
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
135
|
Affiliation(s)
- B J Rawlings
- Department of Chemistry, University of Leicester, UK.
| |
Collapse
|
136
|
Tsantrizos YS, Shen J, Trimble LA. Biosynthetic origin of the tetrahydropyranyl side chain of verucopeptin. Tetrahedron Lett 1997. [DOI: 10.1016/s0040-4039(97)01661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
137
|
McDaniel R, Kao CM, Hwang SJ, Khosla C. Engineered intermodular and intramodular polyketide synthase fusions. CHEMISTRY & BIOLOGY 1997; 4:667-74. [PMID: 9331407 DOI: 10.1016/s1074-5521(97)90222-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Modular polyketide synthases (PKSs) are very large multifunctional enzyme complexes that synthesize a number of medicinally important natural products. The modular arrangement of active sites has made these enzyme systems amenable to combinatorial manipulation for the biosynthesis of novel polyketides. Here, we investigate the involvement of subunit interactions in hybrid and artificially linked PKSs with several series of intermodular and intramodular fusions using the erythromycin (6-deoxyerythronolide B synthase; DEBS) and rapamycin (RAPS) PKSs. RESULTS Several two-module and three-module derivatives of DEBS were constructed by fusing module 6 to either module 2 or module 3 at varying junctions. Polyketide production by these intramodular fusions indicated that the core set of active sites remained functional in these hybrid modules, although the ketoreductase domain of module 6 was unable to recognize unnatural triketide and tetraketide substrates. Artificial trimodular PKS subunits were also engineered by covalently linking modules 2 and 3 of DEBS, thereby demonstrating the feasibility of constructing single-chain PKSs. Finally, a series of fusions containing DEBS and RAPS domains in module 2 of an engineered trimodular PKS revealed the structural and functional tolerance for hybrid modules created from distinct PKS gene clusters. CONCLUSIONS The general success of the intermodular and intramodular fusions described here demonstrates significant structural tolerance among PKS modules and subunits and suggests that substrate specificity, rather than protein-protein interactions, is the primary determinant of molecular recognition features of PKSs. Furthermore, the ability to artificially link modules may considerably simplify the heterologous expression of modular PKSs in higher eukaryotic systems.
Collapse
Affiliation(s)
- R McDaniel
- KOSAN Biosciences, Inc., Burlingame, CA 94010, USA.
| | | | | | | |
Collapse
|
138
|
Hutchinson C. Antibiotics from Genetically Engineered Microorganisms. DRUGS AND THE PHARMACEUTICAL SCIENCES 1997. [DOI: 10.1201/b14856-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
139
|
Abstract
Evolutionary biotechnology applies the principles of molecular evolution to biotechnology, leading to novel techniques for the creation of biomolecules with a great variety of functions for technical and medical purposes. Several basic principles for the application of evolutionary strategies can be derived from a comprehensive theory of molecular evolution. Prerequisites for evolutionary biotechnology are summarized with respect to the different classes of biomolecules and a few, selected applications are described in detail. Concepts for the technical implementation of evolutionary strategies are presented which allow automatized, high throughput processes.
Collapse
Affiliation(s)
- A Koltermann
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Biochemische Kinetik, Göttingen, Germany
| | | |
Collapse
|
140
|
Mahal LK, Bertozzi CR. Engineered cell surfaces: fertile ground for molecular landscaping. CHEMISTRY & BIOLOGY 1997; 4:415-22. [PMID: 9224572 DOI: 10.1016/s1074-5521(97)90193-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cell surface contains a wealth of information that determines how cells interact with their environment. Methods for directing the cell surface expression of novel protein-based and oligosaccharide-based epitopes are stimulating new directions in biotechnology and biomedical research.
Collapse
Affiliation(s)
- L K Mahal
- Department of Chemistry, University of California and Center for Advanced Materials, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
141
|
de Crécy-Lagard V, Blanc V, Gil P, Naudin L, Lorenzon S, Famechon A, Bamas-Jacques N, Crouzet J, Thibaut D. Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes. J Bacteriol 1997; 179:705-13. [PMID: 9006024 PMCID: PMC178751 DOI: 10.1128/jb.179.3.705-713.1997] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two genes involved in the biosynthesis of the depsipeptide antibiotics pristinamycins I (PI) produced by Streptomyces pristinaespiralis were cloned and sequenced. The 1.7-kb snbA gene encodes a 3-hydroxypicolinic acid:AMP ligase, and the 7.7-kb snbC gene encodes PI synthetase 2, responsible for incorporating L-threonine and L-aminobutyric acid in the PI macrocycle. snbA and snbC, which encode the two first structural enzymes of PI synthesis, are not contiguous. Both genes are located in PI-specific transcriptional units, as disruption of one gene or the other led to PI-deficient strains producing normal levels of the polyunsaturated macrolactone antibiotic pristinamycin II, also produced by S. pristinaespiralis. Analysis of the deduced amino acid sequences showed that the SnbA protein is a member of the adenylate-forming enzyme superfamily and that the SnbC protein contains two amino acid-incorporating modules and a C-terminal epimerization domain. A model for the initiation of PI synthesis analogous to the established model of initiation of fatty acid synthesis is proposed.
Collapse
Affiliation(s)
- V de Crécy-Lagard
- Division Recherche Pharmaceutique, Centre de Recherche de Vitry-Alfortville, Rhône Poulenc Rorer S.A., Vitry-sur-Seine, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Carreras CW, Pieper R, Khosla C. The chemistry and biology of fatty acid, polyketide, and nonribosomal peptide biosynthesis. Top Curr Chem (Cham) 1997. [DOI: 10.1007/bfb0119235] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
143
|
Kuhstoss S, Huber M, Turner JR, Paschal JW, Rao RN. Production of a novel polyketide through the construction of a hybrid polyketide synthase. Gene 1996; 183:231-6. [PMID: 8996112 DOI: 10.1016/s0378-1119(96)00565-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The lactone rings of the polyketides platenolide and tylactone are synthesized by condensation of acetate-, proprionate-, and butyrate-derived precursors. A hybrid tylactone/platenolide synthase was constructed to determine if the choice of substrate is programmed by the polyketide synthase and to ascertain if a substrate different than that normally used in the first step of platenolide synthesis could be incorporated into the final polyketide. In this work, we report the successful incorporation of a propionate in place of the acetate normally used in the first step of platenolide synthesis. This result demonstrates that polyketide synthases choose a particular substrate at defined steps and provides strong evidence that substrate choice is programmed by the acyl transferase domain of a large, multifunctional polyketide synthase.
Collapse
Affiliation(s)
- S Kuhstoss
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | |
Collapse
|
144
|
Affiliation(s)
- P J Kramer
- Department of Chemical Engineering, Stanford University, California 94305-5025, USA
| | | |
Collapse
|
145
|
|
146
|
Bedford D, Jacobsen JR, Luo G, Cane DE, Khosla C. A functional chimeric modular polyketide synthase generated via domain replacement. CHEMISTRY & BIOLOGY 1996; 3:827-31. [PMID: 8939701 DOI: 10.1016/s1074-5521(96)90068-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Modular polyketide synthases (PKSs), such as 6-deoxyerythronolide B synthase (DEBS), are large multifunctional enzymes that catalyze the biosynthesis of structurally complex and medically important natural products. Active sites within these assemblies are organized into 'modules', such that each module catalyzes the stereospecific addition of a new monomer onto a growing polyketide chain and also sets the reduction level of the beta-carbon atom of the resulting intermediate. The core of each module is made up of a 'reductive segment', which includes all, some, or none of a set of ketoreductase (KR), dehydratase, and enoylreductase domains, in addition to a large interdomain region which lacks overt function but may contribute to structural stability and inter-domain dynamics within modules. The highly conserved organization of reductive segments within modules suggests that they might be able to function in unnatural contexts to generate novel organic molecules. RESULTS To investigate domain substitution as a method for altering PKS function, a chimeric enzyme was engineered. Using a bimodular derivative of DEBS (DEBS1+TE), the reductive segment of module 2, which includes a functional KR, was replaced with its homolog from module 3 of DEBS, which contains a (naturally occurring) nonfunctional KR. A recombinant strain expressing the chimeric gene produced the predicted ketolactone with a yield (35 %) comparable to that of a control strain in which the KR2 domain was retained but mutationally inactivated. CONCLUSIONS These results demonstrate considerable structural tolerance within an important segment found in virtually every PKS module. The domain boundaries defined here could be exploited for the construction of numerous loss-of-function and possibly even gain-of-function mutants within this remarkable family of multifunctional enzymes.
Collapse
Affiliation(s)
- D Bedford
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.
| | | | | | | | | |
Collapse
|
147
|
Abstract
Three elements came together during the past year to provide the opportunity to generate new polyketides. The first was the availability of cloned genes for several metabolic pathways; the second was a genetically defined host strain able to support the production of polyketides; and the third was the ability to modify specific genes and recombine genes from different pathways using recombinant DNA technology. These tools culminated in the rational design of new molecules and the biosynthesis of large numbers of new molecules using combinatorial biology.
Collapse
Affiliation(s)
- C L Hershberger
- Lilly Corporate Center, 3224 Eli Lilly & Co., Indianapolis, IN 46285, USA.
| |
Collapse
|
148
|
Luo G, Pieper R, Rosa A, Khosla C, Cane DE. Erythromycin biosynthesis: exploiting the catalytic versatility of the modular polyketide synthase. Bioorg Med Chem 1996; 4:995-9. [PMID: 8831969 DOI: 10.1016/0968-0896(96)00096-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DEBS 1 + TE is a recombinant modular polyketide synthase (PKS) in which the first two biosynthetic modules of the 6-deoxyerythronolide B synthase are linked to the thioesterase domain normally found at the C-terminus of DEBS 3. Incubation of DEBS 1 + TE with propionyl-CoA, methylamalonyl-CoA, and NADPH gives the triketide lactone (2R,3S,4S,5R)-2,4-dimethyl-3, 5-dihydroxy-n-heptanoic acid delta-lactone (2), the cyclized form of the normal triketide chain elongation product of DEBS 1. In order to probe the molecular recognition features of the PKS and to explore its synthetic versatility, [2,3-13C2]-(2S,3R)-2-methyl-3-hydroxypentanoyl-NAC thioester (3), an analogue of the normal diketide chain elongation intermediate, and (2RS)-methyl-malonyl-CoA were incubated with DEBS 1 + TE, leading to the formation of the predicted labeled triketide ketolactone [4,5-13C2]-8, as established by 13C NMR analysis and comparison with spectra of synthetic 8. This stereoselective conversion illustrates the potential of using modular PKSs as multifunctional catalysts for the enzymatic synthesis of novel polyketides.
Collapse
Affiliation(s)
- G Luo
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
149
|
Abstract
Within the past two years, the burgeoning field of combinatorial chemistry and biology has witnessed major advances in both technologies and applications. New ideas have emerged, and continue to be sought, with regard to library design, construction, and analysis. The highly multi-disciplinary nature of the field, together with its need for a systems-based view of pertinent challenges and problems, makes it an ideal area for biochemical engineers.
Collapse
Affiliation(s)
- C Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA.
| |
Collapse
|
150
|
Bramwell H, Hunter LS, Coggins JR, Nimmo HG. Propionyl-CoA carboxylase from Streptomyces coelicolor A3(2): cloning of the gene encoding the biotin-containing subunit. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 3):649-655. [PMID: 8868440 DOI: 10.1099/13500872-142-3-649] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In Streptomyces coelicolor A3(2), polyketides are made from malonyl-CoA, which is presumed to be derived from acetyl-CoA by the action of acetyl-CoA carboxylase (ACC). No ACC activity was found in cell-free extracts of S. coelicolor. However, propionyl-CoA carboxylase (PCC) activity was detected at substantial levels. Fixation of CO2 by ACC and PCC occurs by covalent bonding of CO2 to a biotin-containing protein. Most bacteria have a single small biotinylated protein of approximately 22 kDa, but S. coelicolor contains three larger biotin-containing proteins (approximately 145, 88 and 70 kDa). To determine which biotinylated protein was associated with PCC activity, the enzyme was purified and shown to comprise an alpha subunit (biotin-containing) of 88 kDa and a beta subunit of 66 kDa. The N-terminal sequences of these proteins were determined and, using an oligonucleotide probe, the gene for the alpha subunit (pccA) was cloned.
Collapse
Affiliation(s)
- Helena Bramwell
- Divisions of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Divisions of Biochemistry & Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lain S Hunter
- Divisions of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John R Coggins
- Divisions of Biochemistry & Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hugh G Nimmo
- Divisions of Biochemistry & Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|