101
|
Mikula M, Skrzypczak M, Goryca K, Paczkowska K, Ledwon JK, Statkiewicz M, Kulecka M, Grzelak M, Dabrowska M, Kuklinska U, Karczmarski J, Rumienczyk I, Jastrzebski K, Miaczynska M, Ginalski K, Bomsztyk K, Ostrowski J. Genome-wide co-localization of active EGFR and downstream ERK pathway kinases mirrors mitogen-inducible RNA polymerase 2 genomic occupancy. Nucleic Acids Res 2016; 44:10150-10164. [PMID: 27587583 PMCID: PMC5137434 DOI: 10.1093/nar/gkw763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 01/20/2023] Open
Abstract
Genome-wide mechanisms that coordinate expression of subsets of functionally related genes are largely unknown. Recent studies show that receptor tyrosine kinases and components of signal transduction cascades including the extracellular signal-regulated protein kinase (ERK), once thought to act predominantly in the vicinity of plasma membrane and in the cytoplasm, can be recruited to chromatin encompassing transcribed genes. Genome-wide distribution of these transducers and their relationship to transcribing RNA polymerase II (Pol2) could provide new insights about co-regulation of functionally related gene subsets. Chromatin immunoprecipitations (ChIP) followed by deep sequencing, ChIP-Seq, revealed that genome-wide binding of epidermal growth factor receptor, EGFR and ERK pathway components at EGF-responsive genes was highly correlated with characteristic mitogen-induced Pol2-profile. Endosomes play a role in intracellular trafficking of proteins including their nuclear import. Immunofluorescence revealed that EGF-activated EGFR, MEK1/2 and ERK1/2 co-localize on endosomes. Perturbation of endosome internalization process, through the depletion of AP2M1 protein, resulted in decreased number of the EGFR containing endosomes and inhibition of Pol2, EGFR/ERK recruitment to EGR1 gene. Thus, mitogen-induced co-recruitment of EGFR/ERK components to subsets of genes, a kinase module possibly pre-assembled on endosome to synchronize their nuclear import, could coordinate genome-wide transcriptional events to ensure effective cell proliferation.
Collapse
Affiliation(s)
- M Mikula
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - M Skrzypczak
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - K Goryca
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - K Paczkowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - J K Ledwon
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - M Statkiewicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - M Kulecka
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - M Grzelak
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - M Dabrowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - U Kuklinska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - J Karczmarski
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - I Rumienczyk
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - K Jastrzebski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - M Miaczynska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - K Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - K Bomsztyk
- University of Washington, Department of Medicine, 850 Republican Street, Seattle, WA, USA
| | - J Ostrowski
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland.,Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| |
Collapse
|
102
|
Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis. Nat Commun 2016; 7:12179. [PMID: 27412403 PMCID: PMC4947186 DOI: 10.1038/ncomms12179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
Bile acids (BAs) are recently recognized signalling molecules that profoundly affect metabolism. Because of detergent-like toxicity, BA levels must be tightly regulated. An orphan nuclear receptor, Small Heterodimer Partner (SHP), plays a key role in this regulation, but how SHP senses the BA signal for feedback transcriptional responses is not clearly understood. We show an unexpected function of a nucleoporin, RanBP2, in maintaining BA homoeostasis through SUMOylation of SHP. Upon BA signalling, RanBP2 co-localizes with SHP at the nuclear envelope region and mediates SUMO2 modification at K68, which facilitates nuclear transport of SHP and its interaction with repressive histone modifiers to inhibit BA synthetic genes. Mice expressing a SUMO-defective K68R SHP mutant have increased liver BA levels, and upon BA- or drug-induced biliary insults, these mice exhibit exacerbated cholestatic pathologies. These results demonstrate a function of RanBP2-mediated SUMOylation of SHP in maintaining BA homoeostasis and protecting from the BA hepatotoxicity.
Collapse
|
103
|
Girnita L, Takahashi SI, Crudden C, Fukushima T, Worrall C, Furuta H, Yoshihara H, Hakuno F, Girnita A. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:277-311. [PMID: 27378760 DOI: 10.1016/bs.pmbts.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states.
Collapse
Affiliation(s)
- L Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - S-I Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - C Crudden
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - T Fukushima
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - C Worrall
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - H Furuta
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Yoshihara
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - F Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - A Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
104
|
Lubick KJ, Robertson SJ, McNally KL, Freedman BA, Rasmussen AL, Taylor RT, Walts AD, Tsuruda S, Sakai M, Ishizuka M, Boer EF, Foster EC, Chiramel AI, Addison CB, Green R, Kastner DL, Katze MG, Holland SM, Forlino A, Freeman AF, Boehm M, Yoshii K, Best SM. Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell Host Microbe 2016; 18:61-74. [PMID: 26159719 DOI: 10.1016/j.chom.2015.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022]
Abstract
Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses.
Collapse
Affiliation(s)
- Kirk J Lubick
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Shelly J Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Kristin L McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Brett A Freedman
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Angela L Rasmussen
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Avram D Walts
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Seitaro Tsuruda
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Mariko Ishizuka
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Elena F Boer
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Erin C Foster
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Conrad B Addison
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Richard Green
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Daniel L Kastner
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Alexandra F Freeman
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Manfred Boehm
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
105
|
Atkins SJ, Lentz SI, Fernando R, Smith TJ. Disrupted TSH Receptor Expression in Female Mouse Lung Fibroblasts Alters Subcellular IGF-1 Receptor Distribution. Endocrinology 2015; 156:4731-40. [PMID: 26389690 PMCID: PMC4655214 DOI: 10.1210/en.2015-1464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A relationship between the actions of TSH and IGF-1 was first recognized several decades ago. The close physical and functional associations between their respective receptors (TSHR and IGF-1R) has been described more recently in thyroid epithelium and human orbital fibroblasts as has the noncanonical behavior of IGF-1R. Here we report studies conducted in lung fibroblasts from female wild-type C57/B6 (TSHR(+/+)) mice and their littermates in which TSHR has been knocked out (TSHR(-/-)). Flow cytometric analysis revealed that cell surface IGF-1R levels are substantially lower in TSHR(-/-) fibroblasts compared with TSHR(+/+) fibroblasts. Confocal immunofluorescence microscopy revealed similar divergence with regard to both cytoplasmic and nuclear IGF-1R. Western blot analysis demonstrated both intact IGF-1R and receptor fragments in both cellular compartments. In contrast, IGF-1R mRNA levels were similar in fibroblasts from mice without and with intact TSHR expression. IGF-1 treatment of TSHR(+/+) fibroblasts resulted in reduced nuclear and cytoplasmic staining for IGF-1Rα, whereas it enhanced the nuclear signal in TSHR(-/-) cells. In contrast, IGF-1 enhanced cytoplasmic IGF-1Rβ in TSHR(-/-) fibroblasts while increasing the nuclear signal in TSHR(+/+) cells. These findings indicate the intimate relationship between TSHR and IGF-1R found earlier in human orbital fibroblasts also exists in mouse lung fibroblasts. Furthermore, the presence of TSHR in these fibroblasts influenced not only the levels of IGF-1R protein but also its subcellular distribution and response to IGF-1. They suggest that the mouse might serve as a suitable model for delineating the molecular mechanisms overarching these two receptors.
Collapse
Affiliation(s)
- Stephen J Atkins
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Stephen I Lentz
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| |
Collapse
|
106
|
Packham S, Lin Y, Zhao Z, Warsito D, Rutishauser D, Larsson O. The Nucleus-Localized Epidermal Growth Factor Receptor Is SUMOylated. Biochemistry 2015; 54:5157-66. [PMID: 26244656 DOI: 10.1021/acs.biochem.5b00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays important roles in normal and cancer cell growth. The EGFR has principally two different signaling pathways: the canonical kinase route induced at the plasma membrane resulting in an intracellular phosphorylation cascade via MAPKs and PI3K and the more recently discovered pathway by which the receptor functions as a transcriptional co-activator inside the cell nucleus. Full length EGFR translocates to the inner nuclear membrane, via the endoplasmic reticulum, through association with the sec61β translocon. The c-myc (MYC) and cyclin D1 (CNND1) genes represent two target genes for nuclear EGFR (nEGFR). Here we show that EGFR is SUMOylated and that the SUMO-1-modified receptors are almost unexceptionally nuclear. Co-immunoprecipitation experiments suggest that EGFR is multi-SUMOylated. Using two mass spectrometry-based strategies (matrix-assisted laser desorption ionization time of flight and electrospray ionization liquid chromatography with tandem mass spectrometry), lysine 37 was identified as a SUMO-1-modified residue by both methods. A lysine 37 site mutant (K37R) was transfected into EGFR deficient cells. Total SUMOylation of EGFR was not altered in the K37R-transfected cells, confirming the presence of other SUMOylation sites. To gain preliminary insight into the possible functional role of EGFR SUMOylation, we compared the effect of expression of the wild-type EGFR with the K37R mutant on promoter activity and expression of CMYC and CNND1. Our results indicate that SUMO-1 modification may affect the transcriptional activity of EGFR, which might have additional impact on, e.g., cancer progression.
Collapse
Affiliation(s)
- Sylvia Packham
- Karolinska Institutet , Division of Biophysics, Medical Biochemistry and Biophysics, Scheeles väg 2, SE-171 77 Stockholm, Sweden
| | - Yingbo Lin
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden
| | - Zhiwei Zhao
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden.,Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, Sichuan CN-610041, China
| | - Dudi Warsito
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden
| | - Dorothea Rutishauser
- Karolinska Institutet , Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, SE-171 77 Stockholm, Sweden.,Science for Life Laboratory , Tomtebodavägen 23, SE-171 65 Solna, Sweden
| | - Olle Larsson
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden
| |
Collapse
|
107
|
Lodhia KA, Tienchaiananda P, Haluska P. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment. Front Oncol 2015. [PMID: 26217584 PMCID: PMC4495315 DOI: 10.3389/fonc.2015.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success.
Collapse
Affiliation(s)
| | | | - Paul Haluska
- Department of Oncology, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
108
|
Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J 2015; 282:3693-721. [PMID: 26096795 DOI: 10.1111/febs.13342] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
109
|
Mertens-Walker I, Lisle JE, Nyberg WA, Stephens CR, Burke L, Rutkowski R, Herington AC, Stephenson SA. EphB4 localises to the nucleus of prostate cancer cells. Exp Cell Res 2015; 333:105-15. [PMID: 25724901 DOI: 10.1016/j.yexcr.2015.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
Abstract
The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor.
Collapse
Affiliation(s)
- Inga Mertens-Walker
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia.
| | - Jessica E Lisle
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - William A Nyberg
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Carson R Stephens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Leslie Burke
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Raphael Rutkowski
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Adrian C Herington
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Sally-Anne Stephenson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| |
Collapse
|
110
|
Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 2015; 14:43. [PMID: 25743390 PMCID: PMC4335664 DOI: 10.1186/s12943-015-0291-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/07/2015] [Indexed: 02/06/2023] Open
Abstract
IGF-1 is a potent mitogen of major importance in the mammary gland. IGF-1 binding to the cognate receptor, IGF-1R, triggers a signaling cascade leading to proliferative and anti-apoptotic events. Although many of the relevant molecular pathways and intracellular cascades remain to be elucidated, a growing body of evidence points to the important role of the IGF-1 system in breast cancer development, progression and metastasis. IGF-1 is a point of convergence for major signaling pathways implicated in breast cancer growth. In this review, we provide an overview and concise update on the function and regulation of IGF-1 as well as the role it plays in breast malignancies.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| | - Pavlos Msaouel
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| |
Collapse
|
111
|
Salisbury TB, Tomblin JK. Insulin/Insulin-like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms, and new blocking strategies. Front Endocrinol (Lausanne) 2015; 6:12. [PMID: 25699021 PMCID: PMC4313785 DOI: 10.3389/fendo.2015.00012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/19/2015] [Indexed: 12/29/2022] Open
Abstract
The insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor (IR) are receptor tyrosine kinases that are expressed in cancer cells. The results of different studies indicate that tumor proliferation and survival is dependent on the IGF1R and IR, and that their inhibition leads to reductions in proliferation and increases in cell death. Molecular targeting therapies that have been used in solid tumors include anti-IGF1R antibodies, anti-IGF1/IGF2 antibodies, and small molecule inhibitors that suppress IGF1R and IR kinase activity. New advances in the molecular basis of anti-IGF1R blocking antibodies reveal they are biased agonists and promote the binding of IGF1 to integrin β3 receptors in some cancer cells. Our recent reports indicate that pharmacological aryl hydrocarbon receptor (AHR) ligands inhibit breast cancer cell responses to IGFs, suggesting that targeting AHR may have benefit in cancers whose proliferation and survival are dependent on insulin/IGF signaling. Novel aspects of IGF1R/IR in cancer, such as biased agonism, integrin β3 signaling, AHR, and new therapeutic targeting strategies will be discussed.
Collapse
Affiliation(s)
- Travis B. Salisbury
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
- *Correspondence: Travis B. Salisbury, Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA e-mail:
| | - Justin K. Tomblin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
112
|
Wang S, Wang X, Wu Y, Han C. IGF-1R signaling is essential for the proliferation of cultured mouse spermatogonial stem cells by promoting the G2/M progression of the cell cycle. Stem Cells Dev 2014; 24:471-83. [PMID: 25356638 DOI: 10.1089/scd.2014.0376] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Culture of mouse spermatogonial stem cells (mSSCs) contributes to understanding the mechanisms of mammalian spermatogenesis. Several key growth factors such as GDNF and FGF2 have been known to be essential for the proliferation of cultured mSSCs. However, additional factors regulating SSC proliferation remain to be identified. In this study, we report that IGF-1R signaling is required for the proliferation of cultured mSSCs by promoting the G2/M progression of the cell cycle. IGF-1 and its receptor IGF-1R are expressed in cultured mSSCs as well as in isolated Sertoli cells and interstitial cells. Blockage of IGF-1R signaling either by knockdown of IGF-1R or by the IGF-1R-specific inhibitor picropodophyllin (PPP) significantly reduced the proliferation of mSSCs, increased their apoptosis, and impaired their stem cell activity in an insulin-independent manner. PPP treatment of mSSCs blocked the G2/M progression. In contrast, both GDNF withdrawal and FGF2 signaling blockade decreased the entry of mSSCs into their S phases. Consistently, IGF-1 promoted the G2/M progression of thymidine-treated mSSCs, which were arrested at G1/S boundary synchronously; while GDNF and/or FGF2 stimulated their entry into the S phase. Moreover, IGF-1 activated the phosphorylation of AKT but not that of ERK1/2 in mSSCs. These results indicate that IGF-1R signaling stimulates the proliferation of mSSCs using a distinct mechanism from those by GDNF and FGF2, and will contribute to the establishment of a chemically defined culture system.
Collapse
Affiliation(s)
- Si Wang
- 1 State Key Laboratory of Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
113
|
Zhang J, Huang FF, Wu DS, Li WJ, Zhan HE, Peng MY, Fang P, Cao PF, Zhang MM, Zeng H, Chen FP. SUMOylation of insulin-like growth factor 1 receptor, promotes proliferation in acute myeloid leukemia. Cancer Lett 2014; 357:297-306. [PMID: 25448401 DOI: 10.1016/j.canlet.2014.11.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Current valid treatments for acute myeloid leukemia (AML) include chemotherapy and hematopoietic stem cell transplantation, which are defective and limited respectively. The insulin-like growth factor 1 receptor (IGF-1R) is up-regulated in many solid tumors; therefore, it may be a target for tumor therapy. Interestingly, IGF-1R is modified by SUMOylation, a type of reversible post-translational modification. In this study, we found that IGF-1R was increased in both cell lines and clinical samples of AML and was modified by SUMO-1. Furthermore, IGF-1, ligand of IGF-1R, induced the up-regulation of IGF-1R and increased the proliferation of leukemia cell line. After mutation of Lys(1025) and Lys(1100) in IGF-1R, the evolutionarily conserved lysine residues were identified as the SUMOylation sites of IGF-1R, because the SUMOylation of IGF-1R in these mutants was significantly inhibited. Furthermore, the cell proliferation mediated by IGF-1 was also reduced. After inhibition of UBC9, the activating enzyme of SUMOylation, co-expression of IGF-1R and SUMO-1 was down-regulated, and cell proliferation was also inhibited. However, cell apoptosis was not significantly affected. These results suggest that IGF-1R and its SUMOylation may be a new therapeutic target for strategy of AML.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China
| | - Fang-Fang Huang
- Department of Hematology, Zhong-Shan Hospital, Xiamen University, Xiamen, China
| | - Deng-Shu Wu
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China
| | - Wen-Jin Li
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China
| | - Hui-En Zhan
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China
| | - Min-Yuan Peng
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China
| | - Peng Fang
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China
| | - Peng-Fei Cao
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China
| | - Meng-Meng Zhang
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China
| | - Hui Zeng
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China.
| | - Fang-Ping Chen
- Department of Hematology, Xiang-Ya Hospital, Central South University, 87 Xiang-Ya Road, Changsha 410008, China.
| |
Collapse
|
114
|
Expression of Insulin-like Growth Factor-1 Receptor in Conventional Cutaneous Squamous Cell Carcinoma With Different Histological Grades of Differentiation. Am J Dermatopathol 2014; 36:807-11. [DOI: 10.1097/dad.0000000000000120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
115
|
Chou RH, Wang YN, Hsieh YH, Li LY, Xia W, Chang WC, Chang LC, Cheng CC, Lai CC, Hsu JL, Chang WJ, Chiang SY, Lee HJ, Liao HW, Chuang PH, Chen HY, Wang HL, Kuo SC, Chen CH, Yu YL, Hung MC. EGFR modulates DNA synthesis and repair through Tyr phosphorylation of histone H4. Dev Cell 2014; 30:224-37. [PMID: 25073158 DOI: 10.1016/j.devcel.2014.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 03/21/2014] [Accepted: 06/05/2014] [Indexed: 12/17/2022]
Abstract
Posttranslational modifications of histones play fundamental roles in many biological functions. Specifically, histone H4-K20 methylation is critical for DNA synthesis and repair. However, little is known about how these functions are regulated by the upstream stimuli. Here, we identify a tyrosine phosphorylation site at Y72 of histone H4, which facilitates recruitment of histone methyltransferases (HMTases), SET8 and SUV4-20H, to enhance its K20 methylation, thereby promoting DNA synthesis and repair. Phosphorylation-defective histone H4 mutant is deficient in K20 methylation, leading to reduced DNA synthesis, delayed cell cycle progression, and decreased DNA repair ability. Disrupting the interaction between epidermal growth factor receptor (EGFR) and histone H4 by Y72 peptide significantly reduced tumor growth. Furthermore, EGFR expression clinically correlates with histone H4-Y72 phosphorylation, H4-K20 monomethylation, and the Ki-67 proliferation marker. These findings uncover a mechanism by which EGFR transduces signal to chromatin to regulate DNA synthesis and repair.
Collapse
Affiliation(s)
- Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ying-Nai Wang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi-Hsien Hsieh
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Long-Yuan Li
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Chao Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ling-Chu Chang
- Graduate Institute of Pharmaceutical Chemical, China Medical University, Taichung 404, Taiwan
| | - Chien-Chia Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chien-Chen Lai
- Graduate Institute of Chinese Medical Science, China Medical University and Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Jennifer L Hsu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Shu-Ya Chiang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Hong-Jen Lee
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hsin-Wei Liao
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pei-Huan Chuang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Hui-Yu Chen
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Hung-Ling Wang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemical, China Medical University, Taichung 404, Taiwan
| | | | - Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Mien-Chie Hung
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
116
|
Craven CJ. A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules. Theor Biol Med Model 2014; 11:40. [PMID: 25218581 PMCID: PMC4237941 DOI: 10.1186/1742-4682-11-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The various cell types and their relative numbers in multicellular organisms are controlled by growth factors and related extracellular molecules which affect genetic expression pathways. However, these substances may have both/either inhibitory and/or stimulatory effects on cell division and cell differentiation depending on the cellular environment. It is not known how cells respond to these substances in such an ambiguous way. Many cellular effects have been investigated and reported using cell culture from cancer cell lines in an effort to define normal cellular behaviour using these abnormal cells.A model is offered to explain the harmony of cellular life in multicellular organisms involving interacting extracellular substances. METHODS A basic model was proposed based on asymmetric cell division and evidence to support the hypothetical model was accumulated from the literature. In particular, relevant evidence was selected for the Insulin-Like Growth Factor system from the published data, especially from certain cell lines, to support the model. The evidence has been selective in an attempt to provide a picture of normal cellular responses, derived from the cell lines. RESULTS The formation of a pair of coupled cells by asymmetric cell division is an integral part of the model as is the interaction of couplet molecules derived from these cells. Each couplet cell will have a receptor to measure the amount of the couplet molecule produced by the other cell; each cell will be receptor-positive or receptor-negative for the respective receptors. The couplet molecules will form a binary complex whose level is also measured by the cell. The hypothesis is heavily supported by selective collection of circumstantial evidence and by some direct evidence. The basic model can be expanded to other cellular interactions. CONCLUSIONS These couplet cells and interacting couplet molecules can be viewed as a mechanism that provides a controlled and balanced division-of-labour between the two progeny cells, and, in turn, their progeny. The presence or absence of a particular receptor for a couplet molecule will define a cell type and the presence or absence of many such receptors will define the cell types of the progeny within cell lineages.
Collapse
Affiliation(s)
- Cyril J Craven
- Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
117
|
King H, Aleksic T, Haluska P, Macaulay VM. Can we unlock the potential of IGF-1R inhibition in cancer therapy? Cancer Treat Rev 2014; 40:1096-105. [PMID: 25123819 DOI: 10.1016/j.ctrv.2014.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
IGF-1R inhibitors arrived in the clinic accompanied by optimism based on preclinical activity of IGF-1R targeting, and recognition that low IGF bioactivity protects from cancer. This was tempered by concerns about toxicity to normal tissue IGF-1R and cross-reactivity with insulin receptor (InsR). In fact, toxicity is not a show-stopper; the key issue is efficacy. While IGF-1R inhibition induces responses as monotherapy in sarcomas and with chemotherapy or targeted agents in common cancers, negative Phase 2/3 trials in unselected patients prompted the cessation of several Pharma programs. Here, we review completed and on-going trials of IGF-1R antibodies, kinase inhibitors and ligand antibodies. We assess candidate biomarkers for patient selection, highlighting the potential predictive value of circulating IGFs/IGFBPs, the need for standardized assays for IGF-1R, and preclinical evidence that variant InsRs mediate resistance to IGF-1R antibodies. We review hypothesis-led and unbiased approaches to evaluate IGF-1R inhibitors with other agents, and stress the need to consider sequencing with chemotherapy. The last few years were a tough time for IGF-1R therapeutics, but also brought progress in understanding IGF biology. Even failed studies include patients who derived benefit; they should be investigated to identify features distinguishing the tumors and host environment of responders from non-responders. We emphasize the importance of incorporating biospecimen collection into trial design, and wording patient consents to allow post hoc analysis of trial material as new data become available. Such information represents the key to unlocking the potential of this approach, to inform the next generation of trials of IGF signalling inhibitors.
Collapse
Affiliation(s)
- Helen King
- St Catherine's College, University of Oxford, Manor Road, Oxford OX1 3UJ, UK.
| | - Tamara Aleksic
- Department of Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Paul Haluska
- Division of Medical Oncology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA.
| | - Valentine M Macaulay
- Department of Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK; Oxford Cancer Centre, Churchill Hospital, Oxford OX3 7LE, UK.
| |
Collapse
|
118
|
Werner H, Sarfstein R. Transcriptional and epigenetic control of IGF1R gene expression: implications in metabolism and cancer. Growth Horm IGF Res 2014; 24:112-118. [PMID: 24863809 DOI: 10.1016/j.ghir.2014.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022]
Abstract
IGF1R plays an important role in protection from apoptosis, regulation of cell growth, differentiation and oncogenic transformation. IGF1R aberrations lead to intrauterine and postnatal growth failure, microcephaly, mental retardation and deafness. High levels of IGF1R are detected in a diversity of human tumors. IGF1R gene transcription is controlled by complex interactions involving DNA-binding and non DNA-binding transcription factors. This review highlights selected examples of a series of tumor suppressors, including the breast cancer gene-1 (BRCA1), p53, the Wilm's tumor protein-1 (WT1) and the von Hippel-Lindau gene (VHL), whose mechanisms of action involve regulation of IGF1R gene expression. IGF1R gene transcription is also dependent on the presence of stimulatory nuclear proteins, including zinc-finger protein Sp1, EWS-WT1, E2F1, Krüppel-like factor-6 (KLF6), high-mobility group A1 (HMGA1), and others. Loss-of-function of tumor suppressor genes, usually caused by mutations, may result in non-functional proteins unable to control IGF1R promoter activity. Impaired regulation of the IGF1R gene is linked to defective cell division, chromosomal instability and increased incidence of cancer.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
119
|
Lkhagvadorj S, Oh SS, Lee MR, Jung JH, Chung HC, Cha SK, Eom M. Insulin receptor expression in clear cell renal cell carcinoma and its relation to prognosis. Yonsei Med J 2014; 55:861-70. [PMID: 24954312 PMCID: PMC4075388 DOI: 10.3349/ymj.2014.55.4.861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Both insulin and insulin-like growth factor (IGF)-1 signaling are key regulators of energy metabolism, cellular growth, proliferation, and survival. The IGF-1 receptor (IGF-1R) is overexpressed in most types of human cancers including renal cell carcinoma (RCC) with poor prognosis. Insulin receptor (IR) shares downstream effectors with IGF-1R; however, the expression and function of IR in the tumorigenesis of renal cancer remains elusive. Therefore, we examined the expression of IR and its prognostic significance in clear cell RCC (CCRCC). MATERIALS AND METHODS Immunohistochemical staining for IR was performed on 126 formalin-fixed paraffin-embedded CCRCC tissue samples. Eight of these cases were utilized for western blot analysis. The results were compared with various clinico-pathologic parameters of CCRCC and patient survival. RESULTS IR was expressed in the nuclei of CCRCC tumor cells in 109 cases (87.9%). Higher IR expression was significantly correlated with the presence of cystic change, lower Fuhrman nuclear grade, lower pathologic T stage, and lower TNM stage, although it wasn't significantly related to diabetes status and patient survival. Western blot analyses supported the results of the immunohistochemistry studies. CONCLUSION IR expression in CCRCC may be associated with favorable prognostic factors.
Collapse
Affiliation(s)
- Sayamaa Lkhagvadorj
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung Soo Oh
- Department of Occupational & Environmental Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mi-Ra Lee
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Hung Jung
- Department of Urology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyun Chul Chung
- Department of Urology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seung-Kuy Cha
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea. ; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Minseob Eom
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
120
|
Packham S, Warsito D, Lin Y, Sadi S, Karlsson R, Sehat B, Larsson O. Nuclear translocation of IGF-1R via p150(Glued) and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene 2014; 34:2227-38. [PMID: 24909165 DOI: 10.1038/onc.2014.165] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 12/14/2022]
Abstract
Mounting evidence has shown that the insulin-like growth factor-1 receptor (IGF-1R) has critical roles in cancer cell growth. This has prompted pharmacological companies to develop agents targeting the receptor. Surprisingly, clinical trials using specific IGF-1R antibodies have, however, revealed disappointing results. Further understanding of the role of IGF-1R in cancer cells is therefore necessary for development of efficient therapeutic strategies. Recently, we showed that IGF-1R is sumoylated and translocated into the cell nucleus where it activates gene transcription. Several other studies have confirmed our findings and it has been reported that nuclear IGF-1R (nIGF-1R) has prognostic and predictive impact in cancer. To increase the understanding of IGF-1R in cancer cells, we here present the first study that proposes a pathway by which IGF-1R translocates into the cell nucleus. We could demonstrate that IGF-1R first associates with the dynactin subunit p150(Glued), which transports the receptor to the nuclear pore complex, where it co-localizes with importin-β followed by association with RanBP2. Sumoylation of IGF-1R seems to be required for interaction with RanBP2, which in turn may serve as the SUMO E3 ligase. In the context of sumoylation, we provided evidence that it may favor nIGF-1R accumulation by increasing the stability of the receptor. Taken together, topographic and functional interactions between dynactin, importin-β and RanBP2 are involved in nuclear translocation of IGF-1R. Our results provide new understanding of IGF-1R in cancer, which in turn may contribute to development of new therapeutic strategies.
Collapse
Affiliation(s)
- S Packham
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - D Warsito
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Y Lin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - S Sadi
- Department of Molecular Biosciences, Stockholm University, The Wenner-Gren Institute, Stockholm, Sweden
| | - R Karlsson
- Department of Molecular Biosciences, Stockholm University, The Wenner-Gren Institute, Stockholm, Sweden
| | - B Sehat
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - O Larsson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
121
|
Dissous C, Morel M, Vanderstraete M. Venus kinase receptors: prospects in signaling and biological functions of these invertebrate kinases. Front Endocrinol (Lausanne) 2014; 5:72. [PMID: 24860549 PMCID: PMC4026697 DOI: 10.3389/fendo.2014.00072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/28/2014] [Indexed: 12/24/2022] Open
Abstract
Venus kinase receptors (VKRs) form a family of invertebrate receptor tyrosine kinases (RTKs) initially discovered in the parasitic platyhelminth Schistosoma mansoni. VKRs are single transmembrane receptors that contain an extracellular venus fly trap structure similar to the ligand-binding domain of G protein-coupled receptors of class C, and an intracellular tyrosine kinase domain close to that of insulin receptors. VKRs are found in a large variety of invertebrates from cnidarians to echinoderms and are highly expressed in larval stages and in gonads, suggesting a role of these proteins in embryonic and larval development as well as in reproduction. VKR gene silencing could demonstrate the function of these receptors in oogenesis as well as in spermatogenesis in S. mansoni. VKRs are activated by amino acids and are highly responsive to arginine. As many other RTKs, they form dimers when activated by ligands and induce intracellular pathways involved in protein synthesis and cellular growth, such as MAPK and PI3K/Akt/S6K pathways. VKRs are not present in vertebrates or in some invertebrate species. Questions remain open about the origin of this little-known RTK family in evolution and its role in emergence and specialization of Metazoa. What is the meaning of maintenance or loss of VKR in some phyla or species in terms of development and physiological functions? The presence of VKRs in invertebrates of economical and medical importance, such as pests, vectors of pathogens, and platyhelminth parasites, and the implication of these RTKs in gametogenesis and reproduction processes are valuable reasons to consider VKRs as interesting targets in new programs for eradication/control of pests and infectious diseases, with the main advantage in the case of parasite targeting that VKR counterparts are absent from the vertebrate host kinase panel.
Collapse
Affiliation(s)
- Colette Dissous
- INSERM U1019, CNRS-UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Marion Morel
- INSERM U1019, CNRS-UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Mathieu Vanderstraete
- INSERM U1019, CNRS-UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| |
Collapse
|
122
|
Huang Q, Chang J, Cheung MK, Nong W, Li L, Lee MT, Kwan HS. Human proteins with target sites of multiple post-translational modification types are more prone to be involved in disease. J Proteome Res 2014; 13:2735-48. [PMID: 24754740 DOI: 10.1021/pr401019d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many proteins can be modified by multiple types of post-translational modifications (Mtp-proteins). Although some post-translational modifications (PTMs) have recently been found to be associated with life-threatening diseases like cancers and neurodegenerative disorders, the underlying mechanisms remain enigmatic to date. In this study, we examined the relationship of human Mtp-proteins and disease and systematically characterized features of these proteins. Our results indicated that Mtp-proteins are significantly more inclined to participate in disease than proteins carrying no known PTM sites. Mtp-proteins were found significantly enriched in protein complexes, having more protein partners and preferred to act as hubs/superhubs in protein-protein interaction (PPI) networks. They possess a distinct functional focus, such as chromatin assembly or disassembly, and reside in biased, multiple subcellular localizations. Moreover, most Mtp-proteins harbor more intrinsically disordered regions than the others. Mtp-proteins carrying PTM types biased toward locating in the ordered regions were mainly related to protein-DNA complex assembly. Examination of the energetic effects of PTMs on the stability of PPI revealed that only a small fraction of single PTM events influence the binding energy of >2 kcal/mol, whereas the binding energy can change dramatically by combinations of multiple PTM types. Our work not only expands the understanding of Mtp-proteins but also discloses the potential ability of Mtp-proteins to act as key elements in disease development.
Collapse
Affiliation(s)
- Qianli Huang
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, Hong Kong SAR 852000, China
| | | | | | | | | | | | | |
Collapse
|
123
|
Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells 2014; 3:199-235. [PMID: 24709958 PMCID: PMC4092852 DOI: 10.3390/cells3020199] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits.
Collapse
|
124
|
Hillyar CRT, Cornelissen B, Vallis KA. Uptake, internalization and nuclear translocation of radioimmunotherapeutic agents. Ther Deliv 2014; 5:319-35. [PMID: 24592956 DOI: 10.4155/tde.14.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Radioimmunotherapy (RIT) agents that incorporate short-range particle-emitting radionuclides exploit the high linear energy transfer of α-particles and Auger electrons. Both are densely ionizing, generate complex DNA double-strand breaks and so are profoundly cytotoxic. Internalizing RIT agents enter tumor cells through receptor-mediated endocytosis and by incorporation of cell-penetrating peptides. Once internalized, some RIT agents mediate escape from endosomes and/or translocate to the nucleus. In the classical nuclear import pathway, α/β-importins recognize nuclear localization sequences in RIT agents. Translocation through nuclear pores enables RIT agents to bind to nuclear targets induced by, for example, cellular stress, growth factors or anticancer therapy, such as γH2AX or p27(KIP-1). This review discusses RIT agents designed to exploit the mechanisms underlying these complex processes and compares them with noninternalizing RIT agents.
Collapse
Affiliation(s)
- Christopher R T Hillyar
- Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, OX3 7DQ, UK
| | | | | |
Collapse
|
125
|
Abstract
ChIP-seq has become the primary method for identifying in vivo protein-DNA interactions on a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of December 2012. Individually and in aggregate, these data are an important and information-rich resource. However, uncertainties about data quality confound their use by the wider research community. Recently, the Encyclopedia of DNA Elements (ENCODE) project developed and applied metrics to objectively measure ChIP-seq data quality. The ENCODE quality analysis was useful for flagging datasets for closer inspection, eliminating or replacing poor data, and for driving changes in experimental pipelines. There had been no similarly systematic quality analysis of the large and disparate body of published ChIP-seq profiles. Here, we report a uniform analysis of vertebrate transcription factor ChIP-seq datasets in the Gene Expression Omnibus (GEO) repository as of April 1, 2012. The majority (55%) of datasets scored as being highly successful, but a substantial minority (20%) were of apparently poor quality, and another ∼25% were of intermediate quality. We discuss how different uses of ChIP-seq data are affected by specific aspects of data quality, and we highlight exceptional instances for which the metric values should not be taken at face value. Unexpectedly, we discovered that a significant subset of control datasets (i.e., no immunoprecipitation and mock immunoprecipitation samples) display an enrichment structure similar to successful ChIP-seq data. This can, in turn, affect peak calling and data interpretation. Published datasets identified here as high-quality comprise a large group that users can draw on for large-scale integrated analysis. In the future, ChIP-seq quality assessment similar to that used here could guide experimentalists at early stages in a study, provide useful input in the publication process, and be used to stratify ChIP-seq data for different community-wide uses.
Collapse
|
126
|
Kang HS, Ahn SH, Mishra SK, Hong KM, Lee ES, Shin KH, Ro J, Lee KS, Kim MK. Association of polymorphisms and haplotypes in the insulin-like growth factor 1 receptor (IGF1R) gene with the risk of breast cancer in Korean women. PLoS One 2014; 9:e84532. [PMID: 24392142 PMCID: PMC3879335 DOI: 10.1371/journal.pone.0084532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway plays an important role in cancer biology. The IGF 1 receptor (IGF1R) overexpression has been associated with a number of hematological neoplasias and solid tumors including breast cancer. However, molecular mechanism involving IGF1R in carcinogenic developments is clearly not known. We investigated the genetic variations across the IGF1R polymorphism and the risk of breast cancer risk in Korean women. A total of 1418 individuals comprising 1026 breast cancer cases and 392 age-matched controls of Korean were included for the analysis. Genomic DNA was extracted from whole blood and single nucleotide polymorphisms (SNPs) were analyzed on the GoldenGate Assay system by Illumina’s Custom Genetic Analysis service. SNPs were selected for linkage disequilibrium (LD) analysis by Haploview. We genotyped total 51 SNPs in the IGF1R gene and examined for association with breast cancer. All the SNPs investigated were in Hardy-Weinberg equilibrium. These SNPs tested were significantly associated with breast cancer risk, after correction for multiple comparisons by adjusting for age at diagnosis, BMI, age at menarche, and age at first parturition. Among 51 IGF1R SNPs, five intron located SNPs (rs8032477, rs7175052, rs12439557, rs11635251 and rs12916884) with homozygous genotype (variant genotype) were associated with decreased risk of breast cancer. Fisher’s combined p-value for the five SNPs was 0.00032. Three intron located SNPs with heterozygous genotypes also had decreased risk of breast cancer. Seven of the 51 IGF1R SNPs were in LD and in one haplotype block, and were likely to be associated with breast cancer risk. Overall, this case-control study demonstrates statistically significant associations between breast cancer risk and polymorphisms in IGF1R gene.
Collapse
Affiliation(s)
- Han-Sung Kang
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sei Hyun Ahn
- Department of Surgery, Division of Breast and Endocrine Surgery, Asan Medical Center, Seoul, Republic of Korea
| | - Siddhartha Kumar Mishra
- Division of Cancer Epidemiology, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyeong-Man Hong
- Division of Cancer Biology, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Eun Sook Lee
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung Hwan Shin
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jungsil Ro
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Keun Seok Lee
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Mi Kyung Kim
- Division of Cancer Epidemiology, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
127
|
Agis-Balboa RC, Fischer A. Generating new neurons to circumvent your fears: the role of IGF signaling. Cell Mol Life Sci 2014; 71:21-42. [PMID: 23543251 PMCID: PMC11113432 DOI: 10.1007/s00018-013-1316-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/12/2013] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
Abstract
Extinction of fear memory is a particular form of cognitive function that is of special interest because of its involvement in the treatment of anxiety and mood disorders. Based on recent literature and our previous findings (EMBO J 30(19):4071-4083, 2011), we propose a new hypothesis that implies a tight relationship among IGF signaling, adult hippocampal neurogenesis and fear extinction. Our proposed model suggests that fear extinction-induced IGF2/IGFBP7 signaling promotes the survival of neurons at 2-4 weeks old that would participate in the discrimination between the original fear memory trace and the new safety memory generated during fear extinction. This is also called "pattern separation", or the ability to distinguish similar but different cues (e.g., context). To understand the molecular mechanisms underlying fear extinction is therefore of great clinical importance.
Collapse
Affiliation(s)
- R C Agis-Balboa
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Grisebach Str. 5, 37077, Göttingen, Germany,
| | | |
Collapse
|
128
|
Chromatin-associated CSF-1R binds to the promoter of proliferation-related genes in breast cancer cells. Oncogene 2013; 33:4359-64. [PMID: 24362524 PMCID: PMC4141303 DOI: 10.1038/onc.2013.542] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/04/2013] [Accepted: 11/04/2013] [Indexed: 12/18/2022]
Abstract
The colony-stimulating factor-1 (CSF-1) and its receptor CSF-1R physiologically regulate the monocyte/macrophage system, trophoblast implantation and breast development. An abnormal CSF-1R expression has been documented in several human epithelial tumors, including breast carcinomas. We recently demonstrated that CSF-1/CSF-1R signaling drives proliferation of breast cancer cells via ‘classical' receptor tyrosine kinase signaling, including activation of the extracellular signal-regulated kinase 1/2. In this paper, we show that CSF-1R can also localize within the nucleus of breast cancer cells, either cell lines or tissue specimens, irrespectively of their intrinsic molecular subtype. We found that the majority of nuclear CSF-1R is located in the chromatin-bound subcellular compartment. Chromatin immunoprecipitation revealed that CSF-1R, once in the nucleus, binds to the promoters of the proliferation-related genes CCND1, c-JUN and c-MYC. CSF-1R also binds the promoter of its ligand CSF-1 and positively regulates CSF-1 expression. The existence of such a receptor/ligand regulatory loop is a novel aspect of CSF-1R signaling. Moreover, our results provided the first evidence of a novel localization site of CSF-1R in breast cancer cells, suggesting that CSF-1R could act as a transcriptional regulator on proliferation-related genes.
Collapse
|
129
|
Åberg M, Eriksson O, Mokhtari D, Siegbahn A. Tissue factor/factor VIIa induces cell survival and gene transcription by transactivation of the insulin-like growth factor 1 receptor. Thromb Haemost 2013; 111:748-60. [PMID: 24336871 DOI: 10.1160/th13-07-0593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 11/19/2013] [Indexed: 11/05/2022]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is known to promote survival and has also been implicated in the pathogenesis of several disease states, including cardiovascular disorders and cancer. Recently, we showed that binding of coagulation factor VIIa (FVIIa) to its receptor tissue factor (TF) protects cancer cells from TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis. Here we present evidence that this biological function of TF/FVIIa is dependent on the IGF-1R. IGF-1R inhibitors AG1024 and PPP as well as siRNA-mediated downregulation of IGF-1R, abolished the TF/FVIIa-mediated protection against TRAIL-induced apoptosis. Moreover, FVIIa rapidly induced a time- and concentration-dependent tyrosine phosphorylation of the IGF-1R in MDA-MB-231 breast cancer cells and in primary human monocytes, an event that was accompanied by IGF-1R chromatin binding and gene transcription. We hereby present novel evidence of a cross-talk between the coagulation and IGF-1R signalling systems, and propose that the IGF-1R is a key player in mediating TF/FVIIa-induced cell survival.
Collapse
Affiliation(s)
| | | | | | - Agneta Siegbahn
- Prof. Agneta Siegbahn, MD, PhD, FESC, Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, University Hospital, Entr. 61 3rd floor, S-751 85 Uppsala, Sweden, E-mail: , Tel.: +46 186114251, Fax: +46 18552562
| |
Collapse
|
130
|
Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci 2013; 71:2403-27. [PMID: 24276851 PMCID: PMC4055838 DOI: 10.1007/s00018-013-1514-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R “borrows” components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.
Collapse
|
131
|
IGF-1R inhibition enhances radiosensitivity and delays double-strand break repair by both non-homologous end-joining and homologous recombination. Oncogene 2013; 33:5262-73. [PMID: 24186206 PMCID: PMC3997348 DOI: 10.1038/onc.2013.460] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/01/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
Inhibition of type 1 insulin-like growth factor receptor (IGF-1R) enhances tumor cell sensitivity to ionizing radiation. It is not clear how this effect is mediated, nor whether this approach can be applied effectively in the clinic. We previously showed that IGF-1R depletion delays repair of radiation-induced DNA double-strand breaks (DSBs), unlikely to be explained entirely by reduction in homologous recombination (HR) repair. The current study tested the hypothesis that IGF-1R inhibition induces a repair defect that involves non-homologous end joining (NHEJ). IGF-1R inhibitor AZ12253801 blocked cell survival and radiosensitized IGF-1R-overexpressing murine fibroblasts but not isogenic IGF-1R-null cells, supporting specificity for IGF-1R. IGF-1R inhibition enhanced radiosensitivity in DU145, PC3 and 22Rv1 prostate cancer cells, comparable to effects of Ataxia Telangiectasia Mutated inhibition. AZ12253801-treated DU145 cells showed delayed resolution of γH2AX foci, apparent within 1 h of irradiation and persisting for 24 h. In contrast, IGF-1R inhibition did not influence radiosensitivity or γH2AX focus resolution in LNCaP-LN3 cells, suggesting that radiosensitization tracks with the ability of IGF-1R to influence DSB repair. To differentiate effects on repair from growth and cell-survival responses, we tested AZ12253801 in DU145 cells at sub-SF50 concentrations that had no early (⩽48 h) effects on cell cycle distribution or apoptosis induction. Irradiated cultures contained abnormal mitoses, and after 5 days IGF-1R-inhibited cells showed enhanced radiation-induced polyploidy and nuclear fragmentation, consistent with the consequences of entry into mitosis with incompletely repaired DNA. AZ12253801 radiosensitized DNA-dependent protein kinase (DNA-PK)-proficient but not DNA-PK-deficient glioblastoma cells, and did not radiosensitize DNA-PK-inhibited DU145 cells, suggesting that in the context of DSB repair, IGF-1R functions in the same pathway as DNA-PK. Finally, IGF-1R inhibition attenuated repair by both NHEJ and HR in HEK293 reporter assays. These data indicate that IGF-1R influences DSB repair by both major DSB repair pathways, findings that may inform clinical application of this approach.
Collapse
|
132
|
Abstract
To date, 18 distinct receptor tyrosine kinases (RTKs) are reported to be trafficked from the cell surface to the nucleus in response to ligand binding or heterologous agonist exposure. In most cases, an intracellular domain (ICD) fragment of the receptor is generated at the cell surface and translocated to the nucleus, whereas for a few others the intact receptor is translocated to the nucleus. ICD fragments are generated by several mechanisms, including proteolysis, internal translation initiation, and messenger RNA (mRNA) splicing. The most prevalent mechanism is intramembrane cleavage by γ-secretase. In some cases, more than one mechanism has been reported for the nuclear localization of a specific RTK. The generation and use of RTK ICD fragments to directly communicate with the nucleus and influence gene expression parallels the production of ICD fragments by a number of non-RTK cell-surface molecules that also influence cell proliferation. This review will be focused on the individual RTKs and to a lesser extent on other growth-related cell-surface transmembrane proteins.
Collapse
Affiliation(s)
- Graham Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | |
Collapse
|
133
|
Wei Z, Hurtt R, Gu T, Bodzin AS, Koch WJ, Doria C. GRK2 negatively regulates IGF-1R signaling pathway and cyclins' expression in HepG2 cells. J Cell Physiol 2013; 228:1897-901. [PMID: 23460259 DOI: 10.1002/jcp.24353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/13/2013] [Indexed: 01/30/2023]
Abstract
G protein coupled receptor kinase 2 (GRK2) plays a central role in the regulation of a variety of important signaling pathways. Alternation of GRK2 protein level and activity casts profound effects on cell physiological functions and causes diseases such as heart failure, rheumatoid arthritis, and obesity. We have previously reported that overexpression of GRK2 has an inhibitory role in cancer cell growth. To further examine the role of GRK2 in cancer, in this study, we investigated the effects of reduced protein level of GRK2 on insulin-like growth factor 1 receptor (IGF-1R) signaling pathway in human hepatocellular carcinoma (HCC) HepG2 cells. We created a GRK2 knockdown cell line using a lentiviral vector mediated expression of GRK2 specific short hairpin RNA (shRNA). Under IGF-1 stimulation, HepG2 cells with reduced level of GRK2 showed elevated total IGF-1R protein expression as well as tyrosine phosphorylation of receptor. In addition, HepG2 cells with reduced level of GRK2 also demonstrated increased tyrosine phosphorylation of IRS1 at the residue 612 and increased phosphorylation of Akt, indicating a stronger activation of IGF-1R signaling pathway. However, HepG2 cells with reduced level of GRK2 did not display any growth advantage in culture as compared with the scramble control cells. We further detected that reduced level of GRK2 induced a small cell cycle arrest at G2/M phase by enhancing the expression of cyclin A, B1, and E. Our results indicate that GRK2 has contrasting roles on HepG2 cell growth by negatively regulating the IGF-1R signaling pathway and cyclins' expression.
Collapse
Affiliation(s)
- Zhengyu Wei
- Division of Transplantation, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Aslam MI, Hettmer S, Abraham J, Latocha D, Soundararajan A, Huang ET, Goros MW, Michalek JE, Wang S, Mansoor A, Druker BJ, Wagers AJ, Tyner JW, Keller C. Dynamic and nuclear expression of PDGFRα and IGF-1R in alveolar Rhabdomyosarcoma. Mol Cancer Res 2013; 11:1303-13. [PMID: 23928059 DOI: 10.1158/1541-7786.mcr-12-0598] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Since the advent of tyrosine kinase inhibitors as targeted therapies in cancer, several receptor tyrosine kinases (RTK) have been identified as operationally important for disease progression. Rhabdomyosarcoma (RMS) is a malignancy in need of new treatment options; therefore, better understanding of the heterogeneity of RTKs would advance this goal. Here, alveolar RMS (aRMS) tumor cells derived from a transgenic mouse model expressing two such RTKs, platelet-derived growth factor (PDGFR)α and insulin-like growth factor (IGF)-1R, were investigated by fluorescence-activated cell sorting (FACS). Sorted subpopulations that were positive or negative for PDGFRα and IGF-1R dynamically altered their cell surface RTK expression profiles as early as the first cell division. Interestingly, a difference in total PDGFRα expression and nuclear IGF-1R expression was conserved in populations. Nuclear IGF-1R expression was greater than cytoplasmic IGF-1R in cells with initially high cell surface IGF-1R, and cells with high nuclear IGF-1R established tumors more efficiently in vivo. RNA interference-mediated silencing of IGF-1R in the subpopulation of cells initially harboring higher cell surface and total IGF-1R resulted in significantly reduced anchorage-independent colony formation as compared with cells with initially lower cell surface and total IGF-1R expression. Finally, in accordance with the findings observed in murine aRMS, human aRMS also had robust expression of nuclear IGF-1R. IMPLICATIONS RTK expression status and subcellular localization dynamics are important considerations for personalized medicine.
Collapse
Affiliation(s)
- M Imran Aslam
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., MC-L321, Portland, OR 97239.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
van Gaal JC, Roeffen MHS, Flucke UE, van der Laak JAWM, van der Heijden G, de Bont ESJM, Suurmeijer AJH, Versleijen-Jonkers YMH, van der Graaf WTA. Simultaneous targeting of insulin-like growth factor-1 receptor and anaplastic lymphoma kinase in embryonal and alveolar rhabdomyosarcoma: a rational choice. Eur J Cancer 2013; 49:3462-70. [PMID: 23867124 DOI: 10.1016/j.ejca.2013.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/07/2013] [Accepted: 06/20/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is an aggressive soft tissue tumour mainly affecting children and adolescents. Since survival of high-risk patients remains poor, new treatment options are awaited. The aim of this study is to investigate anaplastic lymphoma kinase (ALK) and insulin-like growth factor-1 receptor (IGF-1R) as potential therapeutic targets in RMS. PATIENTS AND METHODS One-hundred-and-twelve primary tumours (embryonal RMS (eRMS)86; alveolar RMS (aRMS)26) were collected. Expression of IGF-1R, ALK and downstream pathway proteins was evaluated by immunohistochemistry. The effect of ALK inhibitor NVP-TAE684 (Novartis), IGF-1R antibody R1507 (Roche) and combined treatment was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in cell lines (aRMS Rh30, Rh41; eRMS Rh18, RD). RESULTS IGF-1R and ALK expression was observed in 72% and 92% of aRMS and 61% and 39% of eRMS, respectively. Co-expression was observed in 68% of aRMS and 32% of eRMS. Nuclear IGF-1R expression was an adverse prognostic factor in eRMS (5-year survival 46.9 ± 18.7% versus 84.4 ± 5.9%, p=0.006). In vitro, R1507 showed diminished viability predominantly in Rh41. NVP-TAE684 showed diminished viability in Rh41 and Rh30, and to a lesser extent in Rh18 and RD. Simultaneous treatment revealed synergistic activity against Rh41 and Rh30. CONCLUSION Co-expression of IGF-1R and ALK is detected in eRMS and particularly in aRMS. As combined inhibition reveals synergistic cytotoxic effects, this combination seems promising and needs further investigation.
Collapse
Affiliation(s)
- J Carlijn van Gaal
- Department of Medical Oncology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Wu PF, Huang WC, Yang JCH, Lu YS, Shih JY, Wu SG, Lin CH, Cheng AL. Phosphorylated insulin-like growth factor-1 receptor (pIGF1R) is a poor prognostic factor in brain metastases from lung adenocarcinomas. J Neurooncol 2013; 115:61-70. [PMID: 23817810 DOI: 10.1007/s11060-013-1194-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/23/2013] [Indexed: 12/14/2022]
Abstract
A greater understanding of brain metastases is imperative for developing novel therapeutic strategies. Our previous study showed that insulin-like growth factor (IGF) signaling pathway was activated in brain-tropic cancer cells. In this study, we investigated the clinical relevance of activated (phosphorylated) IGF-1 receptor (pIGF1R) expression in brain metastases originating from lung adenocarcinomas. All pathologically confirmed brain metastases from lung adenocarcinomas, with available archived specimens from January 1998 to December 2009 at National Taiwan University Hospital, were assessed immunohistochemically for pIGF1R expression using H-score criteria. A median H-score was used as a cutoff point to define high or low pIGF1R expression. The mutation status in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) was examined using direct sequencing. The prognostic significance of pIGF1R expression, its correlations with clinicopathological characteristics, and EGFR status were evaluated. In the 86 cases, high membranous/cytoplasmic pIGF1R expression in brain metastases correlated with a shorter median survival (10.8 vs 27.8 mo, P = 0.003). This correlation was more significant in patients with EGFR mutations [hazard ratio (HR) 2.38, 95 % confidence interval (CI) 1.19-4.77 for EGFR mutations; HR 1.99, 95 % CI 0.95-4.15 for EGFR wild type] and remained statistically significant in multivariate analysis after adjusting for the effects of other potential prognostic factors, including the graded prognostic assessment score, solitary brain metastasis, extracranial metastatic status, EGFR mutations, and treatment using EGFR tyrosine kinase inhibitors. Although we also identified nuclear pIGF1R expression, this result was prognostically non-significant. Our study results showed that high membranous/cytoplasmic pIGF1R expression in brain metastases was a poor prognostic factor, more significantly in patients with EGFR mutations than in those with wild-type EGFRs.
Collapse
Affiliation(s)
- Pei-Fang Wu
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, 100, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Song S, Rosen KM, Corfas G. Biological function of nuclear receptor tyrosine kinase action. Cold Spring Harb Perspect Biol 2013; 5:5/7/a009001. [PMID: 23818495 DOI: 10.1101/cshperspect.a009001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) were believed until recently to act at the cell membrane in a singular fashion (i.e., binding of ligands on the extracellular domain would activate the intrinsic tyrosine kinase activity in the intracellular domain), which would then start a cascade involving other intracellular signaling molecules that would act as effectors. However, new evidence indicates that some RTKs can signal through a different modality; they can move into the nucleus where they directly exert their actions. Although some studies have showed that the proteolytically released intracellular domain of several RTKs can move to the nucleus where they influence gene expression and cell function, others suggest that RTKs can also move to the nucleus as holoproteins. The identification of this novel signaling mechanism calls for a critical reevaluation of the mechanisms of action of RTKs and their biological roles.
Collapse
Affiliation(s)
- Sungmin Song
- FM Kirby Neurobiology Center, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
138
|
SUMOylation is a regulator of the translocation of Jak2 between nucleus and cytosol. Biochem J 2013; 453:231-9. [DOI: 10.1042/bj20121375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Jak2 (Janus kinase 2) initiates the signal transduction of many cytokine receptors. We discovered that Jak2 is SUMOylated on multiple lysine residues by SUMO2/3 (small ubiquitin-related modifier 2/3) chains. Analysis of Jak2 mutants revealed that Jak2 SUMOylation depends on the presence of an active catalytic site. We used the GH (growth hormone) receptor to study the physiological relevance of Jak2 SUMOylation. Both GH stimulation and several other environmental stressors increased Jak2 SUMOylation. Cell fractionation showed that SUMOylated Jak2 is mainly present in the nucleus. The constitutively active V617F Jak2 mutant, implicated in myeloproliferative diseases, was highly SUMOylated in the absence of stimuli. These data provide evidence that Jak2 SUMOylation controls Jak2 shuttling between cytoplasm and nucleus.
Collapse
|
139
|
Qi L, Toyoda H, Shankar V, Sakurai N, Amano K, Kihira K, Iwasa T, Deguchi T, Hori H, Azuma E, Gabazza EC, Komada Y. Heterogeneity of neuroblastoma cell lines in insulin-like growth factor 1 receptor/Akt pathway-mediated cell proliferative responses. Cancer Sci 2013; 104:1162-71. [PMID: 23710710 DOI: 10.1111/cas.12204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is critical for cancer cell proliferation; however, recent clinical anti-IGF-1R trials did not show clear clinical benefit in cancer therapy. We hypothesized that IGF-1R signaling-mediated proliferative response is heterogeneous in neuroblastoma (NB) cells, and analyzed the cell growth of 31 NB cell lines cultured in three different media, including Hybridoma-SFM medium (with insulin) and RPMI1640 with/without 10% FBS. Three growth patterns were found. In response to IGF and insulin, cell proliferation and Akt phosphorylation were upregulated in 13 cell lines, and suppressed by MK2206 (Akt inhibitor) and picropodophyllin (IGF-1R inhibitor). Interestingly, 3 of these 13 cell lines showed Akt self-phosphorylation and cell proliferation in RPMI1640; their proliferation was downregulated by anti-IGF-1 or anti-IGF-2 neutralizing antibody, suggesting the existence of an autocrine loop in the IGF-1R/Akt pathway. Eighteen NB cell lines did not proliferate in RPMI1640, even though Akt phosphorylation was upregulated by IGF and insulin. Based on the heterogeneous response of the IGF-1R/Akt pathway, the 31 NB cell lines could be classified into group 1 (autocrine IGF-mediated), group 2 (exogenous IGF-mediated) and group 3 (partially exogenous IGF-mediated) NB cell lines. In addition, group 3 NB cell lines were different from group 1 and 2, in terms of serum starvation-induced caspase 3 cleavage and picropodophyllin-induced G2/M arrest. These results indicate that the response of the IGF-1R/Akt pathway is an important determinant of the sensitivity to IGF-1R antagonists in NB. To our knowledge, this is the first report describing heterogeneity in the IGF-1R/Akt-mediated proliferation of NB cells.
Collapse
Affiliation(s)
- Lei Qi
- Department of Pediatrics and Developmental Science, Graduate School of Medicine, Mie University, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Itkonen HM, Mills IG. N-linked glycosylation supports cross-talk between receptor tyrosine kinases and androgen receptor. PLoS One 2013; 8:e65016. [PMID: 23724116 PMCID: PMC3665679 DOI: 10.1371/journal.pone.0065016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 04/21/2013] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is the second most common cause of cancer-associated deaths in men and signalling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Androgen treatment is known to affect the expression and activity of other oncogenes including receptor tyrosine kinases (RTKs). In this study we report that AR-positive prostate cancer cell-lines express 50% higher levels of enzymes in the hexosamine biosynthesis pathway (HBP) than AR-negative prostate cell-lines. HBP produces hexosamines that are used by endoplasmic reticulum and golgi enzymes to glycosylate proteins targeted to plasma-membrane and secretion. Inhibition of O-linked glycosylation by ST045849 or N-linked glycosylation with tunicamycin decreased cell viability by 20%. In addition, tunicamycin inhibited the androgen-induced expression of AR target genes KLK3 and CaMKK2 by 50%. RTKs have been shown to enhance AR activity and we used an antibody array to identify changes in the phosphorylation status of RTKs in response to androgen stimulation. Hormone treatment increased the activity of Insulin like Growth Factor 1-Receptor (IGF-1R) ten-fold and this was associated with a concomitant increase in the N-linked glycosylation of the receptor, analyzed by lectin enrichment experiments. Glycosylation is known to be important for the processing and stability of RTKs. Inhibition of N-linked glycosylation resulted in accumulation of IGF-1R pro-receptor with altered mobility as shown by immunoprecipitation. Confocal imaging revealed that androgen induced plasma-membrane localization of IGF-1R was blocked by tunicamycin. In conclusion we have established that the glycosylation of IGF-1R is necessary for the full activation of the receptor in response to androgen treatment and that perturbing this process can break the feedback loop between AR and IGF-1R activation in prostate cells. Achieving similar results selectively in a clinical setting will be an important challenge in the future.
Collapse
Affiliation(s)
- Harri M. Itkonen
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory (EMBL) Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ian G. Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory (EMBL) Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Prevention and Department of Urology, Oslo University Hospitals, Oslo, Norway
- * E-mail:
| |
Collapse
|
141
|
Baserga R. The decline and fall of the IGF-I receptor. J Cell Physiol 2013; 228:675-9. [PMID: 22926508 DOI: 10.1002/jcp.24217] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/17/2012] [Indexed: 12/31/2022]
Abstract
This review examines the effect of targeting the insulin-like growth factor 1 receptor (IGF-IR) in human cancers. The results are disappointing. The causes for the failure are discussed, as well as the possible use of the IGF-IR as a secondary target.
Collapse
Affiliation(s)
- Renato Baserga
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
142
|
Wei Z, Doria C, Liu Y. Targeted therapies in the treatment of advanced hepatocellular carcinoma. Clin Med Insights Oncol 2013; 7:87-102. [PMID: 23761989 PMCID: PMC3667684 DOI: 10.4137/cmo.s7633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and the third leading cause of cancer death. It has been a major worldwide health problem with more new cases being diagnosed each year. The current available therapies for patients with advanced HCC are extremely limited. Therefore, it is of great clinical interests to develop more effective therapies for systemic treatment of advanced HCC. Several promising target-based drugs have been tested in a number of clinical trials. One breakthrough of these efforts is the approved clinical use of sorafenib in patients with advanced HCC. Targeted therapies are becoming an attractive option for the treatment of advanced HCC. In this review, we summarize the most recent progress in clinical targeted treatments of advanced HCC.
Collapse
Affiliation(s)
- Zhengyu Wei
- Division of Surgical Research, Department of Surgery, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ
| | - Cataldo Doria
- Division of Transplantation, Department of Surgery, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Yuan Liu
- Division of Surgical Research, Department of Surgery, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ
| |
Collapse
|
143
|
Sarfstein R, Werner H. Minireview: nuclear insulin and insulin-like growth factor-1 receptors: a novel paradigm in signal transduction. Endocrinology 2013; 154:1672-9. [PMID: 23507573 DOI: 10.1210/en.2012-2165] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The specificity of the insulin receptor (InsR) and insulin-like growth factor-1 receptor (IGF1R) signaling pathways has been the focus of significant debate over the past few years. Recent evidence showing nuclear import and a direct transcriptional role for both InsR and IGF1R adds a new layer of complexity to this dialog. Hence, in addition to the classical roles associated with cell-surface receptors (eg, ligand binding, autophosphorylation of the tyrosine kinase domain, activation of insulin receptor substrate 1 (IRS-1) and additional substrates, protein-protein interactions with membrane and cytoplasm components), new data are consistent with nuclear (genomic) role(s) for both InsR and IGF1R. The present review provides a brief overview of the physical and functional similarities and differences between InsR and IGF1R and describes data from a number of laboratories providing evidence for a new layer of signaling regulation (ie, the ability of InsR and IGF1R to translocate to the cell nucleus and to elicit genomic activities usually associated with transcription factors). The ability of InsR and IGF1R to function as transcription factors, although poorly understood, constitutes a new paradigm in signal transduction. Although research on the role of nuclear InsR/IGF1R is still in its infancy, we believe that this rapidly developing area may have a major basic and translational impact on the fields of metabolism, diabetes, and cancer.
Collapse
Affiliation(s)
- Rive Sarfstein
- PhD, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
144
|
Merbl Y, Refour P, Patel H, Springer M, Kirschner MW. Profiling of ubiquitin-like modifications reveals features of mitotic control. Cell 2013; 152:1160-72. [PMID: 23452859 DOI: 10.1016/j.cell.2013.02.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 07/18/2012] [Accepted: 02/05/2013] [Indexed: 12/17/2022]
Abstract
Ubiquitin and ubiquitin-like (Ubl) protein modifications affect protein stability, activity, and localization, but we still lack broad understanding of the functions of Ubl modifications. We have profiled the protein targets of ubiquitin and six additional Ubls in mitosis using a functional assay that utilizes active mammalian cell extracts and protein microarrays and identified 1,500 potential substrates; 80-200 protein targets were exclusive to each Ubl. The network structure is nonrandom, with most targets mapping to a single Ubl. There are distinct molecular functions for each Ubl, suggesting divergent biological roles. Analysis of differential profiles between mitosis and G1 highlighted a previously underappreciated role for the Ubl, FAT10, in mitotic regulation. In addition to its role as a resource for Ubl modifications, our study provides a systematic approach to analyze changes in posttranslational modifications at various cellular states.
Collapse
Affiliation(s)
- Yifat Merbl
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
145
|
Janku F, Huang HJ, Angelo LS, Kurzrock R. A kinase-independent biological activity for insulin growth factor-1 receptor (IGF-1R) : implications for inhibition of the IGF-1R signal. Oncotarget 2013; 4:463-73. [PMID: 23531874 PMCID: PMC3717308 DOI: 10.18632/oncotarget.886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 03/23/2013] [Indexed: 12/19/2022] Open
Abstract
It has been demonstrated that epidermal growth factor receptor (EGFR) can have kinase independent activity. EGFR kinase-independent function maintains intracellular glucose levels via sodium glucose transporter protein 1 (SGLT1) and supports cell survival. It is plausible that this phenomenon can apply to other receptor tyrosine kinases. We found that transfection of insulin-like growth factor receptor (IGF-1R) siRNA into HEK293 (human embryonic kidney) and MCF7 (metastatic breast cancer) cells result in decreased intracellular glucose levels, whereas treatment with an IGF-1R tyrosine kinase inhibitor OSI-906 did not affect intracellular glucose levels. In addition, IGF-1R interacted with SGLT1 in a manner similar to that previously reported with EGFR. The combination of IGF-1R siRNA and OSI-906 resulted in decreased viability of HEK293 and MCF7 cell lines compared to either agent alone. Collectively, these experiments suggest that IGF-1R, has kinase-independent biologic functions and provide a rationale for combining anti-IGF-1R antibodies or siRNA and IGF-1R small molecule inhibitors.
Collapse
Affiliation(s)
- Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | |
Collapse
|
146
|
Bitelman C, Sarfstein R, Sarig M, Attias-Geva Z, Fishman A, Werner H, Bruchim I. IGF1R-directed targeted therapy enhances the cytotoxic effect of chemotherapy in endometrial cancer. Cancer Lett 2013; 335:153-9. [PMID: 23402816 DOI: 10.1016/j.canlet.2013.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 02/08/2023]
Abstract
This study evaluated the potential ability of MK-0646 to inhibit IGF1-mediated biological actions and cell signaling events in Type 1 and Type 2 endometrial cancer. We found that MK-0646 treatment significantly decreased IGF1R expression. In addition, pretreatment with MK-0646 decreased the IGF1-induced phosphorylation of IGF1R, AKT and ERK. Apoptosis analyses showed that MK-0646 abolished the anti-apoptotic effect of IGF1. Furthermore, MK-0646 treatment abolished the IGF1-stimulatory effect on proliferation and enhanced the cytotoxic effect of cisplatin. These findings indicate that specific inhibition of IGF1R could be a useful therapeutic approach for Type 1 and Type 2 endometrial cancer.
Collapse
Affiliation(s)
- Connie Bitelman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
147
|
Singh R, De Aguiar RB, Naik S, Mani S, Ostadsharif K, Wencker D, Sotoudeh M, Malekzadeh R, Sherwin RS, Mani A. LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans. Cell Metab 2013; 17:197-209. [PMID: 23395167 PMCID: PMC3589523 DOI: 10.1016/j.cmet.2013.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 11/02/2012] [Accepted: 01/17/2013] [Indexed: 01/02/2023]
Abstract
Common genetic variations in Wnt signaling genes have been associated with metabolic syndrome and diabetes by mechanisms that are poorly understood. A rare nonconservative mutation in Wnt coreceptor LRP6 (LRP6(R611C)) has been shown to underlie autosomal dominant early onset coronary artery disease, type 2 diabetes, and metabolic syndrome. We examined the interplay between Wnt and insulin signaling pathways in skeletal muscle and skin fibroblasts of healthy nondiabetic LRP6(R611C) mutation carriers. LRP6 mutation carriers exhibited hyperinsulinemia and reduced insulin sensitivity compared to noncarrier relatives in response to oral glucose ingestion, which correlated with a significant decline in tissue expression of the insulin receptor and insulin signaling activity. Further investigations showed that the LRP6(R611C) mutation diminishes TCF7L2-dependent transcription of the IR while it increases the stability of IGFR and enhances mTORC1 activity. These findings identify the Wnt/LRP6/TCF7L2 axis as a regulator of glucose metabolism and a potential therapeutic target for insulin resistance.
Collapse
Affiliation(s)
- Rajvir Singh
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking. Oncogene 2013; 33:756-70. [PMID: 23376851 DOI: 10.1038/onc.2013.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/02/2012] [Accepted: 11/21/2012] [Indexed: 12/18/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors that initiate signal cascades in response to ligand stimulation. Abnormal expression and dysregulated intracellular trafficking of RTKs have been shown to be involved in tumorigenesis. Recent evidence shows that these cell surface receptors translocate from cell surface to different cellular compartments, including the Golgi, mitochondria, endoplasmic reticulum (ER) and the nucleus, to regulate physiological and pathological functions. Although some trafficking mechanisms have been resolved, the mechanism of intracellular trafficking from cell surface to the Golgi is not yet completely understood. Here we report a mechanism of Golgi translocation of epidermal growth factor receptor (EGFR) in which EGF-induced EGFR travels to the Golgi via microtubule-dependent movement by interacting with dynein and fuses with the Golgi through syntaxin 6-mediated membrane fusion. We also demonstrate that the microtubule- and syntaxin 6-mediated Golgi translocation of EGFR is necessary for its consequent nuclear translocation and nuclear functions. Thus, together with previous studies, the microtubule- and syntaxin 6-mediated trafficking pathway from cell surface to the Golgi, ER and the nucleus defines a comprehensive trafficking route for EGFR to travel from cell surface to the Golgi and the nucleus.
Collapse
|
149
|
Analysis of protein interactions in situ by proximity ligation assays. Curr Top Microbiol Immunol 2013; 377:111-26. [PMID: 23921974 DOI: 10.1007/82_2013_334] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fate of the cell is governed by interactions among proteins, nucleic acids, and other biomolecules. It is vital to look at these interactions in a cellular environment if we want to increase our understanding of cellular processes. Herein we will describe how the in situ proximity ligation assay (in situ PLA) can be used to visualize protein interactions in fixed cells and tissues. In situ PLA is a novel technique that uses DNA, together with DNA modifying processes such as ligation, cleavage, and polymerization, as tools to create surrogate markers for protein interactions of interest. Different in situ PLA designs make it possible not only to detect protein-protein interactions but also post-translational modifications and interactions of proteins with nucleic acids. Flexibility in DNA probe design and the multitude of different DNA modifying enzymes provide the basis for modifications of the method to make it suitable to use in many applications. Furthermore, examples of how in situ PLA can be combined with other methods for a comprehensive view of the cellular activity status are discussed.
Collapse
|
150
|
Abstract
Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, BH06, University Hospital of Lausanne, Lausanne, Switzerland.
| |
Collapse
|