101
|
Abstract
Gene transcription by RNA polymerase II (Pol II) is the first step in the expression of the eukaryotic genome and a focal point for cellular regulation during development, differentiation, and responses to the environment. Two decades after the determination of the structure of Pol II, the mechanisms of transcription have been elucidated with studies of Pol II complexes with nucleic acids and associated proteins. Here we provide an overview of the nearly 200 available Pol II complex structures and summarize how these structures have elucidated promoter-dependent transcription initiation, promoter-proximal pausing and release of Pol II into active elongation, and the mechanisms that Pol II uses to navigate obstacles such as nucleosomes and DNA lesions. We predict that future studies will focus on how Pol II transcription is interconnected with chromatin transitions, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Sara Osman
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| |
Collapse
|
102
|
Lu X, Chu CS, Fang T, Rayon-Estrada V, Fang F, Patke A, Qian Y, Clarke SH, Melnick AM, Zhang Y, Papavasiliou FN, Roeder RG. MTA2/NuRD Regulates B Cell Development and Cooperates with OCA-B in Controlling the Pre-B to Immature B Cell Transition. Cell Rep 2020; 28:472-485.e5. [PMID: 31291582 PMCID: PMC6690613 DOI: 10.1016/j.celrep.2019.06.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/21/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
The NuRD complex contains both chromatin remodeling and histone deacetylase activities. Mice lacking the MTA2 subunit of NuRD show developmental defects in pro-B, pre-B, immature B, and marginal zone B cells, and abnormal germinal center B cell differentiation during immune responses. Mta2 inactivation also causes a derepression of Igll1 and VpreB1 genes in pre-B cells. Furthermore, MTA2/NuRD interacts directly with AIOLOS/IKAROS and shows a striking overlap with AIOLOS/IKAROS target genes in human pre-B cells, suggesting a functional interdependence between MTA2/NuRD and AIOLOS. Mechanistically, MTA2 deficiency in mice leads to increased H3K27 acetylation at both Igll1 and VpreB1 promoters. Gene profiling analyses also identify distinct MTA2-dependent transcription programs in pro-B and pre-B cells. In addition, we find a strong synergy between MTA2 and OCA-B in repressing Igll1 and VpreB1 at the pre-B cell stage, and in regulating both the pre-B to immature B transition and splenic B cell development. Lu et al. examine B cell developmental defects in MTA2-deficient mice. MTA2 interacts with AIOLOS/IKAROS, represses Igll1 expression, co-binds to most AIOLOS/IKAROS target genes in pre-B cells, and cooperates with OCA-B in the pre-B to immature B transition. These data suggest that AIOLOS/IKAROS functions through MTA2/NuRD during B cell development.
Collapse
Affiliation(s)
- Xiangdong Lu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Chi-Shuen Chu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Terry Fang
- The Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Violeta Rayon-Estrada
- The Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
| | - Fang Fang
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alina Patke
- The Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Ye Qian
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen H Clarke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi Zhang
- HHMI, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - F Nina Papavasiliou
- The Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA; Division of Immune Diversity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
103
|
Decker TM. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5). J Mol Biol 2020; 433:166657. [PMID: 32987031 DOI: 10.1016/j.jmb.2020.09.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
The transcription elongation factor Spt5 is conserved from bacteria to humans. In eukaryotes, Spt5 forms a complex with Spt4 and regulates processive transcription elongation. Recent studies on transcription elongation suggest different mechanistic roles in yeast versus mammals. Higher eukaryotes utilize Spt4-Spt5 (DSIF) to regulate promoter-proximal pausing, a transcription-regulatory mechanism that connects initiation to productive elongation. DSIF is a versatile transcription factor and has been implicated in both gene-specific regulation and transcription through nucleosomes. Future studies will further elucidate the role of DSIF in transcriptional dynamics and disentangle its inhibitory and enhancing activities in transcription.
Collapse
Affiliation(s)
- Tim-Michael Decker
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, Boulder, CO 80303, USA.
| |
Collapse
|
104
|
Desterke C, Turhan AG, Bennaceur-Griscelli A, Griscelli F. PPARγ Cistrome Repression during Activation of Lung Monocyte-Macrophages in Severe COVID-19. iScience 2020; 23:101611. [PMID: 33015591 PMCID: PMC7518203 DOI: 10.1016/j.isci.2020.101611] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanisms of cytokine storm in patients with severe COVID-19 infections are poorly understood. To uncover these events, we performed transcriptome analyses of lung biopsies from patients with COVID-19, revealing a gene enrichment pattern similar to that of PPARγ-knockout macrophages. Single-cell gene expression analysis of bronchoalveolar lavage fluids revealed a characteristic trajectory of PPARγ-related disturbance in the CD14+/CD16+ cells. We identified a correlation with the disease severity and the reduced expression of several members of the PPARγ complex such as EP300, RXRA, RARA, SUMO1, NR3C1, and CCDC88A. ChIP-seq analyses confirmed repression of the PPARγ-RXRA-NR3C1 cistrome in COVID-19 lung samples. Further analysis of protein-protein networks highlighted an interaction between the PPARγ-associated protein SUMO1 and a nucleoprotein of the SARS virus. Overall, these results demonstrate for the first time the involvement of the PPARγ complex in severe COVID-19 lung disease and suggest strongly its role in the major monocyte/macrophage-mediated inflammatory storm.
Collapse
Affiliation(s)
- Christophe Desterke
- INSERM UA9- University Paris-Saclay, Institut André Lwoff, Bâtiment A CNRS, 7 rue Guy Moquet, 94800 Villejuif, France
| | - Ali G Turhan
- INSERM UA9- University Paris-Saclay, Institut André Lwoff, Bâtiment A CNRS, 7 rue Guy Moquet, 94800 Villejuif, France.,ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800 Villejuif, France.,Division of Hematology, APHP-Paris Saclay University Hospitals, Le Kremlin Bicêtre 94275, Villejuif 94800, France.,University Paris Saclay, Faculty of Medicine, Le Kremlin Bicêtre 94275, France
| | - Annelise Bennaceur-Griscelli
- INSERM UA9- University Paris-Saclay, Institut André Lwoff, Bâtiment A CNRS, 7 rue Guy Moquet, 94800 Villejuif, France.,ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800 Villejuif, France.,Division of Hematology, APHP-Paris Saclay University Hospitals, Le Kremlin Bicêtre 94275, Villejuif 94800, France.,University Paris Saclay, Faculty of Medicine, Le Kremlin Bicêtre 94275, France
| | - Frank Griscelli
- INSERM UA9- University Paris-Saclay, Institut André Lwoff, Bâtiment A CNRS, 7 rue Guy Moquet, 94800 Villejuif, France.,ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800 Villejuif, France.,University of Paris, Faculty Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France.,Gustave-Roussy Cancer Institute, Department of Biopathology, 94800 Villejuif, France
| |
Collapse
|
105
|
Tellier M, Zaborowska J, Caizzi L, Mohammad E, Velychko T, Schwalb B, Ferrer-Vicens I, Blears D, Nojima T, Cramer P, Murphy S. CDK12 globally stimulates RNA polymerase II transcription elongation and carboxyl-terminal domain phosphorylation. Nucleic Acids Res 2020; 48:7712-7727. [PMID: 32805052 PMCID: PMC7641311 DOI: 10.1093/nar/gkaa514] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Livia Caizzi
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Eusra Mohammad
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Taras Velychko
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Björn Schwalb
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ivan Ferrer-Vicens
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Daniel Blears
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
106
|
Ropa J, Saha N, Hu H, Peterson LF, Talpaz M, Muntean AG. SETDB1 mediated histone H3 lysine 9 methylation suppresses MLL-fusion target expression and leukemic transformation. Haematologica 2020; 105:2273-2285. [PMID: 33054052 PMCID: PMC7556517 DOI: 10.3324/haematol.2019.223883] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/25/2019] [Indexed: 11/23/2022] Open
Abstract
Epigenetic regulators play a critical role in normal and malignant hematopoiesis. Deregulation, including epigenetic deregulation, of the HOXA gene cluster drives transformation of about 50% of acute myeloid leukemia. We recently showed that the Histone 3 Lysine 9 methyltransferase SETDB1 negatively regulates the expression of the pro-leukemic genes Hoxa9 and its cofactor Meis1 through deposition of promoter H3K9 trimethylation in MLL-AF9 leukemia cells. Here, we investigated the biological impact of altered SETDB1 expression and changes in H3K9 methylation on acute myeloid leukemia. We demonstrate that SETDB1 expression is correlated to disease status and overall survival in acute myeloid leukemia patients. We recapitulated these findings in mice, where high expression of SETDB1 delayed MLL-AF9 mediated disease progression by promoting differentiation of leukemia cells. We also explored the biological impact of treating normal and malignant hematopoietic cells with an H3K9 methyltransferase inhibitor, UNC0638. While myeloid leukemia cells demonstrate cytotoxicity to UNC0638 treatment, normal bone marrow cells exhibit an expansion of cKit+ hematopoietic stem and progenitor cells. Consistent with these data, we show that bone marrow treated with UNC0638 is more amenable to transformation by MLL-AF9. Next generation sequencing of leukemia cells shows that high expression of SETDB1 induces repressive changes to the promoter epigenome and downregulation of genes linked with acute myeloid leukemia, including Dock1 and the MLL-AF9 target genes Hoxa9, Six1, and others. These data reveal novel targets of SETDB1 in leukemia that point to a role for SETDB1 in negatively regulating pro-leukemic target genes and suppressing acute myeloid leukemia.
Collapse
Affiliation(s)
- James Ropa
- Department of Pathology, University of Michigan Medical School
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School
| | - Nirmalya Saha
- Department of Pathology, University of Michigan Medical School
| | - Hsiangyu Hu
- Department of Pathology, University of Michigan Medical School
| | - Luke F. Peterson
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Abor, MI, USA
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Abor, MI, USA
| | | |
Collapse
|
107
|
Liang S, Hu L, Wu Z, Chen Z, Liu S, Xu X, Qian A. CDK12: A Potent Target and Biomarker for Human Cancer Therapy. Cells 2020; 9:E1483. [PMID: 32570740 PMCID: PMC7349380 DOI: 10.3390/cells9061483] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are a group of serine/threonine protein kinases and play crucial roles in various cellular processes by regulating cell cycle and gene transcription. Cyclin-dependent kinase 12 (CDK12) is an important transcription-associated CDK. It shows versatile roles in regulating gene transcription, RNA splicing, translation, DNA damage response (DDR), cell cycle progression and cell proliferation. Recently, increasing evidence demonstrates the important role of CDK12 in various human cancers, illustrating it as both a biomarker of cancer and a potential target for cancer therapy. Here, we summarize the current knowledge of CDK12, and review the research advances of CDK12's biological functions, especially its role in human cancers and as a potential target and biomarker for cancer therapy.
Collapse
Affiliation(s)
- Shujing Liang
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixiang Wu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuyu Liu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xia Xu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (S.L.); (L.H.); (Z.W.); (Z.C.); (S.L.); (X.X.)
- Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
108
|
Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. Nat Struct Mol Biol 2020; 27:668-677. [PMID: 32541898 DOI: 10.1038/s41594-020-0437-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Transcription by RNA polymerase II (Pol II) is carried out by an elongation complex. We previously reported an activated porcine Pol II elongation complex, EC*, encompassing the human elongation factors DSIF, PAF1 complex (PAF) and SPT6. Here we report the cryo-EM structure of the complete EC* that contains RTF1, a dissociable PAF subunit critical for chromatin transcription. The RTF1 Plus3 domain associates with Pol II subunit RPB12 and the phosphorylated C-terminal region of DSIF subunit SPT5. RTF1 also forms four α-helices that extend from the Plus3 domain along the Pol II protrusion and RPB10 to the polymerase funnel. The C-terminal 'fastener' helix retains PAF and is followed by a 'latch' that reaches the end of the bridge helix, a flexible element of the Pol II active site. RTF1 strongly stimulates Pol II elongation, and this requires the latch, possibly suggesting that RTF1 activates transcription allosterically by influencing Pol II translocation.
Collapse
|
109
|
Choi SH, Kim S, Jones KA. Gene expression regulation by CDK12: a versatile kinase in cancer with functions beyond CTD phosphorylation. Exp Mol Med 2020; 52:762-771. [PMID: 32451425 PMCID: PMC7272620 DOI: 10.1038/s12276-020-0442-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play critical roles in cell cycle progression and gene expression regulation. In human cancer, transcription-associated CDKs can activate oncogenic gene expression programs, whereas cell cycle-regulatory CDKs mainly induce uncontrolled proliferation. Cyclin-dependent kinase 12 (CDK12) belongs to the CDK family of serine/threonine kinases and has been recently found to have multiple roles in gene expression regulation and tumorigenesis. Originally, CDK12 was thought to be one of the transcription-associated CDKs, acting with its cyclin partner Cyclin K to promote the phosphorylation of the C-terminal domain (CTD) of RNA polymerase II and induce transcription elongation. However, recent studies have demonstrated that CDK12 also controls multiple gene expression processes, including transcription termination, mRNA splicing, and translation. Most importantly, CDK12 mutations are frequently found in human tumors. Loss of CDK12 function causes defective expression of DNA damage response (DDR) genes, which eventually results in genome instability, a hallmark of human cancer. Here, we discuss the diverse roles of CDK12 in gene expression regulation and human cancer, focusing on newly identified CDK12 kinase functions in cellular processes and highlighting CDK12 as a promising therapeutic target for human cancer treatment. Better understanding of the roles played by a protein kinase, an enzyme that adds phosphate groups to other molecules, in healthy and diseased states may help scientists identify novel cancer treatments. Cyclin-dependent kinases (CDKs) are a family of protein kinases crucial to cell cycling and gene expression. CDK12 can activate and modulate cancer-related gene expression, but, according to a review by Seung Hyuk Choi and colleagues at the Salk Institute for Biological Studies in La Jolla, USA, further investigations into its exact functioning and control mechanisms are required. CDK12 mutations are frequently found in aggressive breast and ovarian cancers, while loss of CDK12 function results in abnormal expression of DNA damage response genes and genome instability. CDK12 may also regulate drug resistance in cancer cells. The team suggests that therapies targeting CDK12 are worth exploring.
Collapse
Affiliation(s)
- Seung Hyuk Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Seongjae Kim
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| |
Collapse
|
110
|
Pham P, Malik S, Mak C, Calabrese PC, Roeder RG, Goodman MF. AID-RNA polymerase II transcription-dependent deamination of IgV DNA. Nucleic Acids Res 2020; 47:10815-10829. [PMID: 31566237 PMCID: PMC6846656 DOI: 10.1093/nar/gkz821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Activation-induced deoxycytidine deaminase (AID) initiates somatic hypermutation (SHM) in immunoglobulin variable (IgV) genes to produce high-affinity antibodies. SHM requires IgV transcription by RNA polymerase II (Pol II). A eukaryotic transcription system including AID has not been reported previously. Here, we reconstitute AID-catalyzed deamination during Pol II transcription elongation in conjunction with DSIF transcription factor. C→T mutations occur at similar frequencies on non-transcribed strand (NTS) and transcribed strand (TS) DNA. In contrast, bacteriophage T7 Pol generates NTS mutations predominantly. AID-Pol II mutations are strongly favored in WRC and WGCW overlapping hot motifs (W = A or T, R = A or G) on both DNA strands. Single mutations occur on 70% of transcribed DNA clones. Mutations are correlated over a 15 nt distance in multiply mutated clones, suggesting that deaminations are catalyzed processively within a stalled or backtracked transcription bubble. Site-by-site comparisons for biochemical and human memory B-cell mutational spectra in an IGHV3-23*01 target show strongly favored deaminations occurring in the antigen-binding complementarity determining regions (CDR) compared to the framework regions (FW). By exhibiting consistency with B-cell SHM, our in vitro data suggest that biochemically defined reconstituted Pol II transcription systems can be used to investigate how, when and where AID is targeted.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Chiho Mak
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter C Calabrese
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
111
|
Ipa1 Is an RNA Polymerase II Elongation Factor that Facilitates Termination by Maintaining Levels of the Poly(A) Site Endonuclease Ysh1. Cell Rep 2020; 26:1919-1933.e5. [PMID: 30759400 PMCID: PMC7236606 DOI: 10.1016/j.celrep.2019.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/05/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023] Open
Abstract
The yeast protein Ipa1 was recently discovered to interact with the Ysh1
endonuclease of the prem-RNA cleavage and polyadenylation (C/P) machinery, and
Ipa1 mutation impairs 3′end processing. We report that Ipa1 globally
promotes proper transcription termination and poly(A) site selection, but with
variable effects on genes depending upon the specific configurations of
polyadenylation signals. Our findings suggest that the role of Ipa1 in
termination is mediated through interaction with Ysh1, since Ipa1 mutation leads
to decrease in Ysh1 and poor recruitment of the C/P complex to a transcribed
gene. The Ipa1 association with transcriptionally active chromatin resembles
that of elongation factors, and the mutant shows defective Pol II elongation
kinetics in vivo. Ysh1 overexpression in the Ipa1 mutant
rescues the termination defect, but not the mutant’s sensitivity to
6-azauracil, an indicator of defective elongation. Our findings support a model
in which an Ipa1/Ysh1 complex helps coordinate transcription elongation and
3′ end processing. The essential, uncharacterized Ipa1 protein was recently discovered to
interact with the Ysh1 endonuclease of the pre-mRNA cleavage and polyadenylation
machinery. Pearson et al. propose that the Ipa1/Ysh1 interaction provides the
cell with a means to coordinate and regulate transcription elongation with
3′ end processing in accordance with the cell’s needs.
Collapse
|
112
|
Gene-Specific Control of tRNA Expression by RNA Polymerase II. Mol Cell 2020; 78:765-778.e7. [PMID: 32298650 DOI: 10.1016/j.molcel.2020.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that tRNA levels are dynamically and specifically regulated in response to internal and external cues to modulate the cellular translational program. However, the molecular players and the mechanisms regulating the gene-specific expression of tRNAs are still unknown. Using an inducible auxin-degron system to rapidly deplete RPB1 (the largest subunit of RNA Pol II) in living cells, we identified Pol II as a direct gene-specific regulator of tRNA transcription. Our data suggest that Pol II transcription robustly interferes with Pol III function at specific tRNA genes. This activity was further found to be essential for MAF1-mediated repression of a large set of tRNA genes during serum starvation, indicating that repression of tRNA genes by Pol II is dynamically regulated. Hence, Pol II plays a direct and central role in the gene-specific regulation of tRNA expression.
Collapse
|
113
|
Multivalent Role of Human TFIID in Recruiting Elongation Components at the Promoter-Proximal Region for Transcriptional Control. Cell Rep 2020; 26:1303-1317.e7. [PMID: 30699356 DOI: 10.1016/j.celrep.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 01/08/2023] Open
Abstract
Despite substantial progress in our understanding of the players involved and the regulatory mechanisms controlling the initiation and elongation steps of transcription, little is known about the recruitment of elongation factors at promoter-proximal regions for the initiation-to-elongation transition. Here, we show evidence that human TFIID, which initiates pre-initiation complex (PIC) assembly, contributes to regulating the recruitment of super-elongation complex (SEC) components at the promoter-proximal region through interactions among selective TAF and SEC components. In vitro direct interactions, coupled with cell-based assays, identified an important poly-Ser domain within SEC components that are involved in their interaction with TFIID. DNA template-based recruitment assays, using purified components, further show a direct role for poly-Ser domain-dependent TFIID interaction in recruiting SEC components on target DNA. Consistently, ChIP and RNA analyses have shown the importance of this mechanism in TFIID-dependent SEC recruitment and target gene expression within mammalian cells.
Collapse
|
114
|
Pilarova K, Herudek J, Blazek D. CDK12: cellular functions and therapeutic potential of versatile player in cancer. NAR Cancer 2020; 2:zcaa003. [PMID: 34316683 PMCID: PMC8210036 DOI: 10.1093/narcan/zcaa003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) phosphorylates the C-terminal domain of RNA polymerase II and is needed for the optimal transcription elongation and translation of a subset of human protein-coding genes. The kinase has a pleiotropic effect on the maintenance of genome stability, and its inactivation in prostate and ovarian tumours results in focal tandem duplications, a CDK12-unique genome instability phenotype. CDK12 aberrations were found in many other malignancies and have the potential to be used as biomarkers for therapeutic intervention. Moreover, the inhibition of CDK12 emerges as a promising strategy for treatment in several types of cancers. In this review, we summarize mechanisms that CDK12 utilizes for the regulation of gene expression and discuss how the perturbation of CDK12-sensitive genes contributes to the disruption of cell cycle progression and the onset of genome instability. Furthermore, we describe tumour-suppressive and oncogenic functions of CDK12 and its potential as a biomarker and inhibition target in anti-tumour treatments.
Collapse
Affiliation(s)
- Kveta Pilarova
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jan Herudek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
115
|
Poplawski SG, Garbett KA, McMahan RL, Kordasiewicz HB, Zhao H, Kennedy AJ, Goleva SB, Sanders TH, Motley ST, Swayze EE, Ecker DJ, Sweatt JD, Michael TP, Greer CB. An Antisense Oligonucleotide Leads to Suppressed Transcription of Hdac2 and Long-Term Memory Enhancement. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1399-1412. [PMID: 32160709 PMCID: PMC7047133 DOI: 10.1016/j.omtn.2020.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
Knockout of the memory suppressor gene histone deacetylase 2 (Hdac2) in mice elicits cognitive enhancement, and drugs that block HDAC2 have potential as therapeutics for disorders affecting memory. Currently available HDAC2 catalytic activity inhibitors are not fully isoform specific and have short half-lives. Antisense oligonucleotides (ASOs) are drugs that elicit extremely long-lasting, specific inhibition through base pairing with RNA targets. We utilized an ASO to reduce Hdac2 messenger RNA (mRNA) in mice and determined its longevity, specificity, and mechanism of repression. A single injection of the Hdac2-targeted ASO in the central nervous system produced persistent reduction in HDAC2 protein and Hdac2 mRNA levels for 16 weeks. It enhanced object location memory for 8 weeks. RNA sequencing (RNA-seq) analysis of brain tissues revealed that the repression was specific to Hdac2 relative to related Hdac isoforms, and Hdac2 reduction caused alterations in the expression of genes involved in extracellular signal-regulated kinase (ERK) and memory-associated immune signaling pathways. Hdac2-targeted ASOs also suppress a nonpolyadenylated Hdac2 regulatory RNA and elicit direct transcriptional suppression of the Hdac2 gene through stalling RNA polymerase II. These findings identify transcriptional suppression of the target gene as a novel mechanism of action of ASOs.
Collapse
Affiliation(s)
- Shane G Poplawski
- J. Craig Venter Institute, La Jolla, CA, USA; Ibis Biosciences and Abbott Company, Carlsbad, CA, USA
| | | | - Rebekah L McMahan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - Hien Zhao
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Slavina B Goleva
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Teresa H Sanders
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | | - David J Ecker
- Ibis Biosciences and Abbott Company, Carlsbad, CA, USA
| | - J David Sweatt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Todd P Michael
- J. Craig Venter Institute, La Jolla, CA, USA; Ibis Biosciences and Abbott Company, Carlsbad, CA, USA.
| | - Celeste B Greer
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
116
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
117
|
Werner MT, Wang H, Hamagami N, Hsu SC, Yano JA, Stonestrom AJ, Behera V, Zong Y, Mackay JP, Blobel GA. Comparative structure-function analysis of bromodomain and extraterminal motif (BET) proteins in a gene-complementation system. J Biol Chem 2020; 295:1898-1914. [PMID: 31792058 PMCID: PMC7029111 DOI: 10.1074/jbc.ra119.010679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/17/2019] [Indexed: 11/06/2022] Open
Abstract
The widely expressed bromodomain and extraterminal motif (BET) proteins bromodomain-containing protein 2 (BRD2), BRD3, and BRD4 are multifunctional transcriptional regulators that bind acetylated chromatin via their conserved tandem bromodomains. Small molecules that target BET bromodomains are being tested for various diseases but typically do not discern between BET family members. Genomic distributions and protein partners of BET proteins have been described, but the basis for differences in BET protein function within a given lineage remains unclear. By establishing a gene knockout-rescue system in a Brd2-null erythroblast cell line, here we compared a series of mutant and chimeric BET proteins for their ability to modulate cell growth, differentiation, and gene expression. We found that the BET N-terminal halves bearing the bromodomains convey marked differences in protein stability but do not account for specificity in BET protein function. Instead, when BET proteins were expressed at comparable levels, their specificity was largely determined by the C-terminal half. Remarkably, a chimeric BET protein comprising the N-terminal half of the structurally similar short BRD4 isoform (BRD4S) and the C-terminal half of BRD2 functioned similarly to intact BRD2. We traced part of the BRD2-specific activity to a previously uncharacterized short segment predicted to harbor a coiled-coil (CC) domain. Deleting the CC segment impaired BRD2's ability to restore growth and differentiation, and the CC region functioned in conjunction with the adjacent ET domain to impart BRD2-like activity onto BRD4S. In summary, our results identify distinct BET protein domains that regulate protein turnover and biological activities.
Collapse
Affiliation(s)
- Michael T Werner
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Hongxin Wang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Nicole Hamagami
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Sarah C Hsu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jennifer A Yano
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Aaron J Stonestrom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Vivek Behera
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yichen Zong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
118
|
Wang Y, Qiu T. Positive transcription elongation factor b and its regulators in development. ALL LIFE 2020. [DOI: 10.1080/21553769.2019.1663277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Yan Wang
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Tong Qiu
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
119
|
Jurynec MJ, Bai X, Bisgrove BW, Jackson H, Nechiporuk A, Palu RAS, Grunwald HA, Su YC, Hoshijima K, Yost HJ, Zon LI, Grunwald DJ. The Paf1 complex and P-TEFb have reciprocal and antagonist roles in maintaining multipotent neural crest progenitors. Development 2019; 146:dev.180133. [PMID: 31784460 DOI: 10.1242/dev.180133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Multipotent progenitor populations are necessary for generating diverse tissue types during embryogenesis. We show the RNA polymerase-associated factor 1 complex (Paf1C) is required to maintain multipotent progenitors of the neural crest (NC) lineage in zebrafish. Mutations affecting each Paf1C component result in near-identical NC phenotypes; alyron mutant embryos carrying a null mutation in paf1 were analyzed in detail. In the absence of zygotic paf1 function, definitive premigratory NC progenitors arise but fail to maintain expression of the sox10 specification gene. The mutant NC progenitors migrate aberrantly and fail to differentiate appropriately. Blood and germ cell progenitor development is affected similarly. Development of mutant NC could be rescued by additional loss of positive transcription elongation factor b (P-TEFb) activity, a key factor in promoting transcription elongation. Consistent with the interpretation that inhibiting/delaying expression of some genes is essential for maintaining progenitors, mutant embryos lacking the CDK9 kinase component of P-TEFb exhibit a surfeit of NC progenitors and their derivatives. We propose Paf1C and P-TEFb act antagonistically to regulate the timing of the expression of genes needed for NC development.
Collapse
Affiliation(s)
- Michael J Jurynec
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiaoying Bai
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brent W Bisgrove
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Haley Jackson
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alex Nechiporuk
- Department of Cell and Developmental Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rebecca A S Palu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hannah A Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi-Chu Su
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
120
|
Rasool RU, Natesan R, Deng Q, Aras S, Lal P, Sander Effron S, Mitchell-Velasquez E, Posimo JM, Carskadon S, Baca SC, Pomerantz MM, Siddiqui J, Schwartz LE, Lee DJ, Palanisamy N, Narla G, Den RB, Freedman ML, Brady DC, Asangani IA. CDK7 Inhibition Suppresses Castration-Resistant Prostate Cancer through MED1 Inactivation. Cancer Discov 2019; 9:1538-1555. [PMID: 31466944 PMCID: PMC7202356 DOI: 10.1158/2159-8290.cd-19-0189] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/09/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is a fatal disease, primarily resulting from the transcriptional addiction driven by androgen receptor (AR). First-line CRPC treatments typically target AR signaling, but are rapidly bypassed, resulting in only a modest survival benefit with antiandrogens. Therapeutic approaches that more effectively block the AR-transcriptional axis are urgently needed. Here, we investigated the molecular mechanism underlying the association between the transcriptional coactivator MED1 and AR as a vulnerability in AR-driven CRPC. MED1 undergoes CDK7-dependent phosphorylation at T1457 and physically engages AR at superenhancer sites, and is essential for AR-mediated transcription. In addition, a CDK7-specific inhibitor, THZ1, blunts AR-dependent neoplastic growth by blocking AR/MED1 corecruitment genome-wide, as well as reverses the hyperphosphorylated MED1-associated enzalutamide-resistant phenotype. In vivo, THZ1 induces tumor regression of AR-amplified human CRPC in a xenograft mouse model. Together, we demonstrate that CDK7 inhibition selectively targets MED1-mediated, AR-dependent oncogenic transcriptional amplification, thus representing a potential new approach for the treatment of CRPC. SIGNIFICANCE: Potent inhibition of AR signaling is critical to treat CRPC. This study uncovers a driver role for CDK7 in regulating AR-mediated transcription through phosphorylation of MED1, thus revealing a therapeutically targetable potential vulnerability in AR-addicted CRPC.See related commentary by Russo et al., p. 1490.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shweta Aras
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priti Lal
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samuel Sander Effron
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica M Posimo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon Carskadon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Javed Siddiqui
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lauren E Schwartz
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Lee
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
121
|
mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription. Cell Rep 2019; 23:1530-1542. [PMID: 29719263 PMCID: PMC5946721 DOI: 10.1016/j.celrep.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/11/2018] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II-dependent transcription RNMT-RAM-dependent transcription is independent of mRNA cap methylation RNMT-RAM binds to the entire length of pre-mRNA and to transcription-associated proteins Significant loss of RNA Pol II gene occupancy is observed on RNMT-RAM suppression
Collapse
|
122
|
Yeast PAF1 complex counters the pol III accumulation and replication stress on the tRNA genes. Sci Rep 2019; 9:12892. [PMID: 31501524 PMCID: PMC6733944 DOI: 10.1038/s41598-019-49316-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The RNA polymerase (pol) III transcribes mostly short, house-keeping genes, which produce stable, non-coding RNAs. The tRNAs genes, highly transcribed by pol III in vivo are known replication fork barriers. One of the transcription factors, the PAF1C (RNA polymerase II associated factor 1 complex) is reported to associate with pol I and pol II and influence their transcription. We found low level PAF1C occupancy on the yeast pol III-transcribed genes, which is not correlated with nucleosome positions, pol III occupancy and transcription. PAF1C interacts with the pol III transcription complex and causes pol III loss from the genes under replication stress. Genotoxin exposure causes pol III but not Paf1 loss from the genes. In comparison, Paf1 deletion leads to increased occupancy of pol III, γ-H2A and DNA pol2 in gene-specific manner. Paf1 restricts the accumulation of pol III by influencing the pol III pause on the genes, which reduces the pol III barrier to the replication fork progression.
Collapse
|
123
|
Chirackal Manavalan AP, Pilarova K, Kluge M, Bartholomeeusen K, Rajecky M, Oppelt J, Khirsariya P, Paruch K, Krejci L, Friedel CC, Blazek D. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes. EMBO Rep 2019; 20:e47592. [PMID: 31347271 PMCID: PMC6727028 DOI: 10.15252/embr.201847592] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
CDK12 is a kinase associated with elongating RNA polymerase II (RNAPII) and is frequently mutated in cancer. CDK12 depletion reduces the expression of homologous recombination (HR) DNA repair genes, but comprehensive insight into its target genes and cellular processes is lacking. We use a chemical genetic approach to inhibit analog-sensitive CDK12, and find that CDK12 kinase activity is required for transcription of core DNA replication genes and thus for G1/S progression. RNA-seq and ChIP-seq reveal that CDK12 inhibition triggers an RNAPII processivity defect characterized by a loss of mapped reads from 3'ends of predominantly long, poly(A)-signal-rich genes. CDK12 inhibition does not globally reduce levels of RNAPII-Ser2 phosphorylation. However, individual CDK12-dependent genes show a shift of P-Ser2 peaks into the gene body approximately to the positions where RNAPII occupancy and transcription were lost. Thus, CDK12 catalytic activity represents a novel link between regulation of transcription and cell cycle progression. We propose that DNA replication and HR DNA repair defects as a consequence of CDK12 inactivation underlie the genome instability phenotype observed in many cancers.
Collapse
Affiliation(s)
| | - Kveta Pilarova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Michael Kluge
- Institut für InformatikLudwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Koen Bartholomeeusen
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
- Present address:
Department of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Michal Rajecky
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Jan Oppelt
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Prashant Khirsariya
- Department of ChemistryCZ OpenscreenFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Center of Biomolecular and Cellular EngineeringInternational Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Kamil Paruch
- Department of ChemistryCZ OpenscreenFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Center of Biomolecular and Cellular EngineeringInternational Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Lumir Krejci
- Center of Biomolecular and Cellular EngineeringInternational Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
- Department of BiologyMasaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular ResearchMasaryk UniversityBrnoCzech Republic
| | - Caroline C Friedel
- Institut für InformatikLudwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
124
|
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2019; 19:464-478. [PMID: 29740129 DOI: 10.1038/s41580-018-0010-5] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
125
|
Etchegaray JP, Zhong L, Li C, Henriques T, Ablondi E, Nakadai T, Van Rechem C, Ferrer C, Ross KN, Choi JE, Samarakkody A, Ji F, Chang A, Sadreyev RI, Ramaswamy S, Nechaev S, Whetstine JR, Roeder RG, Adelman K, Goren A, Mostoslavsky R. The Histone Deacetylase SIRT6 Restrains Transcription Elongation via Promoter-Proximal Pausing. Mol Cell 2019; 75:683-699.e7. [PMID: 31399344 PMCID: PMC6907403 DOI: 10.1016/j.molcel.2019.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.
Collapse
Affiliation(s)
- Jean-Pierre Etchegaray
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Li
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Telmo Henriques
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Capucine Van Rechem
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth N Ross
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Eun Choi
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ann Samarakkody
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Chang
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridhar Ramaswamy
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Sergei Nechaev
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Johnathan R Whetstine
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alon Goren
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
126
|
Strikoudis A, Lazaris C, Ntziachristos P, Tsirigos A, Aifantis I. Opposing functions of H2BK120 ubiquitylation and H3K79 methylation in the regulation of pluripotency by the Paf1 complex. Cell Cycle 2019; 16:2315-2322. [PMID: 28272987 DOI: 10.1080/15384101.2017.1295194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of stem cell plasticity is determined by the ability to balance opposing forces that control gene expression. Regulation of transcriptional networks, signaling cues and chromatin-modifying mechanisms constitute crucial determinants of tissue equilibrium. Histone modifications can affect chromatin compaction, therefore co-transcriptional events that influence their deposition determine the propensities toward quiescence, self-renewal, or cell specification. The Paf1 complex (Paf1C) is a critical regulator of RNA PolII elongation that controls gene expression and deposition of histone modifications, however few studies have focused on its role affecting stem cell fate decisions. Here we delineate the functions of Paf1C in pluripotency and characterize its impact in deposition of H2B ubiquitylation (H2BK120-ub) and H3K79 methylation (H3K79me), 2 fundamental histone marks that shape transcriptional regulation. We identify that H2BK120-ub is increased in the absence of Paf1C on its embryonic stem cell targets, in sharp contrast to H3K79me, suggesting opposite functions in the maintenance of self-renewal. Furthermore, we found that core pluripotency genes are characterized by a dual gain of H2BK120-ub and loss of H3K79me on their gene bodies. Our findings elucidate molecular mechanisms of cellular adaptation and reveal novel functions of Paf1C in the regulation of the self-renewal network.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- a Department of Pathology , NYU School of Medicine , New York , NY , USA.,b Laura & Isaac Perlmutter Cancer Center , NYU School of Medicine , New York , NY , USA.,c Helen L. & Martin S. Kimmel Center for Stem Cell Biology , NYU School of Medicine , New York , NY , USA
| | - Charalampos Lazaris
- a Department of Pathology , NYU School of Medicine , New York , NY , USA.,b Laura & Isaac Perlmutter Cancer Center , NYU School of Medicine , New York , NY , USA.,c Helen L. & Martin S. Kimmel Center for Stem Cell Biology , NYU School of Medicine , New York , NY , USA
| | - Panagiotis Ntziachristos
- d Department of Biochemistry and Molecular Genetics , Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University , Chicago , IL , USA
| | - Aristotelis Tsirigos
- a Department of Pathology , NYU School of Medicine , New York , NY , USA.,b Laura & Isaac Perlmutter Cancer Center , NYU School of Medicine , New York , NY , USA.,e Applied Bioinformatics Laboratories, Office of Science & Research , NYU School of Medicine , NY , USA
| | - Iannis Aifantis
- a Department of Pathology , NYU School of Medicine , New York , NY , USA.,b Laura & Isaac Perlmutter Cancer Center , NYU School of Medicine , New York , NY , USA.,c Helen L. & Martin S. Kimmel Center for Stem Cell Biology , NYU School of Medicine , New York , NY , USA
| |
Collapse
|
127
|
Ellison MA, Lederer AR, Warner MH, Mavrich TN, Raupach EA, Heisler LE, Nislow C, Lee MT, Arndt KM. The Paf1 Complex Broadly Impacts the Transcriptome of Saccharomyces cerevisiae. Genetics 2019; 212:711-728. [PMID: 31092540 PMCID: PMC6614894 DOI: 10.1534/genetics.119.302262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The Polymerase Associated Factor 1 complex (Paf1C) is a multifunctional regulator of eukaryotic gene expression important for the coordination of transcription with chromatin modification and post-transcriptional processes. In this study, we investigated the extent to which the functions of Paf1C combine to regulate the Saccharomyces cerevisiae transcriptome. While previous studies focused on the roles of Paf1C in controlling mRNA levels, here, we took advantage of a genetic background that enriches for unstable transcripts, and demonstrate that deletion of PAF1 affects all classes of Pol II transcripts including multiple classes of noncoding RNAs (ncRNAs). By conducting a de novo differential expression analysis independent of gene annotations, we found that Paf1 positively and negatively regulates antisense transcription at multiple loci. Comparisons with nascent transcript data revealed that many, but not all, changes in RNA levels detected by our analysis are due to changes in transcription instead of post-transcriptional events. To investigate the mechanisms by which Paf1 regulates protein-coding genes, we focused on genes involved in iron and phosphate homeostasis, which were differentially affected by PAF1 deletion. Our results indicate that Paf1 stimulates phosphate gene expression through a mechanism that is independent of any individual Paf1C-dependent histone modification. In contrast, the inhibition of iron gene expression by Paf1 correlates with a defect in H3 K36 trimethylation. Finally, we showed that one iron regulon gene, FET4, is coordinately controlled by Paf1 and transcription of upstream noncoding DNA. Together, these data identify roles for Paf1C in controlling both coding and noncoding regions of the yeast genome.
Collapse
Affiliation(s)
- Mitchell A Ellison
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Alex R Lederer
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Marcie H Warner
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Elizabeth A Raupach
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Lawrence E Heisler
- Terrance Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Ontario M5S 3E1, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver BC V6T 1Z3, British Columbia, Canada
| | - Miler T Lee
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
128
|
Mechanisms of Genomic Instability in Breast Cancer. Trends Mol Med 2019; 25:595-611. [DOI: 10.1016/j.molmed.2019.04.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
|
129
|
Abstract
Elongation factor Paf1C regulates several stages of the RNA polymerase II (Pol II) transcription cycle, although it is unclear how it modulates Pol II distribution and progression in mammalian cells. We found that conditional ablation of Paf1 resulted in the accumulation of unphosphorylated and Ser5 phosphorylated Pol II around promoter-proximal regions and within the first 20 to 30 kb of gene bodies, respectively. Paf1 ablation did not impact the recruitment of other key elongation factors, namely, Spt5, Spt6, and the FACT complex, suggesting that Paf1 function may be mechanistically distinguishable from each of these factors. Moreover, loss of Paf1 triggered an increase in TSS-proximal nucleosome occupancy, which could impose a considerable barrier to Pol II elongation past TSS-proximal regions. Remarkably, accumulation of Ser5P in the first 20 to 30 kb coincided with reductions in histone H2B ubiquitylation within this region. Furthermore, we show that nascent RNA species accumulate within this window, suggesting a mechanism whereby Paf1 loss leads to aberrant, prematurely terminated transcripts and diminution of full-length transcripts. Importantly, we found that loss of Paf1 results in Pol II elongation rate defects with significant rate compression. Our findings suggest that Paf1C is critical for modulating Pol II elongation rates by functioning beyond the pause-release step as an "accelerator" over specific early gene body regions.
Collapse
|
130
|
Goodman LD, Prudencio M, Kramer NJ, Martinez-Ramirez LF, Srinivasan AR, Lan M, Parisi MJ, Zhu Y, Chew J, Cook CN, Berson A, Gitler AD, Petrucelli L, Bonini NM. Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat Neurosci 2019; 22:863-874. [PMID: 31110321 PMCID: PMC6535128 DOI: 10.1038/s41593-019-0396-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
An expanded GGGGCC hexanucleotide of more than 30 repeats (termed (G4C2)30+) within C9orf72 is the most prominent mutation in familial frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) (termed C9+). Through an unbiased large-scale screen of (G4C2)49-expressing Drosophila we identify the CDC73/PAF1 complex (PAF1C), a transcriptional regulator of RNA polymerase II, as a suppressor of G4C2-associated toxicity when knocked-down. Depletion of PAF1C reduces RNA and GR dipeptide production from (G4C2)30+ transgenes. Notably, in Drosophila, the PAF1C components Paf1 and Leo1 appear to be selective for the transcription of long, toxic repeat expansions, but not shorter, nontoxic expansions. In yeast, PAF1C components regulate the expression of both sense and antisense repeats. PAF1C is upregulated following (G4C2)30+ expression in flies and mice. In humans, PAF1 is also upregulated in C9+-derived cells, and its heterodimer partner, LEO1, binds C9+ repeat chromatin. In C9+ FTD, PAF1 and LEO1 are upregulated and their expression positively correlates with the expression of repeat-containing C9orf72 transcripts. These data indicate that PAF1C activity is an important factor for transcription of the long, toxic repeat in C9+ FTD.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nicholas J Kramer
- Neuroscience Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Matthews Lan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Parisi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yongqing Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Nancy M Bonini
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
131
|
The PAF1c Subunit CDC73 Is Required for Mouse Hematopoietic Stem Cell Maintenance but Displays Leukemia-Specific Gene Regulation. Stem Cell Reports 2019; 12:1069-1083. [PMID: 31031188 PMCID: PMC6524170 DOI: 10.1016/j.stemcr.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
The Polymerase Associated Factor 1 complex (PAF1c) functions at the interface of epigenetics and gene transcription. The PAF1c is required for MLL fusion-driven acute myeloid leukemia (AML) through direct regulation of pro-leukemic target genes such as Hoxa9 and Meis1. However, the role of the PAF1c in normal hematopoiesis is unknown. Here, we discovered that the PAF1c subunit, CDC73, is required for both fetal and adult hematopoiesis. Loss of Cdc73 in hematopoietic cells is lethal because of extensive bone marrow failure. Cdc73 has an essential cell-autonomous role for adult hematopoietic stem cell function in vivo, and deletion of Cdc73 results in cell-cycle defects in hematopoietic progenitors. Gene expression profiling indicated a differential regulation of Hoxa9/Meis1 gene programs by CDC73 in progenitors compared with AML cells, suggesting disease-specific functions. Thus, the PAF1c subunit, CDC73 is essential for hematopoietic stem cell function but exhibits leukemia-specific regulation of self-renewal gene programs in AML cells. CDC73 is necessary for embryonic and adult hematopoietic stem cell function Proliferation and survival of cKIT+ hematopoietic progenitors require CDC73 CDC73 regulates unique gene programs in leukemia and hematopoietic progenitor cells
Collapse
|
132
|
Bunch H, Choe H, Kim J, Jo DS, Jeon S, Lee S, Cho DH, Kang K. P-TEFb Regulates Transcriptional Activation in Non-coding RNA Genes. Front Genet 2019; 10:342. [PMID: 31068966 PMCID: PMC6491683 DOI: 10.3389/fgene.2019.00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023] Open
Abstract
Many non-coding RNAs (ncRNAs) serve as regulatory molecules in various physiological pathways, including gene expression in mammalian cells. Distinct from protein-coding RNA expression, ncRNA expression is regulated solely by transcription and RNA processing/stability. It is thus important to understand transcriptional regulation in ncRNA genes but is yet to be known completely. Previously, we identified that a subset of mammalian ncRNA genes is transcriptionally regulated by RNA polymerase II (Pol II) promoter-proximal pausing and in a tissue-specific manner. In this study, human ncRNA genes that are expressed in the early G1 phase, termed immediate early ncRNA genes, were monitored to assess the function of positive transcription elongation factor b (P-TEFb), a master Pol II pausing regulator for protein-coding genes, in ncRNA transcription. Our findings indicate that the expression of many ncRNA genes is induced in the G0–G1 transition and regulated by P-TEFb. Interestingly, a biphasic characteristic of P-TEFb-dependent transcription of serum responsive ncRNA genes was observed: Pol II carboxyl-terminal domain phosphorylated at serine 2 (S2) was largely increased in the transcription start site (TSS, -300 to +300) whereas overall, it was decreased in the gene body (GB, > +350) upon chemical inhibition of P-TEFb. In addition, the three representative, immediate early ncRNAs, whose expression is dependent on P-TEFb, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), nuclear enriched abundant transcript 1 (NEAT1), and X-inactive specific transcript (XIST), were further analyzed for determining P-TEFb association. Taken together, our data suggest that transcriptional activation of many human ncRNAs utilizes the pausing and releasing of Pol II, and that the regulatory mechanism of transcriptional elongation in these genes requires the function of P-TEFb. Furthermore, we propose that ncRNA and mRNA transcription are regulated by similar mechanisms while P-TEFb inhibition unexpectedly increases S2 Pol II phosphorylation in the TSSs in many ncRNA genes. One Sentence Summary: P-TEFb regulates Pol II phosphorylation for transcriptional activation in many stimulus-inducible ncRNA genes.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyeseung Choe
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Jongbum Kim
- Department of Transcriptome & Epigenome, Macrogen Incorporated, Seoul, South Korea
| | - Doo Sin Jo
- Institute of Life Science and Biotechnology, College of Natural Science, Kyungpook National University, Daegu, South Korea
| | - Soyeon Jeon
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Sanghwa Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Hyung Cho
- Department of Life Science, College of Natural Science, Kyungpook National University, Daegu, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, South Korea
| |
Collapse
|
133
|
Promoter-proximal pausing mediated by the exon junction complex regulates splicing. Nat Commun 2019; 10:521. [PMID: 30705266 PMCID: PMC6355915 DOI: 10.1038/s41467-019-08381-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023] Open
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) is a widespread transcriptional regulatory step across metazoans. Here we find that the nuclear exon junction complex (pre-EJC) is a critical and conserved regulator of this process. Depletion of pre-EJC subunits leads to a global decrease in Pol II pausing and to premature entry into elongation. This effect occurs, at least in part, via non-canonical recruitment of pre-EJC components at promoters. Failure to recruit the pre-EJC at promoters results in increased binding of the positive transcription elongation complex (P-TEFb) and in enhanced Pol II release. Notably, restoring pausing is sufficient to rescue exon skipping and the photoreceptor differentiation defect associated with depletion of pre-EJC components in vivo. We propose that the pre-EJC serves as an early transcriptional checkpoint to prevent premature entry into elongation, ensuring proper recruitment of RNA processing components that are necessary for exon definition.
Collapse
|
134
|
Agrawal P, Heimbruch KE, Rao S. Genome-Wide Maps of Transcription Regulatory Elements and Transcription Enhancers in Development and Disease. Compr Physiol 2018; 9:439-455. [PMID: 30549021 DOI: 10.1002/cphy.c180028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene expression is regulated by numerous elements including enhancers, insulators, transcription factors, and architectural proteins. Regions of DNA distal to the transcriptional start site, called enhancers, play a central role in the temporal and tissue-specific regulation of gene expression through RNA polymerase II. The identification of enhancers and other cis regulatory elements has largely been possible due to advances in next generation sequencing technologies. Enhancers regulate gene expression through chromatin loops mediated by architectural proteins such as YY1, CTCF, the cohesin complex, and LDB1. Additionally, enhancers can be transcribed to produce noncoding RNAs termed enhancer RNAs that likely participate in transcriptional regulation. The central role of enhancers in regulating gene expression implicates them in both normal physiology but also many disease states. The importance of enhancers is evident by the suggested role of SNPs, duplications, and other alterations of enhancer function in many diseases, ranging from cancer to atherosclerosis to chronic kidney disease. Although much progress has been made in recent years, the field of enhancer biology and our knowledge of the cis regulome remains a work in progress. This review will highlight recent seminal studies which demonstrate the role of enhancers in normal physiology and disease pathogenesis. © 2019 American Physiological Society. Compr Physiol 9:439-455, 2019.
Collapse
Affiliation(s)
- Puja Agrawal
- Blood Research Institute, BloodCenter of Wisconsin, a part of Versiti, Milwaukee, Wisconsin, USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Katelyn E Heimbruch
- Blood Research Institute, BloodCenter of Wisconsin, a part of Versiti, Milwaukee, Wisconsin, USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sridhar Rao
- Blood Research Institute, BloodCenter of Wisconsin, a part of Versiti, Milwaukee, Wisconsin, USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
135
|
Abstract
The fact that many cancer types display transcriptional addiction driven by dysregulation of oncogenic enhancers and transcription factors has led to increased interest in a group of protein kinases, known as transcriptional cyclin dependent kinases (tCDKs), as potential therapeutic targets. Despite early reservations about targeting a process that is essential to healthy cell types, there is now evidence that targeting tCDKs could provide enough therapeutic window to be effective in the clinic. Here, we discuss recent developments in this field, with an emphasis on highly-selective inhibitors and the challenges to be addressed before these inhibitors could be used for therapeutic purposes. Abbreviations: CAK: CDK-activating kinase;CDK: cyclin-dependent kinase;CMGC group: CDK-, MAPK-, GSK3-, and CLK-like;CTD: C-terminal repeat domain of the RPB1 subunit of RNA polymerase II;DRB: 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole;mCRPC: metastatic castration-resistant prostate cancer;NSCLC: non-small cell lung cancer;P-TEFb: positive elongation factor b;RNAPII: RNA polymerase II;S2: serine-2 of CTD repeats;S5: serine-5 of CTD repeats;S7: serine-7 of CTD repeats;SEC: super elongation complex;tCDK: transcriptional cyclin-dependent kinase;TNBC: triple-negative breast cancer
Collapse
Affiliation(s)
- Matthew D Galbraith
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Heather Bender
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Joaquín M Espinosa
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,c Department of Molecular, Cellular and Developmental Biology , University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
136
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
137
|
Xie Y, Zheng M, Chu X, Chen Y, Xu H, Wang J, Zhou H, Long J. Paf1 and Ctr9 subcomplex formation is essential for Paf1 complex assembly and functional regulation. Nat Commun 2018; 9:3795. [PMID: 30228257 PMCID: PMC6143631 DOI: 10.1038/s41467-018-06237-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022] Open
Abstract
The evolutionarily conserved multifunctional polymerase-associated factor 1 (Paf1) complex (Paf1C), which is composed of at least five subunits (Paf1, Leo1, Ctr9, Cdc73, and Rtf1), plays vital roles in gene regulation and has connections to development and human diseases. Here, we report two structures of each of the human and yeast Ctr9/Paf1 subcomplexes, which assemble into heterodimers with very similar conformations, revealing an interface between the tetratricopeptide repeat module in Ctr9 and Paf1. The structure of the Ctr9/Paf1 subcomplex may provide mechanistic explanations for disease-associated mutations in human PAF1 and CTR9. Our study reveals that the formation of the Ctr9/Paf1 heterodimer is required for the assembly of yeast Paf1C, and is essential for yeast viability. In addition, disruption of the interaction between Paf1 and Ctr9 greatly affects the level of histone H3 methylation in vivo. Collectively, our results shed light on Paf1C assembly and functional regulation.
Collapse
Affiliation(s)
- Ying Xie
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minying Zheng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Huisha Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
138
|
Transcriptional elongation factor Paf1 core complex adopts a spirally wrapped solenoidal topology. Proc Natl Acad Sci U S A 2018; 115:9998-10003. [PMID: 30224485 PMCID: PMC6176576 DOI: 10.1073/pnas.1812256115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The polymerase-associated factor 1 (PAF1) complex is a general transcription elongation factor of RNA polymerase II, which not only regulates various stages of the transcription cycle but also broadly influences gene expression through modulating chromatin structure and/or recruiting other transcription-related factors. This study presents a high-resolution crystal structure of the core region of the Paf1-Ctr9-Cdc73 ternary complex, which not only greatly facilitates our understanding of the overall architecture of the Paf1 complex but also provides a structure-based platform for understanding the molecular mechanism underlying the role of the Paf1 complex in regulating gene expression and sheds light toward deciphering the impact of its mutational spectrum on human diseases. The polymerase-associated factor 1 (Paf1) complex is a general transcription elongation factor of RNA polymerase II, which is composed of five core subunits, Paf1, Ctr9, Cdc73, Leo1, and Rtf1, and functions as a diverse platform that broadly affects gene expression genome-wide. In this study, we solved the 2.9-Å crystal structure of the core region composed of the Ctr9-Paf1-Cdc73 ternary complex from a thermophilic fungi, which provides a structural perspective of the molecular details of the organization and interactions involving the Paf1 subunits in the core complex. We find that Ctr9 is composed of 21 tetratricopeptide repeat (TPR) motifs that wrap three circular turns in a right-handed superhelical manner around the N-terminal region of an elongated single-polypeptide–chain scaffold of Paf1. The Cdc73 fragment is positioned within the surface groove of Ctr9, where it contacts mainly with Ctr9 and minimally with Paf1. We also identified that the Paf1 complex preferentially binds single-strand–containing DNAs. Our work provides structural insights into the overall architecture of the Paf1 complex and paves the road forward for understanding the molecular mechanisms of the Paf1 complex in transcriptional regulation.
Collapse
|
139
|
Erickson B, Sheridan RM, Cortazar M, Bentley DL. Dynamic turnover of paused Pol II complexes at human promoters. Genes Dev 2018; 32:1215-1225. [PMID: 30150253 PMCID: PMC6120720 DOI: 10.1101/gad.316810.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
Paused RNA polymerase II (Pol II) that piles up near most human promoters is the target of mechanisms that control entry into productive elongation. Whether paused Pol II is a stable or dynamic target remains unresolved. We report that most 5' paused Pol II throughout the genome is turned over within 2 min. This process is revealed under hypertonic conditions that prevent Pol II recruitment to promoters. This turnover requires cell viability but is not prevented by inhibiting transcription elongation, suggesting that it is mediated at the level of termination. When initiation was prevented by triptolide during recovery from high salt, a novel preinitiated state of Pol II lacking the pausing factor Spt5 accumulated at transcription start sites. We propose that Pol II occupancy near 5' ends is governed by a cycle of ongoing assembly of preinitiated complexes that transition to pause sites followed by eviction from the DNA template. This model suggests that mechanisms regulating the transition to productive elongation at pause sites operate on a dynamic population of Pol II that is turning over at rates far higher than previously suspected. We suggest that a plausible alternative to elongation control via escape from a stable pause is by escape from premature termination.
Collapse
Affiliation(s)
- Benjamin Erickson
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael Cortazar
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
140
|
Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 2018; 560:607-612. [PMID: 30135578 DOI: 10.1038/s41586-018-0440-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 11/09/2022]
Abstract
Gene regulation involves activation of RNA polymerase II (Pol II) that is paused and bound by the protein complexes DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF). Here we show that formation of an activated Pol II elongation complex in vitro requires the kinase function of the positive transcription elongation factor b (P-TEFb) and the elongation factors PAF1 complex (PAF) and SPT6. The cryo-EM structure of an activated elongation complex of Sus scrofa Pol II and Homo sapiens DSIF, PAF and SPT6 was determined at 3.1 Å resolution and compared to the structure of the paused elongation complex formed by Pol II, DSIF and NELF. PAF displaces NELF from the Pol II funnel for pause release. P-TEFb phosphorylates the Pol II linker to the C-terminal domain. SPT6 binds to the phosphorylated C-terminal-domain linker and opens the RNA clamp formed by DSIF. These results provide the molecular basis for Pol II pause release and elongation activation.
Collapse
|
141
|
Henry KL, Kellner D, Bajrami B, Anderson JE, Beyna M, Bhisetti G, Cameron T, Capacci AG, Bertolotti-Ciarlet A, Feng J, Gao B, Hopkins B, Jenkins T, Li K, May-Dracka T, Murugan P, Wei R, Zeng W, Allaire N, Buckler A, Loh C, Juhasz P, Lucas B, Ennis KA, Vollman E, Cahir-McFarland E, Hett EC, Ols ML. CDK12-mediated transcriptional regulation of noncanonical NF-κB components is essential for signaling. Sci Signal 2018; 11:eaam8216. [PMID: 30065029 DOI: 10.1126/scisignal.aam8216] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Members of the family of nuclear factor κB (NF-κB) transcription factors are critical for multiple cellular processes, including regulating innate and adaptive immune responses, cell proliferation, and cell survival. Canonical NF-κB complexes are retained in the cytoplasm by the inhibitory protein IκBα, whereas noncanonical NF-κB complexes are retained by p100. Although activation of canonical NF-κB signaling through the IκBα kinase complex is well studied, few regulators of the NF-κB-inducing kinase (NIK)-dependent processing of noncanonical p100 to p52 and the subsequent nuclear translocation of p52 have been identified. We discovered a role for cyclin-dependent kinase 12 (CDK12) in transcriptionally regulating the noncanonical NF-κB pathway. High-content phenotypic screening identified the compound 919278 as a specific inhibitor of the lymphotoxin β receptor (LTβR), and tumor necrosis factor (TNF) receptor superfamily member 12A (FN14)-dependent nuclear translocation of p52, but not of the TNF-α receptor-mediated nuclear translocation of p65. Chemoproteomics identified CDK12 as the target of 919278. CDK12 inhibition by 919278, the CDK inhibitor THZ1, or siRNA-mediated knockdown resulted in similar global transcriptional changes and prevented the LTβR- and FN14-dependent expression of MAP3K14 (which encodes NIK) as well as NIK accumulation by reducing phosphorylation of the carboxyl-terminal domain of RNA polymerase II. By coupling a phenotypic screen with chemoproteomics, we identified a pathway for the activation of the noncanonical NF-κB pathway that could serve as a therapeutic target in autoimmunity and cancer.
Collapse
Affiliation(s)
- Kate L Henry
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - John E Anderson
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - Tom Cameron
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Jun Feng
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Benbo Gao
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Kejie Li
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Ru Wei
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Weike Zeng
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Norm Allaire
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Alan Buckler
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | - Peter Juhasz
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Brian Lucas
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | - Erik C Hett
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
142
|
Zhu J, Li C, Gong C, Li X. Regulation of Pol II Pausing Is Involved in Daily Gene Transcription in the Mouse Liver. J Biol Rhythms 2018; 33:350-362. [PMID: 29845885 DOI: 10.1177/0748730418779526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The circadian clock orchestrates gene expression rhythms. Regulation at the level of gene transcription is essential for molecular and cellular rhythms. Pol II pause release is a critical step of transcription regulation. However, whether and how Pol II pause release is regulated during daily transcription have not been characterized. In this study, we performed Pol II ChIP-seq across the day in the mouse liver and quantitatively analyzed binding signals within the transcription start site (TSS) region and the gene body. We frequently found discordant changes between Pol II near the TSS ([Pol II]TSS, paused Pol II) and that within the gene body ([Pol II]GB, transcribing Pol II) across the genome, with only [Pol II]GB always reflecting transcription of clock and clock-controlled genes. Accordingly, Pol II traveling ratios of more than 7000 genes showed significant daily changes (>1.5-fold). Therefore, there is widespread regulation of Pol II pausing in the mouse liver. Interestingly, gene transcription rhythms exhibited a bimodal phase distribution. The transcription of ~400 genes peaked near ZT0, coincident with a genome-wide increase in [Pol II]TSS and traveling ratio (TR). The transcription of ~300 other genes peaked ~12 h later, when there was a global decrease in [Pol II]TSS and TR. ChIP-seq against TATA-binding protein (Tbp), a preinitiation complex (PIC) component, revealed that Pol II recruitment mainly played an indirect role in transcriptional output, with transcriptional termination and pause release functioning prominently in determining the fate of initiated Pol II and its pausing status. Taken together, our results revealed a critical, albeit complex role of Pol II pausing control in regulating the temporal output of gene transcription.
Collapse
Affiliation(s)
- Jialou Zhu
- 1. These authors contributed equally to this work
| | - Chengwei Li
- 1. These authors contributed equally to this work.,2. Center for Disease Control and Prevention of Linyi, Linyi, Shandong Province, P. R. China
| | | | | |
Collapse
|
143
|
Cyclin K regulates prereplicative complex assembly to promote mammalian cell proliferation. Nat Commun 2018; 9:1876. [PMID: 29760377 PMCID: PMC5951916 DOI: 10.1038/s41467-018-04258-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
The assembly of prereplicative complex (pre-RC) during G1 phase must be tightly controlled to sustain cell proliferation and maintain genomic stability. Mechanisms to prevent pre-RC formation in G2/M and S phases are well appreciated, whereas how cells ensure efficient pre-RC assembly during G1 is less clear. Here we report that cyclin K regulates pre-RC formation. We find that cyclin K expression positively correlates with cell proliferation, and knockdown of cyclin K or its cognate kinase CDK12 prevents the assembly of pre-RC in G1 phase. Mechanistically we uncover that cyclin K promotes pre-RC assembly by restricting cyclin E1 activity in G1. We identify a cyclin K-dependent, novel phosphorylation site in cyclin E1 that disrupts its interaction with CDK2. Importantly, this antagonistic relationship is largely recapitulated in cyclin E1-overexpressing tumors. We discuss the implications of our findings in light of recent reports linking cyclin K and CDK12 to human tumorigenesis. Prereplicative complex (pre-RC) formation during G1 is fundamental for cell replication. Here the authors report a role for cyclin K in regulating pre-RC formation in mammalian cells by affecting cyclin E1 activity.
Collapse
|
144
|
Chen Y, Zhang B, Bao L, Jin L, Yang M, Peng Y, Kumar A, Wang JE, Wang C, Zou X, Xing C, Wang Y, Luo W. ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J Clin Invest 2018; 128:1937-1955. [PMID: 29629903 PMCID: PMC5919820 DOI: 10.1172/jci95089] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
Altered epigenetic reprogramming contributes to breast cancer progression and metastasis. How the epigenetic reader mediates breast cancer progression remains poorly understood. Here, we showed that the epigenetic reader zinc finger MYND-type containing 8 (ZMYND8) is induced by HIF-1 and HIF-2 in breast cancer cells and also upregulated in human breast tumors, and is correlated with poor survival of patients with breast cancer. Genetic deletion of ZMYND8 decreases breast cancer cell colony formation, migration, and invasion in vitro, and inhibits breast tumor growth and metastasis to the lungs in mice. The ZMYND8's oncogenic effect in breast cancer requires HIF-1 and HIF-2. We further showed that ZMYND8 interacts with HIF-1α and HIF-2α and enhances elongation of the global HIF-induced oncogenic genes by increasing recruitment of BRD4 and subsequent release of paused RNA polymerase II in breast cancer cells. ZMYND8 acetylation at lysines 1007 and 1034 by p300 is required for HIF activation and breast cancer progression and metastasis. These findings uncover a primary epigenetic mechanism of HIF activation and HIF-mediated breast cancer progression, and discover a possible molecular target for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Department of Bioinformatics
- Department of Clinical Sciences
| | - Yingfei Wang
- Department of Pathology
- Department of Neurology and Neurotherapeutics, and
| | - Weibo Luo
- Department of Pathology
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
145
|
Rimel JK, Taatjes DJ. The essential and multifunctional TFIIH complex. Protein Sci 2018; 27:1018-1037. [PMID: 29664212 PMCID: PMC5980561 DOI: 10.1002/pro.3424] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
TFIIH is a 10‐subunit complex that regulates RNA polymerase II (pol II) transcription but also serves other important biological roles. Although much remains unknown about TFIIH function in eukaryotic cells, much progress has been made even in just the past few years, due in part to technological advances (e.g. cryoEM and single molecule methods) and the development of chemical inhibitors of TFIIH enzymes. This review focuses on the major cellular roles for TFIIH, with an emphasis on TFIIH function as a regulator of pol II transcription. We describe the structure of TFIIH and its roles in pol II initiation, promoter‐proximal pausing, elongation, and termination. We also discuss cellular roles for TFIIH beyond transcription (e.g. DNA repair, cell cycle regulation) and summarize small molecule inhibitors of TFIIH and diseases associated with defects in TFIIH structure and function.
Collapse
Affiliation(s)
- Jenna K Rimel
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| | - Dylan J Taatjes
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| |
Collapse
|
146
|
Ropa J, Saha N, Chen Z, Serio J, Chen W, Mellacheruvu D, Zhao L, Basrur V, Nesvizhskii AI, Muntean AG. PAF1 complex interactions with SETDB1 mediate promoter H3K9 methylation and transcriptional repression of Hoxa9 and Meis1 in acute myeloid leukemia. Oncotarget 2018; 9:22123-22136. [PMID: 29774127 PMCID: PMC5955148 DOI: 10.18632/oncotarget.25204] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
The Polymerase Associated Factor 1 complex (PAF1c) is an epigenetic co-modifying complex that directly contacts RNA polymerase II (RNAPII) and several epigenetic regulating proteins. Mutations, overexpression and loss of expression of subunits of the PAF1c are observed in various forms of cancer suggesting proper regulation is needed for cellular development. However, the biochemical interactions with the PAF1c that allow dynamic gene regulation are unclear. We and others have shown that the PAF1c makes a direct interaction with MLL fusion proteins, which are potent oncogenic drivers of acute myeloid leukemia (AML). This interaction is critical for the maintenance of MLL translocation driven AML by targeting MLL fusion proteins to the target genes Meis1 and Hoxa9. Here, we use a proteomics approach to identify protein-protein interactions with the PAF1c subunit CDC73 that regulate the function of the PAF1c. We identified a novel interaction with a histone H3 lysine 9 (H3K9) methyltransferase protein, SETDB1. This interaction is stabilized with a mutant CDC73 that is incapable of supporting AML cell growth. Importantly, transcription of Meis1 and Hoxa9 is reduced and promoter H3K9 trimethylation (H3K9me3) increased by overexpression of SETDB1 or stabilization of the PAF1c-SETDB1 interaction in AML cells. These findings were corroborated in human AML patients where increased SETDB1 expression was associated with reduced HOXA9 and MEIS1. To our knowledge, this is the first proteomics approach to search for CDC73 protein-protein interactions in AML, and demonstrates that the PAF1c may play a role in H3K9me3-mediated transcriptional repression in AML.
Collapse
Affiliation(s)
- James Ropa
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nirmalya Saha
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhiling Chen
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Justin Serio
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Wei Chen
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dattatreya Mellacheruvu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Venkatesha Basrur
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew G. Muntean
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
147
|
Ebmeier CC, Erickson B, Allen BL, Allen MA, Kim H, Fong N, Jacobsen JR, Liang K, Shilatifard A, Dowell RD, Old WM, Bentley DL, Taatjes DJ. Human TFIIH Kinase CDK7 Regulates Transcription-Associated Chromatin Modifications. Cell Rep 2018; 20:1173-1186. [PMID: 28768201 DOI: 10.1016/j.celrep.2017.07.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 01/24/2023] Open
Abstract
CDK7 phosphorylates the RNA polymerase II (pol II) C-terminal domain CTD and activates the P-TEFb-associated kinase CDK9, but its regulatory roles remain obscure. Here, using human CDK7 analog-sensitive (CDK7as) cells, we observed reduced capping enzyme recruitment, increased pol II promoter-proximal pausing, and defective termination at gene 3' ends upon CDK7 inhibition. We also noted that CDK7 regulates chromatin modifications downstream of transcription start sites. H3K4me3 spreading was restricted at gene 5' ends and H3K36me3 was displaced toward gene 3' ends in CDK7as cells. Mass spectrometry identified factors that bound TFIIH-phosphorylated versus P-TEFb-phosphorylated CTD (versus unmodified); capping enzymes and H3K4 methyltransferase complexes, SETD1A/B, selectively bound phosphorylated CTD, and the H3K36 methyltransferase SETD2 specifically bound P-TEFb-phosphorylated CTD. Moreover, TFIIH-phosphorylated CTD stimulated SETD1A/B activity toward nucleosomes, revealing a mechanistic basis for CDK7 regulation of H3K4me3 spreading. Collectively, these results implicate a CDK7-dependent "CTD code" that regulates chromatin marks in addition to RNA processing and pol II pausing.
Collapse
Affiliation(s)
- Christopher C Ebmeier
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA; Department of Molecular, Cell, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Benjamin Erickson
- Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Benjamin L Allen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hyunmin Kim
- Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nova Fong
- Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeremy R Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Kaiwei Liang
- Department of Biochemistry & Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry & Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Robin D Dowell
- Department of Molecular, Cell, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William M Old
- Department of Molecular, Cell, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David L Bentley
- Department Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
148
|
Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II. Proc Natl Acad Sci U S A 2018; 115:E4368-E4376. [PMID: 29632207 PMCID: PMC5948963 DOI: 10.1073/pnas.1717920115] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription by RNA Polymerase II (Pol II) is a highly dynamic process that is tightly regulated at each step of the transcription cycle. We generated GFP-RPB1 knockin cells and developed photobleaching of endogenous Pol II combined with computational modeling to study the in vivo dynamics of Pol II in real time. This approach allowed us to dissect promoter-paused Pol II from initiating and elongating Pol II and showed that initiation and promoter proximal pausing are surprisingly dynamic events, due to premature termination of Pol II. Our study provides new insights into Pol II dynamics and suggests that the iterative release and reinitiation of promoter-bound Pol II is an important component of transcriptional regulation. Initiation and promoter-proximal pausing are key regulatory steps of RNA Polymerase II (Pol II) transcription. To study the in vivo dynamics of endogenous Pol II during these steps, we generated fully functional GFP-RPB1 knockin cells. GFP-RPB1 photobleaching combined with computational modeling revealed four kinetically distinct Pol II fractions and showed that on average 7% of Pol II are freely diffusing, while 10% are chromatin-bound for 2.4 seconds during initiation, and 23% are promoter-paused for only 42 seconds. This unexpectedly high turnover of Pol II at promoters is most likely caused by premature termination of initiating and promoter-paused Pol II and is in sharp contrast to the 23 minutes that elongating Pol II resides on chromatin. Our live-cell–imaging approach provides insights into Pol II dynamics and suggests that the continuous release and reinitiation of promoter-bound Pol II is an important component of transcriptional regulation.
Collapse
|
149
|
Chai M, Sanosaka T, Okuno H, Zhou Z, Koya I, Banno S, Andoh-Noda T, Tabata Y, Shimamura R, Hayashi T, Ebisawa M, Sasagawa Y, Nikaido I, Okano H, Kohyama J. Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes Dev 2018; 32:165-180. [PMID: 29440260 PMCID: PMC5830929 DOI: 10.1101/gad.301887.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Multiple congenital disorders often present complex phenotypes, but how the mutation of individual genetic factors can lead to multiple defects remains poorly understood. In the present study, we used human neuroepithelial (NE) cells and CHARGE patient-derived cells as an in vitro model system to identify the function of chromodomain helicase DNA-binding 7 (CHD7) in NE-neural crest bifurcation, thus revealing an etiological link between the central nervous system (CNS) and craniofacial anomalies observed in CHARGE syndrome. We found that CHD7 is required for epigenetic activation of superenhancers and CNS-specific enhancers, which support the maintenance of the NE and CNS lineage identities. Furthermore, we found that BRN2 and SOX21 are downstream effectors of CHD7, which shapes cellular identities by enhancing a CNS-specific cellular program and indirectly repressing non-CNS-specific cellular programs. Based on our results, CHD7, through its interactions with superenhancer elements, acts as a regulatory hub in the orchestration of the spatiotemporal dynamics of transcription factors to regulate NE and CNS lineage identities.
Collapse
Affiliation(s)
- MuhChyi Chai
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.,Gene Regulation Research, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ikuko Koya
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoe Banno
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomoko Andoh-Noda
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshikuni Tabata
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.,E-WAY Research Laboratory, Discovery, Medicine Creation, Neurology Business Group, Tsukuba, Ibaraki 300-2635, Japan
| | - Rieko Shimamura
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsutaro Hayashi
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Masashi Ebisawa
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yohei Sasagawa
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Itoshi Nikaido
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan.,Single-Cell Omics Research Unit, RIKEN Center for Developmental Biology, Wako, Saitama 351-0198, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
150
|
Shivji MK, Renaudin X, Williams ÇH, Venkitaraman AR. BRCA2 Regulates Transcription Elongation by RNA Polymerase II to Prevent R-Loop Accumulation. Cell Rep 2018; 22:1031-1039. [PMID: 29386125 PMCID: PMC5846855 DOI: 10.1016/j.celrep.2017.12.086] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/09/2017] [Accepted: 12/22/2017] [Indexed: 02/02/2023] Open
Abstract
The controlled release of RNA polymerase II (RNAPII) from promoter-proximal pausing (PPP) sites is critical for transcription elongation in metazoans. We show that the human tumor suppressor BRCA2 interacts with RNAPII to regulate PPP release, thereby preventing unscheduled RNA-DNA hybrids (R-loops) implicated in genomic instability and carcinogenesis. BRCA2 inactivation by depletion or cancer-causing mutations instigates RNAPII accumulation and R-loop accrual at PPP sites in actively transcribed genes, accompanied by γH2AX formation marking DNA breakage, which is reduced by ERCC4 endonuclease depletion. BRCA2 inactivation decreases RNAPII-associated factor 1 (PAF1) recruitment (which normally promotes RNAPII release) and diminishes H2B Lys120 ubiquitination, impeding nascent RNA synthesis. PAF1 depletion phenocopies, while its overexpression ameliorates, R-loop accumulation after BRCA2 inactivation. Thus, an unrecognized role for BRCA2 in the transition from promoter-proximal pausing to productive elongation via augmented PAF1 recruitment to RNAPII is subverted by disease-causing mutations, provoking R-loop-mediated DNA breakage in BRCA2-deficient cells.
Collapse
Affiliation(s)
- Mahmud K.K. Shivji
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Xavier Renaudin
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Çiğdem H. Williams
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R. Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK,Corresponding author
| |
Collapse
|