101
|
Abstract
As humans continue to alter Earth systems, conservationists look to remote sensing to monitor, inventory, and understand ecosystems and ecosystem processes at large spatial scales. Multispectral remote sensing data are commonly integrated into conservation decision-making frameworks, yet imaging spectroscopy, or hyperspectral remote sensing, is underutilized in conservation. The high spectral resolution of imaging spectrometers captures the chemistry of Earth surfaces, whereas multispectral satellites indirectly represent such surfaces through band ratios. Here, we present case studies wherein imaging spectroscopy was used to inform and improve conservation decision-making and discuss potential future applications. These case studies include a broad array of conservation areas, including forest, dryland, and marine ecosystems, as well as urban applications and methane monitoring. Imaging spectroscopy technology is rapidly developing, especially with regard to satellite-based spectrometers. Improving on and expanding existing applications of imaging spectroscopy to conservation, developing imaging spectroscopy data products for use by other researchers and decision-makers, and pioneering novel uses of imaging spectroscopy will greatly expand the toolset for conservation decision-makers.
Collapse
|
102
|
Merrick MJ, Morandini M, Greer VL, Koprowski JL. Endemic Population Response to Increasingly Severe Fire: A Cascade of Endangerment for the Mt. Graham Red Squirrel. Bioscience 2021. [DOI: 10.1093/biosci/biaa153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Drought, past fire suppression, insect invasion, and high-severity fire represent a disturbance cascade characteristic of forests in the western United States. The result is altered forest ecosystems diminished in their function and capacity to support biodiversity. Small habitat specialists are particularly vulnerable to the impacts of disturbances because of their limited movement capacity and high site fidelity. Research suggests that small mammals suffer limited direct mortality from fire but are increasingly vulnerable to local extirpation because of secondary impacts that include habitat loss and reduced food availability, survival, and reproduction. We examine the direct and secondary impacts of increasingly severe fire events on the endangered Mt. Graham red squirrel—a model system to demonstrate how disturbances can threaten the persistence of range-limited species. We document survival, space use, and displacement prior to and following fires and discuss implications for conservation. We suggest that management plans address future threats, including disturbance-related habitat loss.
Collapse
Affiliation(s)
| | | | | | - John L Koprowski
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
- JK is also a dean, professor, and the Wyoming Excellence Chair of at the Haub School of Environment and Natural Resources, University of Wyoming
| |
Collapse
|
103
|
Mina M, Messier C, Duveneck M, Fortin MJ, Aquilué N. Network analysis can guide resilience-based management in forest landscapes under global change. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e2221. [PMID: 32866316 DOI: 10.1002/eap.2221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/13/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Forests are projected to undergo dramatic compositional and structural shifts prompted by global changes, such as climatic changes and intensifying natural disturbance regimes. Future uncertainty makes planning for forest management exceptionally difficult, demanding novel approaches to maintain or improve the ability of forest ecosystems to respond and rapidly reorganize after disturbance events. Adopting a landscape perspective in forest management is particularly important in fragmented forest landscapes where both diversity and connectivity play key roles in determining resilience to global change. In this context, network analysis and functional traits combined with ecological dynamic modeling can help evaluate changes in functional response diversity and connectivity within and among forest stands in fragmented landscapes. Here, we coupled ecological dynamic modeling with functional traits analysis and network theory to analyze forested landscapes as an interconnected network of forest patches. We simulated future forest landscape dynamics in a large landscape in southern Quebec, Canada, under a combination of climate, disturbance, and management scenarios. We depicted the landscape as a functional network, assessed changes in future resilience using indicators at multiple spatial scales, and evaluated if current management practices are suitable for maintaining resilience to simulated changes in regimes. Our results show that climate change would promote forest productivity and favor heat-adapted deciduous species. Changes in natural disturbances will likely have negative impacts on native conifers and will drive changes in forest type composition. Climate change negatively impacted all resilience indicators and triggered losses of functional response diversity and connectivity across the landscape with undesirable consequences on the capacity of these forests to adapt to global change. Also, current management strategies failed to promote resilience at different spatial levels, highlighting the need for a more active and thoughtful approach to forest management under global change. Our study demonstrates the usefulness of combining dynamic landscape-scale simulation modeling with network analyses to evaluate the possible impacts of climate change as well as human and natural disturbances on forest resilience under global change.
Collapse
Affiliation(s)
- Marco Mina
- Centre for Forest Research (CEF), Université du Québec à Montréal (UQAM), succursale Centre-Ville, Montréal, H3C 3P8, Quebec, Canada
| | - Christian Messier
- Centre for Forest Research (CEF), Université du Québec à Montréal (UQAM), succursale Centre-Ville, Montréal, H3C 3P8, Quebec, Canada
- Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), 58 Rue Principale, Ripon, J0V1V0, Quebec, Canada
| | - Matthew Duveneck
- Harvard Forest, Harvard University, 321 North Main St., Petersham, 01366, Massachusetts, USA
- Liberal Arts Department, New England Conservatory, 290 Huntington Avenue, Boston, 02115, Massachusetts, USA
| | - Marie-Josée Fortin
- Department of Ecology and Evolution, University of Toronto, 25 Willcocks Street, Toronto, M5S 3G5, Ontario, Canada
| | - Núria Aquilué
- Centre for Forest Research (CEF), Université du Québec à Montréal (UQAM), succursale Centre-Ville, Montréal, H3C 3P8, Quebec, Canada
- InForest Joint Research Unit, Forest Sciences and Technology Centre of Catalonia (CTFC), Ctra. Sant Llorenç de Morunys, km 2, Solsona, 25280, Spain
| |
Collapse
|
104
|
Andrus RA, Hart SJ, Tutland N, Veblen TT. Future dominance by quaking aspen expected following short‐interval, compounded disturbance interaction. Ecosphere 2021. [DOI: 10.1002/ecs2.3345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Robert A. Andrus
- Department of Geography University of Colorado Boulder Colorado USA
- Department of Forest and Wildlife Ecology University of Wisconsin – Madison Madison Wisconsin USA
| | - Sarah J. Hart
- Department of Forest and Wildlife Ecology University of Wisconsin – Madison Madison Wisconsin USA
| | - Niko Tutland
- Department of Forest and Wildlife Ecology University of Wisconsin – Madison Madison Wisconsin USA
| | - Thomas T. Veblen
- Department of Geography University of Colorado Boulder Colorado USA
| |
Collapse
|
105
|
Jones GM, Gutiérrez RJ, Block WM, Carlson PC, Comfort EJ, Cushman SA, Davis RJ, Eyes SA, Franklin AB, Ganey JL, Hedwall S, Keane JJ, Kelsey R, Lesmeister DB, North MP, Roberts SL, Rockweit JT, Sanderlin JS, Sawyer SC, Solvesky B, Tempel DJ, Wan HY, Westerling AL, White GC, Peery MZ. Spotted owls and forest fire: Comment. Ecosphere 2020. [DOI: 10.1002/ecs2.3312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Gavin M. Jones
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - R. J. Gutiérrez
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota St. Paul Minnesota USA
| | - William M. Block
- USDA Forest ServiceRocky Mountain Research Station Flagstaff Arizona USA
| | - Peter C. Carlson
- Department of Fish, Wildlife and Conservation Biology Colorado State University Fort Collins Colorado USA
| | - Emily J. Comfort
- College of Forestry Oregon State University Corvallis Oregon USA
| | - Samuel A. Cushman
- USDA Forest ServiceRocky Mountain Research Station Flagstaff Arizona USA
| | | | | | - Alan B. Franklin
- USDA National Wildlife Research Center Fort Collins Colorado USA
| | - Joseph L. Ganey
- USDA Forest ServiceRocky Mountain Research Station Flagstaff Arizona USA
| | - Shaula Hedwall
- US Fish and Wildlife ServiceArizona Fish & Wildlife Conservation Office Flagstaff Arizona USA
| | - John J. Keane
- USDA Forest ServicePacific Southwest Research Station Davis California USA
| | - Rodd Kelsey
- The Nature Conservancy Sacramento California USA
| | | | - Malcolm P. North
- USDA Forest ServicePacific Southwest Research Station Davis California USA
- The John Muir Institute University of California Davis California USA
| | | | - Jeremy T. Rockweit
- Department of Fish, Wildlife and Conservation Biology Colorado State University Fort Collins Colorado USA
| | - Jamie S. Sanderlin
- USDA Forest ServiceRocky Mountain Research Station Flagstaff Arizona USA
| | | | - Ben Solvesky
- Sierra Forest Legacy Garden Valley California USA
| | - Douglas J. Tempel
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Ho Yi Wan
- School of Public and Community Health Sciences University of Montana Missoula Montana USA
| | - A. LeRoy Westerling
- Sierra Nevada Research Institute University of California Merced California USA
| | - Gary C. White
- Department of Fish, Wildlife and Conservation Biology Colorado State University Fort Collins Colorado USA
| | - M. Zachariah Peery
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| |
Collapse
|
106
|
Automatic Tree Crown Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in Mixed Forests. REMOTE SENSING 2020. [DOI: 10.3390/rs12244081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multispectral imaging using unmanned aerial systems (UAS) enables rapid and accurate detection of pest insect infestations, which are an increasing threat to midlatitude natural forests. Pest detection at the level of an individual tree is of particular importance in mixed forests, where it enables a sensible forest management approach. In this study, we propose a method for individual tree crown delineation (ITCD) followed by feature extraction to detect a bark beetle disturbance in a mixed urban forest using a photogrammetric point cloud (PPC) and a multispectral orthomosaic. An excess green index (ExG) threshold mask was applied before the ITCD to separate targeted coniferous trees from deciduous trees and backgrounds. The individual crowns of conifer trees were automatically delineated as (i) a full tree crown using marker-controlled watershed segmentation (MCWS), Dalponte2016 (DAL), and Li 2012 (LI) region growing algorithms or (ii) a buffer (BUFFER) around a treetop from the masked PPC. We statistically compared selected spectral and elevation features extracted from automatically delineated crowns (ADCs) of each method to reference tree crowns (RTC) to distinguish between the forest disturbance classes and two tree species. Moreover, the effect of PPC density on the ITCD accuracy and feature extraction was investigated. The ExG threshold mask application resulted in the excellent separability of targeted conifer trees and the increasing shape similarity of ADCs compared to RTC. The results revealed a strong effect of PPC density on treetop detection and ITCD. If the PPC density is sufficient (>10 points/m2), the ADCs produced by DAL, MCWS, and LI methods are comparable, and the extracted feature statistics of ADCs insignificantly differ from RTC. The BUFFER method is less suitable for detecting a bark beetle disturbance in the mixed forest because of the simplicity of crown delineation. It caused significant differences in extracted feature statistics compared to RTC. Therefore, the point density was found to be more significant than the algorithm used. We conclude that automatic ITCD methods may constitute a substitute for the time-consuming manual tree crown delineation in tree-based bark beetle disturbance detection and sanitation of individual infested trees using the suggested methodology and high-density (>20 points/m2, 10 points/m2 minimum) PPC.
Collapse
|
107
|
Senf C, Buras A, Zang CS, Rammig A, Seidl R. Excess forest mortality is consistently linked to drought across Europe. Nat Commun 2020; 11:6200. [PMID: 33273460 PMCID: PMC7713373 DOI: 10.1038/s41467-020-19924-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022] Open
Abstract
Pulses of tree mortality caused by drought have been reported recently in forests around the globe, but large-scale quantitative evidence is lacking for Europe. Analyzing high-resolution annual satellite-based canopy mortality maps from 1987 to 2016 we here show that excess forest mortality (i.e., canopy mortality exceeding the long-term mortality trend) is significantly related to drought across continental Europe. The relationship between water availability and mortality showed threshold behavior, with excess mortality increasing steeply when the integrated climatic water balance from March to July fell below -1.6 standard deviations of its long-term average. For -3.0 standard deviations the probability of excess canopy mortality was 91.6% (83.8-97.5%). Overall, drought caused approximately 500,000 ha of excess forest mortality between 1987 and 2016 in Europe. We here provide evidence that drought is an important driver of tree mortality at the continental scale, and suggest that a future increase in drought could trigger widespread tree mortality in Europe.
Collapse
Affiliation(s)
- Cornelius Senf
- Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
| | - Allan Buras
- Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Christian S Zang
- Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Anja Rammig
- Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Rupert Seidl
- Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
- Berchtesgaden National Park, Doktorberg 6, 83471, Berchtesgaden, Germany
| |
Collapse
|
108
|
Stanturf JA, Mansourian S. Forest landscape restoration: state of play. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201218. [PMID: 33489272 PMCID: PMC7813234 DOI: 10.1098/rsos.201218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Tree planting has been widely touted as an inexpensive way to meet multiple international environmental goals for mitigating climate change, reversing landscape degradation and restoring biodiversity restoration. The Bonn Challenge and New York Declaration on Forests, motivated by widespread deforestation and forest degradation, call for restoring 350 million ha by 2030 by relying on forest landscape restoration (FLR) processes. Because the 173 million ha commitments made by 63 nations, regions and companies are not legally binding, expectations of what FLR means lacks consensus. The frequent disconnect between top-level aspirations and on-the-ground implementation results in limited data on FLR activities. Additionally, some countries have made landscape-scale restoration outside of the Bonn Challenge. We compared and contrasted the theory and practice of FLR and compiled information from databases of projects and initiatives and case studies. We present the main FLR initiatives happening across regional groups; in many regions, the potential need/opportunity for forest restoration exceeds the FLR activities underway. Multiple objectives can be met by manipulating vegetation (increasing structural complexity, changing species composition and restoring natural disturbances). Livelihood interventions are context-specific but include collecting or raising non-timber forest products, employment and community forests; other interventions address tenure and governance.
Collapse
Affiliation(s)
- John A. Stanturf
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
- InNovaSilva, Højen Tang 80, 7100 Vejle, Denmark
| | - Stephanie Mansourian
- Mansourian.org, 36 Mont d'Eau du Milieu, 1276 Gingins, Switzerland
- University of Geneva, Geneva, Switzerland
| |
Collapse
|
109
|
Marshall LA, Falk DA. Demographic trends in community functional tolerance reflect tree responses to climate and altered fire regimes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02197. [PMID: 32524676 DOI: 10.1002/eap.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Forests of the western United States are undergoing substantial stress from fire exclusion and increasing effects of climate change, altering ecosystem functions and processes. Changes in broad-scale drivers of forest community composition become apparent in their effect on survivorship and regeneration, driving demographic shifts. Here we take a community functional approach to forest demography, by investigating mean drought or shade functional tolerance in community assemblages. We created the Community Mean Tolerance Index (CMTI), a response metric utilizing drought/shade tolerance trade-offs to identify communities undergoing demographic change from a functional trait perspective. We applied the CMTI to Forest Inventory and Analysis data to investigate demographic trends in drought and shade tolerance across the southern Rocky Mountains. To find the major drivers of change in community tolerance within and across forest types, we compared index trends to climate and fire-exclusion-driven disturbance, and identified areas where demographic change was most pronounced. We predicted that greater shifts in drought tolerance would occur at lower forest type ecotones where climate stress is limiting and that shifts in shade tolerance would correspond to excursions from the historic fire regime leading to greater changes in forest types adapted to frequent, low-intensity fire. The CMTI was applied spatially to identify sites likely to transition to oak shrubfield, where disturbance history combined with a species-driven demographic shift toward drought tolerance. Within forest types, lower elevations are trending toward increased drought tolerance, while higher elevations are trending toward increased shade tolerance. Across forest types, CMTI difference peaked in mid-elevation ponderosa pine and mixed-conifer forests, where fire exclusion and autecology drive demographic changes. Peak CMTI difference was associated with fire exclusion in forest types adapted to frequent fire. At higher elevations, site-level stand dynamics appear to be influencing demographic tolerance trends more than broad climate drivers. Through a community demographic approach to functional traits, the CMTI highlights areas and forest types where ecosystem function is in the process of changing, before persistent vegetation type change occurs. Applied to regional plot networks, the CMTI provides an early warning of shifts in community functional processes as climate change pressures continue.
Collapse
Affiliation(s)
- L A Marshall
- School of Natural Resources and the Environment, The University of Arizona, Tucson, Arizona, 85721-0045, USA
- Laboratory of Tree-Ring Research, The University of Arizona, Tucson, Arizona, 85721-0045, USA
| | - D A Falk
- School of Natural Resources and the Environment, The University of Arizona, Tucson, Arizona, 85721-0045, USA
- Laboratory of Tree-Ring Research, The University of Arizona, Tucson, Arizona, 85721-0045, USA
| |
Collapse
|
110
|
Knowles JF, Scott RL, Biederman JA, Blanken PD, Burns SP, Dore S, Kolb TE, Litvak ME, Barron-Gafford GA. Montane forest productivity across a semiarid climatic gradient. GLOBAL CHANGE BIOLOGY 2020; 26:6945-6958. [PMID: 32886444 DOI: 10.1111/gcb.15335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
High-elevation montane forests are disproportionately important to carbon sequestration in semiarid climates where low elevations are dry and characterized by low carbon density ecosystems. However, these ecosystems are increasingly threatened by climate change with seasonal implications for photosynthesis and forest growth. As a result, we leveraged eddy covariance data from six evergreen conifer forest sites in the semiarid western United States to extrapolate the status of carbon sequestration within a framework of projected warming and drying. At colder locations, the seasonal evolution of gross primary productivity (GPP) was characterized by a single broad maximum during the summer that corresponded to snow melt-derived moisture and a transition from winter dormancy to spring activity. Conversely, winter dormancy was transient at warmer locations, and GPP was responsive to both winter and summer precipitation such that two distinct GPP maxima were separated by a period of foresummer drought. This resulted in a predictable sequence of primary limiting factors to GPP beginning with air temperature in winter and proceeding to moisture and leaf area during the summer. Due to counteracting winter (positive) and summer (negative) GPP responses to warming, leaf area index and moisture availability were the best predictors of annual GPP differences across sites. Overall, mean annual GPP was greatest at the warmest site due to persistent vegetation photosynthetic activity throughout the winter. These results indicate that the trajectory of this region's carbon sequestration will be sensitive to reduced or delayed summer precipitation, especially if coupled to snow drought and earlier soil moisture recession, but summer precipitation changes remain highly uncertain. Given the demonstrated potential for seasonally offsetting responses to warming, we project that decadal semiarid montane forest carbon sequestration will remain relatively stable in the absence of severe disturbance.
Collapse
Affiliation(s)
- John F Knowles
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
- School of Geography, Development & Environment, University of Arizona, Tucson, AZ, USA
| | - Russell L Scott
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
| | - Joel A Biederman
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
| | - Peter D Blanken
- Department of Geography, University of Colorado Boulder, Boulder, CO, USA
| | - Sean P Burns
- Department of Geography, University of Colorado Boulder, Boulder, CO, USA
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Sabina Dore
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Thomas E Kolb
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Greg A Barron-Gafford
- School of Geography, Development & Environment, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
111
|
Oldekop JA, Rasmussen LV, Agrawal A, Bebbington AJ, Meyfroidt P, Bengston DN, Blackman A, Brooks S, Davidson-Hunt I, Davies P, Dinsi SC, Fontana LB, Gumucio T, Kumar C, Kumar K, Moran D, Mwampamba TH, Nasi R, Nilsson M, Pinedo-Vasquez MA, Rhemtulla JM, Sutherland WJ, Watkins C, Wilson SJ. Forest-linked livelihoods in a globalized world. NATURE PLANTS 2020; 6:1400-1407. [PMID: 33257859 DOI: 10.1038/s41477-020-00814-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Forests have re-taken centre stage in global conversations about sustainability, climate and biodiversity. Here, we use a horizon scanning approach to identify five large-scale trends that are likely to have substantial medium- and long-term effects on forests and forest livelihoods: forest megadisturbances; changing rural demographics; the rise of the middle-class in low- and middle-income countries; increased availability, access and use of digital technologies; and large-scale infrastructure development. These trends represent human and environmental processes that are exceptionally large in geographical extent and magnitude, and difficult to reverse. They are creating new agricultural and urban frontiers, changing existing rural landscapes and practices, opening spaces for novel conservation priorities and facilitating an unprecedented development of monitoring and evaluation platforms that can be used by local communities, civil society organizations, governments and international donors. Understanding these larger-scale dynamics is key to support not only the critical role of forests in meeting livelihood aspirations locally, but also a range of other sustainability challenges more globally. We argue that a better understanding of these trends and the identification of levers for change requires that the research community not only continue to build on case studies that have dominated research efforts so far, but place a greater emphasis on causality and causal mechanisms, and generate a deeper understanding of how local, national and international geographical scales interact.
Collapse
Affiliation(s)
- Johan A Oldekop
- Forests and Livelihoods: Assessment, Research and Engagement (FLARE) Network, School for Environment and Sustainability, The University of Michigan, Ann Arbor, MI, USA.
- Global Development Institute, University of Manchester, Manchester, UK.
| | - Laura Vang Rasmussen
- Forests and Livelihoods: Assessment, Research and Engagement (FLARE) Network, School for Environment and Sustainability, The University of Michigan, Ann Arbor, MI, USA
- Department of Geosciences and Natural Resource Management, The University of Copenhagen, Copenhagen, Denmark
| | - Arun Agrawal
- Forests and Livelihoods: Assessment, Research and Engagement (FLARE) Network, School for Environment and Sustainability, The University of Michigan, Ann Arbor, MI, USA
| | - Anthony J Bebbington
- Global Development Institute, University of Manchester, Manchester, UK
- Graduate School of Geography, Clark University, Worcester, MA, USA
| | - Patrick Meyfroidt
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
- F.R.S.-FNRS, Brussels, Belgium
| | - David N Bengston
- Strategic Foresight Group, Northern Research Station, USDA Forest Service, St Paul, MN, USA
| | - Allen Blackman
- Resources for the Future, Washington, D.C., USA
- Inter-American Development Bank, Washington, D.C., USA
| | - Stephen Brooks
- Office of Land and Urban, Bureau for Economic Growth, Education and Environment, U. S. Agency for International Development, Washington, D.C., USA
| | - Iain Davidson-Hunt
- Natural Resources Institute, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Stanley C Dinsi
- Network for Environment and Sustainable Development in Central Africa, Yaoundé, Cameroon
| | | | - Tatiana Gumucio
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- International Research Institute for Climate and Society, Earth Institute, Columbia University, Palisades, NY, USA
| | - Chetan Kumar
- International Union for Conservation of Nature (IUCN), Washington, D.C., USA
| | - Kundan Kumar
- Rights and Resources Initiative, Washington, D.C., USA
| | - Dominic Moran
- Global Academy of Agriculture and Food Security, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Tuyeni H Mwampamba
- Institute for Ecosystems and Sustainability Research, National Autonomous University of Mexico (UNAM), Michoacán, Mexico
| | - Robert Nasi
- Center for International Forestry Research (CIFOR), Bogor, Indonesia
| | - Margareta Nilsson
- The International Land and Forest Tenure Facility, Stockholm, Sweden
| | - Miguel A Pinedo-Vasquez
- International Research Institute for Climate and Society, Earth Institute, Columbia University, Palisades, NY, USA
- Earth Innovation Institute, San Francisco, CA, USA
| | - Jeanine M Rhemtulla
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Cristy Watkins
- Forests and Livelihoods: Assessment, Research and Engagement (FLARE) Network, School for Environment and Sustainability, The University of Michigan, Ann Arbor, MI, USA
| | - Sarah J Wilson
- Forests and Livelihoods: Assessment, Research and Engagement (FLARE) Network, School for Environment and Sustainability, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
112
|
Takahashi M, Feng Z, Mikhailova TA, Kalugina OV, Shergina OV, Afanasieva LV, Heng RKJ, Majid NMA, Sase H. Air pollution monitoring and tree and forest decline in East Asia: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140288. [PMID: 32721711 DOI: 10.1016/j.scitotenv.2020.140288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Air pollution and atmospheric deposition have adverse effects on tree and forest health. We reviewed studies on tree and forest decline in Northeast and Southeast Asia, Siberia, and the Russian Far East (hereafter referred to as East Asia). This included studies published in domestic journals and languages. We identified information about the locations, causes, periods, and tree species exhibiting decline. Past air pollution was also reviewed. Most East Asian countries show declining trends in SO2 concentration in recent years, although Mongolia and Russia show increasing trends. Ozone (O3) concentrations are stable or gradually increasing in the East Asia region, with high maxima. Wet nitrogen (N) deposition was high in China and tropical countries, but low in Russia. The decline of trees and forests primarily occurred in the mid-latitudes of Japan, Korea, China, and Russia. Long-term large N deposition resulted in the N saturation phenomenon in Japan and China, but no clear forest health response was observed. Thereafter, forest decline symptoms, suspected to be caused by O3, were observed in Japan and China. In East Russia, tree decline occurred around industrial centers in Siberia. Haze events have been increasing in tropical and boreal forests, and particulate matter inhibits photosynthesis. In recent years, chronically high O3 concentrations, in conjunction with climate change, are likely have adverse effects on tree physiology. The effects of air pollution and related factors on tree decline are summarized. Recently, the effects of air pollution on tree decline have not been apparent under the changing climate, however, monitoring air pollution is indispensable for identifying the cause of tree decline. Further economic growth is projected in Southeast Asia and therefore, the monitoring network should be expanded to tropical and boreal forest zones. Countermeasures such as restoring urban trees and rural forests are important for ensuring future ecosystem services.
Collapse
Affiliation(s)
- Masamichi Takahashi
- Forestry and Forest Products Research Institute, Tsukuba, Japan; Japan International Forestry Promotion and Cooperation Center, Tokyo, Japan.
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Tatyana A Mikhailova
- Siberian Institute of Plant Physiology & Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia.
| | - Olga V Kalugina
- Siberian Institute of Plant Physiology & Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia.
| | - Olga V Shergina
- Siberian Institute of Plant Physiology & Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia.
| | - Larisa V Afanasieva
- Institute of General & Experimental Biology, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia.
| | - Roland Kueh Jui Heng
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Sarawak, Malaysia.
| | - Nik Muhamad Abd Majid
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Sarawak, Malaysia; Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Selangor, Malaysia.
| | - Hiroyuki Sase
- Asia Center for Air Pollution Research, Niigata, Japan.
| |
Collapse
|
113
|
Goodwin MJ, North MP, Zald HSJ, Hurteau MD. Changing climate reallocates the carbon debt of frequent-fire forests. GLOBAL CHANGE BIOLOGY 2020; 26:6180-6189. [PMID: 32810926 DOI: 10.1111/gcb.15318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Ongoing climate change will alter the carbon carrying capacity of forests as they adjust to climatic extremes and changing disturbance regimes. In frequent-fire forests, increasing drought frequency and severity are already causing widespread tree mortality events, which can exacerbate the carbon debt that has developed as a result of fire exclusion. Forest management techniques that reduce tree density and surface fuels decrease the risk of high-severity wildfire and may also limit drought-induced mortality by reducing competition. We used a long-term thinning and burning experiment in a mixed-conifer forest to investigate the effects of the 2012-2015 California drought on forest carbon dynamics in each treatment, including the carbon emissions from a second-entry prescribed fire that followed the drought. We assessed differences in carbon stability and tree survival across treatments, expecting that both carbon stability and survival probability would increase with increasing treatment intensity (decreasing basal area). Additionally, we analyzed the effects of drought- mortality on second-entry burn emissions and compared emissions for the first- and second-entry burns. We found a non-linear relationship between treatment intensity and carbon stability, which was in part driven by varying relationships between individual tree growing space and survival across treatments. Drought mortality increased dead tree and surface fuel carbon in all treatments, which contributed to higher second-entry burn emissions for two of the three burn treatments when compared to the first burn. Our findings suggest that restoration treatments will not serve as a panacea for ongoing climate change and that the carbon debt of these forests will become increasingly unstable as the carbon carrying capacity adjusts to severe drought events. Managing the carbon debt with prescribed fire will help reduce the risk of additional mortality from wildfire, but at an increasing carbon cost for forest management.
Collapse
Affiliation(s)
- Marissa J Goodwin
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Malcolm P North
- Pacific Southwest Research Station, USDA Forest Service, Mammoth Lakes, CA, USA
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Harold S J Zald
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, USA
| | - Matthew D Hurteau
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
114
|
Liu X, Biondi F. Transpiration drivers of high-elevation five-needle pines (Pinus longaeva and Pinus flexilis) in sky-island ecosystems of the North American Great Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139861. [PMID: 32544678 DOI: 10.1016/j.scitotenv.2020.139861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
We investigated the interaction between soil water supply and atmospheric evaporative demand for driving the seasonal pattern of transpiration in sky-island high-elevation forest ecosystems. Sap flow measurements were collected at 10-minute intervals for five consecutive years (2013-2017) on two co-occurring subalpine conifers, i.e. limber pine (Pinus flexilis) and bristlecone pine (Pinus longaeva). Our study site is part of the Nevada Climate-ecohydrological Assessment Network (NevCAN), and is located at 3355 m a.s.l. within an undisturbed mixed-conifer stand. We found that seasonal changes in soil moisture regulated transpiration sensitivity to atmospheric conditions. Sap flow density was mainly limited by evaporative demands under non-water limiting conditions, but was influenced only by soil moisture when water availability decreased. Daily sap flow density increased with radiation and soil moisture in June and July when soil moisture was generally above 10%, but correlated only with soil moisture in August and September when soil drought occurred. Sap flow sensitivity to vapor pressure deficit and solar radiation was therefore reduced under decreasing soil moisture conditions. Transpiration peaked in mid-to-late June during both dry and wet years, with a lower peak in late summer during wet years. Normalized mean daily canopy conductance of both species declined with decreasing soil moisture (i.e., increasing soil drought). Severe soil drying (i.e., soil moisture <7% at 20 cm depth), which was rarely detected in wet summers (2013-2014) but occurred more frequently in dry summers (2015-2017), induced a minimum in crown conductance with unchanged low-level sap flow, which might potentially trigger hydraulic failure. The minimum sap flow level under severe soil drought was higher for limber pine than bristlecone pine, possibly because of wider tracheids in limber compared to bristlecone pine. Our findings provide insights into physiological mechanisms of drought-induced stress for iconic sky-island five-needle pines located at high elevation in xeric environments.
Collapse
Affiliation(s)
- Xinsheng Liu
- College of Tourism and Geography, Jiujiang University, East Qianjin Road No. 551, Jiujiang 332005, China; DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
115
|
vonHedemann N, Wurtzebach Z, Timberlake TJ, Sinkular E, Schultz CA. Forest policy and management approaches for carbon dioxide removal. Interface Focus 2020; 10:20200001. [PMID: 32832067 DOI: 10.1098/rsfs.2020.0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 11/12/2022] Open
Abstract
Forests increasingly will be used for carbon dioxide removal (CDR) as a natural climate solution, and the implementation of forest-based CDR presents a complex public policy challenge. In this paper, our goal is to review a range of policy tools in place to support use of forests for CDR and demonstrate how concepts from the policy design literature can inform our understanding of this domain. We explore how the utilization of different policy tools shapes our ability to use forests to mitigate and adapt to climate change and consider the challenges of policy mixes and integration, taking a close look at three areas of international forest policy, including the Kyoto Protocol's Clean Development Mechanism, Reducing Emissions from Deforestation and Forest Degradation (REDD+) and voluntary carbon offset markets. As it is our expertise, we then examine in detail the case of the USA as a country that lacks aggressive implementation of national climate policies but has potential to increase CDR through reforestation and existing forest management on both public and private land. For forest-based CDR to succeed, a wide array of policy tools will have to be implemented in a variety of contexts with an eye towards overcoming the challenges of policy design with regard to uncertainty in policy outcomes, policy coherence around managing forests for carbon simultaneously with other goals and integration across governance contexts and levels.
Collapse
Affiliation(s)
- Nicolena vonHedemann
- Department of Forest and Rangeland Stewardship, Colorado State University, 1401 Campus Delivery, Fort Collins, CO, USA
| | | | - Thomas J Timberlake
- Department of Forest and Rangeland Stewardship, Colorado State University, 1401 Campus Delivery, Fort Collins, CO, USA
| | - Emily Sinkular
- Department of Forest and Rangeland Stewardship, Colorado State University, 1401 Campus Delivery, Fort Collins, CO, USA
| | - Courtney A Schultz
- Department of Forest and Rangeland Stewardship, Colorado State University, 1401 Campus Delivery, Fort Collins, CO, USA
| |
Collapse
|
116
|
Holyoak M, Caspi T, Redosh LW. Integrating Disturbance, Seasonality, Multi-Year Temporal Dynamics, and Dormancy Into the Dynamics and Conservation of Metacommunities. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.571130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
117
|
Drought Increases Vulnerability of Pinus ponderosa Saplings to Fire-Induced Mortality. FIRE-SWITZERLAND 2020. [DOI: 10.3390/fire3040056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The combination of drought and fire can cause drastic changes in forest composition and structure. Given the predictions of more frequent and severe droughts and forecasted increases in fire size and intensity in the western United States, we assessed the impact of drought and different fire intensities on Pinus ponderosa saplings. In a controlled combustion laboratory, we exposed saplings to surface fires at two different fire intensity levels (quantified via fire radiative energy; units: MJ m−2). The recovery (photosynthesis and bud development) and mortality of saplings were monitored during the first month, and at 200- and 370-days post-fire. All the saplings subjected to high intensity surface fires (1.4 MJ m−2), regardless of the pre-fire water status, died. Seventy percent of pre-fire well-watered saplings recovered after exposure to low intensity surface fire (0.7 MJ m−2). All of the pre-fire drought-stressed saplings died, even at the lower fire intensity. Regardless of the fire intensity and water status, photosynthesis was significantly reduced in all saplings exposed to fire. At 370 days post-fire, burned well-watered saplings that recovered had similar photosynthesis rates as unburned plants. In addition, all plants that recovered or attempted to recover produced new foliage within 35 days following the fire treatments. Our results demonstrate that the pre-fire water status of saplings is an important driver of Pinus ponderosa sapling recovery and mortality after fire.
Collapse
|
118
|
Fordham DA, Jackson ST, Brown SC, Huntley B, Brook BW, Dahl-Jensen D, Gilbert MTP, Otto-Bliesner BL, Svensson A, Theodoridis S, Wilmshurst JM, Buettel JC, Canteri E, McDowell M, Orlando L, Pilowsky J, Rahbek C, Nogues-Bravo D. Using paleo-archives to safeguard biodiversity under climate change. Science 2020; 369:369/6507/eabc5654. [PMID: 32855310 DOI: 10.1126/science.abc5654] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022]
Abstract
Strategies for 21st-century environmental management and conservation under global change require a strong understanding of the biological mechanisms that mediate responses to climate- and human-driven change to successfully mitigate range contractions, extinctions, and the degradation of ecosystem services. Biodiversity responses to past rapid warming events can be followed in situ and over extended periods, using cross-disciplinary approaches that provide cost-effective and scalable information for species' conservation and the maintenance of resilient ecosystems in many bioregions. Beyond the intrinsic knowledge gain such integrative research will increasingly provide the context, tools, and relevant case studies to assist in mitigating climate-driven biodiversity losses in the 21st century and beyond.
Collapse
Affiliation(s)
- Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia. .,Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| | - Stephen T Jackson
- Southwest and South Central Climate Adaptation Science Centers, U.S. Geological Survey, Tucson, AZ 85721, USA.,Department of Geosciences and School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
| | - Stuart C Brown
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Brian Huntley
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Barry W Brook
- School of Natural Sciences and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Dorthe Dahl-Jensen
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø 2100, Denmark.,Centre for Earth Observation Science, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark.,University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bette L Otto-Bliesner
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307-3000, USA
| | - Anders Svensson
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø 2100, Denmark
| | - Spyros Theodoridis
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| | - Janet M Wilmshurst
- Long-Term Ecology Laboratory, Manaaki Whenua-Landcare Research, Lincoln 7640, New Zealand.,School of Environment, The University of Auckland, Auckland 1142, New Zealand
| | - Jessie C Buettel
- School of Natural Sciences and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Elisabetta Canteri
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia.,Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| | - Matthew McDowell
- School of Natural Sciences and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, France.,Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| | - Julia Pilowsky
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia.,Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark.,Department of Life Sciences, Imperial College London, Ascot SL5 7PY, UK.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark.,Institute of Ecology, Peking University, Beijing 100871, China
| | - David Nogues-Bravo
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| |
Collapse
|
119
|
Effect of Silviculture on Carbon Pools during Development of a Ponderosa Pine Plantation. FORESTS 2020. [DOI: 10.3390/f11090997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forest stands can be considered as dynamic carbon pools throughout their developmental stages. Silvicultural thinning and initial planting densities for reforestation not only manipulate the structure or composition of vegetation, but also disturb forest floor and soils, which, in turn, influences the dynamics of carbon pools. Understanding these carbon pools both spatially and temporally can provide useful information for land managers to achieve their management goals. Here, we estimated five major carbon pools in experimental ponderosa pine (Pinus ponderosa) plots that were planted to three levels of spacing and where competing vegetation was either controlled (VC) or not controlled (NVC). The objectives were to determine how an early competing vegetation control influences the long-term carbon dynamics and how stand density affects the maximum carbon (C) sequestration for these plantations. We found that planting density did not affect total ecosystem C at either sampling age 28 or 54. Because of competing vegetation ingrowth, the NVC (85 ± 14 Mg ha−1) accumulated greater C than the VC (61 ± 6 Mg ha−1) at age 28. By age 54, the differences between treatments narrow with the NVC (114 ± 11 Mg ha−1) and the VC (106 ± 11 Mg ha−1) as the pines continue to grow relatively faster in the VC when compared to NVC and C of ingrowth vegetation decreased in NVC, presumably due to shading by the overstory pines. The detritus was not significantly different among treatments in either years, although the mean forest floor and soil C was slightly greater in NVC. While NVC appears to sequester more C early on, the differences from the VC were rather subtle. Clearly, as the stands continue to grow, the C of the larger pines of the VC may overtake the total C of the NVC. We conclude that, to manage forests for carbon, we must pay more attention to promoting growth of overstory trees by controlling competing vegetation early, which will provide more opportunities for foresters to create resilient forests to disturbances and store C longer in a changing climate.
Collapse
|
120
|
Using a Trait-Based Approach to Compare Tree Species Sensitivity to Climate Change Stressors in Eastern Canada and Inform Adaptation Practices. FORESTS 2020. [DOI: 10.3390/f11090989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite recent advances in understanding tree species sensitivities to climate change, ecological knowledge on different species remains scattered across disparate sources, precluding their inclusion in vulnerability assessments. Information on potential sensitivities is needed to identify tree species that require consideration, inform changes to current silvicultural practices and prioritize management actions. A trait-based approach was used to overcome some of the challenges involved in assessing sensitivity, providing a common framework to facilitate data integration and species comparisons. Focusing on 26 abundant tree species from eastern Canada, we developed a series of trait-based indices that capture a species’ ability to cope with three key climate change stressors—increased drought events, shifts in climatically suitable habitat, increased fire intensity and frequency. Ten indices were developed by breaking down species’ response to a stressor into its strategies, mechanisms and traits. Species-specific sensitivities varied across climate stressors but also among the various ways a species can cope with a given stressor. Of the 26 species assessed, Tsuga canadensis (L.) Carrière and Abies balsamea (L.) Mill are classified as the most sensitive species across all indices while Acer rubrum L. and Populus spp. are the least sensitive. Information was found for 95% of the trait-species combinations but the quality of available data varies between indices and species. Notably, some traits related to individual-level sensitivity to drought were poorly documented as well as deciduous species found within the temperate biome. We also discuss how our indices compare with other published indices, using drought sensitivity as an example. Finally, we discuss how the information captured by these indices can be used to inform vulnerability assessments and the development of adaptation measures for species with different management requirements under climate change.
Collapse
|
121
|
Exploring the Use of Sentinel-2 Data to Monitor Heterogeneous Effects of Contextual Drought and Heatwaves on Mediterranean Forests. LAND 2020. [DOI: 10.3390/land9090325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The use of satellite data to detect forest areas impacted by extreme events, such as droughts, heatwaves, or fires is largely documented, however, the use of these data to identify the heterogeneity of the forests’ response to determine fine scale spatially irregular damage is less explored. This paper evaluates the health status of forests in southern Italy affected by adverse climate conditions during the hot and dry summer of 2017, using Sentinel-2 images (10m) and in situ data. Our analysis shows that the post-event—NDVI (Normalized Difference Vegetation Index) decrease, observed in five experimental sites, well accounts for the heterogeneity of the local response to the climate event evaluated in situ through the Mannerucci and the Raunkiaer methods. As a result, Sentinel-2 data can be effectively integrated with biological information from field surveys to introduce continuity in the estimation of climate change impacts even in very heterogeneous areas whose details could not be captured by lower resolution observations. This integration appears to be a successful strategy in the study of the relationships between the climate and forests from a dynamical perspective.
Collapse
|
122
|
Abstract
The importance of tree genetic variability in the ability of forests to respond and adapt to environmental changes is crucial in forest management and conservation. Along with genetics, recent advances have highlighted “epigenetics” as an emerging and promising field of research for the understanding of tree phenotypic plasticity and adaptive responses. In this paper, we review recent advances in this emerging field and their potential applications for tree researchers and breeders, as well as for forest managers. First, we present the basics of epigenetics in plants before discussing its potential for trees. We then propose a bibliometric and overview of the literature on epigenetics in trees, including recent advances on tree priming. Lastly, we outline the promises of epigenetics for forest research and management, along with current gaps and future challenges. Research in epigenetics could use highly diverse paths to help forests adapt to global change by eliciting different innovative silvicultural approaches for natural- and artificial-based forest management.
Collapse
|
123
|
Are Secondary Forests Ready for Climate Change? It Depends on Magnitude of Climate Change, Landscape Diversity and Ecosystem Legacies. FORESTS 2020. [DOI: 10.3390/f11090965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review and synthesis paper, we review the resilience of secondary forests to climate change through the lenses of ecosystem legacies and landscape diversity. Ecosystem legacy of secondary forests was categorized as continuous forest, non-continuous forest, reassembled after conversion to other land uses, and novel reassembled forests of non-native species. Landscape diversity, including landforms that create varied local climatic and soil conditions, can buffer changing climate to some extent by allowing species from warmer climates to exist on warm microsites, while also providing refugial locations for species that grow in cool climates. We present five frames that allow forest managers to visualize a trajectory of change in the context of projected regional climate change, which are: Frame 1 (persistence), keep the same dominant tree species with little change; Frame 2 (moderate change), keep the same tree species with large changes in relative abundance; Frame 3 (forest biome change), major turnover in dominant tree species to a different forest biome; Frame 4 (forest loss), change from a forest to a non-forest biome; and Frame 5 (planted novel ecosystem), establish a novel ecosystem to maintain forest. These frames interact with ecosystem legacies and landscape diversity to determine levels of ecosystem resilience in a changing climate. Although forest readiness to adapt to Frame 1 and 2 scenarios, which would occur with reduced greenhouse gas emissions, is high, a business as usual climate change scenario would likely overwhelm the capacity of ecosystem legacies to buffer forest response, so that many forests would change to warmer forest biomes or non-forested biomes. Furthermore, the interactions among frames, legacies, and landscape diversity influence the transient dynamics of forest change; only Frame 1 leads to stable endpoints, while the other frames would have transient dynamics of change for the remainder of the 21st century.
Collapse
|
124
|
Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, Pershing AJ, Peterson DL, Poudel R, Staudinger MD, Sutton-Grier AE, Thompson L, Vose J, Weltzin JF, Whyte KP. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:137782. [PMID: 32209235 DOI: 10.1016/j.scitotenv.2020.137782] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 05/22/2023]
Abstract
Climate change is a pervasive and growing global threat to biodiversity and ecosystems. Here, we present the most up-to-date assessment of climate change impacts on biodiversity, ecosystems, and ecosystem services in the U.S. and implications for natural resource management. We draw from the 4th National Climate Assessment to summarize observed and projected changes to ecosystems and biodiversity, explore linkages to important ecosystem services, and discuss associated challenges and opportunities for natural resource management. We find that species are responding to climate change through changes in morphology and behavior, phenology, and geographic range shifts, and these changes are mediated by plastic and evolutionary responses. Responses by species and populations, combined with direct effects of climate change on ecosystems (including more extreme events), are resulting in widespread changes in productivity, species interactions, vulnerability to biological invasions, and other emergent properties. Collectively, these impacts alter the benefits and services that natural ecosystems can provide to society. Although not all impacts are negative, even positive changes can require costly societal adjustments. Natural resource managers need proactive, flexible adaptation strategies that consider historical and future outlooks to minimize costs over the long term. Many organizations are beginning to explore these approaches, but implementation is not yet prevalent or systematic across the nation.
Collapse
Affiliation(s)
- Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA.
| | | | - Lisa G Crozier
- NOAA Northwest Fisheries Science Center, Seattle, WA, USA
| | - Sarah Gaichas
- NOAA Northeast Fisheries Science Center, Woods Hole, MA, USA
| | - Roger Griffis
- NOAA National Marine Fisheries Service, Silver Spring, MD, USA
| | - Jessica E Halofsky
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Toni Lyn Morelli
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Jeffrey T Morisette
- U.S. Department of the Interior, National Invasive Species Council Secretariat, Fort Collins, CO, USA
| | - Roldan C Muñoz
- NOAA Southeast Fisheries Science Center, Beaufort, NC, USA
| | | | - David L Peterson
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Michelle D Staudinger
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Ariana E Sutton-Grier
- University of Maryland Earth System Science Interdisciplinary Center, College Park, MD, USA
| | - Laura Thompson
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA
| | - James Vose
- U.S. Forest Service Southern Research Station, Raleigh, NC, USA
| | | | | |
Collapse
|
125
|
Pansing ER, Tomback DF, Wunder MB. Climate‐altered fire regimes may increase extirpation risk in an upper subalpine conifer species of management concern. Ecosphere 2020. [DOI: 10.1002/ecs2.3220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Elizabeth R. Pansing
- Department of Integrative Biology University of Colorado Denver CB 171, P.O. Box 173364 Denver Colorado80204USA
| | - Diana F. Tomback
- Department of Integrative Biology University of Colorado Denver CB 171, P.O. Box 173364 Denver Colorado80204USA
| | - Michael B. Wunder
- Department of Integrative Biology University of Colorado Denver CB 171, P.O. Box 173364 Denver Colorado80204USA
| |
Collapse
|
126
|
|
127
|
Doonan JM, Broberg M, Denman S, McDonald JE. Host-microbiota-insect interactions drive emergent virulence in a complex tree disease. Proc Biol Sci 2020; 287:20200956. [PMID: 32811286 DOI: 10.1098/rspb.2020.0956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Forest declines caused by climate disturbance, insect pests and microbial pathogens threaten the global landscape, and tree diseases are increasingly attributed to the emergent properties of complex ecological interactions between the host, microbiota and insects. To address this hypothesis, we combined reductionist approaches (single and polyspecies bacterial cultures) with emergentist approaches (bacterial inoculations in an oak infection model with the addition of insect larvae) to unravel the gene expression landscape and symptom severity of host-microbiota-insect interactions in the acute oak decline (AOD) pathosystem. AOD is a complex decline disease characterized by predisposing abiotic factors, inner bark lesions driven by a bacterial pathobiome, and larval galleries of the bark-boring beetle Agrilus biguttatus. We identified expression of key pathogenicity genes in Brenneria goodwinii, the dominant member of the AOD pathobiome, tissue-specific gene expression profiles, cooperation with other bacterial pathobiome members in sugar catabolism, and demonstrated amplification of pathogenic gene expression in the presence of Agrilus larvae. This study highlights the emergent properties of complex host-pathobiota-insect interactions that underlie the pathology of diseases that threaten global forest biomes.
Collapse
Affiliation(s)
- James M Doonan
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.,Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Martin Broberg
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.,Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Sandra Denman
- Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - James E McDonald
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
128
|
Dupuis S, Danneyrolles V, Laflamme J, Boucher Y, Arseneault D. Forest Transformation Following European Settlement in the Saguenay-Lac-St-Jean Valley in Eastern Québec, Canada. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
129
|
Cushman JH, Saunders LE, Refsland TK. Long-term and interactive effects of different mammalian consumers on growth, survival, and recruitment of dominant tree species. Ecol Evol 2020; 10:8801-8814. [PMID: 32884658 PMCID: PMC7452786 DOI: 10.1002/ece3.6578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/19/2022] Open
Abstract
Throughout the world, numerous tree species are reported to be in decline, either due to increased mortality of established trees or reduced recruitment. The situation appears especially acute for oaks, which are dominant features of many landscapes in the northern hemisphere. Although numerous factors have been hypothesized to explain reductions in tree performance, vertebrate herbivores and granivores may serve as important drivers of these changes. Here, using data from 8- and 14-year-old exclosure experiments, we evaluated the individual and interactive effects of large and small mammalian herbivores on the performance of three widespread oak species in California-coast live oak (Quercus agrifolia), California black oak (Q. kelloggii), and Oregon white oak (Q. garryana). Although impacts varied somewhat by species and experiment, herbivory by black-tailed deer (Odocoileus hemionus columbianus) reduced the height and survival of juvenile coast live oaks and altered their architecture, as well as reduced the abundance of black oak seedlings, the richness of woody species and the cover of nonoak woody species. Small mammals (Microtus californicus and Peromyscus maniculatus) had even more widespread effects, reducing the abundance of black oak seedlings and the height and cover of all three oak species. We also detected numerous interactions between small mammals and deer, with one herbivore having positive or negative effects on oak abundance and cover when the other herbivore was either present or absent. For example, deer often had negative effects on seedling abundance only when, or even more so when, small mammals were present. In summary, mammalian consumers play crucial roles in limiting oak recruitment by reducing seedling abundance, maintaining trees in stunted states, and preventing them from reaching sapling stages and becoming reproductive. Interactions between large and small mammals can also alter the intensity and direction of their effects on trees.
Collapse
Affiliation(s)
- J. Hall Cushman
- Department of Natural Resources & Environmental ScienceUniversity of NevadaRenoNVUSA
| | | | - Tyler K. Refsland
- Department of Natural Resources & Environmental ScienceUniversity of NevadaRenoNVUSA
| |
Collapse
|
130
|
Kheirkhah Ghehi N, MalekMohammadi B, Jafari H. Integrating habitat risk assessment and connectivity analysis in ranking habitat patches for conservation in protected areas. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
131
|
Yang T, Tedersoo L, Lin X, Fitzpatrick MC, Jia Y, Liu X, Ni Y, Shi Y, Lu P, Zhu J, Chu H. Distinct fungal successional trajectories following wildfire between soil horizons in a cold-temperate forest. THE NEW PHYTOLOGIST 2020; 227:572-587. [PMID: 32155671 DOI: 10.1111/nph.16531] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Soil fungi represent a major component of below-ground biodiversity that determines the succession and recovery of forests after disturbance. However, their successional trajectories and driving mechanisms following wildfire remain unclear. We examined fungal biomass, richness, composition and enzymes across three soil horizons (Oe, A1 and A2) along a near-complete fire chronosequence (1, 2, 8, 14, 30, 49 and c. 260 yr) in cold-temperate forests of the Great Khingan Mountains, China. The importance of soil properties, spatial distance and tree composition were also tested. Ectomycorrhizal fungal richness and β-glucosidase activity were strongly reduced by burning and significantly increased with 'time since fire' in the Oe horizon but not in the mineral horizons. Time since fire and soil C : N ratio were the primary drivers of fungal composition in the Oe and A1/A2 horizons, respectively. Ectomycorrhizal fungal composition was remarkably sensitive to fire history in the Oe horizon, while saprotroph community was strongly affected by time since fire in the deeper soil horizon and this effect emerged 18 years after fire in the A2 horizon. Our study demonstrates pronounced horizon-dependent successional trajectories following wildfire and indicates interactive effects of time since fire, soil stoichiometry and spatial distance in the reassembly of below-ground fungal communities in a cold and fire-prone region.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, Tartu, 50411, Estonia
| | - Xingwu Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Matthew C Fitzpatrick
- Appalachian Laboratory, University of Maryland Centre for Environmental Science, Frostburg, MD, 21531, USA
| | - Yunsheng Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Pengpeng Lu
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xiying Road 76, Xi'an, 710043, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| |
Collapse
|
132
|
Abstract
National monitoring of forestlands and the processes causing canopy cover loss, be they abrupt or gradual, partial or stand clearing, temporary (disturbance) or persisting (deforestation), are necessary at fine scales to inform management, science and policy. This study utilizes the Landsat archive and an ensemble of disturbance algorithms to produce maps attributing event type and timing to >258 million ha of contiguous Unites States forested ecosystems (1986–2010). Nationally, 75.95 million forest ha (759,531 km2) experienced change, with 80.6% attributed to removals, 12.4% to wildfire, 4.7% to stress and 2.2% to conversion. Between regions, the relative amounts and rates of removals, wildfire, stress and conversion varied substantially. The removal class had 82.3% (0.01 S.E.) user’s and 72.2% (0.02 S.E.) producer’s accuracy. A survey of available national attribution datasets, from the data user’s perspective, of scale, relevant processes and ecological depth suggests knowledge gaps remain.
Collapse
|
133
|
Downing WM, Johnston JD, Krawchuk MA, Merschel AG, Rausch JH. Disjunct and decoupled? The persistence of a fire-sensitive conifer species in a historically frequent-fire landscape. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
134
|
Morelli TL, Barrows CW, Ramirez AR, Cartwright JM, Ackerly DD, Eaves TD, Ebersole JL, Krawchuk MA, Letcher BH, Mahalovich MF, Meigs GW, Michalak JL, Millar CI, Quiñones RM, Stralberg D, Thorne JH. Climate-change refugia: biodiversity in the slow lane. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2020; 18:228-234. [PMID: 33424494 PMCID: PMC7787983 DOI: 10.1002/fee.2189] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Climate-change adaptation focuses on conducting and translating research to minimize the dire impacts of anthropogenic climate change, including threats to biodiversity and human welfare. One adaptation strategy is to focus conservation on climate-change refugia (that is, areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and sociocultural resources). In this Special Issue, recent methodological and conceptual advances in refugia science will be highlighted. Advances in this emerging subdiscipline are improving scientific understanding and conservation in the face of climate change by considering scale and ecosystem dynamics, and looking beyond climate exposure to sensitivity and adaptive capacity. We propose considering refugia in the context of a multifaceted, long-term, network-based approach, as temporal and spatial gradients of ecological persistence that can act as "slow lanes" rather than areas of stasis. After years of discussion confined primarily to the scientific literature, researchers and resource managers are now working together to put refugia conservation into practice.
Collapse
Affiliation(s)
- Toni Lyn Morelli
- Northeast Climate Adaptation Science Center, US Geological Survey (USGS), Amherst, MA
| | - Cameron W Barrows
- Center for Conservation Biology, University of California–Riverside, Riverside, CA
| | - Aaron R Ramirez
- Department of Biology and Environmental Studies, Reed College, Portland, OR
| | | | - David D Ackerly
- Department of Integrative Biology and Department of Environmental Science, Policy, and Management, University of California–Berkeley, Berkeley, CA
| | - Tatiana D Eaves
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Joseph L Ebersole
- Pacific Ecological Systems Division, Office of Research and Development, US Environmental Protection Agency, Corvallis, OR
| | - Meg A Krawchuk
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR
| | | | - Mary F Mahalovich
- Northern, Rocky Mountain, Southwestern, and Intermountain Regions, US Department of Agriculture (USDA) Forest Service, Moscow, ID
| | - Garrett W Meigs
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR
| | - Julia L Michalak
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA
| | | | | | - Diana Stralberg
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - James H Thorne
- Department of Environmental Science and Policy, University of California–Davis, Davis, CA
| |
Collapse
|
135
|
Six DL. Niche construction theory can link bark beetle-fungus symbiosis type and colonization behavior to large scale causal chain-effects. CURRENT OPINION IN INSECT SCIENCE 2020; 39:27-34. [PMID: 32114295 DOI: 10.1016/j.cois.2019.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Bark beetles form a variety of symbioses with fungi. Recent studies reveal how the fungi influence beetle nutrition and detoxify tree defenses and provide insight into why these symbioses vary so greatly in their outcomes, not only for host and symbiont, but also for the forest ecosystems within which they exist. Here, I review recent advances in our knowledge of these systems. I then introduce how niche construction theory can provide a framework to use this knowledge to better understand how different symbiosis types result in a gradient of ecosystem effects ranging from massive and durable to those of little ecological consequence.
Collapse
Affiliation(s)
- Diana L Six
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59804, USA.
| |
Collapse
|
136
|
Holz A, Wood SW, Ward C, Veblen TT, Bowman DMJS. Population collapse and retreat to fire refugia of the Tasmanian endemic conifer Athrotaxis selaginoides following the transition from Aboriginal to European fire management. GLOBAL CHANGE BIOLOGY 2020; 26:3108-3121. [PMID: 32125058 DOI: 10.1111/gcb.15031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Untangling the nuanced relationships between landscape, fire disturbance, human agency, and climate is key to understanding rapid population declines of fire-sensitive plant species. Using multiple lines of evidence across temporal and spatial scales (vegetation survey, stand structure analysis, dendrochronology, and fire history reconstruction), we document landscape-scale population collapse of the long-lived, endemic Tasmanian conifer Athrotaxis selaginoides in remote montane catchments in southern Tasmania. We contextualized the findings of this field-based study with a Tasmanian-wide geospatial analysis of fire-killed and unburned populations of the species. Population declines followed European colonization commencing in 1802 ad that disrupted Aboriginal landscape burning. Prior to European colonization, fire events were infrequent but frequency sharply increased afterwards. Dendrochronological analysis revealed that reconstructed fire years were associated with abnormally warm/dry conditions, with below-average streamflow, and were strongly teleconnected to the Southern Annular Mode. The multiple fires that followed European colonization caused near total mortality of A. selaginoides and resulted in pronounced floristic, structural vegetation, and fuel load changes. Burned stands have very few regenerating A. selaginoides juveniles yet tree-establishment reconstruction of fire-killed adults exhibited persistent recruitment in the period prior to European colonization. Collectively, our findings indicate that this fire-sensitive Gondwanan conifer was able to persist with burning by Aboriginal Tasmanians, despite episodic widespread forest fires. By contrast, European burning led to the restriction of A. selaginoides to prime topographic fire refugia. Increasingly, frequent fires caused by regional dry and warming trends and increased ignitions by humans and lightning are breaching fire refugia; hence, the survival Tasmanian Gondwanan species demands sustained and targeted fire management.
Collapse
Affiliation(s)
- Andrés Holz
- Department of Geography, Portland State University, Portland, OR, USA
| | - Sam W Wood
- School of Biological Science, University of Tasmania, Hobart, Tas., Australia
| | - Carly Ward
- School of Biological Science, University of Tasmania, Hobart, Tas., Australia
| | - Thomas T Veblen
- Department of Geography, University of Colorado, Boulder, CO, USA
| | - David M J S Bowman
- School of Biological Science, University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|
137
|
Powers JS, Vargas G G, Brodribb TJ, Schwartz NB, Pérez-Aviles D, Smith-Martin CM, Becknell JM, Aureli F, Blanco R, Calderón-Morales E, Calvo-Alvarado JC, Calvo-Obando AJ, Chavarría MM, Carvajal-Vanegas D, Jiménez-Rodríguez CD, Murillo Chacon E, Schaffner CM, Werden LK, Xu X, Medvigy D. A catastrophic tropical drought kills hydraulically vulnerable tree species. GLOBAL CHANGE BIOLOGY 2020; 26:3122-3133. [PMID: 32053250 DOI: 10.1111/gcb.15037] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicting the location of catastrophic drought years in advance. We used long-term demographic records and extensive databases of functional traits and distribution patterns to understand the responses of 20-53 species to an extreme drought in a seasonally dry tropical forest in Costa Rica, which occurred during the 2015 El Niño Southern Oscillation event. Overall, species-specific mortality rates during the drought ranged from 0% to 34%, and varied little as a function of tree size. By contrast, hydraulic safety margins correlated well with probability of mortality among species, while morphological or leaf economics spectrum traits did not. This firmly suggests hydraulic traits as targets for future research.
Collapse
Affiliation(s)
- Jennifer S Powers
- Department of Ecology, Evolution, & Behavior, University of Minnesota, St. Paul, MN, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - German Vargas G
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tas., Australia
| | - Naomi B Schwartz
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pérez-Aviles
- Department of Ecology, Evolution, & Behavior, University of Minnesota, St. Paul, MN, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Filippo Aureli
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Mexico
| | - Roger Blanco
- Programa de Investigación, Área de Conservación Guanacaste, Sistema Nacional de Areas de Conservación, Ministerio de Ambiente y Energía, Liberia, Costa Rica
| | - Erick Calderón-Morales
- Department of Ecology, Evolution, & Behavior, University of Minnesota, St. Paul, MN, USA
| | | | | | - María Marta Chavarría
- Programa de Investigación, Área de Conservación Guanacaste, Sistema Nacional de Areas de Conservación, Ministerio de Ambiente y Energía, Liberia, Costa Rica
| | | | - César D Jiménez-Rodríguez
- Escuela de Ingeniería Forestal, Tecnológico de Costa Rica, Cartago, Costa Rica
- Water Resources Section, Delft University of Technology, Delft, The Netherlands
| | - Evin Murillo Chacon
- Programa de Investigación, Área de Conservación Guanacaste, Sistema Nacional de Areas de Conservación, Ministerio de Ambiente y Energía, Liberia, Costa Rica
| | - Colleen M Schaffner
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Mexico
- Psychology Department, Adams State University, Alamosa, CO, USA
| | - Leland K Werden
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Xiangtao Xu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - David Medvigy
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
138
|
Huber N, Bugmann H, Lafond V. Capturing ecological processes in dynamic forest models: why there is no silver bullet to cope with complexity. Ecosphere 2020. [DOI: 10.1002/ecs2.3109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Nica Huber
- Forest Ecology Institute of Terrestrial Ecosystems Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Harald Bugmann
- Forest Ecology Institute of Terrestrial Ecosystems Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Valentine Lafond
- Forest Ecology Institute of Terrestrial Ecosystems Department of Environmental Systems Science ETH Zurich Zurich Switzerland
- Faculty of Forestry Department of Forest Resources Management University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
139
|
Buma B, Schultz C. Disturbances as opportunities: Learning from disturbance‐response parallels in social and ecological systems to better adapt to climate change. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian Buma
- Department of Integrative Biology University of Colorado Denver Denver CO USA
| | - Courtney Schultz
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins CO USA
| |
Collapse
|
140
|
Continuous Detection of Small-Scale Changes in Scots Pine Dominated Stands Using Dense Sentinel-2 Time Series. REMOTE SENSING 2020. [DOI: 10.3390/rs12081298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Climate change and severe extreme events, i.e., changes in precipitation and higher drought frequency, have a large impact on forests. In Poland, particularly Norway spruce and Scots pine forest stands are exposed to disturbances and have, thus experienced changes in recent years. Considering that Scots pine stands cover approximately 58% of forests in Poland, mapping these areas with an early and timely detection of forest cover changes is important, e.g., for forest management decisions. A cost-efficient way of monitoring forest changes is the use of remote sensing data from the Sentinel-2 satellites. They monitor the Earth’s surface with a high temporal (2–3 days), spatial (10–20 m), and spectral resolution, and thus, enable effective monitoring of vegetation. In this study, we used the dense time series of Sentinel-2 data from the years 2015–2019, (49 images in total), to detect changes in coniferous forest stands dominated by Scots pine. The simple approach was developed to analyze the spectral trajectories of all pixels, which were previously assigned to the probable forest change mask between 2015 and 2019. The spectral trajectories were calculated using the selected Sentinel-2 bands (visible red, red-edge 1–3, near-infrared 1, and short-wave infrared 1–2) and selected vegetation indices (Normalized Difference Moisture Index, Tasseled Cap Wetness, Moisture Stress Index, and Normalized Burn Ratio). Based on these, we calculated the breakpoints to determine when the forest change occurred. Then, a map of forest changes was created, based on the breakpoint dates. An accuracy assessment was performed for each detected date class using 861 points for 46 classes (45 dates and one class representing no changes detected). The results of our study showed that the short-wave infrared 1 band was the most useful for discriminating Scots pine forest stand changes, with the best overall accuracy of 75%. The evaluated vegetation indices underperformed single bands in detecting forest change dates. The presented approach is straightforward and might be useful in operational forest monitoring.
Collapse
|
141
|
Abstract
Bark stripping caused by cervids can have a long-lasting negative effect on tree vitality. Such trees of low vitality might be more susceptible to other disturbances. The amplifying effects of disturbance interactions can cause significantly more damage to forest ecosystems than the individual effects of each disturbance. Therefore, this study aimed to assess the impact of bark stripping (stem damage) on the probability of wind damage and snapping height for Norway spruces (Picea Abies (L.) H. Karst.). In this study, we used the Latvian National Forest Inventory data from the period 2004–2018. In the analysis, we used data based on 32,856 trees. To analyse the data, we implemented a Bayesian binary logistic generalised linear mixed-effects model and the linear mixed-effects model. Our results showed that stem damage significantly increased the probability of wind damage and affected the snapping height of Norway spruces. Similarly, root damage, the slenderness ratio, the stand age, the stand density, the soil type, and the dominant tree species had a significant influence on the probability of wind damage. In both periods, trees with stem damage had significantly (p < 0.05) higher probability (odd ratio 1.68) to be wind damaged than trees without stem damage. The stem damaged Norway spruce trees snapped in the first 25% of the tree height, while trees without stem damage snapped around half (50%) of the tree height. Our results show that stem damage significantly alters the effect of wind damage on Norway spruces, suggesting that such damage must be incorporated into wind-risk assessment models.
Collapse
|
142
|
Schulz AN, Mech AM, Allen CR, Ayres MP, Gandhi KJK, Gurevitch J, Havill NP, Herms DA, Hufbauer RA, Liebhold AM, Raffa KF, Raupp MJ, Thomas KA, Tobin PC, Marsico TD. The impact is in the details: evaluating a standardized protocol and scale for determining non-native insect impact. NEOBIOTA 2020. [DOI: 10.3897/neobiota.55.38981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Assessing the ecological and economic impacts of non-native species is crucial to providing managers and policymakers with the information necessary to respond effectively. Most non-native species have minimal impacts on the environment in which they are introduced, but a small fraction are highly deleterious. The definition of ‘damaging’ or ‘high-impact’ varies based on the factors determined to be valuable by an individual or group, but interpretations of whether non-native species meet particular definitions can be influenced by the interpreter’s bias or level of expertise, or lack of group consensus. Uncertainty or disagreement about an impact classification may delay or otherwise adversely affect policymaking on management strategies. One way to prevent these issues would be to have a detailed, nine-point impact scale that would leave little room for interpretation and then divide the scale into agreed upon categories, such as low, medium, and high impact. Following a previously conducted, exhaustive search regarding non-native, conifer-specialist insects, the authors independently read the same sources and scored the impact of 41 conifer-specialist insects to determine if any variation among assessors existed when using a detailed impact scale. Each of the authors, who were selected to participate in the working group associated with this study because of their diverse backgrounds, also provided their level of expertise and uncertainty for each insect evaluated. We observed 85% congruence in impact rating among assessors, with 27% of the insects having perfect inter-rater agreement. Variance in assessment peaked in insects with a moderate impact level, perhaps due to ambiguous information or prior assessor perceptions of these specific insect species. The authors also participated in a joint fact-finding discussion of two insects with the most divergent impact scores to isolate potential sources of variation in assessor impact scores. We identified four themes that could be experienced by impact assessors: ambiguous information, discounted details, observed versus potential impact, and prior knowledge. To improve consistency in impact decision-making, we encourage groups to establish a detailed scale that would allow all observed and published impacts to fall under a particular score, provide clear, reproducible guidelines and training, and use consensus-building techniques when necessary.
Collapse
|
143
|
Harvey JE, Smiljanić M, Scharnweber T, Buras A, Cedro A, Cruz-García R, Drobyshev I, Janecka K, Jansons Ā, Kaczka R, Klisz M, Läänelaid A, Matisons R, Muffler L, Sohar K, Spyt B, Stolz J, van der Maaten E, van der Maaten-Theunissen M, Vitas A, Weigel R, Kreyling J, Wilmking M. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. GLOBAL CHANGE BIOLOGY 2020; 26:2505-2518. [PMID: 31860143 DOI: 10.1111/gcb.14966] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/30/2019] [Indexed: 05/22/2023]
Abstract
The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree-ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate-growth responses for the 1943-1972 and 1973-2002 periods and characterizing site-level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad-scale climate-growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
Collapse
Affiliation(s)
- Jill E Harvey
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Marko Smiljanić
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Tobias Scharnweber
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Allan Buras
- Department of Ecology and Ecosystem Management, TUM School of Life Sciences Weihenstephan, Freising, Germany
| | - Anna Cedro
- Faculty of Geosciences, Szczecin University, Szczecin, Poland
| | - Roberto Cruz-García
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Igor Drobyshev
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT), Val-d'Or, QC, Canada
| | - Karolina Janecka
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Āris Jansons
- Latvian State Forest Research Institute, Salaspils, Latvia
| | - Ryszard Kaczka
- Faculty of Earth Sciences, University of Silesia, Sosnowiec, Poland
| | - Marcin Klisz
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Raszyn, Poland
| | - Alar Läänelaid
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | - Lena Muffler
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
- Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany
| | - Kristina Sohar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Barbara Spyt
- Faculty of Earth Sciences, University of Silesia, Sosnowiec, Poland
| | - Juliane Stolz
- Chair of Forest Growth and Woody Biomass Production, Dresden, Germany
| | | | | | - Adomas Vitas
- Centre of Environmental Research, Vytautas Magnus University, Kaunas, Lithuania
| | - Robert Weigel
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
- Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany
| | - Jürgen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
144
|
Ony MA, Nowicki M, Boggess SL, Klingeman WE, Zobel JM, Trigiano RN, Hadziabdic D. Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecol Evol 2020; 10:3655-3670. [PMID: 32313625 PMCID: PMC7160182 DOI: 10.1002/ece3.6141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen-seed dispersal mechanisms. However, in the case of tree species, effective pollen-seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine-scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia-Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (H E = 0.63, H O = 0.34), and moderate genetic differentiation (F ST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia-Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.
Collapse
Affiliation(s)
- Meher A. Ony
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTNUSA
| | - Marcin Nowicki
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTNUSA
| | - Sarah L. Boggess
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTNUSA
| | | | - John M. Zobel
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMNUSA
| | - Robert N. Trigiano
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTNUSA
| | - Denita Hadziabdic
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
145
|
Kannenberg SA, Schwalm CR, Anderegg WRL. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol Lett 2020; 23:891-901. [DOI: 10.1111/ele.13485] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/29/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023]
|
146
|
Buotte PC, Law BE, Ripple WJ, Berner LT. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02039. [PMID: 31802566 PMCID: PMC7078986 DOI: 10.1002/eap.2039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 06/02/2023]
Abstract
Forest carbon sequestration via forest preservation can be a viable climate change mitigation strategy. Here, we identify forests in the western conterminous United States with high potential carbon sequestration and low vulnerability to future drought and fire, as simulated using the Community Land Model and two high carbon emission scenario (RCP 8.5) climate models. High-productivity, low-vulnerability forests have the potential to sequester up to 5,450 Tg CO2 equivalent (1,485 Tg C) by 2099, which is up to 20% of the global mitigation potential previously identified for all temperate and boreal forests, or up to ~6 yr of current regional fossil fuel emissions. Additionally, these forests currently have high above- and belowground carbon density, high tree species richness, and a high proportion of critical habitat for endangered vertebrate species, indicating a strong potential to support biodiversity into the future and promote ecosystem resilience to climate change. We stress that some forest lands have low carbon sequestration potential but high biodiversity, underscoring the need to consider multiple criteria when designing a land preservation portfolio. Our work demonstrates how process models and ecological criteria can be used to prioritize landscape preservation for mitigating greenhouse gas emissions and preserving biodiversity in a rapidly changing climate.
Collapse
Affiliation(s)
- Polly C Buotte
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, Oregon, 97331 , USA
| | - Beverly E Law
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, Oregon, 97331 , USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, Oregon, 97331 , USA
| | - Logan T Berner
- EcoSpatial Services L.L.C., 2498 North Oakmont Drive, Flagstaff, Arizona, 86004, USA
| |
Collapse
|
147
|
Andrus RA, Hart SJ, Veblen TT. Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing. Ecology 2020; 101:e02998. [PMID: 32012254 DOI: 10.1002/ecy.2998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 11/08/2022]
Abstract
Understanding how severe disturbances and their interactions affect forests is key to projecting ecological change under a warming climate. Substantial increases in some biotic disturbances, such as bark beetle outbreaks, in temperate forest ecosystemsmay compromise recovery to a forest vegetation type (i.e., physiognomic recovery or resilience), especially if subsequent biotic disturbances (e.g., herbivory) alter recovery mechanisms. From 2005 to 2017, severe outbreaks (>90% mortality) of spruce bark beetles (SB, Dendroctonus rufipennis) affected Engelmann spruce (Picea engelmannii) across 325,000 ha of spruce and subalpine fir (Abies lasiocarpa) forest in the southern Rocky Mountains, USA. Concurrently, an outbreak of western balsam bark beetle (WBBB, Dryocoetes confuses) infested subalpine fir across at least 47,000 of these hectares. We explored the capacity of 105 stands affected by one or two bark beetle outbreaks and browsing of juvenile trees by ungulates to return to a forest vegetation type in the context of pre-outbreak forest conditions and topography. Nine initial forest trajectories (i.e., at least several decades) were identified from four pre-outbreak forest types affected by three biotic disturbances that occurred at different spatial scales and severities. Most stands (86%) contained surviving nonhost adult trees in the main canopy (fir and aspen [Populus tremuloides]) and many surviving juveniles of all species, implying that they are currently on a trajectory for physiognomic recovery. Stands composed exclusively of large-diameter spruce were affected by a severe SB outbreak and were most vulnerable to a transition to a low-density forest, below regional stocking levels (<370 trees/ha). Greater pre-outbreak stand structural complexity and species diversity were key traits of stands with a higher potential for physiognomic recovery. However, all multispecies stands shifted in relative composition of the main canopy to nonhost species, suggesting low potential for compositional recovery over the next several decades. Most post-outbreak stands (86%) exceeded regional stocking levels with trees taller than the browse zone (<2 m). As such, ungulate browsing on over half of all juveniles will primarily affect the rate of infilling of the forest canopy and preferential browsing of more palatable species will influence the composition of the future forest canopy.
Collapse
Affiliation(s)
- Robert A Andrus
- Department of Geography, University of Colorado, Boulder, Colorado, 80309, USA
| | - Sarah J Hart
- Department Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Thomas T Veblen
- Department of Geography, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
148
|
Zhang S, Shao L, Sun Z, Huang Y, Liu N. An atmospheric pollutant (inorganic nitrogen) alters the response of evergreen broad-leaved tree species to extreme drought. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109750. [PMID: 31655412 DOI: 10.1016/j.ecoenv.2019.109750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Drought and nitrogen (N) deposition are important components of global climate and environmental change. In this greenhouse study, we investigated the ecophysiological responses of the seedlings of three subtropical forest plant species (Schima superba, Castanopsis fissa, and Michelia macclurei) to short-term experimental drought stress, N addition, and their interaction. The results showed that drought stress reduced the activities of antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] and total antioxidant capacity (T-AOC), but increased the malondialdehyde (MDA), abscisic acid (ABA), and proline (PRO) contents in plants. The PRO content, T-AOC, and antioxidant enzyme activities were increased, and ABA and MDA contents were decreased by N addition alone. Furthermore, N addition under drought stress increased antioxidant enzymes activities, PRO content, and T-AOC. The treatments, however, did not significantly affect the chlorophyll fluorescence parameters of the species. T-AOC was positively correlated with antioxidant enzyme activities in each species, indicating that antioxidant enzymes were important for plant resistance to oxidative stress. MDA content increased with the increase of ABA content, indicating that ABA may help regulate stomatal movement and drought-induced oxidative injury in plants. T-AOC was positively correlated with PRO content, probably because PRO participated in osmotic regulation of cells and increased osmotic stress resistance. These results indicate that N addition can reduce drought stress of subtropical forest plants and will help researchers predict how evergreen broad-leaved forests will respond to global change in the future.
Collapse
Affiliation(s)
- Shike Zhang
- CAS Engineering Laboratory for Ecological Restoration of Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Shao
- School of Food Pharmaceutical Engineering, Zhao Qing University, Zhaoqing, 526061, China
| | - Zhongyu Sun
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou, 510070, China
| | - Yao Huang
- CAS Engineering Laboratory for Ecological Restoration of Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Liu
- CAS Engineering Laboratory for Ecological Restoration of Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
149
|
Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109792. [PMID: 31731030 PMCID: PMC7612771 DOI: 10.1016/j.jenvman.2019.109792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Windfelled Norway spruce (Picea abies) trees play a crucial role in triggering large-scale outbreaks of the European spruce bark beetle Ips typographus. Outbreak management therefore strives to remove windfelled trees to reduce the risk of outbreaks, a measure referred to as sanitation logging (SL). Although this practice has been traditionally applied, its efficiency in preventing outbreaks remains poorly understood. We used the landscape simulation model iLand to investigate the effects of different spatial configurations and intensities of SL of windfelled trees on the subsequent disturbance by bark beetles. We studied differences between SL applied evenly across the landscape, focused on the vicinity of roads (scenario of limited logging resources) and concentrated in a contiguous block (scenario of spatially diversified management objectives). We focused on a 16 050 ha forest landscape in Central Europe. The removal of >80% of all windfelled trees is required to substantially reduce bark beetle disturbances. Focusing SL on the vicinity of roads created a "fire break effect" on bark beetle spread, and was moderately efficient in reducing landscape-scale bark beetle disturbance. Block treatments substantially reduced outbreaks in treated areas. Leaving parts of the landscape untreated (e.g., conservation areas) had no significant amplifying effect on outbreaks in managed areas. Climate change increased bark beetle disturbances and reduced the effect of SL. Our results suggest that past outbreak management methods will not be sufficient to counteract climate-mediated increases in bark beetle disturbance.
Collapse
Affiliation(s)
- Laura Dobor
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Tomáš Hlásny
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic.
| | - Werner Rammer
- University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, 1190, Wien, Austria
| | - Soňa Zimová
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Ivan Barka
- National Forest Centre - Forest Research Institute Zvolen, T. G. Masaryka 22, 960 92, Zvolen, Slovak Republic
| | - Rupert Seidl
- University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, 1190, Wien, Austria
| |
Collapse
|
150
|
Koontz MJ, North MP, Werner CM, Fick SE, Latimer AM. Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests. Ecol Lett 2020; 23:483-494. [PMID: 31922344 DOI: 10.1111/ele.13447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
Abstract
A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.
Collapse
Affiliation(s)
- Michael J Koontz
- Graduate Group in Ecology, University of California, Davis, CA, USA.,Department of Plant Sciences, University of California, Davis, CA, USA.,Earth Lab, University of Colorado-Boulder, Boulder, CO, USA
| | - Malcolm P North
- Department of Plant Sciences, University of California, Davis, CA, USA.,Pacific Southwest Research Station, USDA Forest Service, Mammoth Lakes, CA, USA
| | - Chhaya M Werner
- Department of Plant Sciences, University of California, Davis, CA, USA.,Center for Population Biology, University of California, Davis, CA, USA.,German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Germany
| | - Stephen E Fick
- US Geological Survey, Southwest Biological Science Center, Moab, UT, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|