101
|
Safdari P, Höckerstedt L, Brosche M, Salojärvi J, Laine AL. Genotype-Specific Expression and NLR Repertoire Contribute to Phenotypic Resistance Diversity in Plantago lanceolata. FRONTIERS IN PLANT SCIENCE 2021; 12:675760. [PMID: 34322142 PMCID: PMC8311189 DOI: 10.3389/fpls.2021.675760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
High levels of phenotypic variation in resistance appears to be nearly ubiquitous across natural host populations. Molecular processes contributing to this variation in nature are still poorly known, although theory predicts resistance to evolve at specific loci driven by pathogen-imposed selection. Nucleotide-binding leucine-rich repeat (NLR) genes play an important role in pathogen recognition, downstream defense responses and defense signaling. Identifying the natural variation in NLRs has the potential to increase our understanding of how NLR diversity is generated and maintained, and how to manage disease resistance. Here, we sequenced the transcriptomes of five different Plantago lanceolata genotypes when inoculated by the same strain of obligate fungal pathogen Podosphaera plantaginis. A de novo transcriptome assembly of RNA-sequencing data yielded 24,332 gene models with N50 value of 1,329 base pairs and gene space completeness of 66.5%. The gene expression data showed highly varying responses where each plant genotype demonstrated a unique expression profile in response to the pathogen, regardless of the resistance phenotype. Analysis on the conserved NB-ARC domain demonstrated a diverse NLR repertoire in P. lanceolata consistent with the high phenotypic resistance diversity in this species. We find evidence of selection generating diversity at some of the NLR loci. Jointly, our results demonstrate that phenotypic resistance diversity results from a crosstalk between different defense mechanisms. In conclusion, characterizing the architecture of resistance in natural host populations may shed unprecedented light on the potential of evolution to generate variation.
Collapse
Affiliation(s)
- Pezhman Safdari
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Layla Höckerstedt
- Climate System Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Mikael Brosche
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
102
|
Dillon MM, Ruiz-Bedoya T, Bundalovic-Torma C, Guttman KM, Kwak H, Middleton MA, Wang PW, Horuz S, Aysan Y, Guttman DS. Comparative genomic insights into the epidemiology and virulence of plant pathogenic pseudomonads from Turkey. Microb Genom 2021; 7:000585. [PMID: 34227931 PMCID: PMC8477409 DOI: 10.1099/mgen.0.000585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Present address: Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin M. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Haejin Kwak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Maggie A. Middleton
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Pauline W. Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sumer Horuz
- Department of Plant Protection, Erciyes University, Kayseri, Turkey
| | - Yesim Aysan
- Department of Plant Protection, University of Çukurova, Adana, Turkey
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
103
|
Duxbury Z, Wu CH, Ding P. A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:155-184. [PMID: 33689400 DOI: 10.1146/annurev-arplant-080620-104948] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain leucine-rich repeat receptors (NLRs) play important roles in the innate immune systems of both plants and animals. Recent breakthroughs in NLR biochemistry and biophysics have revolutionized our understanding of how NLR proteins function in plant immunity. In this review, we summarize the latest findings in plant NLR biology and draw direct comparisons to NLRs of animals. We discuss different mechanisms by which NLRs recognize their ligands in plants and animals. The discovery of plant NLR resistosomes that assemble in a comparable way to animal inflammasomes reinforces the striking similarities between the formation of plant and animal NLR complexes. Furthermore, we discuss the mechanisms by which plant NLRs mediate immune responses and draw comparisons to similar mechanisms identified in animals. Finally, we summarize the current knowledge of the complex genetic architecture formed by NLRs in plants and animals and the roles of NLRs beyond pathogen detection.
Collapse
Affiliation(s)
- Zane Duxbury
- Jealott's Hill International Research Centre, Syngenta, Bracknell RG42 6EY, United Kingdom;
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
- Current affiliation: Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands;
| |
Collapse
|
104
|
González-García M, Pérez-López E. Looking for a Cultured Surrogate for Effectome Studies of the Clubroot Pathogen. Front Microbiol 2021; 12:650307. [PMID: 34122364 PMCID: PMC8193517 DOI: 10.3389/fmicb.2021.650307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Melaine González-García
- Department of Plant Sciences, Faculté des Sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada
| | - Edel Pérez-López
- Department of Plant Sciences, Faculté des Sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC, Canada
- Centre de recherche en sciences du végétal (Centre SÈVE), Fonds de recherche du Québec - Nature et technologies (FRQNT), Québec, QC, Canada
| |
Collapse
|
105
|
Bi G, Su M, Li N, Liang Y, Dang S, Xu J, Hu M, Wang J, Zou M, Deng Y, Li Q, Huang S, Li J, Chai J, He K, Chen YH, Zhou JM. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 2021; 184:3528-3541.e12. [PMID: 33984278 DOI: 10.1016/j.cell.2021.05.003] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiachao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jizong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yanan Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijia Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jijie Chai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Max-Planck Institute for Plant Breeding Research, Cologne, Germany; Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yu-Hang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
106
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
107
|
Ordon J, Martin P, Erickson JL, Ferik F, Balcke G, Bonas U, Stuttmann J. Disentangling cause and consequence: genetic dissection of the DANGEROUS MIX2 risk locus, and activation of the DM2h NLR in autoimmunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1008-1023. [PMID: 33629456 DOI: 10.1111/tpj.15215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain-leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.
Collapse
Affiliation(s)
- Jana Ordon
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Patrick Martin
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Jessica Lee Erickson
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Filiz Ferik
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Gerd Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Ulla Bonas
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| |
Collapse
|
108
|
Pardal AJ, Piquerez SJM, Dominguez-Ferreras A, Frungillo L, Mastorakis E, Reilly E, Latrasse D, Concia L, Gimenez-Ibanez S, Spoel SH, Benhamed M, Ntoukakis V. Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathog 2021; 17:e1009572. [PMID: 34015058 PMCID: PMC8171942 DOI: 10.1371/journal.ppat.1009572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/02/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.
Collapse
Affiliation(s)
- Alonso J. Pardal
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sophie J. M. Piquerez
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | | | - Lucas Frungillo
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Emma Reilly
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
109
|
Liu M, Li Y, Zhu Y, Sun Y, Wang G. Maize nicotinate N-methyltransferase interacts with the NLR protein Rp1-D21 and modulates the hypersensitive response. MOLECULAR PLANT PATHOLOGY 2021; 22:564-579. [PMID: 33675291 PMCID: PMC8035639 DOI: 10.1111/mpp.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Most plant intracellular immune receptors belong to nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between NLRs and their corresponding pathogen effectors often triggers a hypersensitive response (HR) at the pathogen infection sites. The nicotinate N-methyltransferase (NANMT) is responsible for the conversion of nicotinate to trigonelline in plants. However, the role of NANMT in plant defence response is unknown. In this study, we demonstrated that the maize ZmNANMT, but not its close homolog ZmCOMT, an enzyme in the lignin biosynthesis pathway, suppresses the HR mediated by the autoactive NLR protein Rp1-D21 and its N-terminal coiled-coil signalling domain (CCD21 ). ZmNANMT, but not ZmCOMT, interacts with CCD21 , and they form a complex with HCT1806 and CCoAOMT2, two key enzymes in lignin biosynthesis, which can also suppress the autoactive HR mediated by Rp1-D21. ZmNANMT is mainly localized in the cytoplasm and nucleus, and either localization is important for suppressing the HR phenotype. These results lay the foundation for further elucidating the molecular mechanism of NANMTs in plant disease resistance.
Collapse
Affiliation(s)
- Mengjie Liu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
- The Key Laboratory of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Ya‐Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yu‐Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Guan‐Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| |
Collapse
|
110
|
Mooney BC, Mantz M, Graciet E, Huesgen PF. Cutting the line: manipulation of plant immunity by bacterial type III effector proteases. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3395-3409. [PMID: 33640987 DOI: 10.1093/jxb/erab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Pathogens and their hosts are engaged in an evolutionary arms race. Pathogen-derived effectors promote virulence by targeting components of a host's innate immune system, while hosts have evolved proteins that sense effectors and trigger a pathogen-specific immune response. Many bacterial effectors are translocated into host cells using type III secretion systems. Type III effector proteases irreversibly modify host proteins by cleavage of peptide bonds and are prevalent among both plant and animal bacterial pathogens. In plants, the study of model effector proteases has yielded important insights into the virulence mechanisms employed by pathogens to overcome their host's immune response, as well as into the mechanisms deployed by their hosts to detect these effector proteases and counteract their effects. In recent years, the study of a larger number of effector proteases, across a wider range of pathogens, has yielded novel insights into their functions and recognition. One key limitation that remains is the lack of methods to detect protease cleavage at the proteome-wide level. We review known substrates and mechanisms of plant pathogen type III effector proteases and compare their functions with those of known type III effector proteases of mammalian pathogens. Finally, we discuss approaches to uncover their function on a system-wide level.
Collapse
Affiliation(s)
- Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
111
|
Göktay M, Fulgione A, Hancock AM. A New Catalog of Structural Variants in 1,301 A. thaliana Lines from Africa, Eurasia, and North America Reveals a Signature of Balancing Selection at Defense Response Genes. Mol Biol Evol 2021; 38:1498-1511. [PMID: 33247723 PMCID: PMC8042739 DOI: 10.1093/molbev/msaa309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and F-box genes. This implies the presence of a "core" genome underlying basic cellular processes and a "flexible" genome that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.
Collapse
Affiliation(s)
- Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
112
|
Parys K, Colaianni NR, Lee HS, Hohmann U, Edelbacher N, Trgovcevic A, Blahovska Z, Lee D, Mechtler A, Muhari-Portik Z, Madalinski M, Schandry N, Rodríguez-Arévalo I, Becker C, Sonnleitner E, Korte A, Bläsi U, Geldner N, Hothorn M, Jones CD, Dangl JL, Belkhadir Y. Signatures of antagonistic pleiotropy in a bacterial flagellin epitope. Cell Host Microbe 2021; 29:620-634.e9. [DOI: 10.1016/j.chom.2021.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022]
|
113
|
Chen X, Tong C, Zhang X, Song A, Hu M, Dong W, Chen F, Wang Y, Tu J, Liu S, Tang H, Zhang L. A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:615-630. [PMID: 33073445 PMCID: PMC7955885 DOI: 10.1111/pbi.13493] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 05/03/2023]
Abstract
Rapeseed (Brassica napus L.) is a recent allotetraploid crop, which is well known for its high oil production. Here, we report a high-quality genome assembly of a typical semi-winter rapeseed cultivar, 'Zhongshuang11' (hereafter 'ZS11'), using a combination of single-molecule sequencing and chromosome conformation capture (Hi-C) techniques. Most of the high-confidence sequences (93.1%) were anchored to the individual chromosomes with a total of 19 centromeres identified, matching the exact chromosome count of B. napus. The repeat sequences in the A and C subgenomes in B. napus expanded significantly from 500 000 years ago, especially over the last 100 000 years. These young and recently amplified LTR-RTs showed dispersed chromosomal distribution but significantly preferentially clustered into centromeric regions. We exhaustively annotated the nucleotide-binding leucine-rich repeat (NLR) gene repertoire, yielding a total of 597 NLR genes in B. napus genome and 17.4% of which are paired (head-to-head arrangement). Based on the resequencing data of 991 B. napus accessions, we have identified 18 759 245 single nucleotide polymorphisms (SNPs) and detected a large number of genomic regions under selective sweep among the three major ecotype groups (winter, semi-winter and spring) in B. napus. We found 49 NLR genes and five NLR gene pairs colocated in selective sweep regions with different ecotypes, suggesting a rapid diversification of NLR genes during the domestication of B. napus. The high quality of our B. napus 'ZS11' genome assembly could serve as an important resource for the study of rapeseed genomics and reveal the genetic variations associated with important agronomic traits.
Collapse
Affiliation(s)
- Xuequn Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil CropsThe Ministry of Agriculture and Rural Affairs of PRCOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Aixia Song
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ming Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil CropsThe Ministry of Agriculture and Rural Affairs of PRCOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Wei Dong
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fei Chen
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Rapeseed ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil CropsThe Ministry of Agriculture and Rural Affairs of PRCOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
114
|
Littlejohn GR, Breen S, Smirnoff N, Grant M. Chloroplast immunity illuminated. THE NEW PHYTOLOGIST 2021; 229:3088-3107. [PMID: 33206379 DOI: 10.1111/nph.17076] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/12/2020] [Indexed: 05/04/2023]
Abstract
The chloroplast has recently emerged as pivotal to co-ordinating plant defence responses and as a target of plant pathogens. Beyond its central position in oxygenic photosynthesis and primary metabolism - key targets in the complex virulence strategies of diverse pathogens - the chloroplast integrates, decodes and responds to environmental signals. The capacity of chloroplasts to synthesize phytohormones and a diverse range of secondary metabolites, combined with retrograde and reactive oxygen signalling, provides exquisite flexibility to both perceive and respond to biotic stresses. These processes also represent a plethora of opportunities for pathogens to evolve strategies to directly or indirectly target 'chloroplast immunity'. This review covers the contribution of the chloroplast to pathogen associated molecular pattern and effector triggered immunity as well as systemic acquired immunity. We address phytohormone modulation of immunity and surmise how chloroplast-derived reactive oxygen species underpin chloroplast immunity through indirect evidence inferred from genetic modification of core chloroplast components and direct pathogen targeting of the chloroplast. We assess the impact of transcriptional reprogramming of nuclear-encoded chloroplast genes during disease and defence and look at future research challenges.
Collapse
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Susan Breen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
115
|
Baudin M, Martin EC, Sass C, Hassan JA, Bendix C, Sauceda R, Diplock N, Specht CD, Petrescu AJ, Lewis JD. A natural diversity screen in Arabidopsis thaliana reveals determinants for HopZ1a recognition in the ZAR1-ZED1 immune complex. PLANT, CELL & ENVIRONMENT 2021; 44:629-644. [PMID: 33103794 DOI: 10.1111/pce.13927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Pathogen pressure on hosts can lead to the evolution of genes regulating the innate immune response. By characterizing naturally occurring polymorphisms in immune receptors, we can better understand the molecular determinants of pathogen recognition. ZAR1 is an ancient Arabidopsis thaliana NLR (Nucleotide-binding [NB] Leucine-rich-repeat [LRR] Receptor) that recognizes multiple secreted effector proteins from the pathogenic bacteria Pseudomonas syringae and Xanthomonas campestris through its interaction with receptor-like cytoplasmic kinases (RLCKs). ZAR1 was first identified for its role in recognizing P. syringae effector HopZ1a, through its interaction with the RLCK ZED1. To identify additional determinants of HopZ1a recognition, we performed a computational screen for ecotypes from the 1001 Genomes project that were likely to lack HopZ1a recognition, and tested ~300 ecotypes. We identified ecotypes containing polymorphisms in ZAR1 and ZED1. Using our previously established Nicotiana benthamiana transient assay and Arabidopsis ecotypes, we tested for the effect of naturally occurring polymorphisms on ZAR1 interactions and the immune response. We identified key residues in the NB or LRR domain of ZAR1 that impact the interaction with ZED1. We demonstrate that natural diversity combined with functional assays can help define the molecular determinants and interactions necessary to regulate immune induction in response to pathogens.
Collapse
Affiliation(s)
- Maël Baudin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Eliza C Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Chodon Sass
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Claire Bendix
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Rolin Sauceda
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Nathan Diplock
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Chelsea D Specht
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
- Plant Gene Expression Center, United States Department of Agriculture, Albany, California, USA
| |
Collapse
|
116
|
Inoue Y, Takikawa Y. Primers for specific detection and identification of Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis. Appl Microbiol Biotechnol 2021; 105:1575-1584. [PMID: 33511445 DOI: 10.1007/s00253-021-11118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
Bacterial leaf spot and bacterial leaf blight are global threats to the cultivation of cruciferous vegetables, and it is necessary to develop methods to easily detect, identify, and distinguish the causative pathogens Pseudomonas syringae pv. maculicola (Psm) and P. cannabina pv. alisalensis (Pca). Here, we used the sequence specificity of the exchangeable effector loci flanking the hrp gene cluster to design primers that can help detect and discriminate between Psm and Pca. Primers common to both bacteria (hrpK_fw1 and hrpK_fw2) were designed within hrpK at the end of the hrp gene cluster. Psm-specific primers (MAC_rv1 and MAC_rv2) were designed in hopPtoB1 and Pca-specific primers (ALS_rv1 and ALS_rv2) were designed in hopX1 adjacent to hrpK. PCR using hrpK_fw1 and MAC_rv1 or hrpK_fw2 and MAC_rv2 amplified DNA fragments of only Psm, P. syringae pv. tomato (causal agent of tomato bacterial speck), and P. syringae pv. spinaciae (causal agent of spinach bacterial leaf spot), among 76 strains of phytopathogenic bacteria. PCR using hrpK_fw1 and ALS_rv1 or hrpK_2 and ALS_rv2 amplified DNA fragments of only Pca. Multiplex PCR with these primers could easily distinguish Psm and Pca from bacterial colonies isolated on growth media and detect the pathogen in symptomatic leaves. Multiplex nested PCR with the primers detected contamination in one Psm- and/or one Pca-infected seeds in 1000 seeds. These results suggest that these PCR primers could help detect and discriminate Psm and Pca. KEY POINTS: • We investigated Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis. • Novel primers common to both bacteria were designed following genome comparison. • Multiplex PCR with new primers could discriminate Psm and Pca.
Collapse
Affiliation(s)
- Yasuhiro Inoue
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Yuichi Takikawa
- Laboratory of Plant Pathology, Graduate School of Agriculture, and Graduate School of Science and Technology, Shizuoka University, Shizuoka, Shizuoka, Japan
| |
Collapse
|
117
|
Abstract
Population genomics is transforming our understanding of pathogen biology and evolution, and contributing to the prevention and management of disease in diverse crops. We provide an overview of key methods in bacterial population genomics and describe recent work focusing on three topics of critical importance to plant pathology: (i) resolving pathogen origins and transmission pathways during outbreak events, (ii) identifying the genetic basis of host specificity and virulence, and (iii) understanding how pathogens evolve in response to changing agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Christina Straub
- Institute of Environmental Science and Research, Health and Environment, Auckland, New Zealand
- Genomics Aotearoa, New Zealand
| | - Elena Colombi
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Honour C McCann
- New Zealand Institute for Advanced Study, Massey University, Albany, New Zealand
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
118
|
NOD-like receptor-mediated plant immunity: from structure to cell death. Nat Rev Immunol 2020; 21:305-318. [PMID: 33293618 DOI: 10.1038/s41577-020-00473-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Animal and plant immune systems use intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) to detect pathogens, resulting in the activation of immune responses that are often associated with localized host cell death. Whereas vertebrate NLRs detect evolutionarily conserved molecular patterns and have undergone comparatively little copy number expansion, plant NLRs detect virulence factors that have often diversified in plant pathogen populations, and thus plant NLRs have been subject to parallel diversification. Plant NLRs sense the presence of virulence factors with enzymatic virulence activity often indirectly through their modification of host target proteins. By contrast, phytopathogenic virulence factors without enzymatic activity are usually recognized by NLRs directly by their structure. Structural and biochemical analyses have shown that both indirect and direct recognition of plant pathogens trigger the oligomerization of plant NLRs into active complexes. Assembly into three-layered ring-like structures has emerged as a common principle of NLR activation in plants and animals, but with distinct amino-terminal domains initiating different signalling pathways. Collectively, these analyses point to host cell membranes as a convergence point for activated plant NLRs and the disruption of cellular ion homeostasis as a possible major factor in NLR-triggered cell death signalling.
Collapse
|
119
|
Bhandari DD, Brandizzi F. Plant endomembranes and cytoskeleton: moving targets in immunity. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:8-16. [PMID: 33099211 DOI: 10.1016/j.pbi.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Pathogens attack plant cells to divert resources toward pathogen proliferation. To resist pathogens, plant cells rely on multilayered signaling pathways that hinge upon the secretory pathway for the synthesis and trafficking of pathogen sensors and defense molecules. In recent years, significant strides have been made in the understanding of the functional relationship between pathogen response and membrane traffic. Here we discuss how the plant cytoskeleton and endomembranes are targeted by pathogen effectors and highlight an emerging role of membrane contact sites in biotic stress responses.
Collapse
Affiliation(s)
- Deepak D Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
120
|
Harris JM, Balint-Kurti P, Bede JC, Day B, Gold S, Goss EM, Grenville-Briggs LJ, Jones KM, Wang A, Wang Y, Mitra RM, Sohn KH, Alvarez ME. What are the Top 10 Unanswered Questions in Molecular Plant-Microbe Interactions? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1354-1365. [PMID: 33106084 DOI: 10.1094/mpmi-08-20-0229-cr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.The past few decades have seen major discoveries in the field of molecular plant-microbe interactions. As the result of technological and intellectual advances, we are now able to answer questions at a level of mechanistic detail that we could not have imagined possible 20 years ago. The MPMI Editorial Board felt it was time to take stock and reassess. What big questions remain unanswered? We knew that to identify the fundamental, overarching questions that drive our research, we needed to do this as a community. To reach a diverse audience of people with different backgrounds and perspectives, working in different areas of plant-microbe interactions, we queried the more than 1,400 participants at the 2019 International Congress on Molecular Plant-Microbe Interactions meeting in Glasgow. This group effort resulted in a list of ten, broad-reaching, fundamental questions that influence and inform our research. Here, we introduce these Top 10 unanswered questions, giving context and a brief description of the issues. Each of these questions will be the subject of a detailed review in the coming months. We hope that this process of reflecting on what is known and unknown and identifying the themes that underlie our research will provide a framework to use going forward, giving newcomers a sense of the mystery of the big questions and inspiring new avenues and novel insights.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| | - Peter Balint-Kurti
- USDA-ARS, Plant Science Research Unit, Raleigh NC, and Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7613, U.S.A
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Scott Gold
- Plant Pathology Department, University of Georgia, USDA-ARS, Athens, GA 30605-2720, U.S.A
| | - Erica M Goss
- Plant Pathology Department and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, U.S.A
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, U.S.A
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Raka M Mitra
- Biology Department, Carleton College, Northfield, MN 55057, U.S.A
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Maria Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
121
|
Murphree C, Kim S, Karre S, Samira R, Balint‐Kurti P. Use of virus-induced gene silencing to characterize genes involved in modulating hypersensitive cell death in maize. MOLECULAR PLANT PATHOLOGY 2020; 21:1662-1676. [PMID: 33037769 PMCID: PMC7694674 DOI: 10.1111/mpp.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 05/22/2023]
Abstract
Plant disease resistance proteins (R-proteins) detect specific pathogen-derived molecules, triggering a defence response often including a rapid localized cell death at the point of pathogen penetration called the hypersensitive response (HR). The maize Rp1-D21 gene encodes a protein that triggers a spontaneous HR causing spots on leaves in the absence of any pathogen. Previously, we used fine mapping and functional analysis in a Nicotiana benthamiana transient expression system to identify and characterize a number of genes associated with variation in Rp1-D21-induced HR. Here we describe a system for characterizing genes mediating HR, using virus-induced gene silencing (VIGS) in a maize line carrying Rp1-D21. We assess the roles of 12 candidate genes. Three of these genes, SGT1, RAR1, and HSP90, are required for HR induced by a number of R-proteins across several plant-pathogen systems. We confirmed that maize HSP90 was required for full Rp1-D21-induced HR. However, suppression of SGT1 expression unexpectedly increased the severity of Rp1-D21-induced HR while suppression of RAR1 expression had no measurable effect. We confirmed the effects on HR of two genes we had previously validated in the N. benthamiana system, hydroxycinnamoyltransferase and caffeoyl CoA O-methyltransferase. We further showed the suppression the expression of two previously uncharacterized, candidate genes, IQ calmodulin binding protein (IQM3) and vacuolar protein sorting protein 37, suppressed Rp1-D21-induced HR. This approach is an efficient way to characterize the roles of genes modulating the hypersensitive defence response and other dominant lesion phenotypes in maize.
Collapse
Affiliation(s)
- Colin Murphree
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research Institute (FBRI)Department of Plant and Soil ScienceTexas Tech UniversityTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
122
|
Jayaraman J, Yoon M, Applegate ER, Stroud EA, Templeton MD. AvrE1 and HopR1 from Pseudomonas syringae pv. actinidiae are additively required for full virulence on kiwifruit. MOLECULAR PLANT PATHOLOGY 2020; 21:1467-1480. [PMID: 32969167 PMCID: PMC7548996 DOI: 10.1111/mpp.12989] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 06/01/2023]
Abstract
Pseudomonas syringae pv. actinidiae ICMP 18884 biovar 3 (Psa3) produces necrotic lesions during infection of its kiwifruit host. Bacterial growth in planta and lesion formation are dependent upon a functional type III secretion system (T3S), which translocates multiple effector proteins into host cells. Associated with the T3S locus is the conserved effector locus (CEL), which has been characterized and shown to be essential for the full virulence in other P. syringae pathovars. Two effectors at the CEL, hopM1 and avrE1, as well as an avrE1-related non-CEL effector, hopR1, have been shown to be redundant in the model pathogen P. syringae pv. tomato DC3000 (Pto), a close relative of Psa. However, it is not known whether CEL-related effectors are required for Psa pathogenicity. The Psa3 allele of hopM1, and its associated chaperone, shcM, have diverged significantly from their orthologs in Pto. Furthermore, the CEL effector hopAA1-1, as well as a related non-CEL effector, hopAA1-2, have both been pseudogenized. We have shown that HopM1 does not contribute to Psa3 virulence due to a truncation in shcM, a truncation conserved in the Psa lineage, probably due to the need to evade HopM1-triggered immunity in kiwifruit. We characterized the virulence contribution of CEL and related effectors in Psa3 and found that only avrE1 and hopR1, additively, are required for in planta growth and lesion production. This is unlike the redundancy described for these effectors in Pto and indicates that these two Psa3 genes are key determinants essential for kiwifruit bacterial canker disease.
Collapse
Affiliation(s)
- Jay Jayaraman
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- Bio‐Protection Research CentreLincolnNew Zealand
| | - Minsoo Yoon
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Emma R. Applegate
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Present address:
AgResearch Ltd., Grasslands Research CentrePalmerston NorthNew Zealand
| | - Erin A. Stroud
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Matthew D. Templeton
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- Bio‐Protection Research CentreLincolnNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
123
|
Panstruga R, Moscou MJ. What is the Molecular Basis of Nonhost Resistance? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1253-1264. [PMID: 32808862 DOI: 10.1094/mpmi-06-20-0161-cr] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.Nonhost resistance is typically considered the ability of a plant species to repel all attempts of a pathogen species to colonize it and reproduce on it. Based on this common definition, nonhost resistance is presumed to be very durable and, thus, of great interest for its potential use in agriculture. Despite considerable research efforts, the molecular basis of this type of plant immunity remains nebulous. We here stress the fact that "nonhost resistance" is a phenomenological rather than a mechanistic concept that comprises more facets than typically considered. We further argue that nonhost resistance essentially relies on the very same genes and pathways as other types of plant immunity, of which some may act as bottlenecks for particular pathogens on a given plant species or under certain conditions. Thus, in our view, the frequently used term "nonhost genes" is misleading and should be avoided. Depending on the plant-pathogen combination, nonhost resistance may involve the recognition of pathogen effectors by host immune sensor proteins, which might give rise to host shifts or host range expansions due to evolutionary-conditioned gains and losses in respective armories. Thus, the extent of nonhost resistance also defines pathogen host ranges. In some instances, immune-related genes can be transferred across plant species to boost defense, resulting in augmented disease resistance. We discuss future routes for deepening our understanding of nonhost resistance and argue that the confusing term "nonhost resistance" should be used more cautiously in the light of a holistic view of plant immunity.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringer Weg 1, 52056 Aachen, Germany
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, United Kingdom
| |
Collapse
|
124
|
Sustained Incompatibility between MAPK Signaling and Pathogen Effectors. Int J Mol Sci 2020; 21:ijms21217954. [PMID: 33114762 PMCID: PMC7672596 DOI: 10.3390/ijms21217954] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
In plants, Mitogen-Activated Protein Kinases (MAPKs) are important signaling components involved in developemental processes as well as in responses to biotic and abiotic stresses. In this review, we focus on the roles of MAPKs in Effector-Triggered Immunity (ETI), a specific layer of plant defense responses dependent on the recognition of pathogen effector proteins. Having inspected the literature, we synthesize the current state of knowledge concerning this topic. First, we describe how pathogen effectors can manipulate MAPK signaling to promote virulence, and how in parallel plants have developed mechanisms to protect themselves against these interferences. Then, we discuss the striking finding that the recognition of pathogen effectors can provoke a sustained activation of the MAPKs MPK3/6, extensively analyzing its implications in terms of regulation and functions. In line with this, we also address the question of how a durable activation of MAPKs might affect the scope of their substrates, and thereby mediate the emergence of possibly new ETI-specific responses. By highlighting the sometimes conflicting or missing data, our intention is to spur further research in order to both consolidate and expand our understanding of MAPK signaling in immunity.
Collapse
|
125
|
Saile SC, Jacob P, Castel B, Jubic LM, Salas-Gonzáles I, Bäcker M, Jones JDG, Dangl JL, El Kasmi F. Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor" immune receptor functions. PLoS Biol 2020; 18:e3000783. [PMID: 32925907 PMCID: PMC7514072 DOI: 10.1371/journal.pbio.3000783] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/24/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
Plant nucleotide-binding (NB) leucine-rich repeat (LRR) receptor (NLR) proteins function as intracellular immune receptors that perceive the presence of pathogen-derived virulence proteins (effectors) to induce immune responses. The 2 major types of plant NLRs that “sense” pathogen effectors differ in their N-terminal domains: these are Toll/interleukin-1 receptor resistance (TIR) domain-containing NLRs (TNLs) and coiled-coil (CC) domain-containing NLRs (CNLs). In many angiosperms, the RESISTANCE TO POWDERY MILDEW 8 (RPW8)-CC domain containing NLR (RNL) subclass of CNLs is encoded by 2 gene families, ACTIVATED DISEASE RESISTANCE 1 (ADR1) and N REQUIREMENT GENE 1 (NRG1), that act as “helper” NLRs during multiple sensor NLR-mediated immune responses. Despite their important role in sensor NLR-mediated immunity, knowledge of the specific, redundant, and synergistic functions of helper RNLs is limited. We demonstrate that the ADR1 and NRG1 families act in an unequally redundant manner in basal resistance, effector-triggered immunity (ETI) and regulation of defense gene expression. We define RNL redundancy in ETI conferred by some TNLs and in basal resistance against virulent pathogens. We demonstrate that, in Arabidopsis thaliana, the 2 RNL families contribute specific functions in ETI initiated by specific CNLs and TNLs. Time-resolved whole genome expression profiling revealed that RNLs and “classical” CNLs trigger similar transcriptome changes, suggesting that RNLs act like other CNLs to mediate ETI downstream of sensor NLR activation. Together, our genetic data confirm that RNLs contribute to basal resistance, are fully required for TNL signaling, and can also support defense activation during CNL-mediated ETI. This study shows that two intracellular plant Nod-like immune receptor (NLR-) subfamilies act with unequal redundancy in their roles in plant disease resistance to virulent and avirulent pathogens, in effector-triggered immunity induced gene expression and in immunity-associated cell death. This function is most likely in parallel with, and not downstream of, other canonical intracellular plant immune receptors.
Collapse
Affiliation(s)
- Svenja C. Saile
- Center for Plant Molecular Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Pierre Jacob
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Baptiste Castel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Lance M. Jubic
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Isai Salas-Gonzáles
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marcel Bäcker
- Center for Plant Molecular Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Jeffery L. Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Farid El Kasmi
- Center for Plant Molecular Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
126
|
Hulin MT, Jackson RW, Harrison RJ, Mansfield JW. Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. PLANT PATHOLOGY 2020; 69:962-978. [PMID: 32742023 PMCID: PMC7386918 DOI: 10.1111/ppa.13189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
Bacterial canker disease is a major limiting factor in the growing of cherry and other Prunus species worldwide. At least five distinct clades within the bacterial species complex Pseudomonas syringae are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of P. syringae pv. syringae possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as hopAB, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.
Collapse
Affiliation(s)
| | - Robert W. Jackson
- Birmingham Institute of Forest Research (BIFoR), University of BirminghamBirminghamUK
- School of Biosciences, University of BirminghamBirminghamUK
| | | | | |
Collapse
|
127
|
Parry G, Provart NJ, Brady SM, Uzilday B. Current status of the multinational Arabidopsis community. PLANT DIRECT 2020; 4:e00248. [PMID: 32775952 PMCID: PMC7396448 DOI: 10.1002/pld3.248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 05/04/2023]
Abstract
The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the "fourth decadal roadmap," which will advise and coordinate the global activities of the Arabidopsis research community.
Collapse
Affiliation(s)
- Geraint Parry
- School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Nicholas J. Provart
- Department of Cell and System Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoCanada
| | - Siobhan M. Brady
- Department of Plant Biology and Genome CenterUniversity of CaliforniaDavisUSA
| | - Baris Uzilday
- Department of BiologyFaculty of ScienceEge UniversityIzmirTurkey
| |
Collapse
|
128
|
Hu M, Qi J, Bi G, Zhou JM. Bacterial Effectors Induce Oligomerization of Immune Receptor ZAR1 In Vivo. MOLECULAR PLANT 2020; 13:793-801. [PMID: 32194243 DOI: 10.1016/j.molp.2020.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
Plants utilize nucleotide-binding, leucine-rich repeat receptors (NLRs) to detect pathogen effectors, leading to effector-triggered immunity. The NLR ZAR1 indirectly recognizes the Xanthomonas campestris pv. campestris effector AvrAC and Pseudomonas syringae effector HopZ1a by associating with closely related receptor-like cytoplasmic kinase subfamily XII-2 (RLCK XII-2) members RKS1 and ZED1, respectively. ZAR1, RKS1, and the AvrAC-modified decoy PBL2UMP form a pentameric resistosome in vitro, and the ability of resistosome formation is required for AvrAC-triggered cell death and disease resistance. However, it remains unknown whether the effectors induce ZAR1 oligomerization in the plant cell. In this study, we show that both AvrAC and HopZ1a can induce oligomerization of ZAR1 in Arabidopsis protoplasts. Residues mediating ZAR1-ZED1 interaction are indispensable for HopZ1a-induced ZAR1 oligomerization in vivo and disease resistance. In addition, ZAR1 residues required for the assembly of ZAR1 resistosome in vitro are also essential for HopZ1a-induced ZAR1 oligomerization in vivo and disease resistance. Our study provides evidence that pathogen effectors induce ZAR1 resistosome formation in the plant cell and that the resistosome formation triggers disease resistance.
Collapse
Affiliation(s)
- Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinfeng Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
129
|
Martel A, Laflamme B, Seto D, Bastedo DP, Dillon MM, Almeida RND, Guttman DS, Desveaux D. Immunodiversity of the Arabidopsis ZAR1 NLR Is Conveyed by Receptor-Like Cytoplasmic Kinase Sensors. FRONTIERS IN PLANT SCIENCE 2020; 11:1290. [PMID: 32983191 PMCID: PMC7475706 DOI: 10.3389/fpls.2020.01290] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 05/06/2023]
Abstract
The Arabidopsis nucleotide-binding leucine-rich repeat protein ZAR1 can recognize at least six distinct families of pathogenic effector proteins to mount an effector-triggered immune response. This remarkable immunodiversity appears to be conveyed by receptor-like cytoplasmic kinase (RLCK) complexes, which associate with ZAR1 to sense several effector-induced kinase perturbations. Here we show that the recently identified ZAR1-mediated immune responses against the HopX1, HopO1, and HopBA1 effector families of Pseudomonas syringae rely on an expanded diversity of RLCK sensors. We show that individual sensors can recognize distinct effector families, thereby contributing to the expanded surveillance potential of ZAR1 and supporting its role as a guardian of the plant kinome.
Collapse
Affiliation(s)
- Alexandre Martel
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Derek Seto
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - D. Patrick Bastedo
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marcus M. Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Renan N. D. Almeida
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
- *Correspondence: David S. Guttman, ; Darrell Desveaux,
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
- *Correspondence: David S. Guttman, ; Darrell Desveaux,
| |
Collapse
|