101
|
Weiner L, Brissette JL. Finding meaning in chaos: a selection signature for functional interactions and its use in molecular biology. FEBS J 2023; 290:3914-3927. [PMID: 35653424 DOI: 10.1111/febs.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
A primary goal of biomedical research is to elucidate molecular mechanisms, particularly those responsible for human traits, either normal or pathological. Yet achieving this goal is difficult if not impossible when the traits of interest lack tractable models and so cannot be dissected through time-honoured approaches like forward genetics or reconstitution. Arguably, no biological problem has hindered scientific progress more than this: the inability to dissect a trait's mechanism without a tractable likeness of the trait. At root, forward genetics and reconstitution are powerful approaches because they assay for specific molecular functions. Here, we discuss an alternative way to uncover important mechanistic interactions, namely, to assay for positive natural selection. If an interaction has been selected for, then it must perform an important function, a function that significantly promotes reproductive success. Accordingly, selection is a consequence and indicator of function, and uncovering multimolecular selection will reveal important functional interactions. We propose a selection signature for interactions and review recent selection-based approaches through which to dissect traits that are not inherently tractable. The review includes proof-of-principle studies in which important interactions were uncovered by screening for selection. In sum, screens for selection appear feasible when screens for specific functions are not. Selection screens thus constitute a novel tool through which to reveal the mechanisms that shape the fates of organisms.
Collapse
Affiliation(s)
- Lorin Weiner
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Janice L Brissette
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
102
|
Armendariz DA, Sundarrajan A, Hon GC. Breaking enhancers to gain insights into developmental defects. eLife 2023; 12:e88187. [PMID: 37497775 PMCID: PMC10374278 DOI: 10.7554/elife.88187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Despite ground-breaking genetic studies that have identified thousands of risk variants for developmental diseases, how these variants lead to molecular and cellular phenotypes remains a gap in knowledge. Many of these variants are non-coding and occur at enhancers, which orchestrate key regulatory programs during development. The prevailing paradigm is that non-coding variants alter the activity of enhancers, impacting gene expression programs, and ultimately contributing to disease risk. A key obstacle to progress is the systematic functional characterization of non-coding variants at scale, especially since enhancer activity is highly specific to cell type and developmental stage. Here, we review the foundational studies of enhancers in developmental disease and current genomic approaches to functionally characterize developmental enhancers and their variants at scale. In the coming decade, we anticipate systematic enhancer perturbation studies to link non-coding variants to molecular mechanisms, changes in cell state, and disease phenotypes.
Collapse
Affiliation(s)
- Daniel A Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Anjana Sundarrajan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
- Lyda Hill Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
103
|
The Impact of Genomic Variation on Function (IGVF) Consortium. ARXIV 2023:arXiv:2307.13708v1. [PMID: 37547663 PMCID: PMC10402186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Our genomes influence nearly every aspect of human biology from molecular and cellular functions to phenotypes in health and disease. Human genetics studies have now associated hundreds of thousands of differences in our DNA sequence ("genomic variation") with disease risk and other phenotypes, many of which could reveal novel mechanisms of human biology and uncover the basis of genetic predispositions to diseases, thereby guiding the development of new diagnostics and therapeutics. Yet, understanding how genomic variation alters genome function to influence phenotype has proven challenging. To unlock these insights, we need a systematic and comprehensive catalog of genome function and the molecular and cellular effects of genomic variants. Toward this goal, the Impact of Genomic Variation on Function (IGVF) Consortium will combine approaches in single-cell mapping, genomic perturbations, and predictive modeling to investigate the relationships among genomic variation, genome function, and phenotypes. Through systematic comparisons and benchmarking of experimental and computational methods, we aim to create maps across hundreds of cell types and states describing how coding variants alter protein activity, how noncoding variants change the regulation of gene expression, and how both coding and noncoding variants may connect through gene regulatory and protein interaction networks. These experimental data, computational predictions, and accompanying standards and pipelines will be integrated into an open resource that will catalyze community efforts to explore genome function and the impact of genetic variation on human biology and disease across populations.
Collapse
|
104
|
Dincer TU, Ernst J. Integrative epigenomic and functional characterization assay based annotation of regulatory activity across diverse human cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549056. [PMID: 37503240 PMCID: PMC10369970 DOI: 10.1101/2023.07.14.549056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We introduce ChromActivity, a computational framework for predicting and annotating regulatory activity across the genome through integration of multiple epigenomic maps and various functional characterization datasets. ChromActivity generates genomewide predictions of regulatory activity associated with each functional characterization dataset across many cell types based on available epigenomic data. It then for each cell type produces (1) ChromScoreHMM genome annotations based on the combinatorial and spatial patterns within these predictions and (2) ChromScore tracks of overall predicted regulatory activity. ChromActivity provides a resource for analyzing and interpreting the human regulatory genome across diverse cell types.
Collapse
Affiliation(s)
- Tevfik Umut Dincer
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of California, Los Angeles, CA, 90095, USA
- Computer Science Department, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
105
|
Barbosa IAM, Gopalakrishnan R, Mercan S, Mourikis TP, Martin T, Wengert S, Sheng C, Ji F, Lopes R, Knehr J, Altorfer M, Lindeman A, Russ C, Naumann U, Golji J, Sprouffske K, Barys L, Tordella L, Schübeler D, Schmelzle T, Galli GG. Cancer lineage-specific regulation of YAP responsive elements revealed through large-scale functional epigenomic screens. Nat Commun 2023; 14:3907. [PMID: 37400441 DOI: 10.1038/s41467-023-39527-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
YAP is a key transcriptional co-activator of TEADs, it regulates cell growth and is frequently activated in cancer. In Malignant Pleural Mesothelioma (MPM), YAP is activated by loss-of-function mutations in upstream components of the Hippo pathway, while, in Uveal Melanoma (UM), YAP is activated in a Hippo-independent manner. To date, it is unclear if and how the different oncogenic lesions activating YAP impact its oncogenic program, which is particularly relevant for designing selective anti-cancer therapies. Here we show that, despite YAP being essential in both MPM and UM, its interaction with TEAD is unexpectedly dispensable in UM, limiting the applicability of TEAD inhibitors in this cancer type. Systematic functional interrogation of YAP regulatory elements in both cancer types reveals convergent regulation of broad oncogenic drivers in both MPM and UM, but also strikingly selective programs. Our work reveals unanticipated lineage-specific features of the YAP regulatory network that provide important insights to guide the design of tailored therapeutic strategies to inhibit YAP signaling across different cancer types.
Collapse
Affiliation(s)
- Inês A M Barbosa
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rajaraman Gopalakrishnan
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
- Alltrna Inc., One Kendall Square, Cambridge, MA, USA
| | - Samuele Mercan
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thanos P Mourikis
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Typhaine Martin
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Simon Wengert
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Helmholtz Pioneer Campus, Helmholtz Zentrum München GmbH German Research Center for Environmental Health, Neuherberg, Germany
| | - Caibin Sheng
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fei Ji
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Rui Lopes
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Judith Knehr
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marc Altorfer
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alicia Lindeman
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Carsten Russ
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Ulrike Naumann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Javad Golji
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Kathleen Sprouffske
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Louise Barys
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Luca Tordella
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Tobias Schmelzle
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Giorgio G Galli
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
106
|
Lu Z, Fan L, Zhang F, Huang C, Cai Y, Chen C, Li G, Zhang M, Huang J, Ning C, Li Y, Wang W, Geng H, Liu Y, Chen S, Li H, Yang S, Zhang H, Tian W, Ye T, Liu J, Yang X, Xu B, Zhu Y, Zhong R, Li H, Tian J, Li B, Miao X. HSPA12A was identified as a key driver in colorectal cancer GWAS loci 10q26.12 and modulated by an enhancer-promoter interaction. Arch Toxicol 2023; 97:2015-2028. [PMID: 37245169 DOI: 10.1007/s00204-023-03494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/04/2023] [Indexed: 05/29/2023]
Abstract
Although genome-wide association studies (GWASs) have identified over 100 colorectal cancer (CRC) risk loci, an understanding of causal genes or risk variants and their biological functions in these loci remain unclear. Recently, genomic loci 10q26.12 with lead SNP rs1665650 was identified as an essential CRC risk loci of Asian populations. However, the functional mechanism of this region has not been fully clarified. Here, we applied an RNA interfering-based on-chip approach to screen for the genes essential for cell proliferation in the CRC risk loci 10q26.12. Notably, HSPA12A had the most significant effect among the identified genes and functioned as a crucial oncogene facilitating cell proliferation. Moreover, we conducted an integrative fine-mapping analysis to identify putative casual variants and further explored their association with CRC risk in a large-scale Chinese population consisting of 4054 cases and 4054 controls and also independently validated in 5208 cases and 20,832 controls from the UK biobank cohort. We identified a risk SNP rs7093835 in the intron of HSPA12A that was significantly associated with an increased risk of CRC (OR 1.23, 95% CI 1.08-1.41, P = 1.92 × 10-3). Mechanistically, the risk variant could facilitate an enhancer-promoter interaction mediated by the transcriptional factor (TF) GRHL1 and ultimately upregulate HSPA12A expression, which provides functional evidence to support our population findings. Collectively, our study reveals the important role of HSPA12A in CRC development and illustrates a novel enhancer-promoter interaction module between HSPA12A and its regulatory elements rs7093835, providing new insights into the etiology of CRC.
Collapse
Affiliation(s)
- Zequn Lu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Gaoyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jinyu Huang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Wenzhuo Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Hui Geng
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanting Li
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuhui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Heng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Wen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianrun Ye
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China.
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
107
|
Fernández-Aroca D, García-Flores N, Frost S, Jiménez-Suárez J, Rodríguez-González A, Fernández-Aroca P, Sabater S, Andrés I, Garnés-García C, Belandia B, Cimas F, Villar D, Ruiz-Hidalgo M, Sánchez-Prieto R. MAPK11 (p38β) is a major determinant of cellular radiosensitivity by controlling ionizing radiation-associated senescence: An in vitro study. Clin Transl Radiat Oncol 2023; 41:100649. [PMID: 37346275 PMCID: PMC10279794 DOI: 10.1016/j.ctro.2023.100649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Background and purpose MAPKs are among the most relevant signalling pathways involved in coordinating cell responses to different stimuli. This group includes p38MAPKs, constituted by 4 different proteins with a high sequence homology: MAPK14 (p38α), MAPK11 (p38β), MAPK12 (p38γ) and MAPK13 (p38δ). Despite their high similarity, each member shows unique expression patterns and even exclusive functions. Thus, analysing protein-specific functions of MAPK members is necessary to unequivocally uncover the roles of this signalling pathway. Here, we investigate the possible role of MAPK11 in the cell response to ionizing radiation (IR). Materials and methods We developed MAPK11/14 knockdown through shRNA and CRISPR interference gene perturbation approaches and analysed the downstream effects on cell responses to ionizing radiation in A549, HCT-116 and MCF-7 cancer cell lines. Specifically, we assessed IR toxicity by clonogenic assays; DNA damage response activity by immunocytochemistry; apoptosis and cell cycle by flow cytometry (Annexin V and propidium iodide, respectively); DNA repair by comet assay; and senescence induction by both X-Gal staining and gene expression of senescence-associated genes by RT-qPCR. Results Our findings demonstrate a critical role of MAPK11 in the cellular response to IR by controlling the associated senescent phenotype, and without observable effects on DNA damage response, apoptosis, cell cycle or DNA damage repair. Conclusion Our results highlight MAPK11 as a novel mediator of the cellular response to ionizing radiation through the control exerted onto IR-associated senescence.
Collapse
Affiliation(s)
- D.M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - N. García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - S. Frost
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - J. Jiménez-Suárez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - A. Rodríguez-González
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - P. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - S. Sabater
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, Albacete, España
| | - I. Andrés
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, Albacete, España
| | - C. Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - B. Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM). Madrid, España. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, España
| | - F.J. Cimas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
- Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, España
| | - D. Villar
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - M.J. Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
- Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, España
| | - R. Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM). Madrid, España. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, España
| |
Collapse
|
108
|
Rummel CK, Gagliardi M, Herholt A, Ahmad R, Murek V, Weigert L, Hausruckinger A, Maidl S, Jimenez-Barron L, Trastulla L, Eder M, Rossner M, Ziller MJ. Cell type and condition specific functional annotation of schizophrenia associated non-coding genetic variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.545266. [PMID: 37425902 PMCID: PMC10326990 DOI: 10.1101/2023.06.27.545266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Schizophrenia (SCZ) is a highly polygenic disease and genome wide association studies have identified thousands of genetic variants that are statistically associated with this psychiatric disorder. However, our ability to translate these associations into insights on the disease mechanisms has been challenging since the causal genetic variants, their molecular function and their target genes remain largely unknown. In order to address these questions, we established a functional genomics pipeline in combination with induced pluripotent stem cell technology to functionally characterize ~35,000 non-coding genetic variants associated with schizophrenia along with their target genes. This analysis identified a set of 620 (1.7%) single nucleotide polymorphisms as functional on a molecular level in a highly cell type and condition specific fashion. These results provide a high-resolution map of functional variant-gene combinations and offer comprehensive biological insights into the developmental context and stimulation dependent molecular processes modulated by SCZ associated genetic variation.
Collapse
Affiliation(s)
- Christine K. Rummel
- Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Alexander Herholt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ruhel Ahmad
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | - Laura Jimenez-Barron
- Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Lucia Trastulla
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Mathias Eder
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Moritz Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Michael J. Ziller
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| |
Collapse
|
109
|
Li M, Sun J, Shi G. Application of CRISPR screen in mechanistic studies of tumor development, tumor drug resistance, and tumor immunotherapy. Front Cell Dev Biol 2023; 11:1220376. [PMID: 37427373 PMCID: PMC10326906 DOI: 10.3389/fcell.2023.1220376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Tumor is one of the biggest threats to human health. Though tumor therapy has been dramatically advanced by the progress of technology and research in recent decades, it is still far from expectations. Thus, it is of great significance to explore the mechanisms of tumor growth, metastasis, and resistance. Screen based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) 9 gene editing technology are powerful tools for exploring the abovementioned facets. This review summarizes the recent screen performed in cancer cells and immune cells in the tumor microenvironment. The screens in cancer cells mainly focus on exploring the mechanisms underlying cancer cells' growth, metastasis, and how cancer cells escape from the FDA approved drugs or immunotherapy. And the studies in tumor-associated immune cells are primarily aimed at identifying signaling pathways that can enhance the anti-tumor function of cytotoxic T lymphocytes (CTLs), CAR-T cells, and macrophages. Moreover, we discuss the limitations, merits of the CRISPR screen, and further its future application in tumor studies. Importantly, recent advances in high throughput tumor related CRISPR screen have deeply contributed to new concepts and mechanisms underlying tumor development, tumor drug resistance, and tumor immune therapy, all of which will eventually potentiate the clinical therapy for tumor patients.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Jin Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| |
Collapse
|
110
|
Cooper S, Schwartzentruber J, Coomber EL, Wu Q, Bassett A. Screening for functional regulatory variants in open chromatin using GenIE-ATAC. Nucleic Acids Res 2023; 51:e64. [PMID: 37125635 PMCID: PMC10287956 DOI: 10.1093/nar/gkad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Understanding the effects of genetic variation in gene regulatory elements is crucial to interpreting genome function. This is particularly pertinent for the hundreds of thousands of disease-associated variants identified by GWAS, which frequently sit within gene regulatory elements but whose functional effects are often unknown. Current methods are limited in their scalability and ability to assay regulatory variants in their endogenous context, independently of other tightly linked variants. Here, we present a new medium-throughput screening system: genome engineering based interrogation of enhancers assay for transposase accessible chromatin (GenIE-ATAC), that measures the effect of individual variants on chromatin accessibility in their endogenous genomic and chromatin context. We employ this assay to screen for the effects of regulatory variants in human induced pluripotent stem cells, validating a subset of causal variants, and extend our software package (rgenie) to analyse these new data. We demonstrate that this methodology can be used to understand the impact of defined deletions and point mutations within transcription factor binding sites. We thus establish GenIE-ATAC as a method to screen for the effect of gene regulatory element variation, allowing identification and prioritisation of causal variants from GWAS for functional follow-up and understanding the mechanisms of regulatory element function.
Collapse
Affiliation(s)
- Sarah Cooper
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jeremy Schwartzentruber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Eve L Coomber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Qianxin Wu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Andrew Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
111
|
Chong-Morrison V, Mayes S, Simões FC, Senanayake U, Carroll DS, Riley PR, Wilson SW, Sauka-Spengler T. Ac/Ds transposition for CRISPR/dCas9-SID4x epigenome modulation in zebrafish. Biol Open 2023; 12:bio059995. [PMID: 37367831 PMCID: PMC10320716 DOI: 10.1242/bio.059995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Due to its genetic amenability coupled with advances in genome editing, zebrafish is an excellent model to examine the function of (epi)genomic elements. Here, we repurposed the Ac/Ds maize transposition system to efficiently characterise zebrafish cis-regulated elements, also known as enhancers, in F0-microinjected embryos. We further used the system to stably express guide RNAs enabling CRISPR/dCas9-interference (CRISPRi) perturbation of enhancers without disrupting the underlying genetic sequence. In addition, we probed the phenomenon of antisense transcription at two neural crest gene loci. Our study highlights the utility of Ac/Ds transposition as a new tool for transient epigenome modulation in zebrafish.
Collapse
Affiliation(s)
- Vanessa Chong-Morrison
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Sarah Mayes
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Filipa C. Simões
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Upeka Senanayake
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Dervla S. Carroll
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Paul R. Riley
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Stephen W. Wilson
- University College London, Department of Cell & Developmental Biology, London WC1E 6BT, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
112
|
Pulecio J, Tayyebi Z, Liu D, Wong W, Luo R, Damodaran JR, Kaplan S, Cho H, Yan J, Murphy D, Rickert RW, Shukla A, Zhong A, González F, Yang D, Li W, Zhou T, Apostolou E, Leslie CS, Huangfu D. Discovery of Competent Chromatin Regions in Human Embryonic Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544990. [PMID: 37398096 PMCID: PMC10312725 DOI: 10.1101/2023.06.14.544990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The mechanisms underlying the ability of embryonic stem cells (ESCs) to rapidly activate lineage-specific genes during differentiation remain largely unknown. Through multiple CRISPR-activation screens, we discovered human ESCs have pre-established transcriptionally competent chromatin regions (CCRs) that support lineage-specific gene expression at levels comparable to differentiated cells. CCRs reside in the same topological domains as their target genes. They lack typical enhancer-associated histone modifications but show enriched occupancy of pluripotent transcription factors, DNA demethylation factors, and histone deacetylases. TET1 and QSER1 protect CCRs from excessive DNA methylation, while HDAC1 family members prevent premature activation. This "push and pull" feature resembles bivalent domains at developmental gene promoters but involves distinct molecular mechanisms. Our study provides new insights into pluripotency regulation and cellular plasticity in development and disease. One sentence summary We report a class of distal regulatory regions distinct from enhancers that confer human embryonic stem cells with the competence to rapidly activate the expression of lineage-specific genes.
Collapse
|
113
|
Chen Z, Javed N, Moore M, Wu J, Sun G, Vinyard M, Collins A, Pinello L, Najm FJ, Bernstein BE. Integrative dissection of gene regulatory elements at base resolution. CELL GENOMICS 2023; 3:100318. [PMID: 37388913 PMCID: PMC10300548 DOI: 10.1016/j.xgen.2023.100318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/21/2023] [Accepted: 03/31/2023] [Indexed: 07/01/2023]
Abstract
Although vast numbers of putative gene regulatory elements have been cataloged, the sequence motifs and individual bases that underlie their functions remain largely unknown. Here, we combine epigenetic perturbations, base editing, and deep learning to dissect regulatory sequences within the exemplar immune locus encoding CD69. We converge on a ∼170 base interval within a differentially accessible and acetylated enhancer critical for CD69 induction in stimulated Jurkat T cells. Individual C-to-T base edits within the interval markedly reduce element accessibility and acetylation, with corresponding reduction of CD69 expression. The most potent base edits may be explained by their effect on regulatory interactions between the transcriptional activators GATA3 and TAL1 and the repressor BHLHE40. Systematic analysis suggests that the interplay between GATA3 and BHLHE40 plays a general role in rapid T cell transcriptional responses. Our study provides a framework for parsing regulatory elements in their endogenous chromatin contexts and identifying operative artificial variants.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Nauman Javed
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Molly Moore
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
| | - Jingyi Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Gary Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Michael Vinyard
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Luca Pinello
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fadi J. Najm
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
| | - Bradley E. Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
114
|
San Roman AK, Skaletsky H, Godfrey AK, Bokil NV, Teitz L, Singh I, Blanton LV, Bellott DW, Pyntikova T, Lange J, Koutseva N, Hughes JF, Brown L, Phou S, Buscetta A, Kruszka P, Banks N, Dutra A, Pak E, Lasutschinkow PC, Keen C, Davis SM, Lin AE, Tartaglia NR, Samango-Sprouse C, Muenke M, Page DC. The human Y and inactive X chromosomes similarly modulate autosomal gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543763. [PMID: 37333288 PMCID: PMC10274745 DOI: 10.1101/2023.06.05.543763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex-chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors - ZFX and ZFY - encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.
Collapse
Affiliation(s)
| | - Helen Skaletsky
- Whitehead Institute; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| | - Alexander K. Godfrey
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Neha V. Bokil
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Levi Teitz
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Isani Singh
- Whitehead Institute; Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Julian Lange
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | | | | | - Laura Brown
- Whitehead Institute; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| | - Sidaly Phou
- Whitehead Institute; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| | - Ashley Buscetta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
| | - Nicole Banks
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, MD 20892 USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD 20892 USA
| | - Evgenia Pak
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD 20892 USA
| | | | | | - Shanlee M. Davis
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela E. Lin
- Medical Genetics, Massachusetts General for Children, Boston, MA 02114, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole R. Tartaglia
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Developmental Pediatrics, eXtraOrdinarY Kids Program, Children’s Hospital Colorado, Aurora, CO 80011, USA
| | - Carole Samango-Sprouse
- Focus Foundation, Davidsonville, MD 21035, USA
- Department of Pediatrics, George Washington University, Washington, DC 20052, USA; Department of Human and Molecular Genetics, Florida International University, Miami, FL 33199, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
| | - David C. Page
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| |
Collapse
|
115
|
Woo BJ, Moussavi-Baygi R, Karner H, Karimzadeh M, Garcia K, Joshi T, Yin K, Navickas A, Gilbert LA, Wang B, Asgharian H, Feng FY, Goodarzi H. Integrative identification of non-coding regulatory regions driving metastatic prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.535921. [PMID: 37398273 PMCID: PMC10312451 DOI: 10.1101/2023.04.14.535921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Large-scale sequencing efforts of thousands of tumor samples have been undertaken to understand the mutational landscape of the coding genome. However, the vast majority of germline and somatic variants occur within non-coding portions of the genome. These genomic regions do not directly encode for specific proteins, but can play key roles in cancer progression, for example by driving aberrant gene expression control. Here, we designed an integrative computational and experimental framework to identify recurrently mutated non-coding regulatory regions that drive tumor progression. Application of this approach to whole-genome sequencing (WGS) data from a large cohort of metastatic castration-resistant prostate cancer (mCRPC) revealed a large set of recurrently mutated regions. We used (i) in silico prioritization of functional non-coding mutations, (ii) massively parallel reporter assays, and (iii) in vivo CRISPR-interference (CRISPRi) screens in xenografted mice to systematically identify and validate driver regulatory regions that drive mCRPC. We discovered that one of these enhancer regions, GH22I030351, acts on a bidirectional promoter to simultaneously modulate expression of U2-associated splicing factor SF3A1 and chromosomal protein CCDC157. We found that both SF3A1 and CCDC157 are promoters of tumor growth in xenograft models of prostate cancer. We nominated a number of transcription factors, including SOX6, to be responsible for higher expression of SF3A1 and CCDC157. Collectively, we have established and confirmed an integrative computational and experimental approach that enables the systematic detection of non-coding regulatory regions that drive the progression of human cancers.
Collapse
Affiliation(s)
- Brian J Woo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Ruhollah Moussavi-Baygi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Heather Karner
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Mehran Karimzadeh
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Arc Institute, Palo Alto 94305, USA
| | - Kristle Garcia
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Tanvi Joshi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Keyi Yin
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Albertas Navickas
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Luke A. Gilbert
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Arc Institute, Palo Alto 94305, USA
| | - Bo Wang
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Hosseinali Asgharian
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US
| | - Felix Y. Feng
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US
| |
Collapse
|
116
|
Smith GD, Ching WH, Cornejo-Páramo P, Wong ES. Decoding enhancer complexity with machine learning and high-throughput discovery. Genome Biol 2023; 24:116. [PMID: 37173718 PMCID: PMC10176946 DOI: 10.1186/s13059-023-02955-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Enhancers are genomic DNA elements controlling spatiotemporal gene expression. Their flexible organization and functional redundancies make deciphering their sequence-function relationships challenging. This article provides an overview of the current understanding of enhancer organization and evolution, with an emphasis on factors that influence these relationships. Technological advancements, particularly in machine learning and synthetic biology, are discussed in light of how they provide new ways to understand this complexity. Exciting opportunities lie ahead as we continue to unravel the intricacies of enhancer function.
Collapse
Affiliation(s)
- Gabrielle D Smith
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Wan Hern Ching
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
| | - Paola Cornejo-Páramo
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Emily S Wong
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
117
|
Kumar P, Courtes M, Lemmers C, Le Digarcher A, Coku I, Monteil A, Hong C, Varrault A, Liu R, Wang L, Bouschet T. Functional mapping of microRNA promoters with dCas9 fused to transcriptional regulators. Front Genet 2023; 14:1147222. [PMID: 37214422 PMCID: PMC10196145 DOI: 10.3389/fgene.2023.1147222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that control gene expression during development, physiology, and disease. Transcription is a key factor in microRNA abundance and tissue-specific expression. Many databases predict the location of microRNA transcription start sites and promoters. However, these candidate regions require functional validation. Here, dCas9 fused to transcriptional activators or repressors - CRISPR activation (CRISPRa) and inhibition (CRISPRi)- were targeted to the candidate promoters of two intronic microRNAs, mmu-miR-335 and hsa-miR-3662, including the promoters of their respective host genes Mest and HBS1L. We report that in mouse embryonic stem cells and brain organoids, miR-335 was downregulated upon CRISPRi of its host gene Mest. Reciprocally, CRISPRa of Mest promoter upregulated miR-335. By contrast, CRISPRa of the predicted miR-335-specific promoter (located in an intron of Mest) did not affect miR-335 levels. Thus, the expression of miR-335 only depends on the promoter activity of its host gene Mest. By contrast, miR-3662 was CRISPR activatable both by the promoter of its host gene HBS1L and an intronic sequence in HEK-293T cells. Thus, CRISPRa and CRISPRi are powerful tools to evaluate the relevance of endogenous regulatory sequences involved in microRNA transcription in defined cell types.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mathilde Courtes
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Céline Lemmers
- Plateforme de Vectorologie de Montpellier (PVM), BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Ilda Coku
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Arnaud Monteil
- Plateforme de Vectorologie de Montpellier (PVM), BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Charles Hong
- Vanderbilt University School of Medicine Nashville, Nashville, TN, United States
| | - Annie Varrault
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
118
|
Iyer AR, Gurumurthy A, Kodgule R, Aguilar AR, Saari T, Ramzan A, Rausch D, Gupta J, Hall CN, Runge JS, Weiss M, Rahmat M, Anyoha R, Fulco CP, Ghobrial IM, Engreitz J, Cieslik MP, Ryan RJH. Selective Enhancer Dependencies in MYC -Intact and MYC -Rearranged Germinal Center B-cell Diffuse Large B-cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.538892. [PMID: 37205448 PMCID: PMC10187217 DOI: 10.1101/2023.05.02.538892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High expression of MYC and its target genes define a subset of germinal center B-cell diffuse large B-cell lymphoma (GCB-DLBCL) associated with poor outcomes. Half of these high-grade cases show chromosomal rearrangements between the MYC locus and heterologous enhancer-bearing loci, while focal deletions of the adjacent non-coding gene PVT1 are enriched in MYC -intact cases. To identify genomic drivers of MYC activation, we used high-throughput CRISPR-interference (CRISPRi) profiling of candidate enhancers in the MYC locus and rearrangement partner loci in GCB-DLBCL cell lines and mantle cell lymphoma (MCL) comparators that lacked common rearrangements between MYC and immunoglobulin (Ig) loci. Rearrangements between MYC and non-Ig loci were associated with unique dependencies on specific enhancer subunits within those partner loci. Notably, fitness dependency on enhancer modules within the BCL6 super-enhancer ( BCL6 -SE) cluster regulated by a transcription factor complex of MEF2B, POU2F2, and POU2AF1 was higher in cell lines bearing a recurrent MYC::BCL6 -SE rearrangement. In contrast, GCB-DLBCL cell lines without MYC rearrangement were highly dependent on a previously uncharacterized 3' enhancer within the MYC locus itself (GCBME-1), that is regulated in part by the same triad of factors. GCBME-1 is evolutionarily conserved and active in normal germinal center B cells in humans and mice, suggesting a key role in normal germinal center B cell biology. Finally, we show that the PVT1 promoter limits MYC activation by either native or heterologous enhancers and demonstrate that this limitation is bypassed by 3' rearrangements that remove PVT1 from its position in cis with the rearranged MYC gene. Key points CRISPR-interference screens identify a conserved germinal center B cell MYC enhancer that is essential for GCB-DLBCL lacking MYC rearrangements. Functional profiling of MYC partner loci reveals principles of MYC enhancer-hijacking activation by non-immunoglobulin rearrangements.
Collapse
|
119
|
Glover RC, Schwardt NH, Leano SKE, Sanchez ME, Thomason MK, Olive AJ, Reniere ML. A genome-wide screen in macrophages identifies PTEN as required for myeloid restriction of Listeria monocytogenes infection. PLoS Pathog 2023; 19:e1011058. [PMID: 37216395 PMCID: PMC10237667 DOI: 10.1371/journal.ppat.1011058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/02/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Listeria monocytogenes (Lm) is an intracellular foodborne pathogen which causes the severe disease listeriosis in immunocompromised individuals. Macrophages play a dual role during Lm infection by both promoting dissemination of Lm from the gastrointestinal tract and limiting bacterial growth upon immune activation. Despite the relevance of macrophages to Lm infection, the mechanisms underlying phagocytosis of Lm by macrophages are not well understood. To identify host factors important for Lm infection of macrophages, we performed an unbiased CRISPR/Cas9 screen which revealed pathways that are specific to phagocytosis of Lm and those that are required for internalization of bacteria generally. Specifically, we discovered the tumor suppressor PTEN promotes macrophage phagocytosis of Lm and L. ivanovii, but not other Gram-positive bacteria. Additionally, we found that PTEN enhances phagocytosis of Lm via its lipid phosphatase activity by promoting adherence to macrophages. Using conditional knockout mice lacking Pten in myeloid cells, we show that PTEN-dependent phagocytosis is important for host protection during oral Lm infection. Overall, this study provides a comprehensive identification of macrophage factors involved in regulating Lm uptake and characterizes the function of one factor, PTEN, during Lm infection in vitro and in vivo. Importantly, these results demonstrate a role for opsonin-independent phagocytosis in Lm pathogenesis and suggest that macrophages play a primarily protective role during foodborne listeriosis.
Collapse
Affiliation(s)
- Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nicole H. Schwardt
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Shania-Kate E. Leano
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Madison E. Sanchez
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Andrew J. Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
120
|
Armendariz DA, Goetsch SC, Sundarrajan A, Sivakumar S, Wang Y, Xie S, Munshi NV, Hon GC. CHD-associated enhancers shape human cardiomyocyte lineage commitment. eLife 2023; 12:e86206. [PMID: 37096669 PMCID: PMC10156167 DOI: 10.7554/elife.86206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
Enhancers orchestrate gene expression programs that drive multicellular development and lineage commitment. Thus, genetic variants at enhancers are thought to contribute to developmental diseases by altering cell fate commitment. However, while many variant-containing enhancers have been identified, studies to endogenously test the impact of these enhancers on lineage commitment have been lacking. We perform a single-cell CRISPRi screen to assess the endogenous roles of 25 enhancers and putative cardiac target genes implicated in genetic studies of congenital heart defects (CHDs). We identify 16 enhancers whose repression leads to deficient differentiation of human cardiomyocytes (CMs). A focused CRISPRi validation screen shows that repression of TBX5 enhancers delays the transcriptional switch from mid- to late-stage CM states. Endogenous genetic deletions of two TBX5 enhancers phenocopy epigenetic perturbations. Together, these results identify critical enhancers of cardiac development and suggest that misregulation of these enhancers could contribute to cardiac defects in human patients.
Collapse
Affiliation(s)
- Daniel A Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
| | - Sean C Goetsch
- Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Anjana Sundarrajan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
| | - Sushama Sivakumar
- Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nikhil V Munshi
- Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Cardiology, Department of Molecular Biology, McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
121
|
Mills C, Marconett CN, Lewinger JP, Mi H. PEACOCK: a machine learning approach to assess the validity of cell type-specific enhancer-gene regulatory relationships. NPJ Syst Biol Appl 2023; 9:9. [PMID: 37012250 PMCID: PMC10070356 DOI: 10.1038/s41540-023-00270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/20/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of disease-associated variants identified in genome-wide association studies map to enhancers, powerful regulatory elements which orchestrate the recruitment of transcriptional complexes to their target genes' promoters to upregulate transcription in a cell type- and timing-dependent manner. These variants have implicated thousands of enhancers in many common genetic diseases, including nearly all cancers. However, the etiology of most of these diseases remains unknown because the regulatory target genes of the vast majority of enhancers are unknown. Thus, identifying the target genes of as many enhancers as possible is crucial for learning how enhancer regulatory activities function and contribute to disease. Based on experimental results curated from scientific publications coupled with machine learning methods, we developed a cell type-specific score predictive of an enhancer targeting a gene. We computed the score genome-wide for every possible cis enhancer-gene pair and validated its predictive ability in four widely used cell lines. Using a pooled final model trained across multiple cell types, all possible gene-enhancer regulatory links in cis (~17 M) were scored and added to the publicly available PEREGRINE database ( www.peregrineproj.org ). These scores provide a quantitative framework for the enhancer-gene regulatory prediction that can be incorporated into downstream statistical analyses.
Collapse
Affiliation(s)
- Caitlin Mills
- Division of Bioinformatics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Crystal N Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine USC, Los Angeles, CA, USA
- Norris Cancer Center, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Huaiyu Mi
- Division of Bioinformatics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
122
|
Chan WF, Coughlan HD, Ruhle M, Iannarella N, Alvarado C, Groom JR, Keenan CR, Kueh AJ, Wheatley AK, Smyth GK, Allan RS, Johanson TM. Survey of activation-induced genome architecture reveals a novel enhancer of Myc. Immunol Cell Biol 2023; 101:345-357. [PMID: 36710659 PMCID: PMC10952581 DOI: 10.1111/imcb.12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The transcription factor Myc is critically important in driving cell proliferation, a function that is frequently dysregulated in cancer. To avoid this dysregulation Myc is tightly controlled by numerous layers of regulation. One such layer is the use of distal regulatory enhancers to drive Myc expression. Here, using chromosome conformation capture to examine B cells of the immune system in the first hours after their activation, we reveal a previously unidentified enhancer of Myc. The interactivity of this enhancer coincides with a dramatic, but discrete, spike in Myc expression 3 h post-activation. However, genetic deletion of this region, has little impact on Myc expression, Myc protein level or in vitro and in vivo cell proliferation. Examination of the enhancer deleted regulatory landscape suggests that enhancer redundancy likely sustains Myc expression. This work highlights not only the importance of temporally examining enhancers, but also the complexity and dynamics of the regulation of critical genes such as Myc.
Collapse
Affiliation(s)
- Wing Fuk Chan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Michelle Ruhle
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Nadia Iannarella
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Carolina Alvarado
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Joanna R Groom
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Christine R Keenan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyUniversity of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- School of Mathematics and StatisticsThe University of MelbourneParkvilleVICAustralia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
123
|
Tuano NK, Beesley J, Manning M, Shi W, Perlaza-Jimenez L, Malaver-Ortega LF, Paynter JM, Black D, Civitarese A, McCue K, Hatzipantelis A, Hillman K, Kaufmann S, Sivakumaran H, Polo JM, Reddel RR, Band V, French JD, Edwards SL, Powell DR, Chenevix-Trench G, Rosenbluh J. CRISPR screens identify gene targets at breast cancer risk loci. Genome Biol 2023; 24:59. [PMID: 36991492 PMCID: PMC10053147 DOI: 10.1186/s13059-023-02898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified > 200 loci associated with breast cancer risk. The majority of candidate causal variants are in non-coding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association, and identifying the phenotype it mediates, is a major challenge in the interpretation and translation of GWAS. RESULTS Here, we show that pooled CRISPR screens are highly effective at identifying GWAS target genes and defining the cancer phenotypes they mediate. Following CRISPR mediated gene activation or suppression, we measure proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We perform 60 CRISPR screens and identify 20 genes predicted with high confidence to be GWAS targets that promote cancer by driving proliferation or modulating the DNA damage response in breast cells. We validate the regulation of a subset of these genes by breast cancer risk variants. CONCLUSIONS We demonstrate that phenotypic CRISPR screens can accurately pinpoint the gene target of a risk locus. In addition to defining gene targets of risk loci associated with increased breast cancer risk, we provide a platform for identifying gene targets and phenotypes mediated by risk variants.
Collapse
Affiliation(s)
- Natasha K Tuano
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jonathan Beesley
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Murray Manning
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, Australia
| | - Wei Shi
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Laura Perlaza-Jimenez
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | | | - Jacob M Paynter
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Debra Black
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew Civitarese
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karen McCue
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Aaron Hatzipantelis
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kristine Hillman
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanne Kaufmann
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Haran Sivakumaran
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juliet D French
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stacey L Edwards
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | | | - Joseph Rosenbluh
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Functional Genomics Platform, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
124
|
Rosspopoff O, Cazottes E, Huret C, Loda A, Collier A, Casanova M, Rugg-Gunn P, Heard E, Ouimette JF, Rougeulle C. Species-specific regulation of XIST by the JPX/FTX orthologs. Nucleic Acids Res 2023; 51:2177-2194. [PMID: 36727460 PMCID: PMC10018341 DOI: 10.1093/nar/gkad029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/08/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
X chromosome inactivation (XCI) is an essential process, yet it initiates with remarkable diversity in various mammalian species. XIST, the main trigger of XCI, is controlled in the mouse by an interplay of lncRNA genes (LRGs), some of which evolved concomitantly to XIST and have orthologues across all placental mammals. Here, we addressed the functional conservation of human orthologues of two such LRGs, FTX and JPX. By combining analysis of single-cell RNA-seq data from early human embryogenesis with various functional assays in matched human and mouse pluripotent stem- or differentiated post-XCI cells, we demonstrate major functional differences for these orthologues between species, independently of primary sequence conservation. While the function of FTX is not conserved in humans, JPX stands as a major regulator of XIST expression in both species. However, we show that different entities of JPX control the production of XIST at various steps depending on the species. Altogether, our study highlights the functional versatility of LRGs across evolution, and reveals that functional conservation of orthologous LRGs may involve diversified mechanisms of action. These findings represent a striking example of how the evolvability of LRGs can provide adaptative flexibility to constrained gene regulatory networks.
Collapse
Affiliation(s)
- Olga Rosspopoff
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Emmanuel Cazottes
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Christophe Huret
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Agnese Loda
- Directors' research, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Amanda J Collier
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Miguel Casanova
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Edith Heard
- Directors' research, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collège de France, Paris, France
| | | | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| |
Collapse
|
125
|
Luo R, Yan J, Oh JW, Xi W, Shigaki D, Wong W, Cho H, Murphy D, Cutler R, Rosen BP, Pulecio J, Yang D, Glenn R, Chen T, Li QV, Vierbuchen T, Sidoli S, Apostolou E, Huangfu D, Beer MA. Dynamic network-guided CRISPRi screen reveals CTCF loop-constrained nonlinear enhancer-gene regulatory activity in cell state transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531569. [PMID: 36945628 PMCID: PMC10028945 DOI: 10.1101/2023.03.07.531569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Comprehensive enhancer discovery is challenging because most enhancers, especially those affected in complex diseases, have weak effects on gene expression. Our network modeling revealed that nonlinear enhancer-gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Utilizing hESC definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. The screen discovered a comprehensive set of enhancers (4 to 9 per locus) for each of the core endoderm lineage-specifying transcription factors, and many enhancers had strong effects mid-transition but weak effects post-transition. Through integrating enhancer activity measurements and three-dimensional enhancer-promoter interaction information, we were able to develop a CTCF loop-constrained Interaction Activity (CIA) model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and more comprehensive enhancer discovery in both normal and pathological cell state transitions.
Collapse
|
126
|
Agarwal V, Inoue F, Schubach M, Martin BK, Dash PM, Zhang Z, Sohota A, Noble WS, Yardimci GG, Kircher M, Shendure J, Ahituv N. Massively parallel characterization of transcriptional regulatory elements in three diverse human cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531189. [PMID: 36945371 PMCID: PMC10028905 DOI: 10.1101/2023.03.05.531189] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The human genome contains millions of candidate cis-regulatory elements (CREs) with cell-type-specific activities that shape both health and myriad disease states. However, we lack a functional understanding of the sequence features that control the activity and cell-type-specific features of these CREs. Here, we used lentivirus-based massively parallel reporter assays (lentiMPRAs) to test the regulatory activity of over 680,000 sequences, representing a nearly comprehensive set of all annotated CREs among three cell types (HepG2, K562, and WTC11), finding 41.7% to be functional. By testing sequences in both orientations, we find promoters to have significant strand orientation effects. We also observe that their 200 nucleotide cores function as non-cell-type-specific 'on switches' providing similar expression levels to their associated gene. In contrast, enhancers have weaker orientation effects, but increased tissue-specific characteristics. Utilizing our lentiMPRA data, we develop sequence-based models to predict CRE function with high accuracy and delineate regulatory motifs. Testing an additional lentiMPRA library encompassing 60,000 CREs in all three cell types, we further identified factors that determine cell-type specificity. Collectively, our work provides an exhaustive catalog of functional CREs in three widely used cell lines, and showcases how large-scale functional measurements can be used to dissect regulatory grammar.
Collapse
Affiliation(s)
- Vikram Agarwal
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- mRNA Center of Excellence, Sanofi Pasteur Inc., Waltham, MA 02451, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Max Schubach
- Berlin Institute of Health of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Pyaree Mohan Dash
- Berlin Institute of Health of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Zicong Zhang
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Ajuni Sohota
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Galip Gürkan Yardimci
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Martin Kircher
- Berlin Institute of Health of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
127
|
Wünnemann F, Fotsing Tadjo T, Beaudoin M, Lalonde S, Lo KS, Kleinstiver BP, Lettre G. Multimodal CRISPR perturbations of GWAS loci associated with coronary artery disease in vascular endothelial cells. PLoS Genet 2023; 19:e1010680. [PMID: 36928188 PMCID: PMC10047545 DOI: 10.1371/journal.pgen.1010680] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/28/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Genome-wide association studies have identified >250 genetic variants associated with coronary artery disease (CAD), but the causal variants, genes and molecular mechanisms remain unknown at most loci. We performed pooled CRISPR screens to test the impact of sequences at or near CAD-associated genetic variants on vascular endothelial cell functions. Using CRISPR knockout, inhibition and activation, we targeted 1998 variants at 83 CAD loci to assess their effect on three adhesion proteins (E-selectin, ICAM1, VCAM1) and three key endothelial functions (nitric oxide and reactive oxygen species production, calcium signalling). At a false discovery rate ≤10%, we identified significant CRISPR perturbations near 42 variants located within 26 CAD loci. We used base editing to validate a putative causal variant in the promoter of the FES gene. Although a few of the loci include genes previously characterized in endothelial cells (e.g. AIDA, ARHGEF26, ADAMTS7), most are implicated in endothelial dysfunction for the first time. Detailed characterization of one of these new loci implicated the RNA helicase DHX38 in vascular endothelial cell senescence. While promising, our results also highlighted several limitations in using CRISPR perturbations to functionally dissect GWAS loci, including an unknown false negative rate and potential off-target effects.
Collapse
Affiliation(s)
| | | | | | | | - Ken Sin Lo
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
128
|
Hansen GT, Sobreira DR, Weber ZT, Thornburg AG, Aneas I, Zhang L, Sakabe NJ, Joslin AC, Haddad GA, Strobel SM, Laber S, Sultana F, Sahebdel F, Khan K, Li YI, Claussnitzer M, Ye L, Battaglino RA, Nóbrega MA. Genetics of sexually dimorphic adipose distribution in humans. Nat Genet 2023; 55:461-470. [PMID: 36797366 PMCID: PMC10375400 DOI: 10.1038/s41588-023-01306-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Obesity-associated morbidity is exacerbated by abdominal obesity, which can be measured as the waist-to-hip ratio adjusted for the body mass index (WHRadjBMI). Here we identify genes associated with obesity and WHRadjBMI and characterize allele-sensitive enhancers that are predicted to regulate WHRadjBMI genes in women. We found that several waist-to-hip ratio-associated variants map within primate-specific Alu retrotransposons harboring a DNA motif associated with adipocyte differentiation. This suggests that a genetic component of adipose distribution in humans may involve co-option of retrotransposons as adipose enhancers. We evaluated the role of the strongest female WHRadjBMI-associated gene, SNX10, in adipose biology. We determined that it is required for human adipocyte differentiation and function and participates in diet-induced adipose expansion in female mice, but not males. Our data identify genes and regulatory mechanisms that underlie female-specific adipose distribution and mediate metabolic dysfunction in women.
Collapse
Affiliation(s)
- Grace T Hansen
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA.
| | - Débora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Zachary T Weber
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Li Zhang
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Amelia C Joslin
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Gabriela A Haddad
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Sophie M Strobel
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Samantha Laber
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Farhath Sultana
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kohinoor Khan
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Yang I Li
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
- Massachussetts General Hospital, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease at the Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Liang Ye
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA.
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA.
| | - Marcelo A Nóbrega
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
129
|
Stankey CT, Lee JC. Translating non-coding genetic associations into a better understanding of immune-mediated disease. Dis Model Mech 2023; 16:dmm049790. [PMID: 36897113 PMCID: PMC10040244 DOI: 10.1242/dmm.049790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Genome-wide association studies have identified hundreds of genetic loci that are associated with immune-mediated diseases. Most disease-associated variants are non-coding, and a large proportion of these variants lie within enhancers. As a result, there is a pressing need to understand how common genetic variation might affect enhancer function and thereby contribute to immune-mediated (and other) diseases. In this Review, we first describe statistical and experimental methods to identify causal genetic variants that modulate gene expression, including statistical fine-mapping and massively parallel reporter assays. We then discuss approaches to characterise the mechanisms by which these variants modulate immune function, such as clustered regularly interspaced short palindromic repeats (CRISPR)-based screens. We highlight examples of studies that, by elucidating the effects of disease variants within enhancers, have provided important insights into immune function and uncovered key pathways of disease.
Collapse
Affiliation(s)
- Christina T. Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| |
Collapse
|
130
|
Fan C, Kim D, An H, Park Y. Identifying an oligodendrocyte enhancer that regulates Olig2 expression. Hum Mol Genet 2023; 32:835-846. [PMID: 36193754 PMCID: PMC9941837 DOI: 10.1093/hmg/ddac249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
Olig2 is a basic helix-loop-helix transcription factor that plays a critical role in the central nervous system. It directs the specification of motor neurons and oligodendrocyte precursor cells (OPCs) from neural progenitors and the subsequent maturation of OPCs into myelin-forming oligodendrocytes (OLs). It is also required for the development of astrocytes. Despite a decade-long search, enhancers that regulate the expression of Olig2 remain elusive. We have recently developed an innovative method that maps promoter-distal enhancers to genes in a principled manner. Here, we applied it to Olig2 in the context of OL lineage cells, uncovering an OL enhancer for it (termed Olig2-E1). Silencing Olig2-E1 by CRISPRi epigenome editing significantly downregulated Olig2 expression. Luciferase assay and ATAC-seq and ChIP-seq data show that Olig2-E1 is an OL-specific enhancer that is conserved across human, mouse and rat. Hi-C data reveal that Olig2-E1 physically interacts with OLIG2 and suggest that this interaction is specific to OL lineage cells. In sum, Olig2-E1 is an evolutionarily conserved OL-specific enhancer that drives the expression of Olig2.
Collapse
Affiliation(s)
- Chuandong Fan
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Dongkyeong Kim
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Yungki Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
131
|
Gentili M, Liu B, Papanastasiou M, Dele-Oni D, Schwartz MA, Carlson RJ, Al'Khafaji AM, Krug K, Brown A, Doench JG, Carr SA, Hacohen N. ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nat Commun 2023; 14:611. [PMID: 36739287 PMCID: PMC9899276 DOI: 10.1038/s41467-023-36132-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/06/2023] Open
Abstract
Stimulator of interferon genes (STING) is an intracellular sensor of cyclic di-nucleotides involved in the innate immune response against pathogen- or self-derived DNA. STING trafficking is tightly linked to its function, and its dysregulation can lead to disease. Here, we systematically characterize genes regulating STING trafficking and examine their impact on STING-mediated responses. Using proximity-ligation proteomics and genetic screens, we demonstrate that an endosomal sorting complex required for transport (ESCRT) complex containing HGS, VPS37A and UBAP1 promotes STING degradation, thereby terminating STING-mediated signaling. Mechanistically, STING oligomerization increases its ubiquitination by UBE2N, forming a platform for ESCRT recruitment at the endosome that terminates STING signaling via sorting in the lysosome. Finally, we show that expression of a UBAP1 mutant identified in patients with hereditary spastic paraplegia and associated with disrupted ESCRT function, increases steady-state STING-dependent type I IFN responses in healthy primary monocyte-derived dendritic cells and fibroblasts. Based on these findings, we propose that STING is subject to a tonic degradative flux and that the ESCRT complex acts as a homeostatic regulator of STING signaling.
Collapse
Affiliation(s)
| | - Bingxu Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | | | | | - Marc A Schwartz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | | | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
132
|
Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell 2023; 83:373-392. [PMID: 36693380 PMCID: PMC9898153 DOI: 10.1016/j.molcel.2022.12.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.
Collapse
Affiliation(s)
- Seungsoo Kim
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
133
|
Najnin RA, Al Mahmud MR, Rahman MM, Takeda S, Sasanuma H, Tanaka H, Murakawa Y, Shimizu N, Akter S, Takagi M, Sunada T, Akamatsu S, He G, Itou J, Toi M, Miyaji M, Tsutsui KM, Keeney S, Yamada S. ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen. Cell Rep 2023; 42:111909. [PMID: 36640339 PMCID: PMC10023214 DOI: 10.1016/j.celrep.2022.111909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
ATM gene mutation carriers are predisposed to estrogen-receptor-positive breast cancer (BC). ATM prevents BC oncogenesis by activating p53 in every cell; however, much remains unknown about tissue-specific oncogenesis after ATM loss. Here, we report that ATM controls the early transcriptional response to estrogens. This response depends on topoisomerase II (TOP2), which generates TOP2-DNA double-strand break (DSB) complexes and rejoins the breaks. When TOP2-mediated ligation fails, ATM facilitates DSB repair. After estrogen exposure, TOP2-dependent DSBs arise at the c-MYC enhancer in human BC cells, and their defective repair changes the activation profile of enhancers and induces the overexpression of many genes, including the c-MYC oncogene. CRISPR/Cas9 cleavage at the enhancer also causes c-MYC overexpression, indicating that this DSB causes c-MYC overexpression. Estrogen treatment induced c-Myc protein overexpression in mammary epithelial cells of ATM-deficient mice. In conclusion, ATM suppresses the c-Myc-driven proliferative effects of estrogens, possibly explaining such tissue-specific oncogenesis.
Collapse
Affiliation(s)
- Rifat Ara Najnin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy; Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Salma Akter
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuro Sunada
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Gang He
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Junji Itou
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimiko M Tsutsui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
134
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
135
|
Hong D, Lin H, Liu L, Shu M, Dai J, Lu F, Tong M, Huang J. Complexity of enhancer networks predicts cell identity and disease genes revealed by single-cell multi-omics analysis. Brief Bioinform 2023; 24:6868525. [PMID: 36464486 DOI: 10.1093/bib/bbac508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/09/2022] Open
Abstract
Many enhancers exist as clusters in the genome and control cell identity and disease genes; however, the underlying mechanism remains largely unknown. Here, we introduce an algorithm, eNet, to build enhancer networks by integrating single-cell chromatin accessibility and gene expression profiles. The complexity of enhancer networks is assessed by two metrics: the number of enhancers and the frequency of predicted enhancer interactions (PEIs) based on chromatin co-accessibility. We apply eNet algorithm to a human blood dataset and find cell identity and disease genes tend to be regulated by complex enhancer networks. The network hub enhancers (enhancers with frequent PEIs) are the most functionally important. Compared with super-enhancers, enhancer networks show better performance in predicting cell identity and disease genes. eNet is robust and widely applicable in various human or mouse tissues datasets. Thus, we propose a model of enhancer networks containing three modes: Simple, Multiple and Complex, which are distinguished by their complexity in regulating gene expression. Taken together, our work provides an unsupervised approach to simultaneously identify key cell identity and disease genes and explore the underlying regulatory relationships among enhancers in single cells.
Collapse
Affiliation(s)
- Danni Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongli Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lifang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Muya Shu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
136
|
Koh KD, Bonser LR, Eckalbar WL, Yizhar-Barnea O, Shen J, Zeng X, Hargett KL, Sun DI, Zlock LT, Finkbeiner WE, Ahituv N, Erle DJ. Genomic characterization and therapeutic utilization of IL-13-responsive sequences in asthma. CELL GENOMICS 2023; 3:100229. [PMID: 36777184 PMCID: PMC9903679 DOI: 10.1016/j.xgen.2022.100229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.
Collapse
Affiliation(s)
- Kyung Duk Koh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Luke R. Bonser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter L. Eckalbar
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ofer Yizhar-Barnea
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiangshan Shen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kirsten L. Hargett
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dingyuan I. Sun
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorna T. Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter E. Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David J. Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
137
|
Hooked Up from a Distance: Charting Genome-Wide Long-Range Interaction Maps in Neural Cells Chromatin to Identify Novel Candidate Genes for Neurodevelopmental Disorders. Int J Mol Sci 2023; 24:ijms24021164. [PMID: 36674677 PMCID: PMC9863356 DOI: 10.3390/ijms24021164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023] Open
Abstract
DNA sequence variants (single nucleotide polymorphisms or variants, SNPs/SNVs; copy number variants, CNVs) associated to neurodevelopmental disorders (NDD) and traits often map on putative transcriptional regulatory elements, including, in particular, enhancers. However, the genes controlled by these enhancers remain poorly defined. Traditionally, the activity of a given enhancer, and the effect of its possible alteration associated to the sequence variants, has been thought to influence the nearest gene promoter. However, the obtainment of genome-wide long-range interaction maps in neural cells chromatin challenged this view, showing that a given enhancer is very frequently not connected to the nearest promoter, but to a more distant one, skipping genes in between. In this Perspective, we review some recent papers, who generated long-range interaction maps (by HiC, RNApolII ChIA-PET, Capture-HiC, or PLACseq), and overlapped the identified long-range interacting DNA segments with DNA sequence variants associated to NDD (such as schizophrenia, bipolar disorder and autism) and traits (intelligence). This strategy allowed to attribute the function of enhancers, hosting the NDD-related sequence variants, to a connected gene promoter lying far away on the linear chromosome map. Some of these enhancer-connected genes had indeed been already identified as contributive to the diseases, by the identification of mutations within the gene's protein-coding regions (exons), validating the approach. Significantly, however, the connected genes also include many genes that were not previously found mutated in their exons, pointing to novel candidate contributors to NDD and traits. Thus, long-range interaction maps, in combination with DNA variants detected in association with NDD, can be used as "pointers" to identify novel candidate disease-relevant genes. Functional manipulation of the long-range interaction network involving enhancers and promoters by CRISPR-Cas9-based approaches is beginning to probe for the functional significance of the identified interactions, and the enhancers and the genes involved, improving our understanding of neural development and its pathology.
Collapse
|
138
|
Xu L, Sun B, Liu S, Gao X, Zhou H, Li F, Li Y. The evaluation of active transcriptional repressor domain for CRISPRi in plants. Gene 2023; 851:146967. [DOI: 10.1016/j.gene.2022.146967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
139
|
Replogle JM, Bonnar JL, Pogson AN, Liem CR, Maier NK, Ding Y, Russell BJ, Wang X, Leng K, Guna A, Norman TM, Pak RA, Ramos DM, Ward ME, Gilbert LA, Kampmann M, Weissman JS, Jost M. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. eLife 2022; 11:e81856. [PMID: 36576240 PMCID: PMC9829409 DOI: 10.7554/elife.81856] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
CRISPR interference (CRISPRi) enables programmable, reversible, and titratable repression of gene expression (knockdown) in mammalian cells. Initial CRISPRi-mediated genetic screens have showcased the potential to address basic questions in cell biology, genetics, and biotechnology, but wider deployment of CRISPRi screening has been constrained by the large size of single guide RNA (sgRNA) libraries and challenges in generating cell models with consistent CRISPRi-mediated knockdown. Here, we present next-generation CRISPRi sgRNA libraries and effector expression constructs that enable strong and consistent knockdown across mammalian cell models. First, we combine empirical sgRNA selection with a dual-sgRNA library design to generate an ultra-compact (1-3 elements per gene), highly active CRISPRi sgRNA library. Next, we compare CRISPRi effectors to show that the recently published Zim3-dCas9 provides an excellent balance between strong on-target knockdown and minimal non-specific effects on cell growth or the transcriptome. Finally, we engineer a suite of cell lines with stable expression of Zim3-dCas9 and robust on-target knockdown. Our results and publicly available reagents establish best practices for CRISPRi genetic screening.
Collapse
Affiliation(s)
- Joseph M Replogle
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Jessica L Bonnar
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Angela N Pogson
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Christina R Liem
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Nolan K Maier
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Yufang Ding
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Baylee J Russell
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Xingren Wang
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Kun Leng
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
- Institute for Neurodegenerative Disease, University of California, San FranciscoSan FranciscoUnited States
| | - Alina Guna
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Thomas M Norman
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Ryan A Pak
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Daniel M Ramos
- Center for Alzheimer's Disease and Related Dementias, National Institutes of HealthBethesdaUnited States
- National Institute on Aging, National Institutes of HealthBethesdaUnited States
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Arc InstitutePalo AltoUnited States
| | - Martin Kampmann
- Institute for Neurodegenerative Disease, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
140
|
Xu Z, Lee DS, Chandran S, Le VT, Bump R, Yasis J, Dallarda S, Marcotte S, Clock B, Haghani N, Cho CY, Akdemir KC, Tyndale S, Futreal PA, McVicker G, Wahl GM, Dixon JR. Structural variants drive context-dependent oncogene activation in cancer. Nature 2022; 612:564-572. [PMID: 36477537 PMCID: PMC9810360 DOI: 10.1038/s41586-022-05504-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Higher-order chromatin structure is important for the regulation of genes by distal regulatory sequences1,2. Structural variants (SVs) that alter three-dimensional (3D) genome organization can lead to enhancer-promoter rewiring and human disease, particularly in the context of cancer3. However, only a small minority of SVs are associated with altered gene expression4,5, and it remains unclear why certain SVs lead to changes in distal gene expression and others do not. To address these questions, we used a combination of genomic profiling and genome engineering to identify sites of recurrent changes in 3D genome structure in cancer and determine the effects of specific rearrangements on oncogene activation. By analysing Hi-C data from 92 cancer cell lines and patient samples, we identified loci affected by recurrent alterations to 3D genome structure, including oncogenes such as MYC, TERT and CCND1. By using CRISPR-Cas9 genome engineering to generate de novo SVs, we show that oncogene activity can be predicted by using 'activity-by-contact' models that consider partner region chromatin contacts and enhancer activity. However, activity-by-contact models are only predictive of specific subsets of genes in the genome, suggesting that different classes of genes engage in distinct modes of regulation by distal regulatory elements. These results indicate that SVs that alter 3D genome organization are widespread in cancer genomes and begin to illustrate predictive rules for the consequences of SVs on oncogene activation.
Collapse
Affiliation(s)
- Zhichao Xu
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dong-Sung Lee
- Department of Life Sciences, University of Seoul, Seoul, South Korea
| | - Sahaana Chandran
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victoria T Le
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosalind Bump
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jean Yasis
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sofia Dallarda
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samantha Marcotte
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Clock
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicholas Haghani
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Chae Yun Cho
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kadir C Akdemir
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, UT MD Anderson Cancer Center, TX, Houston, USA
| | - Selene Tyndale
- Integrative Biology Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Graham McVicker
- Integrative Biology Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jesse R Dixon
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
141
|
Tabet D, Parikh V, Mali P, Roth FP, Claussnitzer M. Scalable Functional Assays for the Interpretation of Human Genetic Variation. Annu Rev Genet 2022; 56:441-465. [PMID: 36055970 DOI: 10.1146/annurev-genet-072920-032107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Scalable sequence-function studies have enabled the systematic analysis and cataloging of hundreds of thousands of coding and noncoding genetic variants in the human genome. This has improved clinical variant interpretation and provided insights into the molecular, biophysical, and cellular effects of genetic variants at an astonishing scale and resolution across the spectrum of allele frequencies. In this review, we explore current applications and prospects for the field and outline the principles underlying scalable functional assay design, with a focus on the study of single-nucleotide coding and noncoding variants.
Collapse
Affiliation(s)
- Daniel Tabet
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto, Ontario, Canada;
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Victoria Parikh
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Frederick P Roth
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto, Ontario, Canada;
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine and Endocrine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA;
| |
Collapse
|
142
|
Winchester EW, Hardy A, Cotney J. Integration of multimodal data in the developing tooth reveals candidate regulatory loci driving human odontogenic phenotypes. FRONTIERS IN DENTAL MEDICINE 2022; 3:1009264. [PMID: 37034481 PMCID: PMC10078798 DOI: 10.3389/fdmed.2022.1009264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Human odontogenic aberrations such as abnormal tooth number and delayed tooth eruption can occur as a symptom of rare syndromes or, more commonly, as nonsyndromic phenotypes. These phenotypes can require extensive and expensive dental treatment, posing a significant burden. While many dental phenotypes are heritable, most nonsyndromic cases have not been linked to causal genes. We demonstrate the novel finding that common sequence variants associated with human odontogenic phenotypes are enriched in developmental craniofacial enhancers conserved between human and mouse. However, the bulk nature of these samples obscures if this finding is due to the tooth itself or the surrounding tissues. We therefore sought to identify enhancers specifically active in the tooth anlagen and quantify their contribution to the observed genetic enrichments. We systematically identified 22,001 conserved enhancers active in E13.5 mouse incisors using ChIP-seq and machine learning pipelines and demonstrated biologically relevant enrichments in putative target genes, transcription factor binding motifs, and in vivo activity. Multi-tissue comparisons of human and mouse enhancers revealed that these putative tooth enhancers had the strongest enrichment of odontogenic phenotype-associated variants, suggesting a role for dysregulation of tooth developmental enhancers in human dental phenotypes. The large number of these regions genome-wide necessitated prioritization of enhancer loci for future investigations. As enhancers modulate gene expression, we prioritized regions based on enhancers' putative target genes. We predicted these target genes and prioritized loci by integrating chromatin state, bulk gene expression and coexpression, GWAS variants, and cell type resolved gene expression to generate a prioritized list of putative odontogenic phenotype-driving loci active in the developing tooth. These genomic regions are of particular interest for downstream experiments determining the role of specific dental enhancer:gene pairs in odontogenesis.
Collapse
Affiliation(s)
| | - Alexis Hardy
- Master of Genetics Program, Paris Diderot University,
Paris, France
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of
Connecticut School of Medicine, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut,
Storrs, CT, United States
| |
Collapse
|
143
|
Integrating extrusion complex-associated pattern to predict cell type-specific long-range chromatin loops. iScience 2022; 25:105687. [PMID: 36567710 PMCID: PMC9768375 DOI: 10.1016/j.isci.2022.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
The chromatin loop plays a critical role in the study of gene expression and disease. Supervised learning-based algorithms to predict the chromatin loops require large priori information to satisfy the model construction, while the prediction sensitivity of unsupervised learning-based algorithms is still unsatisfactory. Therefore, we propose an unsupervised algorithm, Ecomap-loop. It takes advantage of extrusion complex-associated patterns, including CTCF, RAD21, and SMC enrichments, as well as the orientation distribution of CTCF motif of loops to build feature matrices; then the eigen decomposition model is employed to obtain the cell type-specific loops. We compare the performance of Ecomap-loop with the state-of-the-art unsupervised algorithm using Hi-C, ChIA-PET, expression quantitative trait locus (eQTL), and CRISPR interference (CRISPRi) screen data; the results show that Ecomap-loop achieves the best in four cell types. In addition, the functional analysis reveals the ability of Ecomap-loop to predict active functionality-related and cell type-specific loops.
Collapse
|
144
|
Funk L, Su KC, Ly J, Feldman D, Singh A, Moodie B, Blainey PC, Cheeseman IM. The phenotypic landscape of essential human genes. Cell 2022; 185:4634-4653.e22. [PMID: 36347254 PMCID: PMC10482496 DOI: 10.1016/j.cell.2022.10.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Understanding the basis for cellular growth, proliferation, and function requires determining the roles of essential genes in diverse cellular processes, including visualizing their contributions to cellular organization and morphology. Here, we combined pooled CRISPR-Cas9-based functional screening of 5,072 fitness-conferring genes in human HeLa cells with microscopy-based imaging of DNA, the DNA damage response, actin, and microtubules. Analysis of >31 million individual cells identified measurable phenotypes for >90% of gene knockouts, implicating gene targets in specific cellular processes. Clustering of phenotypic similarities based on hundreds of quantitative parameters further revealed co-functional genes across diverse cellular activities, providing predictions for gene functions and associations. By conducting pooled live-cell screening of ∼450,000 cell division events for 239 genes, we additionally identified diverse genes with functional contributions to chromosome segregation. Our work establishes a resource detailing the consequences of disrupting core cellular processes that represents the functional landscape of essential human genes.
Collapse
Affiliation(s)
- Luke Funk
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jimmy Ly
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - David Feldman
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA
| | - Avtar Singh
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA
| | - Brittania Moodie
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
145
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
146
|
Chen PB, Fiaux PC, Zhang K, Li B, Kubo N, Jiang S, Hu R, Rooholfada E, Wu S, Wang M, Wang W, McVicker G, Mischel PS, Ren B. Systematic discovery and functional dissection of enhancers needed for cancer cell fitness and proliferation. Cell Rep 2022; 41:111630. [PMID: 36351387 PMCID: PMC9687083 DOI: 10.1016/j.celrep.2022.111630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/21/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
A scarcity of functionally validated enhancers in the human genome presents a significant hurdle to understanding how these cis-regulatory elements contribute to human diseases. We carry out highly multiplexed CRISPR-based perturbation and sequencing to identify enhancers required for cell proliferation and fitness in 10 human cancer cell lines. Our results suggest that the cell fitness enhancers, unlike their target genes, display high cell-type specificity of chromatin features. They typically adopt a modular structure, comprised of activating elements enriched for motifs of oncogenic transcription factors, surrounded by repressive elements enriched for motifs recognized by transcription factors with tumor suppressor functions. We further identify cell fitness enhancers that are selectively accessible in clinical tumor samples, and the levels of chromatin accessibility are associated with patient survival. These results reveal functional enhancers across multiple cancer cell lines, characterize their context-dependent chromatin organization, and yield insights into altered transcription programs in cancer cells.
Collapse
Affiliation(s)
- Poshen B Chen
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Patrick C Fiaux
- Bioinformatics and System Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Naoki Kubo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shan Jiang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Rong Hu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Emma Rooholfada
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Mengchi Wang
- Bioinformatics and System Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Wei Wang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Bioinformatics and System Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Graham McVicker
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Paul S Mischel
- Department of Pathology, Stanford Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA; Institute of Genome Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
147
|
Pang B, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer elements and their regulation of gene expression. Nat Rev Mol Cell Biol 2022; 24:383-395. [DOI: 10.1038/s41580-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
|
148
|
Liu S, Cao Y, Cui K, Tang Q, Zhao K. Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops. Nat Commun 2022; 13:6679. [PMID: 36335136 PMCID: PMC9637178 DOI: 10.1038/s41467-022-34276-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.
Collapse
Affiliation(s)
- Shuai Liu
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Yaqiang Cao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Qingsong Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
149
|
Collins JM, Nworu AC, Mohammad SJ, Li L, Li C, Li C, Schwendeman E, Cefalu M, Abdel‐Rasoul M, Sun JW, Smith SA, Wang D. Regulatory variants in a novel distal enhancer regulate the expression of CYP3A4 and CYP3A5. Clin Transl Sci 2022; 15:2720-2731. [PMID: 36045613 PMCID: PMC9652438 DOI: 10.1111/cts.13398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
The cytochrome P450 3As (CYP3As) are abundantly expressed in the liver and metabolize many commonly prescribed medications. Their expression is highly variable between individuals with little known genetic cause. Despite extensive investigation, cis-acting genetic elements that control the expression of the CYP3As remain uncharacterized. Using chromatin conformation capture (4C assays), we detected reciprocal interaction between a distal regulatory region (DRR) and the CYP3A4 promoter. The DRR colocalizes with a variety of enhancer marks and was found to promote transcription in reporter assays. CRISPR-mediated deletion of the DRR decreased expression of CYP3A4, CYP3A5, and CYP3A7, supporting its role as a shared enhancer regulating the expression of three CYP3A genes. Using reporter gene assays, we identified two single-nucleotide polymorphisms (rs115025140 and rs776744/rs776742) that increased DRR-driven luciferase reporter expression. In a liver cohort (n = 246), rs115025140 was associated with increased expression of CYP3A4 mRNA (1.8-fold) and protein (1.6-fold) and rs776744/rs776742 was associated with 1.39-fold increased expression of CYP3A5 mRNA. The rs115025140 is unique to the African population and in a clinical cohort of African Americans taking statins for lipid control rs115025140 carriers showed a trend toward reduced statin-mediated lipid reduction. In addition, using a published cohort of Chinese patients who underwent renal transplantation taking tacrolimus, rs776744/rs776742 carriers were associated with reduced tacrolimus concentration after adjusting for CYP3A5*3. Our results elucidate a complex regulatory network controlling expression of three CYP3A genes and identify two novel regulatory variants with potential clinical relevance for predicting CYP3A4 and CYP3A5 expression.
Collapse
Affiliation(s)
- Joseph M. Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Adaeze C. Nworu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Somayya J. Mohammad
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ethan Schwendeman
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mattew Cefalu
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mahmoud Abdel‐Rasoul
- Center for Biostatistics, Department of Biomedical Informatics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Jessie W. Sun
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA,School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Sakima A. Smith
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
150
|
Leung AKY, Yao L, Yu H. Functional genomic assays to annotate enhancer-promoter interactions genome wide. Hum Mol Genet 2022; 31:R97-R104. [PMID: 36018818 PMCID: PMC9585677 DOI: 10.1093/hmg/ddac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022] Open
Abstract
Enhancers are pivotal for regulating gene transcription that occurs at promoters. Identification of the interacting enhancer-promoter pairs and understanding the mechanisms behind how they interact and how enhancers modulate transcription can provide fundamental insight into gene regulatory networks. Recently, advances in high-throughput methods in three major areas-chromosome conformation capture assay, such as Hi-C to study basic chromatin architecture, ectopic reporter experiments such as self-transcribing active regulatory region sequencing (STARR-seq) to quantify promoter and enhancer activity, and endogenous perturbations such as clustered regularly interspaced short palindromic repeat interference (CRISPRi) to identify enhancer-promoter compatibility-have further our knowledge about transcription. In this review, we will discuss the major method developments and key findings from these assays.
Collapse
Affiliation(s)
- Alden King-Yung Leung
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Genomics and Proteomics Technology Development (CGPT), Cornell University, Ithaca NY 14853, USA
| | - Li Yao
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Genomics and Proteomics Technology Development (CGPT), Cornell University, Ithaca NY 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Genomics and Proteomics Technology Development (CGPT), Cornell University, Ithaca NY 14853, USA
| |
Collapse
|