101
|
Tang L, Huang QN, Wu F, Xiao Y, Zhou JL, Xu TT, Wu WB, Qu S, Feng JJ. C(sp 2)-H cyclobutylation of hydroxyarenes enabled by silver-π-acid catalysis: diastereocontrolled synthesis of 1,3-difunctionalized cyclobutanes. Chem Sci 2023; 14:9696-9703. [PMID: 37736637 PMCID: PMC10510764 DOI: 10.1039/d3sc03258b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Ring-opening of bicyclo[1.1.0]butanes (BCBs) is emerging as a powerful strategy for 1,3-difunctionalized cyclobutane synthesis. However, reported radical strain-release reactions are typically plagued with diastereoselectivity issues. Herein, an atom-economic protocol for the highly chemo- and diastereoselective polar strain-release ring-opening of BCBs with hydroxyarenes catalyzed by a π-acid catalyst AgBF4 has been developed. The use of readily available starting materials, low catalyst loading, high selectivity (up to >98 : 2 d.r.), a broad substrate scope, ease of scale-up, and versatile functionalizations of the cyclobutane products make this approach very attractive for the synthesis of 1,1,3-trisubstituted cyclobutanes. Moreover, control experiments and theoretical calculations were performed to illustrate the reaction mechanism and selectivity.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Qi-Nan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Shuanglin Qu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
102
|
Abstract
Small, strained ring systems are important pharmacophores in medicinal chemistry and versatile intermediates in organic synthesis. However, the kinetic and thermodynamic instability of many strained organic molecules renders them challenging to prepare. Here, we report a strain-inducing positional alkene isomerization reaction that provides mild and selective access to cyclobutene building blocks from readily obtained cyclobutylidene precursors. This endergonic isomerization relies on the sequential and synergistic action of a decatungstate polyanion photocatalyst and cobaloxime co-catalyst to store potential energy in the form of ring strain. The versatility of the cyclobutene products is demonstrated through diverse subsequent strain-releasing transformations. Mechanistic studies reveal a steric basis for strain-selective product formation.
Collapse
Affiliation(s)
- Vignesh Palani
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
103
|
Hsu CM, Lin HB, Hou XZ, Tapales RVPP, Shih CK, Miñoza S, Tsai YS, Tsai ZN, Chan CL, Liao HH. Azetidines with All-Carbon Quaternary Centers: Merging Relay Catalysis with Strain Release Functionalization. J Am Chem Soc 2023; 145:19049-19059. [PMID: 37589099 DOI: 10.1021/jacs.3c06710] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Given the importance and beneficial characteristics of decorated azetidines in medicinal chemistry, efficient strategies for their synthesis are highly sought after. Herein, we report a facile synthesis of the elusive all-carbon quaternary-center-bearing azetidines. By adopting a well-orchestrated polar-radical relay strategy, ring strain release of bench-stable benzoylated 1-azabicyclo[1.1.0]butane (ABB) can be harnessed for nickel-catalyzed Suzuki Csp2-Csp3 cross-coupling with commercially available boronic acids in broad scope (>50 examples), excellent functional group tolerance, and gram-scale utility. Preliminary mechanistic studies provided insights into the underlying mechanism, wherein the ring opening of ABB with a catalytic quantity of bromide accounts for the conversion of ABB into a redox-active azetidine, which subsequently engages in the cross-coupling reaction through a radical pathway. The synergistic bromide and nickel catalysis could intriguingly be derived from a single nickel source (NiBr2). Application of the method to modify natural products, biologically relevant molecules, and pharmaceuticals has been successfully achieved as well as the synthesis of melanocortin-1 receptor (MC-1R) agonist and vesicular acetylcholine transporter (VAChT) inhibitor analogues through bioisosteric replacements of piperidine with azetidine moieties, highlighting the potential of the method in drug optimization studies. Aside from the synthesis of azetidines, we demonstrate the ancillary utility of our nickel catalytic system toward the restricted Suzuki cross-coupling of tertiary alkyl bromides with aryl boronic acids to construct all-carbon quaternary centers.
Collapse
Affiliation(s)
- Che-Ming Hsu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Heng-Bo Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Xin-Zhi Hou
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | | | - Chen-Kuei Shih
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Shinje Miñoza
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Yu-Syuan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Zong-Nan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Cheng-Lin Chan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
- Green Hydrogen Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| |
Collapse
|
104
|
Liang Y, Paulus F, Daniliuc CG, Glorius F. Catalytic Formal [2π+2σ] Cycloaddition of Aldehydes with Bicyclobutanes: Expedient Access to Polysubstituted 2-Oxabicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2023; 62:e202305043. [PMID: 37307521 DOI: 10.1002/anie.202305043] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Synthesis of bicyclic scaffolds has attracted tremendous attention because they are playing an important role as saturated bioisosteres of benzenoids in modern drug discovery. Here, we report a BF3 -catalyzed [2π+2σ] cycloaddition of aldehydes with bicyclo[1.1.0]butanes (BCBs) to access polysubstituted 2-oxabicyclo[2.1.1]hexanes. A new kind of BCB containing an acyl pyrazole group was invented, which not only significantly facilitates the reactions, but can also serve as a handle for diverse downstream transformations. Furthermore, aryl and vinyl epoxides can also be utilized as substrates which undergo cycloaddition with BCBs after in situ rearrangement to aldehydes. We anticipate that our results will promote access to challenging sp3 -rich bicyclic frameworks and the exploration of BCB-based cycloaddition chemistry.
Collapse
Affiliation(s)
- Yujie Liang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
105
|
Dequina HJ, Jones CL, Schomaker JM. Recent updates and future perspectives in aziridine synthesis and reactivity. Chem 2023; 9:1658-1701. [PMID: 37681216 PMCID: PMC10482075 DOI: 10.1016/j.chempr.2023.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In this review, selected recent advances in the preparation and reactivity of aziridines using modern synthetic approaches are highlighted, while comparing these new strategies with more classical approaches. This critical analysis is designed to help identify current gaps in the field and is showcasing new and exciting opportunities to move the chemistry of aziridines forward in the future.
Collapse
Affiliation(s)
- Hillary J. Dequina
- Department of Chemistry, University of Wisconsin, 1101 N. University Avenue, Madison, WI 53706, USA
| | - Corey L. Jones
- Department of Chemistry, University of Wisconsin, 1101 N. University Avenue, Madison, WI 53706, USA
| | - Jennifer M. Schomaker
- Department of Chemistry, University of Wisconsin, 1101 N. University Avenue, Madison, WI 53706, USA
| |
Collapse
|
106
|
Le K, Soth MJ, Cross JB, Liu G, Ray WJ, Ma J, Goodwani SG, Acton PJ, Buggia-Prevot V, Akkermans O, Barker J, Conner ML, Jiang Y, Liu Z, McEwan P, Warner-Schmidt J, Xu A, Zebisch M, Heijnen CJ, Abrahams B, Jones P. Discovery of IACS-52825, a Potent and Selective DLK Inhibitor for Treatment of Chemotherapy-Induced Peripheral Neuropathy. J Med Chem 2023. [PMID: 37436942 DOI: 10.1021/acs.jmedchem.3c00788] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.
Collapse
Affiliation(s)
- Kang Le
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Michael J Soth
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jason B Cross
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Gang Liu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - William J Ray
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jiacheng Ma
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sunil G Goodwani
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Paul J Acton
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Virginie Buggia-Prevot
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | | | | - Michael L Conner
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Yongying Jiang
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Zhen Liu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | | - Jennifer Warner-Schmidt
- Alexandria Center for Life Science, Magnolia Neurosciences Corporation, New York, New York 10016, United States
| | - Alan Xu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Psychological Sciences, Rice University, Houston, Texas 77005, United States
| | - Brett Abrahams
- Alexandria Center for Life Science, Magnolia Neurosciences Corporation, New York, New York 10016, United States
| | - Philip Jones
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
107
|
Wang M, Simon JC, Xu M, Corio SA, Hirschi JS, Dong VM. Copper-Catalyzed Hydroamination: Enantioselective Addition of Pyrazoles to Cyclopropenes. J Am Chem Soc 2023; 145:14573-14580. [PMID: 37390403 PMCID: PMC10433791 DOI: 10.1021/jacs.3c02971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Chiral N-cyclopropyl pyrazoles and structurally related heterocycles are prepared using an earth-abundant copper catalyst under mild reaction conditions with high regio-, diastereo-, and enantiocontrol. The observed N2:N1 regioselectivity favors the more hindered nitrogen of the pyrazole. Experimental and DFT studies support a unique mechanism that features a five-centered aminocupration.
Collapse
Affiliation(s)
- Minghao Wang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Julie C Simon
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Mengfei Xu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
108
|
Park SH, Bae G, Choi A, Shin S, Shin K, Choi CH, Kim H. Electrocatalytic Access to Azetidines via Intramolecular Allylic Hydroamination: Scrutinizing Key Oxidation Steps through Electrochemical Kinetic Analysis. J Am Chem Soc 2023. [PMID: 37428820 DOI: 10.1021/jacs.3c03172] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Azetidines are prominent structural scaffolds in bioactive molecules, medicinal chemistry, and ligand design for transition metals. However, state-of-the-art methods cannot be applied to intramolecular hydroamination of allylic amine derivatives despite their underlying potential as one of the most prevalent synthetic precursors to azetidines. Herein, we report an electrocatalytic method for intramolecular hydroamination of allylic sulfonamides to access azetidines for the first time. The merger of cobalt catalysis and electricity enables the regioselective generation of key carbocationic intermediates, which could directly undergo intramolecular C-N bond formation. The mechanistic investigations including electrochemical kinetic analysis suggest that either the catalyst regeneration by nucleophilic cyclization or the second electrochemical oxidation to access the carbocationic intermediate is involved in the rate-determining step (RDS) of our electrochemical protocol and highlight the ability of electrochemistry in providing ideal means to mediate catalyst oxidation.
Collapse
Affiliation(s)
- Steve H Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunsu Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ahhyeon Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suyeon Shin
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
109
|
Ding H, Lyu J, Zhang XL, Xiao X, Liu XW. Efficient and versatile formation of glycosidic bonds via catalytic strain-release glycosylation with glycosyl ortho-2,2-dimethoxycarbonylcyclopropylbenzoate donors. Nat Commun 2023; 14:4010. [PMID: 37419914 PMCID: PMC10329021 DOI: 10.1038/s41467-023-39619-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Catalytic glycosylation is a vital transformation in synthetic carbohydrate chemistry due to its ability to expediate the large-scale oligosaccharide synthesis for glycobiology studies with the consumption of minimal amounts of promoters. Herein we introduce a facile and efficient catalytic glycosylation employing glycosyl ortho-2,2-dimethoxycarbonylcyclopropylbenzoates (CCBz) promoted by a readily accessible and non-toxic Sc(III) catalyst system. The glycosylation reaction involves a novel activation mode of glycosyl esters driven by the ring-strain release of an intramolecularly incorporated donor-acceptor cyclopropane (DAC). The versatile glycosyl CCBz donor enables highly efficient construction of O-, S-, and N-glycosidic bonds under mild conditions, as exemplified by the convenient preparation of the synthetically challenging chitooligosaccharide derivatives. Of note, a gram-scale synthesis of tetrasaccharide corresponding to Lipid IV with modifiable handles is achieved using the catalytic strain-release glycosylation. These attractive features promise this donor to be the prototype for developing next generation of catalytic glycosylation.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jian Lyu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, P.R. China.
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
110
|
Wang H, Shao H, Das A, Dutta S, Chan HT, Daniliuc C, Houk KN, Glorius F. Dearomative ring expansion of thiophenes by bicyclobutane insertion. Science 2023; 381:75-81. [PMID: 37410837 DOI: 10.1126/science.adh9737] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Skeletal ring enlargement is gaining renewed interest in synthetic chemistry and has recently focused on insertion of one or two atoms. Strategies for heterocyclic expansion through small-ring insertion remain elusive, although they would lead to the efficient formation of bicyclic products. Here, we report a photoinduced dearomative ring enlargement of thiophenes by insertion of bicyclo[1.1.0]butanes to produce eight-membered bicyclic rings under mild conditions. The synthetic value, broad functional-group compatibility, and excellent chemo- and regioselectivity were demonstrated by scope evaluation and product derivatization. Experimental and computational studies point toward a photoredox-induced radical pathway.
Collapse
Affiliation(s)
- Huamin Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster (WWU), 48149 Münster, Germany
| | - Huiling Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Ankita Das
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster (WWU), 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster (WWU), 48149 Münster, Germany
| | - Hok Tsun Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Constantin Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster (WWU), 48149 Münster, Germany
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster (WWU), 48149 Münster, Germany
| |
Collapse
|
111
|
Shire B, Anderson EA. Conquering the Synthesis and Functionalization of Bicyclo[1.1.1]pentanes. JACS AU 2023; 3:1539-1553. [PMID: 37388694 PMCID: PMC10301682 DOI: 10.1021/jacsau.3c00014] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/01/2023]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) have become established as attractive bioisosteres for para-substituted benzene rings in drug design. Conferring various beneficial properties compared with their aromatic "parents," BCPs featuring a wide array of bridgehead substituents can now be accessed by an equivalent variety of methods. In this perspective, we discuss the evolution of this field and focus on the most enabling and general methods for BCPs synthesis, considering both scope and limitation. Recent breakthroughs on the synthesis of bridge-substituted BCPs are described, as well as methodologies for postsynthesis functionalization. We further explore new challenges and directions for the field, such as the emergence of other rigid small ring hydrocarbons and heterocycles possessing unique substituent exit vectors.
Collapse
|
112
|
Guin A, Bhattacharjee S, Harariya MS, Biju AT. Lewis acid-catalyzed diastereoselective carbofunctionalization of bicyclobutanes employing naphthols. Chem Sci 2023; 14:6585-6591. [PMID: 37350821 PMCID: PMC10284142 DOI: 10.1039/d3sc01373a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Traditional radical-mediated ring-opening of bicyclo[1.1.0]butanes (BCBs) for cyclobutane synthesis suffers from poor diastereoselectivity. Although few reports on BCB ring-opening via polar mechanisms are available, the Lewis acid-catalyzed diastereoselective ring-opening of BCBs using carbon nucleophiles is still underdeveloped. Herein, we report a mild and diastereoselective Bi(OTf)3-catalyzed ring-opening of BCBs employing 2-naphthols. The anticipated carbofunctionalized trisubstituted cyclobutanes were obtained via a bicoordinated bismuth complex and the products are formed in good to excellent yields with high regio- and diastereoselectivity. The scope of the reaction was further extended using electron-rich phenols and naphthylamine. The functionalization of the synthesized trisubstituted cyclobutanes shows the synthetic utility of the present method.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Mahesh Singh Harariya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| |
Collapse
|
113
|
Denisenko A, Garbuz P, Voloshchuk NM, Holota Y, Al-Maali G, Borysko P, Mykhailiuk PK. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat Chem 2023:10.1038/s41557-023-01222-0. [PMID: 37277469 PMCID: PMC10396955 DOI: 10.1038/s41557-023-01222-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
The ortho-substituted phenyl ring is a basic structural element in chemistry. It is found in more than three hundred drugs and agrochemicals. During the past decade, scientists have tried to replace the phenyl ring in bioactive compounds with saturated bioisosteres to obtain novel patentable structures. However, most of the research in this area has been devoted to the replacement of the para-substituted phenyl ring. Here we have developed saturated bioisosteres of the ortho-substituted phenyl ring with improved physicochemical properties: 2-oxabicyclo[2.1.1]hexanes. Crystallographic analysis revealed that these structures and the ortho-substituted phenyl ring indeed have similar geometric properties. Replacement of the phenyl ring in marketed agrochemicals fluxapyroxad (BASF) and boscalid (BASF) with 2-oxabicyclo[2.1.1]hexanes dramatically improved their water solubility, reduced lipophilicity and most importantly retained bioactivity. This work suggests an opportunity for chemists to replace the ortho-substituted phenyl ring in bioactive compounds with saturated bioisosteres in medicinal chemistry and agrochemistry.
Collapse
Affiliation(s)
| | | | | | | | - Galeb Al-Maali
- Bienta, Kyiv, Ukraine
- M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
114
|
Wiesenfeldt MP, Rossi-Ashton JA, Perry IB, Diesel J, Garry OL, Bartels F, Coote SC, Ma X, Yeung CS, Bennett DJ, MacMillan DWC. General access to cubanes as benzene bioisosteres. Nature 2023; 618:513-518. [PMID: 37015289 PMCID: PMC10680098 DOI: 10.1038/s41586-023-06021-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
The replacement of benzene rings with sp3-hybridized bioisosteres in drug candidates generally improves pharmacokinetic properties while retaining biological activity1-5. Rigid, strained frameworks such as bicyclo[1.1.1]pentane and cubane are particularly well suited as the ring strain imparts high bond strength and thus metabolic stability on their C-H bonds. Cubane is the ideal bioisostere as it provides the closest geometric match to benzene6,7. At present, however, all cubanes in drug design, like almost all benzene bioisosteres, act solely as substitutes for mono- or para-substituted benzene rings1-7. This is owing to the difficulty of accessing 1,3- and 1,2-disubstituted cubane precursors. The adoption of cubane in drug design has been further hindered by the poor compatibility of cross-coupling reactions with the cubane scaffold, owing to a competing metal-catalysed valence isomerization8-11. Here we report expedient routes to 1,3- and 1,2-disubstituted cubane building blocks using a convenient cyclobutadiene precursor and a photolytic C-H carboxylation reaction, respectively. Moreover, we leverage the slow oxidative addition and rapid reductive elimination of copper to develop C-N, C-C(sp3), C-C(sp2) and C-CF3 cross-coupling protocols12,13. Our research enables facile elaboration of all cubane isomers into drug candidates, thus enabling ideal bioisosteric replacement of ortho-, meta- and para-substituted benzenes.
Collapse
Affiliation(s)
| | | | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Johannes Diesel
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Florian Bartels
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | | - Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - David J Bennett
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | | |
Collapse
|
115
|
Kaur A, Lin W, Dovhalyuk V, Driutti L, Di Martino ML, Vujasinovic M, Löhr JM, Sellin ME, Globisch D. Chemoselective bicyclobutane-based mass spectrometric detection of biological thiols uncovers human and bacterial metabolites. Chem Sci 2023; 14:5291-5301. [PMID: 37234898 PMCID: PMC10207876 DOI: 10.1039/d3sc00224a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sulfur is an essential element of life. Thiol-containing metabolites in all organisms are involved in the regulation of diverse biological processes. Especially, the microbiome produces bioactive metabolites or biological intermediates of this compound class. The analysis of thiol-containing metabolites is challenging due to the lack of specific tools, making these compounds difficult to investigate selectively. We have now developed a new methodology comprising bicyclobutane for chemoselective and irreversible capturing of this metabolite class. We utilized this new chemical biology tool immobilized onto magnetic beads for the investigation of human plasma, fecal samples, and bacterial cultures. Our mass spectrometric investigation detected a broad range of human, dietary and bacterial thiol-containing metabolites and we even captured the reactive sulfur species cysteine persulfide in both fecal and bacterial samples. The described comprehensive methodology represents a new mass spectrometric strategy for the discovery of bioactive thiol-containing metabolites in humans and the microbiome.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Weifeng Lin
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Vladyslav Dovhalyuk
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Léna Driutti
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Maria Letizia Di Martino
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University 75123 Uppsala Sweden
| | - Miroslav Vujasinovic
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
| | - J-Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute Stockholm Sweden
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University 75123 Uppsala Sweden
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| |
Collapse
|
116
|
Wright BA, Matviitsuk A, Black MJ, García-Reynaga P, Hanna LE, Herrmann AT, Ameriks MK, Sarpong R, Lebold TP. Skeletal Editing Approach to Bridge-Functionalized Bicyclo[1.1.1]pentanes from Azabicyclo[2.1.1]hexanes. J Am Chem Soc 2023; 145:10960-10966. [PMID: 37145091 PMCID: PMC10281541 DOI: 10.1021/jacs.3c02616] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Azabicyclo[2.1.1]hexanes (aza-BCHs) and bicyclo[1.1.1]pentanes (BCPs) have emerged as attractive classes of sp3-rich cores for replacing flat, aromatic groups with metabolically resistant, three-dimensional frameworks in drug scaffolds. Strategies to directly convert, or "scaffold hop", between these bioisosteric subclasses through single-atom skeletal editing would enable efficient interpolation within this valuable chemical space. Herein, we describe a strategy to "scaffold hop" between aza-BCH and BCP cores through a nitrogen-deleting skeletal edit. Photochemical [2+2] cycloadditions, used to prepare multifunctionalized aza-BCH frameworks, are coupled with a subsequent deamination step to afford bridge-functionalized BCPs, for which few synthetic solutions currently exist. The modular sequence provides access to various privileged bridged bicycles of pharmaceutical relevance.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Michael J Black
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Luke E Hanna
- Janssen Research and Development, San Diego, California 92121, United States
| | - Aaron T Herrmann
- Janssen Research and Development, San Diego, California 92121, United States
| | - Michael K Ameriks
- Janssen Research and Development, San Diego, California 92121, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Terry P Lebold
- Janssen Research and Development, San Diego, California 92121, United States
| |
Collapse
|
117
|
Tyler JL, Aggarwal VK. Synthesis and Applications of Bicyclo[1.1.0]butyl and Azabicyclo[1.1.0]butyl Organometallics. Chemistry 2023; 29:e202300008. [PMID: 36786481 PMCID: PMC10947034 DOI: 10.1002/chem.202300008] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023]
Abstract
The use of metalated (aza)bicyclo[1.1.0]butanes in synthesis is currently experiencing a renaissance, as evidenced by the numerous reports in the last 5 years that have relied on such intermediates to undergo unique transformations or generate novel fragments. Since their discovery, these species have been demonstrated to participate in a wide range of reactions with carbon and heteroatom electrophiles, as well as metal complexes, to facilitate the rapid diversification of (aza)bicyclo[1.1.0]butane-containing compounds. Key to this is the relative acidity of the bridgehead C-H bonds which promotes facile deprotonation and subsequent functionalization of an unsubstituted position on the carbon framework via the intermediacy of a metalated (aza)bicyclo[1.1.0]butane. Additionally, the late-stage incorporation of deuterium atoms in strained fragments has led to the elucidation of numerous reaction mechanisms that involve strained bicycles. The continued investigation into the inimitable reactivity of metalated bicycles will cement their importance within the field of organometallic chemistry.
Collapse
Affiliation(s)
- Jasper L. Tyler
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
118
|
Kim MJ, Wang DJ, Targos K, Garcia UA, Harris AF, Guzei IA, Wickens ZK. Diastereoselective Synthesis of Cyclopropanes from Carbon Pronucleophiles and Alkenes. Angew Chem Int Ed Engl 2023; 62:e202303032. [PMID: 36929023 PMCID: PMC10189787 DOI: 10.1002/anie.202303032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Cyclopropanes are desirable structural motifs with valuable applications in drug discovery and beyond. Established alkene cyclopropanation methods give rise to cyclopropanes with a limited array of substituents, are difficult to scale, or both. Herein, we disclose a new cyclopropane synthesis through the formal coupling of abundant carbon pronucleophiles and unactivated alkenes. This strategy exploits dicationic adducts derived from electrolysis of thianthrene in the presence of alkene substrates. We find that these dielectrophiles undergo cyclopropanation with methylene pronucleophiles via alkenyl thianthrenium intermediates. This protocol is scalable, proceeds with high diastereoselectivity, and tolerates diverse functional groups on both the alkene and pronucleophile coupling partners. To validate the utility of this new procedure, we prepared an array of substituted analogs of an established cyclopropane that is en route to multiple pharmaceuticals.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Diana J. Wang
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Karina Targos
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Uriel A. Garcia
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Alison F. Harris
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| |
Collapse
|
119
|
Beng TK, Garcia J, Eichwald J, Borg C. Introducing a sulfone-embedded anhydride to the anhydride-imine reaction for the modular synthesis of N-heterocyclic sulfones bearing vicinal stereocenters. RSC Adv 2023; 13:14355-14360. [PMID: 37180005 PMCID: PMC10171042 DOI: 10.1039/d3ra01812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
N-heterocyclic sulfones constitute the core of several pharmaceuticals, including the antityrpanosomal drug Nifurtimox. Their biological relevance and architectural complexity makes them valued targets and inspires the development of more selective and atom-economical strategies for their construction and post-modification. In this embodiment, we describe a flexible approach to sp3-rich N-heterocyclic sulfones, which hinges on the efficient annulation of a novel sulfone-embedded anhydride with 1,3-azadienes and aryl aldimines. Further elaboration of the lactam esters has facilitated the construction of a library of vicinally functionalized sulfone-embedded N-heterocycles.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jorge Garcia
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Claire Borg
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
120
|
Yu IF, Manske JL, Diéguez-Vázquez A, Misale A, Pashenko AE, Mykhailiuk PK, Ryabukhin SV, Volochnyuk DM, Hartwig JF. Catalytic undirected borylation of tertiary C-H bonds in bicyclo[1.1.1]pentanes and bicyclo[2.1.1]hexanes. Nat Chem 2023; 15:685-693. [PMID: 36973434 PMCID: PMC10684141 DOI: 10.1038/s41557-023-01159-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023]
Abstract
Catalytic borylations of sp3 C-H bonds occur with high selectivities for primary C-H bonds or secondary C-H bonds that are activated by nearby electron-withdrawing substituents. Catalytic borylation at tertiary C-H bonds has not been observed. Here we describe a broadly applicable method for the synthesis of boron-substituted bicyclo[1.1.1]pentanes and (hetero)bicyclo[2.1.1]hexanes by an iridium-catalysed borylation of the bridgehead tertiary C-H bond. This reaction is highly selective for the formation of bridgehead boronic esters and is compatible with a broad range of functional groups (>35 examples). The method is applicable to the late-stage modification of pharmaceuticals containing this substructure and the synthesis of novel bicyclic building blocks. Kinetic and computational studies suggest that C-H bond cleavage occurs with a modest barrier and that the turnover-limiting step of this reaction is an isomerization that occurs prior to reductive elimination that forms the C-B bond.
Collapse
Affiliation(s)
- Isaac F Yu
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jenna L Manske
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | | | - Alexander E Pashenko
- The Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine Ltd, Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Pavel K Mykhailiuk
- The Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine Ltd, Kyiv, Ukraine
| | - Sergey V Ryabukhin
- The Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine Ltd, Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmitriy M Volochnyuk
- The Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
- Enamine Ltd, Kyiv, Ukraine.
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
121
|
Dubois MAJ, Rojas JJ, Sterling AJ, Broderick HC, Smith MA, White AJP, Miller PW, Choi C, Mousseau JJ, Duarte F, Bull JA. Visible Light Photoredox-Catalyzed Decarboxylative Alkylation of 3-Aryl-Oxetanes and Azetidines via Benzylic Tertiary Radicals and Implications of Benzylic Radical Stability. J Org Chem 2023; 88:6476-6488. [PMID: 36868184 DOI: 10.1021/acs.joc.3c00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Four-membered heterocycles offer exciting potential as small polar motifs in medicinal chemistry but require further methods for incorporation. Photoredox catalysis is a powerful method for the mild generation of alkyl radicals for C-C bond formation. The effect of ring strain on radical reactivity is not well understood, with no studies that address this question systematically. Examples of reactions that involve benzylic radicals are rare, and their reactivity is challenging to harness. This work develops a radical functionalization of benzylic oxetanes and azetidines using visible light photoredox catalysis to prepare 3-aryl-3-alkyl substituted derivatives and assesses the influence of ring strain and heterosubstitution on the reactivity of small-ring radicals. 3-Aryl-3-carboxylic acid oxetanes and azetidines are suitable precursors to tertiary benzylic oxetane/azetidine radicals which undergo conjugate addition into activated alkenes. We compare the reactivity of oxetane radicals to other benzylic systems. Computational studies indicate that Giese additions of unstrained benzylic radicals into acrylates are reversible and result in low yields and radical dimerization. Benzylic radicals as part of a strained ring, however, are less stable and more π-delocalized, decreasing dimer and increasing Giese product formation. Oxetanes show high product yields due to ring strain and Bent's rule rendering the Giese addition irreversible.
Collapse
Affiliation(s)
- Maryne A J Dubois
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Juan J Rojas
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Alistair J Sterling
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Hannah C Broderick
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Milo A Smith
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Chulho Choi
- Pfizer Global Research and Development, 445 Eastern Point Rd., Groton, Connecticut 06340, United States
| | - James J Mousseau
- Pfizer Global Research and Development, 445 Eastern Point Rd., Groton, Connecticut 06340, United States
| | - Fernanda Duarte
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
122
|
Cheng XY, Feng QK, Dang ZM, Du FS, Li ZC. Alternating [1.1.1]Propellane-(Meth)Acrylate Copolymers: A New Class of Dielectrics with High Energy Density for Film Capacitors. Macromol Rapid Commun 2023; 44:e2200888. [PMID: 36583944 DOI: 10.1002/marc.202200888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Polymer dielectrics with high energy density are of urgent demand in electric and electronic devices, but the tradeoff between dielectric constant and breakdown strength is still unsolved. Herein, the synthesis and molar mass control of three alternating [1.1.1]propellane-(meth)acrylate copolymers, denoted as P-MA, P-MMA, and P-EA, respectively, are reported. These copolymers exhibit high thermal stability and are semi-crystalline with varied glass transition temperatures and melting temperatures. The rigid bicyclo[1.1.1]pentane units in the polymer backbone promote the orientational polarization of the polar ester groups, thus enhancing the dielectric constants of these polymers, which are 4.50 for P-EA, 4.55 for P-MA, and 5.11 for P-MMA at 10 Hz and room temperature, respectively. Moreover, the high breakdown strength is ensured by the non-conjugated nature of bicyclo[1.1.1]pentane unit. As a result, these copolymers show extraordinary energy storage performance; P-MA exhibits a discharge energy density of 9.73 J cm-3 at 750 MV m-1 and ambient temperature. This work provides a new type of promising candidates as polymer dielectrics for film capacitors, and offers an efficient strategy to improve the dielectric and energy storage properties by introducing rigid non-conjugated bicyclo[1.1.1]pentane unit into the polymer backbone.
Collapse
Affiliation(s)
- Xiang-Yue Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, China
| | - Qi-Kun Feng
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhi-Min Dang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
123
|
Abstract
Interest in covalent enzyme inhibitors as therapeutic agents has seen a recent resurgence. Covalent enzyme inhibitors typically possess an organic functional group that reacts with a key feature of the target enzyme, often a nucleophilic cysteine residue. Herein, the application of small, modular ReV complexes as inorganic cysteine-targeting warheads is described. These metal complexes were found to react with cysteine residues rapidly and selectively. To demonstrate the utility of these ReV complexes, their reactivity with SARS-CoV-2-associated cysteine proteases is presented, including the SARS-CoV-2 main protease and papain-like protease and human enzymes cathepsin B and L. As all of these proteins are cysteine proteases, these enzymes were found to be inhibited by the ReV complexes through the formation of adducts. These findings suggest that these ReV complexes could be used as a new class of warheads for targeting surface accessible cysteine residues in disease-relevant target proteins.
Collapse
|
124
|
Alonso M, Cañellas S, Delgado F, Serrano M, Diéguez-Vázquez A, Gómez JE. Accelerated Synthesis of Bicyclo[1.1.1]pentylamines: A High-Throughput Approach. Org Lett 2023; 25:771-776. [PMID: 36724762 DOI: 10.1021/acs.orglett.2c04226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Strained bicyclic substructures such as bicyclo[1.1.1]pentylamines (BCPAs) are increasingly targeted in medicinal chemistry as arylamine bioisosteres. Here, we leverage high-throughput automated synthesis to rapidly develop library-amenable reaction conditions and maximize design space to expand access to BCPAs. This new protocol relies on a copper-mediated C-N coupling approach and uses accessible and bench-stable iodo-BCP building blocks. Its applicability has been exemplified by incorporating BCPs in drug-like compounds, providing straightforward access to a library of valuable aniline-like isosteres.
Collapse
Affiliation(s)
- Maialen Alonso
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Santiago Cañellas
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Francisca Delgado
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Marta Serrano
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - Alejandro Diéguez-Vázquez
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| | - José Enrique Gómez
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, E-45007 Toledo, Spain
| |
Collapse
|
125
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
126
|
Cheng X, Du F, Li Z. Synthesis of precision poly(1,3‐bicyclo[1.1.1]pentane alkylene)s via acyclic diene metathesis polymerization. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xiang‐Yue Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Fu‐Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Zi‐Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| |
Collapse
|
127
|
Bicyclobutanes as unusual building blocks for complexity generation in organic synthesis. Commun Chem 2023; 6:9. [PMID: 36697911 PMCID: PMC9837078 DOI: 10.1038/s42004-022-00811-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Bicyclobutanes are among the most highly strained isolable organic compounds and their associated low activation barriers to reactivity make them intriguing building-blocks in organic chemistry. In recent years, numerous creative synthetic strategies exploiting their heightened reactivity have been presented and these discoveries have often gone hand-in-hand with the development of more practical routes for their synthesis. Their proclivity as strain-release reagents through their weak central C-C bond has been harnessed in a variety of addition, rearrangement and insertion reactions, providing rapid access to a rich tapestry of complex molecular scaffolds. This review will provide an overview of the different options available for bicyclobutane synthesis, the main classes of compounds that can be prepared from bicyclobutanes, and the associated modes of reactivity used.
Collapse
|
128
|
Tyler JL, Noble A, Aggarwal VK. Four-Component Strain-Release-Driven Synthesis of Functionalized Azetidines. Angew Chem Int Ed Engl 2022; 61:e202214049. [PMID: 36300572 PMCID: PMC10099845 DOI: 10.1002/anie.202214049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Despite the favorable properties that azetidine rings can engender on drug-compounds, methods for the diversity-oriented synthesis of azetidine-based structures are significantly underdeveloped. Herein, we report the successful realization of a multicomponent [1,2]-Brook rearrangement/strain-release-driven anion relay sequence and its application to the modular synthesis of substituted azetidines. The rapidity of the reaction, as confirmed by in situ infra-red spectroscopy, leverages the strain-release ring-opening of azabicyclo[1.1.0]butane to drive the equilibrium of the Brook rearrangement. The three electrophilic coupling partners, added sequentially to azabicyclo[1.1.0]butyl-lithium, could be individually varied to access a diverse compound library. The utility of this methodology was demonstrated in a 4-step synthesis of the EP2 receptor antagonist PF-04418948.
Collapse
Affiliation(s)
- Jasper L Tyler
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
129
|
Liu R, Tian Y, Wang J, Wang Z, Li X, Zhao C, Yao R, Li S, Yuan L, Yang J, Shi D. Visible light-initiated radical 1,3-difunctionalization of β,γ-unsaturated ketones. SCIENCE ADVANCES 2022; 8:eabq8596. [PMID: 36490351 PMCID: PMC9733936 DOI: 10.1126/sciadv.abq8596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Radical-mediated 1,2-difunctionalization of olefins is a well-established synthetic technique widely used in the rapid construction of structurally diverse molecular entities. However, radical-mediated 1,3-difunctionalization reactions are rare, and the substrates are generally limited to strained skeletons. Here, we report a practical approach for 1,3-difunctionalization of available β,γ-unsaturated ketones via a radical cascade process including visible light-irradiated radical addition, thermodynamic stability-driven 1,2-carbonyl migration from unactivated all-carbon quaternary center, and terminal C-radical varied transformations. Various highly functionalized alkyl skeletons with different valuable functional groups at positions 1 and 3 and the carbonyl group at position 2 have been synthesized through a radical chain pathway or Cu-catalyzed Ritter-type reaction. Moreover, this protocol provides a real case of diversity-oriented radical rearrangement for drug discovery. We identified a previously unknown chemotype of dual inhibitors for hypoxia-inducible factor (HIF) and WNT signaling pathways from products. These small-molecule inhibitors could suppress HIF and WNT signaling-dependent HCT116 cell growth in 2D and 3D culture systems.
Collapse
Affiliation(s)
- Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Yang Tian
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Jie Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Chenyang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Ruoyu Yao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Leifeng Yuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, 168 Weihai Road, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
130
|
Iida T, Kanazawa J, Matsunaga T, Miyamoto K, Hirano K, Uchiyama M. Practical and Facile Access to Bicyclo[3.1.1]heptanes: Potent Bioisosteres of meta-Substituted Benzenes. J Am Chem Soc 2022; 144:21848-21852. [PMID: 36342862 DOI: 10.1021/jacs.2c09733] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is increasing interest in replacement of the planar aromatic rings of drug candidates with three-dimensional caged scaffolds in order to improve the physical properties, but bioisosteres of meta-substituted benzenes have remained elusive. We focused on the bicyclo[3.1.1]heptane (BCH) scaffold as a novel bioisostere of meta-substituted benzenes, anticipating that [3.1.1]propellane (2) would be a versatile precursor of diversely functionalized BCHs. Here, we describe a practical preparative method for [3.1.1]propellane from newly developed 1,5-diiodobicyclo[3.1.1]heptane (1), as well as difunctionalization reactions of 2 leading to functionalized BCHs. We also report postfunctionalization reactions of these products.
Collapse
Affiliation(s)
- Toranosuke Iida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadafumi Matsunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichi Hirano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
131
|
Livingstone K, Siebold K, Meyer S, Martín-Heras V, Daniliuc CG, Gilmour R. Skeletal Ring Contractions via I(I)/I(III) Catalysis: Stereoselective Synthesis of cis-α,α-Difluorocyclopropanes. ACS Catal 2022; 12:14507-14516. [PMID: 36504915 PMCID: PMC9724094 DOI: 10.1021/acscatal.2c04511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Indexed: 11/12/2022]
Abstract
The clinical success of α,α-difluorocyclopropanes, combined with limitations in the existing synthesis portfolio, inspired the development of an operationally simple, organocatalysis-based strategy to access cis-configured derivatives with high levels of stereoselectivity (up to >20:1 cis:trans). Leveraging an I(I)/I(III)-catalysis platform in the presence of an inexpensive HF source, it has been possible to exploit disubstituted bicyclobutanes (BCBs) as masked cyclobutene equivalents for this purpose. In situ generation of this strained alkene, enabled by Brønsted acid activation, facilitates an unprecedented 4 → 3 fluorinative ring contraction, to furnish cis-α,α-difluorinated cyclopropanes in a highly stereoselective manner (up to 88% yield). Mechanistic studies are disclosed together with conformational analysis (X-ray crystallography and NMR) to validate cis-α,α-difluorocyclopropanes as isosteres of the 1,4-dicarbonyl moiety. Given the importance of this unit in biology and the foundational no → π* interactions that manifest themselves in this conformation (e.g., collagen), it is envisaged that the title motif will find application in focused molecular design.
Collapse
|
132
|
Abstract
We report the first palladium hydride enabled hydroalkenylation of strained molecules. This new mild protocol proceeds via a regio- and chemoselective hydropalladation step, followed by a photoinduced radical alkyl Heck reaction. This methodology represents a new reactivity mode for strained molecules and opens new avenues for photoinduced palladium catalysis. The reaction is compatible with a wide range of functional groups and can be applied to complex structures, delivering a diverse array of highly valuable and modifiable alkenylated cyclobutanes and cyclopropanes. A hydroalkenylation/diastereoselective rearrangement cascade toward a cyclopentene scaffold has also been demonstrated.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
133
|
Dowman LJ, Kulkarni SS, Alegre-Requena JV, Giltrap AM, Norman AR, Sharma A, Gallegos LC, Mackay AS, Welegedara AP, Watson EE, van Raad D, Niederacher G, Huhmann S, Proschogo N, Patel K, Larance M, Becker CFW, Mackay JP, Lakhwani G, Huber T, Paton RS, Payne RJ. Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine. Nat Commun 2022; 13:6885. [PMID: 36371402 PMCID: PMC9653470 DOI: 10.1038/s41467-022-34530-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
The importance of modified peptides and proteins for applications in drug discovery, and for illuminating biological processes at the molecular level, is fueling a demand for efficient methods that facilitate the precise modification of these biomolecules. Herein, we describe the development of a photocatalytic method for the rapid and efficient dimerization and site-specific functionalization of peptide and protein diselenides. This methodology, dubbed the photocatalytic diselenide contraction, involves irradiation at 450 nm in the presence of an iridium photocatalyst and a phosphine and results in rapid and clean conversion of diselenides to reductively stable selenoethers. A mechanism for this photocatalytic transformation is proposed, which is supported by photoluminescence spectroscopy and density functional theory calculations. The utility of the photocatalytic diselenide contraction transformation is highlighted through the dimerization of selenopeptides, and by the generation of two families of protein conjugates via the site-selective modification of calmodulin containing the 21st amino acid selenocysteine, and the C-terminal modification of a ubiquitin diselenide.
Collapse
Affiliation(s)
- Luke J Dowman
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Andrew M Giltrap
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexander R Norman
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ashish Sharma
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence in Exciton Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Liliana C Gallegos
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Adarshi P Welegedara
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Emma E Watson
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Damian van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Gerhard Niederacher
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Susanne Huhmann
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Nicholas Proschogo
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Karishma Patel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Girish Lakhwani
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence in Exciton Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
134
|
Liang Y, Kleinmans R, Daniliuc CG, Glorius F. Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible-Light-Induced Energy Transfer. J Am Chem Soc 2022; 144:20207-20213. [DOI: 10.1021/jacs.2c09248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujie Liang
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Roman Kleinmans
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
135
|
Pang Q, Li Y, Xie X, Tang J, Liu Q, Peng C, Li X, Han B. The emerging role of radical chemistry in the amination transformation of highly strained [1.1.1]propellane: Bicyclo[1.1.1]pentylamine as bioisosteres of anilines. Front Chem 2022; 10:997944. [PMID: 36339044 PMCID: PMC9634170 DOI: 10.3389/fchem.2022.997944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
Bicyclo[1.1.1]pentylamines (BPCAs), emerging as sp3-rich surrogates for aniline and its derivatives, demonstrate unique structural features and physicochemical profiles in medicinal and synthetic chemistry. In recent years, compared with conventional synthetic approaches, the rapid development of radical chemistry enables the assembly of valuable bicyclo[1.1.1]pentylamines scaffold directly through the amination transformation of highly strained [1.1.1]propellane. In this review, we concisely summarize the emerging role of radical chemistry in the construction of BCPAs motif, highlighting two different and powerful radical-involved strategies including C-centered and N-centered radical pathways under appropriate conditions. The future direction concerning BCPAs is also discussed at the end of this review, which aims to provide some inspiration for the research of this promising project.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
136
|
Kelly CB, Milligan JA, Tilley LJ, Sodano TM. Bicyclobutanes: from curiosities to versatile reagents and covalent warheads. Chem Sci 2022; 13:11721-11737. [PMID: 36320907 PMCID: PMC9580472 DOI: 10.1039/d2sc03948f] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 09/16/2023] Open
Abstract
The unique chemistry of small, strained carbocyclic systems has long captivated organic chemists from a theoretical and fundamental standpoint. A resurgence of interest in strained carbocyclic species has been prompted by their potential as bioisosteres, high fraction of sp3 carbons, and limited appearance in the patent literature. Among strained ring systems, bicyclo[1.1.0]butane (BCB) stands apart as the smallest bicyclic carbocycle and is amongst the most strained carbocycles known. Despite the fact that BCBs have been synthesized and studied for well over 50 years, they have long been regarded as laboratory curiosities. However, new approaches for preparing, functionalizing, and using BCBs in "strain-release" transformations have positioned BCBs to be powerful synthetic workhorses. Further, the olefinic character of the bridgehead bond enables BCBs to be elaborated into various other ring systems and function as covalent warheads for bioconjugation. This review will discuss the recent developments in the synthesis and functionalization of BCBs as well as the applications of these strained rings in synthesis and drug discovery. An overview of the properties and the historical context of this interesting structure will be provided.
Collapse
Affiliation(s)
- Christopher B Kelly
- Discovery Process Research, Janssen Research & Development LLC 1400 McKean Road, Spring House PA 19477 USA
| | - John A Milligan
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University 4201 Henry Avenue Philadelphia PA 19144 USA
| | - Leon J Tilley
- Department of Chemistry, Stonehill College 320 Washington Street Easton MA 02357 USA
| | - Taylor M Sodano
- Therapeutics Discovery, Janssen Research & Development LLC 1400 McKean Road, Spring House PA 19477 USA
| |
Collapse
|
137
|
Ge L, Zhang C, Pan C, Wang DX, Liu DY, Li ZQ, Shen P, Tian L, Feng C. Photoredox-catalyzed C-C bond cleavage of cyclopropanes for the formation of C(sp 3)-heteroatom bonds. Nat Commun 2022; 13:5938. [PMID: 36209214 PMCID: PMC9547854 DOI: 10.1038/s41467-022-33602-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Sterically congested C-O and C-N bonds are ubiquitous in natural products, pharmaceuticals, and bioactive compounds. However, the development of a general method for the efficient construction of those sterically demanding covalent bonds still remains a formidable challenge. Herein, a photoredox-driven ring-opening C(sp3)-heteroatom bond formation of arylcyclopropanes is presented, which enables the construction of structurally diversified while sterically congested dialkyl ether, alkyl ester, alcohol, amine, chloride/fluoride, azide and also thiocyanate derivatives. The selective single electron oxidation of aryl motif associated with the thermodynamic driving force from ring strain-release is the key for this transformation. By this synergistic activation mode, C-C bond cleavage of otherwise inert cyclopropane framework is successfully unlocked. Further mechanistic and computational studies disclose a complete stereoinversion upon nucleophilic attack, thus proving a concerted SN2-type ring-opening functionalization manifold, while the regioselectivity is subjected to an orbital control scenario.
Collapse
Affiliation(s)
- Liang Ge
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Chi Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Chengkai Pan
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Ding-Xing Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Dong-Ying Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhi-Qiang Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Pingkang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
138
|
Du X, Xu D, Xu G, Yu C, Jiang X. Synthesis of Imidized Cyclobutene Derivatives by Strain Release of [1.1.1]Propellane. Org Lett 2022; 24:7323-7327. [PMID: 36190793 DOI: 10.1021/acs.orglett.2c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the metal-free synthesis of imidized methylene cyclobutane derivatives via a strain-release driven addition reaction of [1.1.1]propellane. Using this strategy, the methylene cyclobutyl cation intermediate generated by protonation of [1.1.1]propellane was found to be trapped by nitriles to form a nitrilium ion intermediate, which subsequently reacted with carboxylic acids to produce imidized methylene cyclobutene derivatives via a Mumm-type rearrangement.
Collapse
Affiliation(s)
- Xiaofan Du
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Di Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Gongcheng Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
139
|
Livesley S, Trueman B, Robertson CM, Goundry WRF, Morris JA, Aïssa C. Synthesis of Sulfur-Substituted Bicyclo[1.1.1]pentanes by Iodo-Sulfenylation of [1.1.1]Propellane. Org Lett 2022; 24:7015-7020. [PMID: 36130142 PMCID: PMC9531248 DOI: 10.1021/acs.orglett.2c02875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Thiols easily react with [1.1.1]propellane to give sulfur-substituted
bicyclo[1.1.1]pentanes in radical reactions, but this reactivity is
not replicated in the case of heterocyclic thiols. Herein, we address
this issue by electrophilically activating [1.1.1]propellane to promote
its iodo-sulfenylation with 10 classes of heterocyclic thiols in two
protocols that can be conducted on a multigram scale without exclusion
of air or moisture.
Collapse
Affiliation(s)
- Sarah Livesley
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom.,Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Bethany Trueman
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Craig M Robertson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - William R F Goundry
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - James A Morris
- Syngenta, International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Christophe Aïssa
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
140
|
Lai W, Zhong K, Liu S, Liu S, Chen H, Ni H, Zeng Z, Zhao Z, Lan Y, Bai R. How Strain-Release Determines Chemoselectivity: A Mechanistic Study of Rhodium-Catalyzed Bicyclo[1.1.0]butane Activation. J Phys Chem Lett 2022; 13:7694-7701. [PMID: 35960186 DOI: 10.1021/acs.jpclett.2c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bicyclo[1.1.0]butane (BCB) derivatives are versatile coupling partners, and various reaction modes for their activation and transformation have been proposed. In this work, three BCB-activation modes in Rh-catalyzed BCB transformations that construct diastereoselective α-quaternary β-lactones were investigated by density functional theory calculations. Our results show that, compared with C1-C3 insertion and C-C3 oxidative addition, C2-C3 oxidative addition is more favorable. The whole catalytic cycle involves five main steps: C-H activation, oxidative addition, β-C elimination/reductive elimination, Rh walking, and aldehyde insertion/protonation. Independent gradient model, intrinsic reaction coordinate, distortion-interaction energy, and Laplacian electron-density analyses were carried out to investigate the mode of BCB activation. Our calculation also showed that aldehyde-insertion is the diastereoselectivity determining step, which is controlled by the steric effect between the ligand, methyl group, and aldehyde.
Collapse
Affiliation(s)
- Wei Lai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Song Liu
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Hao Ni
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Zhen Zeng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Zhuang Zhao
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, CP. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
141
|
Salgueiro DC, Chi BK, Guzei IA, García‐Reynaga P, Weix DJ. Control of Redox-Active Ester Reactivity Enables a General Cross-Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022; 61:e202205673. [PMID: 35688769 PMCID: PMC9378488 DOI: 10.1002/anie.202205673] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/20/2022]
Abstract
Strained rings are increasingly important for the design of pharmaceutical candidates, but cross-coupling of strained rings remains challenging. An attractive, but underdeveloped, approach to diverse functionalized carbocyclic and heterocyclic frameworks containing all-carbon quaternary centers is the coupling of abundant strained-ring carboxylic acids with abundant aryl halides. Herein we disclose the development of a nickel-catalyzed cross-electrophile approach that couples a variety of strained ring N-hydroxyphthalimide (NHP) esters, derived from the carboxylic acid in one step, with various aryl and heteroaryl halides under reductive conditions. The chemistry is enabled by the discovery of methods to control NHP ester reactivity, by tuning the solvent or using modified NHP esters, and the discovery that t-Bu BpyCamCN , an L2X ligand, avoids problematic side reactions. This method can be run in flow and in 96-well plates.
Collapse
Affiliation(s)
| | - Benjamin K. Chi
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | - Ilia A. Guzei
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | | | - Daniel J. Weix
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| |
Collapse
|
142
|
Gao Q, Zhang L, Zheng C, Lei S, Li S, Hu Z. HSH-C10: A new quasi-2D carbon allotrope with a honeycomb-star-honeycomb lattice. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
143
|
Wang Z, Chen X, Hu Y, Li H, Yang YF, Liu Y, Jin H, Zhou B. Deconstructive isomerization of azetidinols via C-C bond cleavage enabled by N-heterocyclic carbene (NHC) catalysis. Chem Commun (Camb) 2022; 58:9294-9297. [PMID: 35904428 DOI: 10.1039/d2cc03104c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe an N-heterocyclic carbene (NHC)-catalyzed deconstructive isomerization of azetidinols via an inert C-C bond cleavage. It provides a direct and supplementary pathway to access α-amino ketone and oxazol-2-one derivatives in moderate to good yields. DFT calculation supports the proposed mechanism in which NHC undergoes a concerted proton transfer and ring-opening process. This reaction features non-metal catalysis, simple reaction operation, excellent regioselectivity and gram-scale synthesis.
Collapse
Affiliation(s)
- Zhen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xue Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunayuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Huiling Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
144
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro-Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022; 61:e202205103. [PMID: 35638404 PMCID: PMC9401599 DOI: 10.1002/anie.202205103] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 12/27/2022]
Abstract
After more than 20 years of trials, a practical scalable approach to fluoro-substituted bicyclo[1.1.1]pentanes (F-BCPs) has been developed. The physicochemical properties of the F-BCPs have been studied, and the core was incorporated into the structure of the anti-inflammatory drug Flurbiprofen in place of the fluorophenyl ring.
Collapse
|
145
|
Dhake K, Woelk KJ, Becica J, Un A, Jenny SE, Leitch DC. Beyond Bioisosteres: Divergent Synthesis of Azabicyclohexanes and Cyclobutenyl Amines from Bicyclobutanes. Angew Chem Int Ed Engl 2022; 61:e202204719. [PMID: 35442565 DOI: 10.1002/anie.202204719] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 12/15/2022]
Abstract
The development of two divergent and complementary Lewis acid catalyzed additions of bicyclobutanes to imines is described. Microscale high-throughput experimentation was integral to the discovery and optimization of both reactions. N-arylimines undergo formal (3+2) cycloaddition with bicyclobutanes to yield azabicyclo[2.1.1]hexanes in a single step; in contrast, N-alkylimines undergo an addition/elimination sequence to generate cyclobutenyl methanamine products with high diastereoselectivity. These new products contain a variety of synthetic handles for further elaboration, including many functional groups relevant to pharmaceutical synthesis. The divergent reactivity observed is attributed to differences in basicity and nucleophilicity of the nitrogen atom in a common carbocation intermediate, leading to either nucleophilic attack (N-aryl) or E1 elimination (N-alkyl).
Collapse
Affiliation(s)
- Kushal Dhake
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Kyla J Woelk
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Joseph Becica
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Andy Un
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Sarah E Jenny
- Department of Chemistry, Temple University, 1901N. Broad St, Philadelphia, PA 19122, USA
| | - David C Leitch
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| |
Collapse
|
146
|
Shi J, Xu QL, Ni YQ, Li L, Pan F. Radical Multicomponent Alkyl Alkynylation of Propellane via Synergistic Photoredox and Copper Catalysis. Org Lett 2022; 24:4609-4614. [PMID: 35726904 DOI: 10.1021/acs.orglett.2c01721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are important bioisosteres of aryl, tert-butyl groups, and internal alkynes that can impact key physicochemical properties on drug candidates. Herein, we describe a novel and efficient reaction to synthesize alkyl-alkynyl-substituted BCP derivatives by synergistic photoredox and copper catalysis at room temperature. The mild reaction conditions, simple protocol, broad functional group tolerance, and high efficiency of this procedure make it a valuable strategy for accessing alkynyl-substituted BCPs.
Collapse
Affiliation(s)
- Jie Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qiao-Lin Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yu-Qing Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Lin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
147
|
Yang LM, Zeng HH, Liu XL, Ma AJ, Peng JB. Copper catalyzed borocarbonylation of benzylidenecyclopropanes through selective proximal C-C bond cleavage: synthesis of γ-boryl-γ,δ-unsaturated carbonyl compounds. Chem Sci 2022; 13:7304-7309. [PMID: 35799816 PMCID: PMC9214919 DOI: 10.1039/d2sc01992b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
A copper catalyzed borocarbonylation of BCPs via proximal C-C bond cleavage for the synthesis of γ-boryl-γ,δ-unsaturated carbonyl compounds has been developed. Using substituted benzylidenecyclopropanes (BCPs) and chloroformates as starting material, a broad range of γ-boryl-γ,δ-unsaturated esters were prepared in moderate to excellent yields with excellent regio- and stereoselectivity. Besides, when aliphatic acid chlorides were used in this reaction, γ-boryl-γ,δ-unsaturated ketones could be produced in excellent yields. When substituted BCPs were used as substrates, the borocarbonylation occurred predominantly at the proximal C-C bond trans to the phenyl group in a regio- and stereoselective manner, which leads to the Z-isomers as the products. This efficient methodology involves the cleavage of a C-C bond and the formation of a C-C bond as well as a C-B bond, and provides a new method for the proximal C-C bond difunctionalization of BCPs.
Collapse
Affiliation(s)
- Li-Miao Yang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Hui-Hui Zeng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| |
Collapse
|
148
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro‐Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman Bychek
- Enamine Ltd. Chervonotkatska 60 02094 Kyiv Ukraine
| | | |
Collapse
|
149
|
Salgueiro DC, Chi BK, Guzei IA, García-Reynaga P, Weix DJ. Control of Redox‐Active Ester Reactivity Enables a General Cross‐Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Benjamin K. Chi
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | - Ilia A. Guzei
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | | | - Daniel John Weix
- UW-Madison: University of Wisconsin Madison Chemistry 1101 University Avenue 53706 Madison UNITED STATES
| |
Collapse
|
150
|
Li Q, Li L, Xu QL, Pan F. Radical Acylation of [1.1.1]Propellane with Aldehydes: Synthesis of Bicyclo[1.1.1]pentane Ketones. Org Lett 2022; 24:4292-4297. [PMID: 35658457 DOI: 10.1021/acs.orglett.2c01707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are widely utilized in drug design as sp3-rich bioisosteres for tert-butyl, internal alkynes, and aryl groups. A general and mild method for radical acylation of [1.1.1]propellane with aldehydes has been developed. The protocol provides straightforward access to bicyclo[1.1.1]pentane ketones with a broad substrate scope. The synthetic utility of this methodology is demonstrated by the late-stage modification of bioactive molecules and the versatile transformation of bicyclo[1.1.1]pentane ketones, making it useful for drug discovery.
Collapse
Affiliation(s)
- Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Lin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qiao-Ling Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|