101
|
Emami NK, Jung U, Voy B, Dridi S. Radical Response: Effects of Heat Stress-Induced Oxidative Stress on Lipid Metabolism in the Avian Liver. Antioxidants (Basel) 2020; 10:antiox10010035. [PMID: 33396952 PMCID: PMC7823512 DOI: 10.3390/antiox10010035] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism in avian species places unique demands on the liver in comparison to most mammals. The avian liver synthesizes the vast majority of fatty acids that provide energy and support cell membrane synthesis throughout the bird. Egg production intensifies demands to the liver as hepatic lipids are needed to create the yolk. The enzymatic reactions that underlie de novo lipogenesis are energetically demanding and require a precise balance of vitamins and cofactors to proceed efficiently. External stressors such as overnutrition or nutrient deficiency can disrupt this balance and compromise the liver’s ability to support metabolic needs. Heat stress is an increasingly prevalent environmental factor that impairs lipid metabolism in the avian liver. The effects of heat stress-induced oxidative stress on hepatic lipid metabolism are of particular concern in modern commercial chickens due to the threat to global poultry production. Chickens are highly vulnerable to heat stress because of their limited capacity to dissipate heat, high metabolic activity, high internal body temperature, and narrow zone of thermal tolerance. Modern lines of both broiler (meat-type) and layer (egg-type) chickens are especially sensitive to heat stress because of the high rates of mitochondrial metabolism. While this oxidative metabolism supports growth and egg production, it also yields oxidative stress that can damage mitochondria, cellular membranes and proteins, making the birds more vulnerable to other stressors in the environment. Studies to date indicate that oxidative and heat stress interact to disrupt hepatic lipid metabolism and compromise performance and well-being in both broilers and layers. The purpose of this review is to summarize the impact of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Recent advances that shed light on molecular mechanisms and potential nutritional/managerial strategies to counteract the negative effects of heat stress-induced oxidative stress to the avian liver are also integrated.
Collapse
Affiliation(s)
- Nima K. Emami
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Usuk Jung
- College of Arts & Sciences, University of Tennessee, Knoxville, TN 37996, USA; (U.J.); (B.V.)
| | - Brynn Voy
- College of Arts & Sciences, University of Tennessee, Knoxville, TN 37996, USA; (U.J.); (B.V.)
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Correspondence:
| |
Collapse
|
102
|
Stoeckli S, Felber R, Haye T. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:2019-2032. [PMID: 32860106 PMCID: PMC7658091 DOI: 10.1007/s00484-020-01992-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Climate change can alter the habitat suitability of invasive species and promote their establishment. The highly polyphagous brown marmorated stinkbug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is native to East Asia and invasive in Europe and North America, damaging a wide variety of fruit and vegetable crops. In Switzerland, crop damage and increasing populations have been observed since 2017 and related to increasing temperatures. We studied the climatic suitability, population growth, and the number of generations under present and future climate conditions for H. halys in Switzerland, using a modified version of the bioclimatic model package CLIMEX. To address the high topographic variability in Switzerland, model simulations were based on climate data of high spatial resolution (approx. 2 km), which significantly increased their explanatory power, and identified many more climatically suitable areas in comparison to previous models. The validation of the CLIMEX model using observational records collected in a citizen science initiative between 2004 and 2019 revealed that more than 15 years after its accidental introduction, H. halys has colonised nearly all bioclimatic suitable areas in Switzerland and there is limited potential for range expansion into new areas under present climate conditions. Simulations with climate change scenarios suggest an extensive range expansion into higher altitudes, an increase in generations per year, an earlier start of H. halys activity in spring and a prolonged period for nymphs to complete development in autumn. A permanent shift from one to two generations per year and the associated population growth of H. halys may result in increasing crop damages in Switzerland. These results highlight the need for monitoring the spread and population development in the north-western part of Switzerland and higher altitudes of the valleys of the south.
Collapse
Affiliation(s)
- Sibylle Stoeckli
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, P.O. Box 219, 5070 Frick, Switzerland
| | - Raphael Felber
- Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
- Now at: Office for Environment, Canton of Zug, Aabachstrasse 5, 6300 Zug, Switzerland
| | - Tim Haye
- CABI, Rue des Grillons 1, 2800 Delémont, Switzerland
| |
Collapse
|
103
|
Tocco C, Midgley J, Villet MH. Intermediate disturbance promotes diversity and the conservation of dung beetles (Scarabaeoidea: Scarabaeidae and Aphodiidae) in the Eastern Cape, South Africa. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
104
|
Jones AR, Jessop TS, Ariefiandy A, Brook BW, Brown SC, Ciofi C, Benu YJ, Purwandana D, Sitorus T, Wigley TML, Fordham DA. Identifying island safe havens to prevent the extinction of the World's largest lizard from global warming. Ecol Evol 2020; 10:10492-10507. [PMID: 33072275 PMCID: PMC7548163 DOI: 10.1002/ece3.6705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/10/2022] Open
Abstract
The Komodo dragon (Varanus komodoensis) is an endangered, island‐endemic species with a naturally restricted distribution. Despite this, no previous studies have attempted to predict the effects of climate change on this iconic species. We used extensive Komodo dragon monitoring data, climate, and sea‐level change projections to build spatially explicit demographic models for the Komodo dragon. These models project the species’ future range and abundance under multiple climate change scenarios. We ran over one million model simulations with varying model parameters, enabling us to incorporate uncertainty introduced from three main sources: (a) structure of global climate models, (b) choice of greenhouse gas emission trajectories, and (c) estimates of Komodo dragon demographic parameters. Our models predict a reduction in range‐wide Komodo dragon habitat of 8%–87% by 2050, leading to a decrease in habitat patch occupancy of 25%–97% and declines of 27%–99% in abundance across the species' range. We show that the risk of extirpation on the two largest protected islands in Komodo National Park (Rinca and Komodo) was lower than other island populations, providing important safe havens for Komodo dragons under global warming. Given the severity and rate of the predicted changes to Komodo dragon habitat patch occupancy (a proxy for area of occupancy) and abundance, urgent conservation actions are required to avoid risk of extinction. These should, as a priority, be focused on managing habitat on the islands of Komodo and Rinca, reflecting these islands’ status as important refuges for the species in a warming world. Variability in our model projections highlights the importance of accounting for uncertainties in demographic and environmental parameters, structural assumptions of global climate models, and greenhouse gas emission scenarios when simulating species metapopulation dynamics under climate change.
Collapse
Affiliation(s)
- Alice R Jones
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia.,Department for Environment and Water Adelaide SA Australia
| | - Tim S Jessop
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Vic. Australia.,Komodo Survival Program Bali Indonesia
| | | | - Barry W Brook
- School of Natural Sciences University of Tasmania Hobart Tas Australia
| | - Stuart C Brown
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - Claudio Ciofi
- Komodo Survival Program Bali Indonesia.,Department of Biology University of Florence Sesto Fiorentino Italy
| | | | | | - Tamen Sitorus
- Balai Besar Konservasi Sumber Daya Alam Kupang Indonesia
| | - Tom M L Wigley
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia.,Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA
| | - Damien A Fordham
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
| |
Collapse
|
105
|
Brown PT, Saunders H. Approximate calculations of the net economic impact of global warming mitigation targets under heightened damage estimates. PLoS One 2020; 15:e0239520. [PMID: 33027254 PMCID: PMC7540901 DOI: 10.1371/journal.pone.0239520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/28/2020] [Indexed: 11/27/2022] Open
Abstract
Efforts to mitigate global warming are often justified through calculations of the economic damages that may occur absent mitigation. The earliest such damage estimates were speculative mathematical representations, but some more recent studies provide empirical estimates of damages on economic growth that accumulate over time and result in larger damages than those estimated previously. These heightened damage estimates have been used to suggest that limiting global warming this century to 1.5 °C avoids tens of trillions of 2010 US$ in damage to gross world product relative to limiting global warming to 2.0 °C. However, in order to estimate the net effect on gross world product, mitigation costs associated with decarbonizing the world’s energy systems must be subtracted from the benefits of avoided damages. Here, we follow previous work to parameterize the aforementioned heightened damage estimates into a schematic global climate-economy model (DICE) so that they can be weighed against mainstream estimates of mitigation costs in a unified framework. We investigate the net effect of mitigation on gross world product through finite time horizons under a spectrum of exogenously defined levels of mitigation stringency. We find that even under heightened damage estimates, the additional mitigation costs of limiting global warming to 1.5 °C (relative to 2.0 °C) are higher than the additional avoided damages this century under most parameter combinations considered. Specifically, using our central parameter values, limiting global warming to 1.5 °C results in a net loss of gross world product of roughly forty trillion US$ relative to 2 °C and achieving either 1.5 °C or 2.0 °C require a net sacrifice of gross world product, relative to a no-mitigation case, though 2100 with a 3%/year discount rate. However, the benefits of more stringent mitigation accumulate over time and our calculations indicate that stabilizing warming at 1.5 °C or 2.0 °C by 2100 would eventually confer net benefits of thousands of trillions of US$ in gross world product by 2300. The results emphasize the temporal asymmetry between the costs of mitigation and benefits of avoided damages from climate change and thus the long timeframe for which climate change mitigation investment pays off.
Collapse
Affiliation(s)
- Patrick T. Brown
- Department of Meteorology and Climate Science, San José State University, San José, California, United States of America
- * E-mail:
| | - Harry Saunders
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, United States of America
| |
Collapse
|
106
|
Høye TT. Arthropods and climate change - arctic challenges and opportunities. CURRENT OPINION IN INSECT SCIENCE 2020; 41:40-45. [PMID: 32674064 DOI: 10.1016/j.cois.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The harsh climate, limited human infrastructures, and basic autecological knowledge gaps represent substantial challenges for studying arthropods in the Arctic. At the same time, rapid climate change, low species diversity, and strong collaborative networks provide unique and underexploited Arctic opportunities for understanding species responses to environmental change and testing ecological theory. Here, I provide an overview of individual, population, and ecosystem level responses to climate change in Arctic arthropods. I focus on thermal performance, life history variation, population dynamics, community composition, diversity, and biotic interactions. The species-poor Arctic represents a unique opportunity for testing novel, automated arthropod monitoring methods. The Arctic can also potentially provide insights to further understand and mitigate the effects of climate change on arthropods worldwide.
Collapse
Affiliation(s)
- Toke T Høye
- Department of Bioscience and Arctic Research Centre, Aarhus University, Grenåvej 14, DK-8410 Rønde, Denmark.
| |
Collapse
|
107
|
Bryan BA, Archibald CL. A recipe to reverse the loss of nature. Nature 2020; 585:503-504. [PMID: 32908293 DOI: 10.1038/d41586-020-02502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
108
|
Nic Lughadha E, Bachman SP, Leão TCC, Forest F, Halley JM, Moat J, Acedo C, Bacon KL, Brewer RFA, Gâteblé G, Gonçalves SC, Govaerts R, Hollingsworth PM, Krisai‐Greilhuber I, Lirio EJ, Moore PGP, Negrão R, Onana JM, Rajaovelona LR, Razanajatovo H, Reich PB, Richards SL, Rivers MC, Cooper A, Iganci J, Lewis GP, Smidt EC, Antonelli A, Mueller GM, Walker BE. Extinction risk and threats to plants and fungi. PLANTS, PEOPLE, PLANET 2020; 2:389-408. [PMID: 0 DOI: 10.1002/ppp3.10146] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Affiliation(s)
| | - Steven P. Bachman
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | | | - Félix Forest
- Analytical Methods Royal Botanic Gardens, Kew Richmond UK
| | - John M. Halley
- Laboratory of Ecology Department of Biological Applications & Technology University of Ioannina Ioannina Greece
| | - Justin Moat
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
| | - Carmen Acedo
- Department of Biodiversity and Environment Management Faculty of Biological and Environmental Sciences Campus of Vegazana University of León León Spain
| | - Karen L. Bacon
- Botany & Plant Sciences School of Natural Sciences National University of Ireland Galway Ireland
| | - Ryan F. A. Brewer
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | - Gildas Gâteblé
- Equipe ARBOREAL Institut Agronomique néo‐Calédonien Mont‐Dore New Caledonia
| | - Susana C. Gonçalves
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Rafaël Govaerts
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
| | | | - Irmgard Krisai‐Greilhuber
- Mycology Research Group Division of Systematic and Evolutionary Biology Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Elton J. Lirio
- Departamento de Botânica Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | | | - Raquel Negrão
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | - Jean Michel Onana
- Systematics, Biodiversity and Conservation of Plants Faculty of Science University of Yaoundé I & National Herbarium of Cameroon Yaoundé Cameroon
| | - Landy R. Rajaovelona
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
- Kew Madagascar Conservation Centre Antananarivo Madagascar
| | - Henintsoa Razanajatovo
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
- Kew Madagascar Conservation Centre Antananarivo Madagascar
| | - Peter B. Reich
- Department of Forest Resources University of Minnesota St. Paul MN USA
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | | | | | - Amanda Cooper
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
- Department of Biological Sciences Royal HollowayUniversity of London Egham UK
| | - João Iganci
- Instituto de Biologia Departamento de Botânica Universidade Federal de Pelotas Pelotas Brazil
- Instituto de Biociências Programa de Pós‐Graduação em Botânica Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Gwilym P. Lewis
- Comparative Plant and Fungal Biology Royal Botanic Gardens, Kew Richmond UK
| | - Eric C. Smidt
- Departamento de Botânica Universidade Federal do Paraná Curitiba Brazil
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew Richmond UK
- Gothenburg Global Biodiversity Centre Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Gregory M. Mueller
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Chicago IL USA
| | - Barnaby E. Walker
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| |
Collapse
|
109
|
Nakanishi K, Koide D, Yokomizo H, Kadoya T, Hayashi TI. Investigating effect of climate warming on the population declines of Sympetrum frequens during the 1990s in three regions in Japan. Sci Rep 2020; 10:12719. [PMID: 32728123 PMCID: PMC7391746 DOI: 10.1038/s41598-020-69532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/10/2020] [Indexed: 11/21/2022] Open
Abstract
Climate warming is of concern as a key factor in the worldwide decline in insect populations. In Japan, numbers of a common dragonfly in rice paddy fields, Sympetrum frequens, decreased sharply in the 1990s. Because S. frequens migrates to cooler mountains in summer, climate warming has been suggested as one of the main causes of the population decline in addition to agronomic factors. Here, we analysed the relation between summer temperatures and population densities of S. frequens and the related S. infuscatum, which does not migrate to mountains in summer, using published population monitoring data and temperature data from three regions (Toyama, Ishikawa, and Shizuoka) in Japan. Decadal differences in summer temperatures lay within the range of fluctuations among years, suggesting that an increase in summer temperatures cannot explain the past sharp population declines. However, regression analyses using monitoring data from Toyama showed that the population dynamics of both species in autumn are negatively correlated with summer temperatures in the same year. These results suggest that high temperatures in summer directly affect adult mortality to an extent that results in a decrease in population growth.
Collapse
Affiliation(s)
- Kosuke Nakanishi
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Dai Koide
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hiroyuki Yokomizo
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Taku Kadoya
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takehiko I Hayashi
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
110
|
Bateman BL, Taylor L, Wilsey C, Wu J, LeBaron GS, Langham G. Risk to North American birds from climate change‐related threats. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Lotem Taylor
- Science DivisionNational Audubon Society New York New York USA
| | - Chad Wilsey
- Science DivisionNational Audubon Society New York New York USA
| | - Joanna Wu
- Science DivisionNational Audubon Society New York New York USA
| | | | - Gary Langham
- American Association of Geographers Washington District of Columbia USA
| |
Collapse
|
111
|
Koltz AM, Wright JP. Impacts of female body size on cannibalism and juvenile abundance in a dominant arctic spider. J Anim Ecol 2020; 89:1788-1798. [DOI: 10.1111/1365-2656.13230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Amanda M. Koltz
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | | |
Collapse
|
112
|
Abstract
Protected areas (PAs) have been established worldwide for achieving long-term goals in the conservation of nature with the associated ecosystem services and cultural values. Globally, 15% of the world’s terrestrial lands and inland waters, excluding Antarctica, are designated as PAs. About 4.12% of the global ocean and 10.2% of coastal and marine areas under national jurisdiction are set as marine protected areas (MPAs). Protected lands and waters serve as the fundamental building blocks of virtually all national and international conservation strategies, supported by governments and international institutions. Some of the PAs are the only places that contain undisturbed landscape, seascape and ecosystems on the planet Earth. With intensified impacts from climate and environmental change, PAs have become more important to serve as indicators of ecosystem status and functions. Earth’s remaining wilderness areas are becoming increasingly important buffers against changing conditions. The development of remote sensing platforms and sensors and the improvement in science and technology provide crucial support for the monitoring and management of PAs across the world. In this editorial paper, we reviewed research developments using state-of-the-art remote sensing technologies, discussed the challenges of remote sensing applications in the inventory, monitoring, management and governance of PAs and summarized the highlights of the articles published in this Special Issue.
Collapse
|
113
|
Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. PLoS One 2020; 15:e0231595. [PMID: 32298349 PMCID: PMC7161985 DOI: 10.1371/journal.pone.0231595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Species distribution shifts are a widely reported biological consequence of climate-driven warming across marine ecosystems, creating ecological and social challenges. To meet these challenges and inform management decisions, we need accurate projections of species distributions. Quantitative species distribution models (SDMs) are routinely used to make these projections, while qualitative climate change vulnerability assessments are becoming more common. We constructed SDMs, compared SDM projections to expectations from a qualitative expert climate change vulnerability assessment, and developed a novel approach for combining the two methods to project the distribution and relative biomass of 49 marine species in the Northeast Shelf Large Marine Ecosystem under a “business as usual” climate change scenario. A forecasting experiment using SDMs highlighted their ability to capture relative biomass patterns fairly well (mean Pearson’s correlation coefficient between predicted and observed biomass = 0.24, range = 0–0.6) and pointed to areas needing improvement, including reducing prediction error and better capturing fine-scale spatial variability. SDM projections suggest the region will undergo considerable biological changes, especially in the Gulf of Maine, where commercially-important groundfish and traditional forage species are expected to decline as coastal fish species and warmer-water forage species historically found in the southern New England/Mid-Atlantic Bight area increase. The SDM projections only occasionally aligned with vulnerability assessment expectations, with agreement more common for species with adult mobility and population growth rates that showed low sensitivity to climate change. Although our blended approach tried to build from the strengths of each method, it had no noticeable improvement in predictive ability over SDMs. This work rigorously evaluates the predictive ability of SDMs, quantifies expected species distribution shifts under future climate conditions, and tests a new approach for integrating SDMs and vulnerability assessments to help address the complex challenges arising from climate-driven species distribution shifts.
Collapse
|
114
|
|
115
|
The projected timing of abrupt ecological disruption from climate change. Nature 2020; 580:496-501. [PMID: 32322063 DOI: 10.1038/s41586-020-2189-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
As anthropogenic climate change continues the risks to biodiversity will increase over time, with future projections indicating that a potentially catastrophic loss of global biodiversity is on the horizon1-3. However, our understanding of when and how abruptly this climate-driven disruption of biodiversity will occur is limited because biodiversity forecasts typically focus on individual snapshots of the future. Here we use annual projections (from 1850 to 2100) of temperature and precipitation across the ranges of more than 30,000 marine and terrestrial species to estimate the timing of their exposure to potentially dangerous climate conditions. We project that future disruption of ecological assemblages as a result of climate change will be abrupt, because within any given ecological assemblage the exposure of most species to climate conditions beyond their realized niche limits occurs almost simultaneously. Under a high-emissions scenario (representative concentration pathway (RCP) 8.5), such abrupt exposure events begin before 2030 in tropical oceans and spread to tropical forests and higher latitudes by 2050. If global warming is kept below 2 °C, less than 2% of assemblages globally are projected to undergo abrupt exposure events of more than 20% of their constituent species; however, the risk accelerates with the magnitude of warming, threatening 15% of assemblages at 4 °C, with similar levels of risk in protected and unprotected areas. These results highlight the impending risk of sudden and severe biodiversity losses from climate change and provide a framework for predicting both when and where these events may occur.
Collapse
|
116
|
Yao R, Wang L, Huang X, Li L, Sun J, Wu X, Jiang W. Developing a temporally accurate air temperature dataset for Mainland China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136037. [PMID: 31841842 DOI: 10.1016/j.scitotenv.2019.136037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Spatially continuous satellite data have been widely used to estimate monthly air temperature (Ta). However, it is still not clear whether the estimated monthly Ta is temporally consistent with observed Ta or not. In this study, the accuracies of interannual variations and temporal trends in estimated monthly Ta were systematically analyzed for Mainland China during 2001-2018. The differences in accuracy among five ways to input data into the model were investigated. The Cubist algorithm and ten variables were used to estimate monthly Ta. It was found that inputting data for the same month into the model can generate more accurate results than inputting all data into the model. Using temporal variables (i.e., month and year) can significantly increase the accuracy of estimated Ta. These results can be explained by different relationships between Ta and auxiliary variables that appear at different times. Thus, using temporal variables can help distinguish between different relationships and improve accuracy levels of the estimated Ta. When applying the best method (inputting data for the same month into the model and using the year as a temporal variable), the coefficient of determination (R2) of estimated monthly mean Ta, interannual variations in monthly mean Ta and temporal trends in monthly mean Ta were recorded as 0.997, 0.731 and 0.848, respectively. The root mean squared errors (RMSEs) of estimated monthly mean Ta, interannual variations in monthly mean Ta and temporal trends in monthly mean Ta were recorded as 0.629 °C, 0.593 °C and 0.201 °C/decade, respectively. An accurate, national coverage, 1 km spatial resolution and long time series (2001-2018) monthly mean, maximum and minimum Ta dataset was finally developed. The dataset can be of great use to many fields such as climatology, hydrology and ecology.
Collapse
Affiliation(s)
- Rui Yao
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Lunche Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Xin Huang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
| | - Long Li
- Key Laboratory of Virtual Geographic Environment of Ministry of Education, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, College of Geographic Science, Nanjing Normal University, Nanjing 210023, China
| | - Jia Sun
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Xiaojun Wu
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Weixia Jiang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
117
|
Jenouvrier S, Holland M, Iles D, Labrousse S, Landrum L, Garnier J, Caswell H, Weimerskirch H, LaRue M, Ji R, Barbraud C. The Paris Agreement objectives will likely halt future declines of emperor penguins. GLOBAL CHANGE BIOLOGY 2020; 26:1170-1184. [PMID: 31696584 DOI: 10.1111/gcb.14864] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/22/2019] [Indexed: 05/12/2023]
Abstract
The Paris Agreement is a multinational initiative to combat climate change by keeping a global temperature increase in this century to 2°C above preindustrial levels while pursuing efforts to limit the increase to 1.5°C. Until recently, ensembles of coupled climate simulations producing temporal dynamics of climate en route to stable global mean temperature at 1.5 and 2°C above preindustrial levels were not available. Hence, the few studies that have assessed the ecological impact of the Paris Agreement used ad-hoc approaches. The development of new specific mitigation climate simulations now provides an unprecedented opportunity to inform ecological impact assessments. Here we project the dynamics of all known emperor penguin (Aptenodytes forsteri) colonies under new climate change scenarios meeting the Paris Agreement objectives using a climate-dependent-metapopulation model. Our model includes various dispersal behaviors so that penguins could modulate climate effects through movement and habitat selection. Under business-as-usual greenhouse gas emissions, we show that 80% of the colonies are projected to be quasiextinct by 2100, thus the total abundance of emperor penguins is projected to decline by at least 81% relative to its initial size, regardless of dispersal abilities. In contrast, if the Paris Agreement objectives are met, viable emperor penguin refuges will exist in Antarctica, and only 19% and 31% colonies are projected to be quasiextinct by 2100 under the Paris 1.5 and 2 climate scenarios respectively. As a result, the global population is projected to decline by at least by 31% under Paris 1.5 and 44% under Paris 2. However, population growth rates stabilize in 2060 such that the global population will be only declining at 0.07% under Paris 1.5 and 0.34% under Paris 2, thereby halting the global population decline. Hence, global climate policy has a larger capacity to safeguard the future of emperor penguins than their intrinsic dispersal abilities.
Collapse
Affiliation(s)
- Stéphanie Jenouvrier
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du Centre National de la Recherche Scientifique-Université de La Rochelle, Villiers en Bois, France
| | - Marika Holland
- National Center for Atmospheric Research, Boulder, CO, USA
| | - David Iles
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Sara Labrousse
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Laura Landrum
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Jimmy Garnier
- Laboratoire de Mathématiques, UMR 5127, Université Savoie Mont-Blanc, Le Bourget du Lac, France
| | - Hal Caswell
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Max Planck Institute for Demographic Research, Rostock, Germany
- University of Amsterdam, Amsterdam, The Netherlands
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du Centre National de la Recherche Scientifique-Université de La Rochelle, Villiers en Bois, France
| | - Michelle LaRue
- Te Kura Aronukurangi, University of Canterbury, Christchurch, New Zealand
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rubao Ji
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du Centre National de la Recherche Scientifique-Université de La Rochelle, Villiers en Bois, France
| |
Collapse
|
118
|
Román-Palacios C, Wiens JJ. Recent responses to climate change reveal the drivers of species extinction and survival. Proc Natl Acad Sci U S A 2020; 117:4211-4217. [PMID: 32041877 PMCID: PMC7049143 DOI: 10.1073/pnas.1913007117] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Climate change may be a major threat to biodiversity in the next 100 years. Although there has been important work on mechanisms of decline in some species, it generally remains unclear which changes in climate actually cause extinctions, and how many species will likely be lost. Here, we identify the specific changes in climate that are associated with the widespread local extinctions that have already occurred. We then use this information to predict the extent of future biodiversity loss and to identify which processes may forestall extinction. We used data from surveys of 538 plant and animal species over time, 44% of which have already had local extinctions at one or more sites. We found that locations with local extinctions had larger and faster changes in hottest yearly temperatures than those without. Surprisingly, sites with local extinctions had significantly smaller changes in mean annual temperatures, despite the widespread use of mean annual temperatures as proxies for overall climate change. Based on their past rates of dispersal, we estimate that 57-70% of these 538 species will not disperse quickly enough to avoid extinction. However, we show that niche shifts appear to be far more important for avoiding extinction than dispersal, although most studies focus only on dispersal. Specifically, considering both dispersal and niche shifts, we project that only 16-30% of these 538 species may go extinct by 2070. Overall, our results help identify the specific climatic changes that cause extinction and the processes that may help species to survive.
Collapse
Affiliation(s)
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
119
|
Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc Natl Acad Sci U S A 2020; 117:3648-3655. [PMID: 32015125 PMCID: PMC7035475 DOI: 10.1073/pnas.1912776117] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Freshwater fish are highly threatened by dams that disrupt the longitudinal connectivity of rivers and may consequently impede fish movements to feeding and spawning grounds. In a comprehensive global analysis covering ∼10,000 freshwater fish species and ∼40,000 existing large dams we identified the most disconnected geographical ranges for species in the United States, Europe, South Africa, India, and China. The completion of near-future plans for ∼3,700 large hydropower dams will greatly increase habitat fragmentation in (sub)tropical river basins, where many livelihoods depend on inland fisheries. Our assessment can support infrastructure planning on multiple scales and assist in setting conservation priorities for species and basins at risk. Dams contribute to water security, energy supply, and flood protection but also fragment habitats of freshwater species. Yet, a global species-level assessment of dam-induced fragmentation is lacking. Here, we assessed the degree of fragmentation of the occurrence ranges of ∼10,000 lotic fish species worldwide due to ∼40,000 existing large dams and ∼3,700 additional future large hydropower dams. Per river basin, we quantified a connectivity index (CI) for each fish species by combining its occurrence range with a high-resolution hydrography and the locations of the dams. Ranges of nondiadromous fish species were more fragmented (less connected) (CI = 73 ± 28%; mean ± SD) than ranges of diadromous species (CI = 86 ± 19%). Current levels of fragmentation were highest in the United States, Europe, South Africa, India, and China. Increases in fragmentation due to future dams were especially high in the tropics, with declines in CI of ∼20 to 40 percentage points on average across the species in the Amazon, Niger, Congo, Salween, and Mekong basins. Our assessment can guide river management at multiple scales and in various domains, including strategic hydropower planning, identification of species and basins at risk, and prioritization of restoration measures, such as dam removal and construction of fish bypasses.
Collapse
|
120
|
Abstract
Insect declines are being reported worldwide for flying, ground, and aquatic lineages. Most reports come from western and northern Europe, where the insect fauna is well-studied and there are considerable demographic data for many taxonomically disparate lineages. Additional cases of faunal losses have been noted from Asia, North America, the Arctic, the Neotropics, and elsewhere. While this review addresses both species loss and population declines, its emphasis is on the latter. Declines of abundant species can be especially worrisome, given that they anchor trophic interactions and shoulder many of the essential ecosystem services of their respective communities. A review of the factors believed to be responsible for observed collapses and those perceived to be especially threatening to insects form the core of this treatment. In addition to widely recognized threats to insect biodiversity, e.g., habitat destruction, agricultural intensification (including pesticide use), climate change, and invasive species, this assessment highlights a few less commonly considered factors such as atmospheric nitrification from the burning of fossil fuels and the effects of droughts and changing precipitation patterns. Because the geographic extent and magnitude of insect declines are largely unknown, there is an urgent need for monitoring efforts, especially across ecological gradients, which will help to identify important causal factors in declines. This review also considers the status of vertebrate insectivores, reporting bias, challenges inherent in collecting and interpreting insect demographic data, and cases of increasing insect abundance.
Collapse
Affiliation(s)
- David L Wagner
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| |
Collapse
|
121
|
Anderson CM, Weber CL, Fabricius C, Glew L, Opperman JJ, Pacheco P, Pendleton LH, Thau D, Vermeulen SJ, Shaw MR. Planning for Change: Conservation-Related Impacts of Climate Overshoot. Bioscience 2019. [DOI: 10.1093/biosci/biz141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
| | | | - Christo Fabricius
- World Wildlife Fund, Washington, DC
- Sustainability Research Unit of Nelson Mandela University, George, South Africa
| | | | | | | | - Linwood H Pendleton
- World Wildlife Fund, Washington, DC
- Duke University, Durham, North Carolina
- Global Change Institute, the University of Queensland, St Lucia, Australia
- University of Brest, Plouzane, France
| | | | | | | |
Collapse
|
122
|
Ohashi H, Hasegawa T, Hirata A, Fujimori S, Takahashi K, Tsuyama I, Nakao K, Kominami Y, Tanaka N, Hijioka Y, Matsui T. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat Commun 2019; 10:5240. [PMID: 31748549 PMCID: PMC6868141 DOI: 10.1038/s41467-019-13241-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
Limiting the magnitude of climate change via stringent greenhouse gas (GHG) mitigation is necessary to prevent further biodiversity loss. However, some strategies to mitigate GHG emission involve greater land-based mitigation efforts, which may cause biodiversity loss from land-use changes. Here we estimate how climate and land-based mitigation efforts interact with global biodiversity by using an integrated assessment model framework to project potential habitat for five major taxonomic groups. We find that stringent GHG mitigation can generally bring a net benefit to global biodiversity even if land-based mitigation is adopted. This trend is strengthened in the latter half of this century. In contrast, some regions projected to experience much growth in land-based mitigation efforts (i.e., Europe and Oceania) are expected to suffer biodiversity loss. Our results support the enactment of stringent GHG mitigation policies in terms of biodiversity. To conserve local biodiversity, however, these policies must be carefully designed in conjunction with land-use regulations and societal transformation in order to minimize the conversion of natural habitats. Greenhouse gas mitigation can involve land-use changes that alter the habitat available for wildlife. Here, Ohashi et al. perform an integrated assessment showing that climate mitigation can be beneficial for global biodiversity but may entail local biodiversity losses where land-based mitigation is implemented.
Collapse
Affiliation(s)
- Haruka Ohashi
- Center for International Partnerships and Research on Climate Change, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Tomoko Hasegawa
- Department of Civil and Environmental Engineering, College of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Center for Social and Environmental Systems Research, National Institute for Environmental Studies, Japan, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Akiko Hirata
- Center for International Partnerships and Research on Climate Change, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.,Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shinichiro Fujimori
- Center for Social and Environmental Systems Research, National Institute for Environmental Studies, Japan, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.,Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, 361, C1-3, Nishikyo, Kyoto, Kyoto, 615-8540, Japan.,Energy Program, International Institute for Applied System Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria
| | - Kiyoshi Takahashi
- Center for Social and Environmental Systems Research, National Institute for Environmental Studies, Japan, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Ikutaro Tsuyama
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitsujigaoka 7, Toyohira, Sapporo, Hokkaido, 062-8516, Japan
| | - Katsuhiro Nakao
- Kansai Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Nagai-kyutaro 68, Momoyama, Fushimi, Kyoto, Kyoto, 612-0855, Japan
| | - Yuji Kominami
- Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Nobuyuki Tanaka
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Yasuaki Hijioka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tetsuya Matsui
- Center for International Partnerships and Research on Climate Change, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
123
|
Hu H, Ye X, Wang H, Ji R. Selection of Reference Genes for Normalization of Real-Time PCR Data in Calliptamus italicus (Orthoptera: Acrididae) Under Different Temperature Conditions. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5637495. [PMID: 31752021 PMCID: PMC6871914 DOI: 10.1093/jisesa/iez104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 06/10/2023]
Abstract
Global warming has dominated worldwide climate change trends, and adaptability to high temperatures is the main factor underlying the spread of the pest Calliptamus italicus in Xinjiang Province, China. However, knowledge about the molecular mechanisms responsible for this adaptability and other related biological properties of C. italicus remain relatively unclear. Real-time quantitative polymerase chain reaction (RT-qPCR) is a key tool for gene expression analysis associated with various biological processes. Reference genes are necessary for normalizing gene expression levels across samples taken from specific experimental conditions. In this study, transcript level of five genes (GAPDH, 18S, TUB, ACT, and EF1α), commonly used as reference genes, were evaluated under nine different temperatures (27, 30, 33, 36, 39, 42, 45, 48, and 51°C) to assess their expression stability and further select the most suitable to be used on normalization of target gene expression data. Gene expression profiles were analyzed using geNorm, NormFinder, and BestKeeper software packages. The combined results demonstrated that the best-ranked reference genes for C. italicus are EF1α, GAPDH, and ACT under different thermal stress conditions. This is the first study that assesses gene expression analysis across a range of temperatures to select the most appropriate reference genes for RT-qPCR data normalization in C. italicus. These results should assist target gene expression analysis associated with heat stress in C. italicus.
Collapse
Affiliation(s)
- Hongxia Hu
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Species Diversity Application and Regulation, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang Province, P.R. China
| | - Xiaofang Ye
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Species Diversity Application and Regulation, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang Province, P.R. China
| | - Han Wang
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Species Diversity Application and Regulation, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang Province, P.R. China
| | - Rong Ji
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Species Diversity Application and Regulation, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang Province, P.R. China
| |
Collapse
|
124
|
Kaspari M, Bujan J, Roeder KA, Beurs K, Weiser MD. Species energy and Thermal Performance Theory predict 20‐yr changes in ant community abundance and richness. Ecology 2019; 100:e02888. [DOI: 10.1002/ecy.2888] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma 73019 USA
| | - Jelena Bujan
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma 73019 USA
- Department of Biology University of Louisville Louisville Kentucky 40208 USA
| | - Karl A. Roeder
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma 73019 USA
| | - Kirsten Beurs
- Department of Geography and Sustainability University of Oklahoma Norman Oklahoma 73019 USA
| | - Michael D. Weiser
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma 73019 USA
| |
Collapse
|
125
|
Catullo RA, Llewelyn J, Phillips BL, Moritz CC. The Potential for Rapid Evolution under Anthropogenic Climate Change. Curr Biol 2019; 29:R996-R1007. [DOI: 10.1016/j.cub.2019.08.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
126
|
Benoit L, Hewison AJM, Coulon A, Debeffe L, Grémillet D, Ducros D, Cargnelutti B, Chaval Y, Morellet N. Accelerating across the landscape: The energetic costs of natal dispersal in a large herbivore. J Anim Ecol 2019; 89:173-185. [DOI: 10.1111/1365-2656.13098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Benoit
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
| | | | - Aurélie Coulon
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum national d'Histoire naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France
- CEFE, CNRS Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Lucie Debeffe
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
| | - David Grémillet
- CEFE, CNRS Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
- FitzPatrick Institute DST‐NRF Centre of Excellence at the University of Cape Town Rondebosch South Africa
| | - Delphine Ducros
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum national d'Histoire naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France
| | | | - Yannick Chaval
- CEFS Université de Toulouse, INRA Castanet‐Tolosan France
| | | |
Collapse
|
127
|
Franklinos LHV, Jones KE, Redding DW, Abubakar I. The effect of global change on mosquito-borne disease. THE LANCET. INFECTIOUS DISEASES 2019; 19:e302-e312. [PMID: 31227327 DOI: 10.1016/s1473-3099(19)30161-6] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023]
Abstract
More than 80% of the global population is at risk of a vector-borne disease, with mosquito-borne diseases being the largest contributor to human vector-borne disease burden. Although many global processes, such as land-use and socioeconomic change, are thought to affect mosquito-borne disease dynamics, research to date has strongly focused on the role of climate change. Here, we show, through a review of contemporary modelling studies, that no consensus on how future changes in climatic conditions will impact mosquito-borne diseases exists, possibly due to interacting effects of other global change processes, which are often excluded from analyses. We conclude that research should not focus solely on the role of climate change but instead consider growing evidence for additional factors that modulate disease risk. Furthermore, future research should adopt new technologies, including developments in remote sensing and system dynamics modelling techniques, to enable a better understanding and mitigation of mosquito-borne diseases in a changing world.
Collapse
Affiliation(s)
- Lydia H V Franklinos
- Centre for Biodiversity and Environment Research, Division of Biosciences, University College London, London, UK; Institute for Global Health, University College London, London, UK.
| | - Kate E Jones
- Centre for Biodiversity and Environment Research, Division of Biosciences, University College London, London, UK; Institute of Zoology, Zoological Society of London, London, UK
| | - David W Redding
- Centre for Biodiversity and Environment Research, Division of Biosciences, University College London, London, UK
| | - Ibrahim Abubakar
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
128
|
Suggitt AJ, Lister DG, Thomas CD. Widespread Effects of Climate Change on Local Plant Diversity. Curr Biol 2019; 29:2905-2911.e2. [PMID: 31422880 DOI: 10.1016/j.cub.2019.06.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/17/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022]
Abstract
Human activity has sent many measures of biodiversity into long-term decline, and there are suggestions that the sheer scale of this impact is sufficient to consider the modern era as a geological epoch of its own, known as "The Anthropocene" [1]. However, recent meta-analyses show that local alpha diversity is often stable or slightly increasing [2-4]. Here, we show that the local alpha diversity (species richness) of plants found in quadrats and transects has increased the most in cooler regions of the world that have experienced the highest absolute changes (i.e., changes in either direction) in climate. The greatest statistical support is for the effects of precipitation change. On average, alpha diversity declined slightly (-4.2% per decade) in the third of sites that experienced the lowest precipitation change but increased (+10.8% per decade) in the third of sites with the highest precipitation change. These results suggest that the "perturbation" of local communities during climatic transitions increases the average number of species, at least temporarily, an effect likely to remain important as climate change continues.
Collapse
Affiliation(s)
- Andrew J Suggitt
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Duncan G Lister
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| | - Chris D Thomas
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
129
|
Forister ML, Pelton EM, Black SH. Declines in insect abundance and diversity: We know enough to act now. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.80] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Matthew L. Forister
- Program in Ecology, Evolution and Conservation Biology, Department of BiologyUniversity of Nevada Reno Reno Nevada
| | - Emma M. Pelton
- The Xerces Society for Invertebrate Conservation Portland Oregon
| | - Scott H. Black
- The Xerces Society for Invertebrate Conservation Portland Oregon
| |
Collapse
|
130
|
Zhang M, Gu J, Liu Y. Engineering feasibility, economic viability and environmental sustainability of energy recovery from nitrous oxide in biological wastewater treatment plant. BIORESOURCE TECHNOLOGY 2019; 282:514-519. [PMID: 30878291 DOI: 10.1016/j.biortech.2019.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Currently, the biological wastewater treatment has been challenged by their high energy consumption. An increasing effort has been devoted to exploring energy recovery from nitrous oxide (N2O) as a powerful fuel additive rather than as an unwanted byproduct during biological nitrogen removal. This review aims to offer a holistic and critical analysis of the ideas for N2O production and energy recovery in terms of engineering feasibility, economic viability and environmental sustainability. It turns out that the recoverable energy from N2O produced in municipal wastewater is below 0.03 kWh/m3, which is insignificant compared with the in-plant energy consumption, while complicated process configuration and high cost associated with harvesting and post-purification of N2O will be incurred. An environmental risk related to global climate change due to the emission of residual dissolved N2O is also concerned. Further effort on N2O production and recovery technologies is indeed required to improve the overall energy balance.
Collapse
Affiliation(s)
- Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
131
|
Abstract
Climate risk is expected to impact rural communities in West Africa in multiple ways. However, most current research addresses resilience and climate adaptation at either the national or the household scale; very little is known about community-scale interventions. We interviewed 934 community members in six communities in southeastern Nigeria about sources of climate risk and community-based actions for climate change adaptation. We found these communities contained multiple active and engaged groups that have implemented a wide range of interventions to reduce climate risk, most of which are seen as effective by community members. Flooding was the most common form of risk in this region, but drought, windstorms, and irregular rainy seasons are also frequent, implying that effective climate adaptation will have to be sensitive to multiple types of risk. Structural interventions (constructing roads, bridges, etc.) were the most common type of intervention, suggesting that communities are capable of marshalling considerable organizational and human power for adaptation efforts, even in the absence of external assistance. Efforts to boost community resilience and adaptation to climate change would benefit from first understanding what community actions are currently underway, and working with the groups implementing these actions to support and extend them.
Collapse
|
132
|
Bell JR, Botham MS, Henrys PA, Leech DI, Pearce‐Higgins JW, Shortall CR, Brereton TM, Pickup J, Thackeray SJ. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. GLOBAL CHANGE BIOLOGY 2019; 25:1982-1994. [PMID: 30761691 PMCID: PMC6563090 DOI: 10.1111/gcb.14592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 05/12/2023]
Abstract
Global warming has advanced the timing of biological events, potentially leading to disruption across trophic levels. The potential importance of phenological change as a driver of population trends has been suggested. To fully understand the possible impacts, there is a need to quantify the scale of these changes spatially and according to habitat type. We studied the relationship between phenological trends, space and habitat type between 1965 and 2012 using an extensive UK dataset comprising 269 aphid, bird, butterfly and moth species. We modelled phenologies using generalized additive mixed models that included covariates for geographical (latitude, longitude, altitude), temporal (year, season) and habitat terms (woodland, scrub, grassland). Model selection showed that a baseline model with geographical and temporal components explained the variation in phenologies better than either a model in which space and time interacted or a habitat model without spatial terms. This baseline model showed strongly that phenologies shifted progressively earlier over time, that increasing altitude produced later phenologies and that a strong spatial component determined phenological timings, particularly latitude. The seasonal timing of a phenological event, in terms of whether it fell in the first or second half of the year, did not result in substantially different trends for butterflies. For moths, early season phenologies advanced more rapidly than those recorded later. Whilst temporal trends across all habitats resulted in earlier phenologies over time, agricultural habitats produced significantly later phenologies than most other habitats studied, probably because of nonclimatic drivers. A model with a significant habitat-time interaction was the best-fitting model for birds, moths and butterflies, emphasizing that the rates of phenological advance also differ among habitats for these groups. Our results suggest the presence of strong spatial gradients in mean seasonal timing and nonlinear trends towards earlier seasonal timing that varies in form and rate among habitat types.
Collapse
Affiliation(s)
- James R. Bell
- Rothamsted Insect Survey, Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | | | - Peter A. Henrys
- Centre for Ecology & Hydrology, Lancaster Environment CentreLancasterLancashireUK
| | | | | | - Chris R. Shortall
- Rothamsted Insect Survey, Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | | | | | - Stephen J. Thackeray
- Centre for Ecology & Hydrology, Lancaster Environment CentreLancasterLancashireUK
| |
Collapse
|
133
|
Zhu X, Zhang Q, Xu CY, Sun P, Hu P. Reconstruction of high spatial resolution surface air temperature data across China: A new geo-intelligent multisource data-based machine learning technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:300-313. [PMID: 30772560 DOI: 10.1016/j.scitotenv.2019.02.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Good knowledge of the surface air temperature (SAT) is critical for scientific understanding of ecological environment changes and land-atmosphere thermodynamic interactions. However, sparse and uneven spatial distribution of the temperature gauging stations introduces remarkable uncertainties into analysis of the SAT pattern. From a geo-intelligent perspective, here we proposed a new SAT reconstruction method based on the multisource data and machine learning technique which was developed by considering autocorrelation of the in situ observed SAT in both space and time, or simply STAML, i.e. Geoi-SVM (Geo-Intelligent Support Vector Machine), Geoi-BPNN (Geo-Intelligent Back Propagation Neural Network) and Geoi-RF (Geo-Intelligent Random Forest). The multisource data used in this study include the in situ observed SAT and multisource remotely sensed data such as MODIS land surface temperature, NDVI (Normalized Difference Vegetation Index) data. Intermodel comparisons amidst reconstructed SAT data were done to evaluate reconstructing performance of abovementioned models. Besides, the SAT reconstructed by CART (Classification and Regression Tree) was also included to evaluate the reconstructing performance of the models considered in this study when compared to SAT data by CART algorithm. We found that the estimation error of the reconstructed SAT by the STAML is smaller than 0.5K (Kelvin). In addition, it is interesting to note that the Geoi-RF performs better with Mean Absolute Error (MAE) of lower than 0.25K, and Root Mean Squared Error (RMSE) and Standard Deviation (SD) of lower than 0.5K respectively. Correlation coefficients between the reconstructed SAT by Geoi-RF and the observed SAT are close to 1. Besides, the estimation accuracy of the SAT by the Geoi-RF technique is 18.51-63.17% higher than that by the other techniques considered in this study. This study provides a new idea and technique for reconstruction of SAT over large spatial extent at regional and even global scale.
Collapse
Affiliation(s)
- Xiudi Zhu
- Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China
| | - Qiang Zhang
- Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China.
| | - Chong-Yu Xu
- Department of Geosciences and Hydrology, University of Oslo, N-0316 Oslo, Norway
| | - Peng Sun
- College of Territorial Resource and Tourism, Anhui Normal University, Anhui 241002, China
| | - Pan Hu
- Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
134
|
Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg Top Life Sci 2019; 3:207-219. [DOI: 10.1042/etls20180135] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Biodiversity continues to decline under the effect of multiple human pressures. We give a brief overview of the main pressures on biodiversity, before focusing on the two that have a predominant effect: land-use and climate change. We discuss how interactions between land-use and climate change in terrestrial systems are likely to have greater impacts than expected when only considering these pressures in isolation. Understanding biodiversity changes is complicated by the fact that such changes are likely to be uneven among different geographic regions and species. We review the evidence for variation in terrestrial biodiversity changes, relating differences among species to key ecological characteristics, and explaining how disproportionate impacts on certain species are leading to a spatial homogenisation of ecological communities. Finally, we explain how the overall losses and homogenisation of biodiversity, and the larger impacts upon certain types of species, are likely to lead to strong negative consequences for the functioning of ecosystems, and consequently for human well-being.
Collapse
|
135
|
Analysis of Climate Change Impacts on Tree Species of the Eastern US: Results of DISTRIB-II Modeling. FORESTS 2019. [DOI: 10.3390/f10040302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Forests across the globe are faced with a rapidly changing climate and an enhanced understanding of how these changing conditions may impact these vital resources is needed. Our approach is to use DISTRIB-II, an updated version of the Random Forest DISTRIB model, to model 125 tree species individually from the eastern United States to quantify potential current and future habitat responses under two Representative Concentration Pathways (RCP 8.5 -high emissions which is our current trajectory and RCP 4.5 -lower emissions by implementing energy conservation) and three climate models. Climate change could have large impacts on suitable habitat for tree species in the eastern United States, especially under a high emissions trajectory. On average, of the 125 species, approximately 88 species would gain and 26 species would lose at least 10% of their suitable habitat. The projected change in the center of gravity for each species distribution (i.e., mean center) between current and future habitat moves generally northeast, with 81 species habitat centers potentially moving over 100 km under RCP 8.5. Collectively, our results suggest that many species will experience less pressure in tracking their suitable habitats under a path of lower greenhouse gas emissions.
Collapse
|
136
|
Chen Q, Yin Y, Zhao R, Yang Y, Teixeira da Silva JA, Yu X. Incorporating Local Adaptation Into Species Distribution Modeling of Paeonia mairei, an Endemic Plant to China. FRONTIERS IN PLANT SCIENCE 2019; 10:1717. [PMID: 32047503 PMCID: PMC6997482 DOI: 10.3389/fpls.2019.01717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/06/2019] [Indexed: 05/10/2023]
Abstract
Paeonia (Paeoniaceae), a culturally and economically important plant genus, has an isolated taxonomy while the evolution of this genus is unclear. A plant species endemic to southwest China, Paeonia mairei is precious germplasm for evolution-related research and cultivar improvement, and its conservation is urgent. However, little is known about its patterns of habitat distribution and responses to climate change. Using 98 occurrence sites and data of 19 bioclimatic variables, we conducted principal component analysis and hierarchical cluster analysis to delineate different climatic populations. Maximum entropy algorithm (MaxEnt) was applied to each population to evaluate the importance of environmental variables in shaping their distribution, and to identify distribution shifts under different climate change scenarios. We also applied MaxEnt to all of the P. mairei presence sites (P_Whole) to evaluate the need to construct separate species distribution models for separate populations rather than a common approach by treating them as a whole. Our results show that local adaptation exists within the distribution range of P. mairei and that all presence sites were clustered into a western population (P_West) and an eastern population (P_East). Two variables (precipitation of the driest month and temperature seasonality) are important when shaping the distribution of P_West, and another two variables (mean diurnal range and mean temperature of the wettest quarter) are important for P_East. Both populations are likely to shift upward under climate change, while P_East may lose most current suitable areas while P_West may not. P_Whole produced a narrower area compared to the combination of P_West and P_East but a suitable area (south Chongqing) may have been missed in the prediction. Accordingly, a population-based approach in constructing a species distribution model is needed to provide a detailed appreciation of the distribution of P. mairei, allowing for a population-based conservation strategy. In this case, it could include assisted migration to new and suitable distribution areas for P_West and in situ conservation in high elevation regions for P_East. The results of our study could be a useful reference for implementing the long-term conservation and further research of P. mairei.
Collapse
Affiliation(s)
- Qihang Chen
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Yijia Yin
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Rui Zhao
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Yong Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | | | - Xiaonan Yu
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- *Correspondence: Xiaonan Yu,
| |
Collapse
|
137
|
Stone AC, Gehring CA, Cobb NS, Whitham TG. Genetic-Based Susceptibility of a Foundation Tree to Herbivory Interacts With Climate to Influence Arthropod Community Composition, Diversity, and Resilience. FRONTIERS IN PLANT SCIENCE 2018; 9:1831. [PMID: 30619404 PMCID: PMC6298196 DOI: 10.3389/fpls.2018.01831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Understanding how genetic-based traits of plants interact with climate to affect associated communities will help improve predictions of climate change impacts on biodiversity. However, few community-level studies have addressed such interactions. Pinyon pine (Pinus edulis) in the southwestern U.S. shows genetic-based resistance and susceptibility to pinyon needle scale (Matsucoccus acalyptus). We sought to determine if susceptibility to scale herbivory influenced the diversity and composition of the extended community of 250+ arthropod species, and if this influence would be consistent across consecutive years, an extreme drought year followed by a moderate drought year. Because scale insects alter the architecture of susceptible trees, it is difficult to separate the direct influences of susceptibility on arthropod communities from the indirect influences of scale-altered tree architecture. To separate these influences, scales were experimentally excluded from susceptible trees for 15 years creating susceptible trees with the architecture of resistant trees, hereafter referred to as scale-excluded trees. Five patterns emerged. (1) In both years, arthropod abundance was 3-4X lower on susceptible trees compared to resistant and scale-excluded trees. (2) Species accumulation curves show that alpha and gamma diversity were 2-3X lower on susceptible trees compared to resistant and scale-excluded trees. (3) Reaction norms of arthropod richness and abundance on individual tree genotypes across years showed genotypic variation in the community response to changes in climate. (4) The genetic-based influence of susceptibility on arthropod community composition is climate dependent. During extreme drought, community composition on scale-excluded trees resembled susceptible trees indicating composition was strongly influenced by tree genetics independent of tree architecture. However, under moderate drought, community composition on scale-excluded trees resembled resistant trees indicating traits associated with tree architecture became more important. (5) One year after extreme drought, the arthropod community rebounded sharply. However, there was a much greater rebound in richness and abundance on resistant compared to susceptible trees suggesting that reduced resiliency in the arthropod community is associated with susceptibility. These results argue that individual genetic-based plant-herbivore interactions can directly and indirectly impact community-level diversity, which is modulated by climate. Understanding such interactions is important for assessing the impacts of climate change on biodiversity.
Collapse
Affiliation(s)
- Adrian C. Stone
- Department of Biology, Metropolitan State University, Denver, CO, United States
| | - Catherine A. Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| | - Neil S. Cobb
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| | - Thomas G. Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| |
Collapse
|
138
|
Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc Natl Acad Sci U S A 2018; 115:13294-13299. [PMID: 30530689 PMCID: PMC6310845 DOI: 10.1073/pnas.1807745115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how land-use and climate change interact is of major importance to project the future of biodiversity. We assessed how the global species richness of vertebrates may become affected by these two threats, especially under a scenario following the Paris Agreement, which aims to limit global warming to 2 °C or even 1.5 °C. We found that combined effects of climate and land-use change will be most severe under such a scenario, due to the massive expansion of bioenergy cropland for climate change mitigation. While our findings suggest that the Paris goals will reduce direct climate change impacts on biodiversity, biodiversity will suffer as severely as under a high-level emission scenario if bioenergy remains a major component of climate change mitigation strategies. Climate and land-use change interactively affect biodiversity. Large-scale expansions of bioenergy have been suggested as an important component for climate change mitigation. Here we use harmonized climate and land-use projections to investigate their potential combined impacts on global vertebrate diversity under a low- and a high-level emission scenario. We combine climate-based species distribution models for the world’s amphibians, birds, and mammals with land-use change simulations and identify areas threatened by both climate and land-use change in the future. The combined projected effects of climate and land-use change on vertebrate diversity are similar under the two scenarios, with land-use change effects being stronger under the low- and climate change effects under the high-emission scenario. Under the low-emission scenario, increases in bioenergy cropland may cause severe impacts in biodiversity that are not compensated by lower climate change impacts. Under this low-emission scenario, larger proportions of species distributions and a higher number of small-range species may become impacted by the combination of land-use and climate change than under the high-emission scenario, largely a result of bioenergy cropland expansion. Our findings highlight the need to carefully consider both climate and land-use change when projecting biodiversity impacts. We show that biodiversity is likely to suffer severely if bioenergy cropland expansion remains a major component of climate change mitigation strategies. Our study calls for an immediate and significant reduction in energy consumption for the benefit of both biodiversity and to achieve the goals of the Paris Agreement.
Collapse
|
139
|
|
140
|
Affiliation(s)
- Guy Midgley
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa.
| |
Collapse
|