101
|
Swiatczak B. Struggle within: evolution and ecology of somatic cell populations. Cell Mol Life Sci 2021; 78:6797-6806. [PMID: 34477897 PMCID: PMC11073125 DOI: 10.1007/s00018-021-03931-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/31/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
The extent to which normal (nonmalignant) cells of the body can evolve through mutation and selection during the lifetime of the organism has been a major unresolved issue in evolutionary and developmental studies. On the one hand, stable multicellular individuality seems to depend on genetic homogeneity and suppression of evolutionary conflicts at the cellular level. On the other hand, the example of clonal selection of lymphocytes indicates that certain forms of somatic mutation and selection are concordant with the organism-level fitness. Recent DNA sequencing and tissue physiology studies suggest that in addition to adaptive immune cells also neurons, epithelial cells, epidermal cells, hematopoietic stem cells and functional cells in solid bodily organs are subject to evolutionary forces during the lifetime of an organism. Here we refer to these recent studies and suggest that the expanding list of somatically evolving cells modifies idealized views of biological individuals as radically different from collectives.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, 96 Jinzhai Rd., Hefei, 230026, China.
| |
Collapse
|
102
|
Youk J, Kwon HW, Kim R, Ju YS. Dissecting single-cell genomes through the clonal organoid technique. Exp Mol Med 2021; 53:1503-1511. [PMID: 34663940 PMCID: PMC8569207 DOI: 10.1038/s12276-021-00680-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
The revolution in genome sequencing technologies has enabled the comprehensive detection of genomic variations in human cells, including inherited germline polymorphisms, de novo mutations, and postzygotic mutations. When these technologies are combined with techniques for isolating and expanding single-cell DNA, the landscape of somatic mosaicism in an individual body can be systematically revealed at a single-cell resolution. Here, we summarize three strategies (whole-genome amplification, microdissection of clonal patches in the tissue, and in vitro clonal expansion of single cells) that are currently applied for single-cell mutational analyses. Among these approaches, in vitro clonal expansion, particularly via adult stem cell-derived organoid culture technologies, yields the most sensitive and precise catalog of somatic mutations in single cells. Moreover, because it produces living mutant cells, downstream validation experiments and multiomics profiling are possible. Through the synergistic combination of organoid culture and genome sequencing, researchers can track genome changes at a single-cell resolution, which will lead to new discoveries that were previously impossible.
Collapse
Affiliation(s)
- Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- GENOME INSIGHT Inc, Daejeon, 34051, Republic of Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- GENOME INSIGHT Inc, Daejeon, 34051, Republic of Korea.
| |
Collapse
|
103
|
Liu H, Zhong J, Hu J, Han C, Li R, Yao X, Liu S, Chen P, Liu R, Ling F. Single-cell transcriptomics reveal DHX9 in mature B cell as a dynamic network biomarker before lymph node metastasis in CRC. Mol Ther Oncolytics 2021; 22:495-506. [PMID: 34553035 PMCID: PMC8433066 DOI: 10.1016/j.omto.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that mature B cells in the adjacent tumor tissue, both as an intermediate state, are vital in advanced colorectal cancer (CRC), which is associated with a low survival rate. Developing predictive biomarkers that detect the tipping point of mature B cells before lymph node metastasis in CRC is critical to prevent irreversible deterioration. We analyzed B cells in the adjacent tissues of CRC samples from different stages using the dynamic network biomarker (DNB) method. Single-cell profiling of 725 CRC-derived B cells revealed the emergence of a mature B cell subtype. Using the DNB method, we identified stage II as a critical period before lymph node metastasis and that reversed difference genes triggered by DNBs were enriched in the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway involving B cell immune capability. DHX9 (DEAH-box helicase 9) was a specific para-cancerous tissue DNB key gene. The dynamic expression levels of DHX9 and its proximate network genes involved in B cell-related pathways were reversed at the network level from stage I to III. In summary, DHX9 in mature B cells of CRC-adjacent tissues may serve as a predictable biomarker and a potential immune target in CRC progression.
Collapse
Affiliation(s)
- Huisheng Liu
- School of Biology and Biological Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| | - JiaYuan Zhong
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - JiaQi Hu
- School of Biology and Biological Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| | - ChongYin Han
- School of Biology and Biological Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| | - Rui Li
- Department of Pathology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - XueQing Yao
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - ShiPing Liu
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518083, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510641, China
- Pazhou Lab, Guangzhou, Guangdong 510330, China
| | - Fei Ling
- School of Biology and Biological Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| |
Collapse
|
104
|
Ushijima T, Clark SJ, Tan P. Mapping genomic and epigenomic evolution in cancer ecosystems. Science 2021; 373:1474-1479. [PMID: 34554797 DOI: 10.1126/science.abh1645] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2010, Australia
| | - Patrick Tan
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore 169857, Singapore.,Epigenomic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore 138672, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
105
|
Marongiu F, Cheri S, Laconi E. Cell competition, cooperation, and cancer. Neoplasia 2021; 23:1029-1036. [PMID: 34500336 PMCID: PMC8429595 DOI: 10.1016/j.neo.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022]
Abstract
Complex multicellular organisms require quantitative and qualitative assessments on each of their constitutive cell types to ensure coordinated and cooperative behavior towards overall functional proficiency. Cell competition represents one of the operating arms of such quality control mechanisms and relies on fitness comparison among individual cells. However, what is exactly included in the fitness equation for each cell type is still uncertain. Evidence will be discussed to suggest that the ability of the cell to integrate and collaborate within the organismal community represents an integral part of the best fitness phenotype. Thus, under normal conditions, cell competition will select against the emergence of altered cells with disruptive behavior towards tissue integrity and/or tissue pattern formation. On the other hand, the winner phenotype prevailing as a result of cell competition does not entail, by itself, any degree of growth autonomy. While cell competition per se should not be considered as a biological driving force towards the emergence of the neoplastic phenotype, it is possible that the molecular machinery involved in the winner/loser interaction could be hijacked by evolving cancer cell populations.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Samuele Cheri
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
106
|
Evans EJ, DeGregori J. Cells with Cancer-associated Mutations Overtake Our Tissues as We Age. AGING AND CANCER 2021; 2:82-97. [PMID: 34888527 PMCID: PMC8651076 DOI: 10.1002/aac2.12037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND To shed light on the earliest events in oncogenesis, there is growing interest in understanding the mutational landscapes of normal tissues across ages. In the last decade, next-generation sequencing of human tissues has revealed a surprising abundance of cells with what would be considered oncogenic mutations. AIMS We performed meta-analysis on previously published sequencing data on normal tissues to categorize mutations based on their presence in cancer and showcase the quantity of cells with cancer-associated mutations in cancer-free individuals. METHODS AND RESULTS We analyzed sequencing data from these studies of normal tissues to determine the prevalence of cells with mutations in three different categories across multiple age groups: 1) mutations in genes designated as drivers, 2) mutations that are in the Cancer Gene Census (CGC), and 3) mutations in the CGC that are considered pathogenic. As we age, the percentage of cells in all three levels increase significantly, reaching over 50% of cells having oncogenic mutations for multiple tissues in the older age groups. The clear enrichment for these mutations, particularly at older ages, likely indicates strong selection for the resulting phenotypes. Combined with an estimation of the number of cells in tissues, we calculate that most older, cancer-free individuals possess at least a 100 billion cells that harbor at least one oncogenic mutation, presumably emanating from a fitness advantage conferred by these mutations that promotes clonal expansion. CONCLUSIONS These studies of normal tissues have highlighted the specific drivers of clonal expansion and how frequently they appear in us. Their high prevalence throughout cancer-free individuals necessitates reconsideration of the oncogenicity of these mutations, which could shape methods of detection, prevention and treatment of cancer, as well as of the potential impact of these mutations on tissue function and our health.
Collapse
Affiliation(s)
- Edward J. Evans
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
107
|
Abstract
Urothelial carcinoma is characterized by the presence of a wide spectrum of histopathologic features and molecular alterations that contribute to its morphologic and genomic heterogeneity. It typically harbors high rates of somatic mutations with considerable genomic and transcriptional complexity and heterogeneity that is reflective of its varied histomorphologic and clinical features. This review provides an update on the recent advances in the molecular characterization and novel molecular taxonomy of urothelial carcinoma and variant histologies.
Collapse
Affiliation(s)
- Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NW 10065, USA.
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, University of Alabama at Birmingham School of Medicine, WP Building, Suite P230, 619 19th Street South, Birmingham, AL 35249-7331, USA.
| |
Collapse
|
108
|
Qin L, Hu Y, Wang J, Wang X, Zhao R, Shan H, Li K, Xu P, Wu H, Yan X, Liu L, Yi X, Wanke S, Bowers JE, Leebens-Mack JH, dePamphilis CW, Soltis PS, Soltis DE, Kong H, Jiao Y. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. NATURE PLANTS 2021; 7:1239-1253. [PMID: 34475528 PMCID: PMC8445822 DOI: 10.1038/s41477-021-00990-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/22/2021] [Indexed: 05/04/2023]
Abstract
Aristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A. fimbriata genome is an excellent reference for inferences of angiosperm genome evolution, enabling detection of two novel whole-genome duplications in Piperales and dating of previously reported whole-genome duplications in other magnoliids. Genomic comparisons between A. fimbriata and other angiosperms facilitated the identification of ancient genomic rearrangements suggesting the placement of magnoliids as sister to monocots, whereas phylogenetic inferences based on sequence data we compiled yielded ambiguous relationships. By identifying associated homologues and investigating their evolutionary histories and expression patterns, we revealed highly conserved floral developmental genes and their distinct downstream regulatory network that may contribute to the complex flower morphology in A. fimbriata. Finally, we elucidated the genetic basis underlying the biosynthesis of terpenoids and aristolochic acids in A. fimbriata.
Collapse
Affiliation(s)
- Liuyu Qin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiheng Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiaoliang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanying Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lumei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Yi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Stefan Wanke
- Institute of Botany, Dresden University of Technology, Dresden, Germany
| | - John E Bowers
- Department of Plant Biology, University of Georgia, Athens, GA, USA
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | | | - Claude W dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
109
|
Primary urothelial carcinoma of the ureter without concurrent renal pelvic or bladder carcinoma: A contemporary clinicopathologic analysis. Pathol Res Pract 2021; 226:153584. [PMID: 34461429 DOI: 10.1016/j.prp.2021.153584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022]
Abstract
Primary urothelial carcinoma (UCa) of the ureter is relatively uncommon, comprising less than 10% of all urinary tract tumors. Typically, ureteral UCa is found in association with other urinary tract tumors, such as renal pelvic or bladder UCa, making it challenging to analyze the clinicopathologic features in isolation. With only a few small case series and case reports available, our understanding of primary ureteral UCa is limited. Herein, we conducted one of the largest studies to date of primary ureteral UCa without concurrent renal pelvic or bladder UCa. Clinicopathologic parameters including extent of invasion, lymphovascular invasion, variant histology, presence of UCa in situ, inverted growth pattern, and clinical follow-up information were obtained. Ninety-seven cases were included in the study. Thirty-nine cases (40%) showed invasion, the preponderance of which invaded lamina propria (15%; 15/97), followed by periureteral soft tissue/adipose (14%; 14/97), muscularis propria (9%; 9/39), and seminal vesicle invasion (1%; 1/97). Clinical follow-up data was available for 80/89 (89%) patients with a mean duration of 35 months (range: 1-206 months). Metastatic UCa developed in 28/89 (35%) patients, 20/28 (71%) of which had invasive disease at presentation. Of the 17 (21%) patients who died, 12 (71%) initially presented with invasive UCa. Although more patients had non-invasive UCa, the propensity for worse outcomes in patients with invasive disease is greater compared to other urinary tract sites. These findings further emphasize the importance of early recognition of these tumors, in view of the relatively high preponderance of advanced disease and mortality in a subset of these patients.
Collapse
|
110
|
A body map of somatic mutagenesis in morphologically normal human tissues. Nature 2021; 597:398-403. [PMID: 34433965 DOI: 10.1038/s41586-021-03836-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Somatic mutations that accumulate in normal tissues are associated with ageing and disease1,2. Here we performed a comprehensive genomic analysis of 1,737 morphologically normal tissue biopsies of 9 organs from 5 donors. We found that somatic mutation accumulations and clonal expansions were widespread, although to variable extents, in morphologically normal human tissues. Somatic copy number alterations were rarely detected, except for in tissues from the oesophagus and cardia. Endogenous mutational processes with the SBS1 and SBS5 mutational signatures are ubiquitous among normal tissues, although they exhibit different relative activities. Exogenous mutational processes operate in multiple tissues from the same donor. We reconstructed the spatial somatic clonal architecture with sub-millimetre resolution. In the oesophagus and cardia, macroscopic somatic clones that expanded to hundreds of micrometres were frequently seen, whereas in tissues such as the colon, rectum and duodenum, somatic clones were microscopic in size and evolved independently, possibly restricted by local tissue microstructures. Our study depicts a body map of somatic mutations and clonal expansions from the same individual.
Collapse
|
111
|
Pacella G, Capell BC. Epigenetic and metabolic interplay in cutaneous squamous cell carcinoma. Exp Dermatol 2021; 30:1115-1125. [PMID: 33844325 PMCID: PMC8324523 DOI: 10.1111/exd.14354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
With the ageing of the population and increased levels of recreational sun exposure and immunosuppression, cutaneous squamous cell carcinoma (cSCC), is both an enormous and expanding clinical and economic issue. Despite advances in therapy, up to 5000-8000 people are estimated to die every year from cSCC in the U.S., highlighting the need for both better prevention and treatments. Two emerging areas of scientific discovery that may offer new therapeutic approaches for cSCC are epigenetics and metabolism. Importantly, these disciplines display extensive crosstalk, with metabolic inputs contributing to the chromatin landscape, while the dynamic epigenome shapes transcriptional and cellular responses that feedback into cellular metabolism. Recent evidence suggests that indeed, epigenetic and metabolic dysregulation may be critical contributors to cSCC pathogenesis. Here, we synthesize the latest findings from these fast-moving fields, including how they may drive cSCC, yet also be harnessed for therapy.
Collapse
Affiliation(s)
- Gina Pacella
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brian C. Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
112
|
Peng L, Li BY, Wang W, Gao XS, Zeng X, Luo DY. Identification of key genes in human urothelial cells corresponding to interstitial cystitis/bladder pain syndrome in a lipopolysaccharide-induced cystitis model. Neurourol Urodyn 2021; 40:1720-1729. [PMID: 34245600 DOI: 10.1002/nau.24743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
AIMS The cellular functions of bladder urothelial cells in interstitial cystitis/bladder pain syndrome (IC/BPS) have not been well revealed and understood. Thus, the study aims to identify key genes and significant pathways in urothelium corresponding to IC/BPS in a lipopolysaccharide (LPS)-induced cystitis model and provide novel clues related to diagnosis and treatment of IC/BPS. METHODS Human urothelial cells (HUCs) were incubated with LPS (50 μg/ml for 24 h). Microarray was applied to analyze the differentially expressed genes (DEGs) between HUCs under LPS treatment and the control group. DEGs in the two groups were identified and then used for enrichment analysis. Subsequently, protein-protein interaction (PPI) network based on DEGs was constructed. Lastly, the top five key genes were identified through the Cytoscape (version 3.7.2) using the "Clustering Coefficient" algorithm. RESULTS One hundred and seventy-one DEGs (96 upregulated genes and 75 downregulated genes) were identified between the LPS treatment and control group. The established PPI network was composed of 169 nodes and 678 edges. Moreover, C19orf33, TRIM31, MUC21, ELF3, and IFI27 were identified as hub genes in the PPI network. Subsequently, a statistically increased expression level of TRIM31 and ELF3 was validated by real-time quantitative-polymerase chain reaction and immunohistochemistry in bladder tissues from 20 patients with IC/BPS. CONCLUSIONS TRIM31 and ELF3 may be the two hub genes in urothelium corresponding to IC/BPS. More studies are warranted to further validate the findings. The identified marker genes may be useful targets for further studies to develop diagnostic tools and more effective therapies for a broader group of women with IC/PBS.
Collapse
Affiliation(s)
- Liao Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo-Ya Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Shuai Gao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - De-Yi Luo
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
113
|
Lai S, Long X, Wu P, Liu J, Seery S, Hou H, Liu M, Li Y, Wang J. Developing a nomogram for predicting intravesical recurrence after radical nephroureterectomy: a retrospective cohort study of mainland Chinese patients. Jpn J Clin Oncol 2021; 51:1132-1141. [PMID: 33634310 DOI: 10.1093/jjco/hyab017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To evaluate the role of Ki-67 in predicting subsequent intravesical recurrence following radical nephroureterectomy and to develop a predictive nomogram for upper tract urothelial carcinoma patients. METHODS This retrospective analysis involved 489 upper tract urothelial carcinoma patients who underwent radical nephroureterectomy with bladder cuff excision. The data set was randomly split into a training cohort of 293 patients and a validation cohort of 196 patients. Immunohistochemical analysis was used to assess the immunoreactivity of the biomarker Ki-67 in the tumor tissues. A multivariable Cox regression model was utilized to identify independent intravesical recurrence predictors after radical nephroureterectomy before constructing a nomographic model. Predictive accuracy was quantified using time-dependent receiver operating characteristic curve. Decision curve analysis was performed to evaluate the clinical benefit of models. RESULTS With a median follow-up of 54 months, intravesical recurrence developed in 28.2% of this sample (n = 137). Tumor location, multifocality, pathological T stage, surgical approach, bladder cancer history and Ki-67 expression levels were independently associated with intravesical recurrence (all P < 0.05). The full model, which intercalated Ki-67 with traditional clinicopathological parameters, outperformed both the basic model and Xylinas' model in terms of discriminative capacity (all P < 0.05). Decision-making analysis suggests that the more comprehensive model can also improve patients' net benefit. CONCLUSIONS This new model, which intercalates the Ki-67 biomarker with traditional clinicopathological factors, appears to be more sensitive than nomograms previously tested across mainland Chinese populations. The findings suggest that Ki-67 could be useful for determining risk-stratified surveillance protocols following radical nephroureterectomy and in generating an individualized strategy based around intravesical recurrence predictions.
Collapse
Affiliation(s)
- Shicong Lai
- Department of Urology, Beijing Hospital, Beijing, China.,National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xingbo Long
- Department of Urology, Beijing Hospital, Beijing, China.,National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Pengjie Wu
- Department of Urology, Beijing Hospital, Beijing, China.,National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyong Liu
- Department of Urology, Beijing Hospital, Beijing, China.,National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Samuel Seery
- School of Humanities and Social Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Division of Health Research, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Huimin Hou
- Department of Urology, Beijing Hospital, Beijing, China.,National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, Beijing, China.,National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianye Wang
- Department of Urology, Beijing Hospital, Beijing, China.,National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
114
|
Olafsson S, Anderson CA. Somatic mutations provide important and unique insights into the biology of complex diseases. Trends Genet 2021; 37:872-881. [PMID: 34226062 DOI: 10.1016/j.tig.2021.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Somatic evolution of cells within the body is well known to lead to cancers. However, spread of somatic mutations within a tissue over time may also contribute to the pathogenesis of non-neoplastic diseases. Recent years have seen the publication of many studies aiming to characterize somatic evolution in healthy tissues. A logical next step is to extend such work to diseased conditions. As our understanding of the interplay between somatic mutations and non-neoplastic disease grows, opportunities for the joint study of germline and somatic variants will present themselves. Here, we present our thoughts on the utility of somatic mutations for understanding both the causes and consequences of common complex disease and the challenges that remain for the joint study of the soma and germline.
Collapse
Affiliation(s)
| | - Carl A Anderson
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
115
|
Dai X, Guo X. Decoding and rejuvenating human ageing genomes: Lessons from mosaic chromosomal alterations. Ageing Res Rev 2021; 68:101342. [PMID: 33866012 DOI: 10.1016/j.arr.2021.101342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023]
Abstract
One of the most curious findings emerged from genome-wide studies over the last decade was that genetic mosaicism is a dominant feature of human ageing genomes. The clonal dominance of genetic mosaicism occurs preceding the physiological and physical ageing and associates with propensity for diseases including cancer, Alzheimer's disease, cardiovascular disease and diabetes. These findings are revolutionizing the ways biologists thinking about health and disease pathogenesis. Among all mosaic mutations in ageing genomes, mosaic chromosomal alterations (mCAs) have the most significant functional consequences because they can produce intercellular genomic variations simultaneously involving dozens to hundreds or even thousands genes, and therefore have most profound effects in human ageing and disease etiology. Here, we provide a comprehensive picture of the landscapes, causes, consequences and rejuvenation of mCAs at multiple scales, from cell to human population, by reviewing data from cytogenetic, genetic and genomic studies in cells, animal models (fly and mouse) and, more frequently, large-cohort populations. A detailed decoding of ageing genomes with a focus on mCAs may yield important insights into the genomic architecture of human ageing, accelerate the risk stratification of age-related diseases (particularly cancers) and development of novel targets and strategies for delaying or rejuvenating human (genome) ageing.
Collapse
Affiliation(s)
- Xueqin Dai
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Xihan Guo
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China; The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| |
Collapse
|
116
|
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, Shao ZM. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol 2021; 14:98. [PMID: 34172088 PMCID: PMC8234625 DOI: 10.1186/s13045-021-01103-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Tumors are not only aggregates of malignant cells but also well-organized complex ecosystems. The immunological components within tumors, termed the tumor immune microenvironment (TIME), have long been shown to be strongly related to tumor development, recurrence and metastasis. However, conventional studies that underestimate the potential value of the spatial architecture of the TIME are unable to completely elucidate its complexity. As innovative high-flux and high-dimensional technologies emerge, researchers can more feasibly and accurately detect and depict the spatial architecture of the TIME. These findings have improved our understanding of the complexity and role of the TIME in tumor biology. In this review, we first epitomized some representative emerging technologies in the study of the spatial architecture of the TIME and categorized the description methods used to characterize these structures. Then, we determined the functions of the spatial architecture of the TIME in tumor biology and the effects of the gradient of extracellular nonspecific chemicals (ENSCs) on the TIME. We also discussed the potential clinical value of our understanding of the spatial architectures of the TIME, as well as current limitations and future prospects in this novel field. This review will bring spatial architectures of the TIME, an emerging dimension of tumor ecosystem research, to the attention of more researchers and promote its application in tumor research and clinical practice.
Collapse
Affiliation(s)
- Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei-Jie Dai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
117
|
Fujii Y, Sato Y, Suzuki H, Kakiuchi N, Yoshizato T, Lenis AT, Maekawa S, Yokoyama A, Takeuchi Y, Inoue Y, Ochi Y, Shiozawa Y, Aoki K, Yoshida K, Kataoka K, Nakagawa MM, Nannya Y, Makishima H, Miyakawa J, Kawai T, Morikawa T, Shiraishi Y, Chiba K, Tanaka H, Nagae G, Sanada M, Sugihara E, Sato TA, Nakagawa T, Fukayama M, Ushiku T, Aburatani H, Miyano S, Coleman JA, Homma Y, Solit DB, Kume H, Ogawa S. Molecular classification and diagnostics of upper urinary tract urothelial carcinoma. Cancer Cell 2021; 39:793-809.e8. [PMID: 34129823 PMCID: PMC9110171 DOI: 10.1016/j.ccell.2021.05.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/11/2020] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Upper urinary tract urothelial carcinoma (UTUC) is one of the common urothelial cancers. Its molecular pathogenesis, however, is poorly understood, with no useful biomarkers available for accurate diagnosis and molecular classification. Through an integrated genetic study involving 199 UTUC samples, we delineate the landscape of genetic alterations in UTUC enabling genetic/molecular classification. According to the mutational status of TP53, MDM2, RAS, and FGFR3, UTUC is classified into five subtypes having discrete profiles of gene expression, tumor location/histology, and clinical outcome, which is largely recapitulated in an independent UTUC cohort. Sequencing of urine sediment-derived DNA has a high diagnostic value for UTUC with 82.2% sensitivity and 100% specificity. These results provide a solid basis for better diagnosis and management of UTUC.
Collapse
Affiliation(s)
- Yoichi Fujii
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Andrew T Lenis
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shigekatsu Maekawa
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Akira Yokoyama
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Kosuke Aoki
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan; Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Jimpei Miyakawa
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Taketo Kawai
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan
| | - Tohru Nakagawa
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Urology, Teikyo University School of Medicine, Tokyo 173-8606, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Jonathan A Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Urology, Japanese Red Cross Medical Center, Tokyo 150-8935, Japan
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 17177, Sweden.
| |
Collapse
|
118
|
Abascal F, Harvey LMR, Mitchell E, Lawson ARJ, Lensing SV, Ellis P, Russell AJC, Alcantara RE, Baez-Ortega A, Wang Y, Kwa EJ, Lee-Six H, Cagan A, Coorens THH, Chapman MS, Olafsson S, Leonard S, Jones D, Machado HE, Davies M, Øbro NF, Mahubani KT, Allinson K, Gerstung M, Saeb-Parsy K, Kent DG, Laurenti E, Stratton MR, Rahbari R, Campbell PJ, Osborne RJ, Martincorena I. Somatic mutation landscapes at single-molecule resolution. Nature 2021; 593:405-410. [PMID: 33911282 DOI: 10.1038/s41586-021-03477-4] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.
Collapse
Affiliation(s)
| | | | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | - Peter Ellis
- Wellcome Sanger Institute, Hinxton, UK
- Inivata, Babraham Research Campus, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Megan Davies
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Nina F Øbro
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Krishnaa T Mahubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kieren Allinson
- Cambridge Brain Bank, Division of the Human Research Tissue Bank, Addenbrooke's Hospital, Cambridge, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - David G Kent
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Elisa Laurenti
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Robert J Osborne
- Wellcome Sanger Institute, Hinxton, UK.
- Biofidelity, Cambridge Science Park, Cambridge, UK.
| | | |
Collapse
|
119
|
McConkey DJ. Molecular Biology of Bladder Cancer: Potential Implications for Therapy. Hematol Oncol Clin North Am 2021; 35:457-468. [PMID: 33958145 DOI: 10.1016/j.hoc.2021.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently completed studies provided high-resolution descriptions of the molecular biological characteristics of urothelial bladder cancers. Whole transcriptome messenger RNA expression profiling revealed that they can be grouped into basal and luminal molecular subtypes resembling the ones described in breast cancers. Retrospective DNA sequencing efforts revealed roles for disruption of DNA damage response pathways in response to conventional chemotherapy and immune checkpoint blockade, and completed and ongoing studies indicate that the molecular biological properties of infiltrating host cells dictate also influence therapeutic outcomes. This article reviews these findings and identify gaps in knowledge that represent opportunities for future research.
Collapse
Affiliation(s)
- David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, 600 North Wolfe Street, Park 219, Baltimore, MD 21287, USA.
| |
Collapse
|
120
|
Abstract
Cancer is a clonal disorder derived from a single ancestor cell and its progenies that are positively selected by acquisition of 'driver mutations'. However, the evolution of positively selected clones does not necessarily imply the presence of cancer. On the contrary, it has become clear that expansion of these clones in phenotypically normal or non-cancer tissues is commonly seen in association with ageing and/or in response to environmental insults and chronic inflammation. Recent studies have reported expansion of clones harbouring mutations in cancer driver genes in the blood, skin, oesophagus, bronchus, liver, endometrium and bladder, where the expansion could be so extensive that tissues undergo remodelling of an almost entire tissue. The presence of common cancer driver mutations in normal tissues suggests a strong link to cancer development, providing an opportunity to understand early carcinogenic processes. Nevertheless, some driver mutations are unique to normal tissues or have a mutation frequency that is much higher in normal tissue than in cancer, indicating that the respective clones may not necessarily be destined for evolution to cancer but even negatively selected for carcinogenesis depending on the mutated gene. Moreover, tissues that are remodelled by genetically altered clones might define functionalities of aged tissues or modified inflammatory processes. In this Review, we provide an overview of major findings on clonal expansion in phenotypically normal or non-cancer tissues and discuss their biological significance not only in cancer development but also in ageing and inflammatory diseases.
Collapse
Affiliation(s)
- Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
121
|
Cui B, Peng F, Lu J, He B, Su Q, Luo H, Deng Z, Jiang T, Su K, Huang Y, Ud Din Z, Lam EWF, Kelley KW, Liu Q. Cancer and stress: NextGen strategies. Brain Behav Immun 2021; 93:368-383. [PMID: 33160090 DOI: 10.1016/j.bbi.2020.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/17/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is well-known to cause physiological distress that leads to body balance perturbations by altering signaling pathways in the neuroendocrine and sympathetic nervous systems. This increases allostatic load, which is the cost of physiological fluctuations that are required to cope with psychological challenges as well as changes in the physical environment. Recent studies have enriched our knowledge about the role of chronic stress in disease development, especially carcinogenesis. Stress stimulates the hypothalamic-pituitaryadrenal (HPA) axis and the sympathetic nervous system (SNS), resulting in an abnormal release of hormones. These activate signaling pathways that elevate expression of downstream oncogenes. This occurs by activation of specific receptors that promote numerous cancer biological processes, including proliferation, genomic instability, angiogenesis, metastasis, immune evasion and metabolic disorders. Moreover, accumulating evidence has revealed that β-adrenergic receptor (ADRB) antagonists and downstream target inhibitors exhibit remarkable anti-tumor effects. Psychosomatic behavioral interventions (PBI) and traditional Chinese medicine (TCM) also effectively relieve the impact of stress in cancer patients. In this review, we discuss recent advances in the underlying mechanisms that are responsible for stress in promoting malignancies. Collectively, these data provide approaches for NextGen pharmacological therapies, PBI and TCM to reduce the burden of tumorigenesis.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province 510060, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Qitong Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Ziqian Deng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Tonghui Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Yanping Huang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, 212 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, Il 61801, USA.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province 510060, China.
| |
Collapse
|
122
|
Abstract
In this issue of Cancer Discovery, Fowler and colleagues conduct a thorough characterization of the dynamics of mutant clones in phenotypically normal human skin. Their results extend previous studies by showing that human skin is composed in large part of clones harboring mutations frequently observed in human cancer, while at the same time they uncover a previously unappreciated biological heterogeneity among nearby clones and across different body sites.See related article by Fowler et al., p. 340.
Collapse
Affiliation(s)
- Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
123
|
Reconciling Non-Genetic Plasticity with Somatic Evolution in Cancer. Trends Cancer 2021; 7:309-322. [PMID: 33536158 DOI: 10.1016/j.trecan.2020.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Post-treatment progression of tumors is commonly explained by somatic Darwinian evolution (i.e., selection of cells carrying genetic mutations that create more aggressive cell traits). But cancer genome and transcriptome analyses now paint a picture far more complex, prompting us to see beyond the Darwinian scheme: non-genetic cell phenotype plasticity explained by alternative stable gene expression states ('attractors'), may also produce aggressive phenotypes that can be selected for, without mutations. Worse, treatment may even induce cell state transitions into more malignant attractors. We review recent evidence for non-genetic mechanisms of progression, explain the theoretical foundation of attractor transitions behind treatment-induced increase of aggressiveness, and provide a framework for unifying genetic and non-genetic dynamics in tumor progression.
Collapse
|
124
|
Wang Z, Chen J, Yang L, Cao M, Yu Y, Zhang R, Quan H, Jiang Q, Hua Y, Wei W, Lu P, Wu J, Shi Q. Single-Cell Sequencing-Enabled Hexokinase 2 Assay for Noninvasive Bladder Cancer Diagnosis and Screening by Detecting Rare Malignant Cells in Urine. Anal Chem 2020; 92:16284-16292. [PMID: 33269906 DOI: 10.1021/acs.analchem.0c04282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bladder cancer (BC) is among the most common tumors with a high recurrence rate, necessitating noninvasive and sensitive diagnostic methods. Accurate detection of exfoliated tumor cells (ETCs) in urine is crucial for noninvasive BC diagnosis but suffers from limited sensitivity when ETCs are rare and confounded by reactive, regenerative, or reparative cells. Single-cell sequencing (SCS) enables accurate detection of ETCs by surveying oncogenic driver mutations or genome-wide copy number alternations. To overcome the low-throughput limitation of SCS, we report a SCS-validated cellular marker, hexokinase 2 (HK2), for high-throughput screening cells in urine and detecting ETCs engaging elevated glycolysis. In the SCS-based training set, a total of 385 cells from urine samples of eight urothelial carcinoma (UC) patients were sequenced to establish a HK2 threshold that achieved >90% specificity for ETC detection. This urine-based HK2 assay was tested with a blinded patient group (n = 384) including UC and benign genitourinary disorders as a validation cohort for prospectively evaluating diagnostic accuracy. The sensitivity, specificity, positive predictive value, and negative predictive value of the assay were 90, 88, 83, and 93%, respectively, which were superior to urinary cytology. For investigating the potential to be a screening test, the HK2 assay was tested with a group of healthy individuals (n = 846) and a 6-month follow-up. The specificity was 98.4% in this health group. Three participants were found to have >5 putative ETCs that were sequenced to exhibit recurrent copy number alternations characteristic of malignant cells, demonstrating early BC detection before current clinical methods.
Collapse
Affiliation(s)
- Zhuo Wang
- Minhang Branch, Zhongshan Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201100, China
| | - Jie Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu Yang
- Shanghai Bone Tumor Institute and Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mingzhe Cao
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanlan Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Heng Quan
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yingqi Hua
- Shanghai Bone Tumor Institute and Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Wei
- Institute for Systems Biology, Seattle 98109, Washington, United States
| | - Peihua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Jun Wu
- Department of Clinical Laboratory, Shanghai General Hospital Jiading Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Qihui Shi
- Minhang Branch, Zhongshan Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201100, China.,Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai 201100, China
| |
Collapse
|
125
|
Does a Novel Mutagenic Process Target KMT2D Mutation in the Most Common First Event on the Path to Bladder Cancer? Eur Urol 2020; 79:435-436. [PMID: 33203550 DOI: 10.1016/j.eururo.2020.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022]
|
126
|
Frew IJ, Timmers HTM, Schüle R, Gratzke C. The complex genetics of epigenetics in urothelial carcinomas. Nat Rev Urol 2020; 17:655-656. [PMID: 33037422 DOI: 10.1038/s41585-020-00386-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ian J Frew
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - H T Marc Timmers
- Department of Urology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Schüle
- Department of Urology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
127
|
Lawson ARJ, Abascal F, Coorens THH, Hooks Y, O'Neill L, Latimer C, Raine K, Sanders MA, Warren AY, Mahbubani KTA, Bareham B, Butler TM, Harvey LMR, Cagan A, Menzies A, Moore L, Colquhoun AJ, Turner W, Thomas B, Gnanapragasam V, Williams N, Rassl DM, Vöhringer H, Zumalave S, Nangalia J, Tubío JMC, Gerstung M, Saeb-Parsy K, Stratton MR, Campbell PJ, Mitchell TJ, Martincorena I. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 2020; 370:75-82. [PMID: 33004514 DOI: 10.1126/science.aba8347] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
The extent of somatic mutation and clonal selection in the human bladder remains unknown. We sequenced 2097 bladder microbiopsies from 20 individuals using targeted (n = 1914 microbiopsies), whole-exome (n = 655), and whole-genome (n = 88) sequencing. We found widespread positive selection in 17 genes. Chromatin remodeling genes were frequently mutated, whereas mutations were absent in several major bladder cancer genes. There was extensive interindividual variation in selection, with different driver genes dominating the clonal landscape across individuals. Mutational signatures were heterogeneous across clones and individuals, which suggests differential exposure to mutagens in the urine. Evidence of APOBEC mutagenesis was found in 22% of the microbiopsies. Sequencing multiple microbiopsies from five patients with bladder cancer enabled comparisons with cancer-free individuals and across histological features. This study reveals a rich landscape of mutational processes and selection in normal urothelium with large heterogeneity across clones and individuals.
Collapse
Affiliation(s)
- Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Laura O'Neill
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Keiran Raine
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 GD, Netherlands
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Krishnaa T A Mahbubani
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Bethany Bareham
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Alex Cagan
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Andrew Menzies
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Luiza Moore
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Alexandra J Colquhoun
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - William Turner
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Benjamin Thomas
- The Royal Melbourne Hospital, Parkville, Victoria 3010, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vincent Gnanapragasam
- Academic Urology Group, Department of Surgery and Oncology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge CB2 0QQ, UK
| | - Nicholas Williams
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Doris M Rassl
- Department of Pathology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0AY, UK
| | - Harald Vöhringer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Sonia Zumalave
- Mobile Genomes and Disease, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Jyoti Nangalia
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - José M C Tubío
- Mobile Genomes and Disease, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
- The Biomedical Research Centre (CINBIO), University of Vigo, Vigo 36310, Spain
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
| | - Thomas J Mitchell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
128
|
Affiliation(s)
- Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer and Stem Cell Biology, Duke–National University of Singapore (NUS) Medical School, 169857 Singapore
| |
Collapse
|