101
|
Liu H, Li JX, Tian JL, Wang C, Wang YX, Wan YF, Weng Q, Xu MY. Selective effects of fenitrothion on murine splenic T-lymphocyte populations and cytokine/granzyme production. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:319-326. [PMID: 29431569 DOI: 10.1080/03601234.2018.1431466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate in vitro effects of fenitrothion (FNT) on mouse splenic lymphocytes. Here, naïve mice had their spleens harvested and splenocytes isolated. After exposure to FNT for 48 hr: splenocyte viability was measured using a tetrazolium dye assay; cell phenotypes, i.e., B-cells (CD19+), T-cells (CD3+), and T-cell subsets (CD4+ and CD8+), were quantified by flow cytometry; and, production of cytokines/granzyme-B was assessed via enzyme-linked immunosorbent assay. The ability for FNT to induce oxidative stress in the cells was evaluated by measuring hydroxyl radical (·OH) and malondialdehyde (MDA) production and changes in glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity. The results showed that FNT significantly inhibited splenocyte proliferation, and decreased production of interleukin (IL)-2, interferon gamma, IL-4, and granzyme B, but had no impact on IL-6 production. FNT also selectively decreased splenic T-cell levels but did not induce changes in CD19+ B-cells. Further, within the T-cell populations, percentages of CD3+, CD4+, and CD8+ T-cells (particularly CD8+ T-cells) were reduced. Lastly, FNT selectively increased MDA and ·OH production and inhibited SOD and GSH-Px activities in the splenic lymphocytes. These findings suggest that, due to oxidative damage, FNT selectively inhibits splenic T-lymphocyte survival and cytokine/granzyme production in vitro.
Collapse
Affiliation(s)
- Hong Liu
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Jiang X Li
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Jing L Tian
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Chen Wang
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Yu X Wang
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Yi F Wan
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| | - Qiang Weng
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
| | - Mei Y Xu
- a Collage of Biological Science and Technology , Beijing Forestry University , Beijing , China
- b Beijing Key Laboratory of Forest Food Processing and Safety , Beijing Forestry University , Beijing , China
| |
Collapse
|
102
|
Francis EA, Heinrich V. Extension of chemotactic pseudopods by nonadherent human neutrophils does not require or cause calcium bursts. Sci Signal 2018. [PMID: 29535263 DOI: 10.1126/scisignal.aal4289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global bursts in free intracellular calcium (Ca2+) are among the most conspicuous signaling events in immune cells. To test the common view that Ca2+ bursts mediate rearrangement of the actin cytoskeleton in response to the activation of G protein-coupled receptors, we combined single-cell manipulation with fluorescence imaging and monitored the Ca2+ concentration in individual human neutrophils during complement-mediated chemotaxis. By decoupling purely chemotactic pseudopod formation from cell-substrate adhesion, we showed that physiological concentrations of anaphylatoxins, such as C5a, induced nonadherent human neutrophils to form chemotactic pseudopods but did not elicit Ca2+ bursts. By contrast, pathological or supraphysiological concentrations of C5a often triggered Ca2+ bursts, but pseudopod protrusion stalled or reversed in such cases, effectively halting chemotaxis, similar to sepsis-associated neutrophil paralysis. The maximum increase in cell surface area during pseudopod extension in pure chemotaxis was much smaller-by a factor of 8-than the known capacity of adherent human neutrophils to expand their surface. Because the measured rise in cortical tension was not sufficient to account for this difference, we attribute the limited deformability to a reduced ability of the cytoskeleton to generate protrusive force in the absence of cell adhesion. Thus, we hypothesize that Ca2+ bursts in neutrophils control a mechanistic switch between two distinct modes of cytoskeletal organization and dynamics. A key element of this switch appears to be the expedient coordination of adhesion-dependent lock or release events of cytoskeletal membrane anchors.
Collapse
Affiliation(s)
- Emmet A Francis
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
103
|
Abstract
Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 28, 537-557.
Collapse
Affiliation(s)
- Sue Goo Rhee
- 1 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, Korea
| | - Hyun Ae Woo
- 2 College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Korea
| | - Dongmin Kang
- 3 Department of Life Science, Ewha Womans University , Seoul, Korea
| |
Collapse
|
104
|
Martinvalet D. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis 2018; 9:336. [PMID: 29491398 PMCID: PMC5832423 DOI: 10.1038/s41419-017-0237-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity.
Collapse
Affiliation(s)
- Denis Martinvalet
- Department of Cell Physiology and Metabolism, Geneva Medical School, 1211, Geneva, Switzerland.
| |
Collapse
|
105
|
Fahrner M, Pandey SK, Muik M, Traxler L, Butorac C, Stadlbauer M, Zayats V, Krizova A, Plenk P, Frischauf I, Schindl R, Gruber HJ, Hinterdorfer P, Ettrich R, Romanin C, Derler I. Communication between N terminus and loop2 tunes Orai activation. J Biol Chem 2018; 293:1271-1285. [PMID: 29237733 PMCID: PMC5787804 DOI: 10.1074/jbc.m117.812693] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73-91; Orai3 amino acids 48-65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner.
Collapse
Affiliation(s)
- Marc Fahrner
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Saurabh K Pandey
- the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic
| | - Martin Muik
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Lukas Traxler
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Carmen Butorac
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Michael Stadlbauer
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Vasilina Zayats
- the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic
| | - Adéla Krizova
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Peter Plenk
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Irene Frischauf
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Rainer Schindl
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Hermann J Gruber
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Peter Hinterdorfer
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Rüdiger Ettrich
- the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic
| | - Christoph Romanin
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Isabella Derler
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| |
Collapse
|
106
|
Kappel S, Marques IJ, Zoni E, Stokłosa P, Peinelt C, Mercader N, Kruithof-de Julio M, Borgström A. Store-Operated Ca 2+ Entry as a Prostate Cancer Biomarker - a Riddle with Perspectives. ACTA ACUST UNITED AC 2017; 3:208-217. [PMID: 29951353 PMCID: PMC6010502 DOI: 10.1007/s40610-017-0072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose of Review Store-operated calcium entry (SOCE) is dysregulated in prostate cancer, contributing to increased cellular migration and proliferation and preventing cancer cell apoptosis. We here summarize findings on gene expression levels and functions of SOCE components, stromal interaction molecules (STIM1 and STIM2), and members of the Orai protein family (Orai1, 2, and 3) in prostate cancer. Moreover, we introduce new research models that promise to provide insights into whether dysregulated SOCE signaling has clinically relevant implications in terms of increasing the migration and invasion of prostate cancer cells. Recent Findings Recent reports on Orai1 and Orai3 expression levels and function were in part controversial probably due to the heterogeneous nature of prostate cancer. Lately, in prostate cancer cells, transient receptor melastatin 4 channel was shown to alter SOCE and play a role in migration and proliferation. We specifically highlight new cancer research models: a subpopulation of cells that show tumor initiation and metastatic potential in mice and zebrafish models. Summary This review focuses on SOCE component dysregulation in prostate cancer and analyzes several preclinical, cellular, and animal cancer research models.
Collapse
Affiliation(s)
- Sven Kappel
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | | | - Eugenio Zoni
- 3Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Paulina Stokłosa
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Christine Peinelt
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- 2Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- 3Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Bern, Switzerland.,4Department of Urology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anna Borgström
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
107
|
Choi S, Cui C, Luo Y, Kim SH, Ko JK, Huo X, Ma J, Fu LW, Souza RF, Korichneva I, Pan Z. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1. FASEB J 2017; 32:404-416. [PMID: 28928244 DOI: 10.1096/fj.201700227rrr] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Abstract
Zinc, an essential micronutrient, has a cancer preventive role. Zinc deficiency has been shown to contribute to the progression of esophageal cancer. Orai1, a store-operated Ca2+ entry (SOCE) channel, was previously reported to be highly expressed in tumor tissues removed from patients with esophageal squamous cell carcinoma (ESCC) with poor prognosis, and elevation of its expression contributes to both hyperactive intracellular Ca2+ oscillations and fast cell proliferation in human ESCC cells. However, the molecular basis of cancer preventive functions of zinc and its association with Orai1-mediated cell proliferation remains unknown. The present study shows that zinc supplementation significantly inhibits proliferation of ESCC cell lines and that the effect of zinc is reversible with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine, a specific Zn2+ chelator, whereas nontumorigenic esophageal epithelial cells are significantly less sensitive to zinc treatment. Fluorescence live cell imaging revealed that extracellular Zn2+ exerted rapid inhibitory effects on Orai1-mediated SOCE and on intracellular Ca2+ oscillations in the ESCC cells. Knockdown of Orai1 or expression of Orai1 mutants with compromised zinc binding significantly diminished sensitivity of the cancer cells to zinc treatment in both SOCE and cell proliferation analyses. These data suggest that zinc may inhibit cell proliferation of esophageal cancer cells through Orai1-mediated intracellular Ca2+ oscillations and reveal a possible molecular basis for zinc-induced cancer prevention and Orai1-SOCE signaling pathway in cancer cells.-Choi, S., Cui, C., Luo, Y., Kim, S.-H., Ko, J.-K., Huo, X., Ma, J., Fu, L.-W., Souza, R. F., Korichneva, I., Pan, Z. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1.
Collapse
Affiliation(s)
- Sangyong Choi
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, Texas, USA.,Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Chaochu Cui
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, Texas, USA.,Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanhong Luo
- Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sun-Hee Kim
- Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Xiaofang Huo
- Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Jianjie Ma
- Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, USA; and
| | - Li-Wu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rhonda F Souza
- Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Irina Korichneva
- Department of Pharmacology, University of Picardie Jules Verne, Amiens, France
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, Texas, USA; .,Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
108
|
Baronas VA, Yang RY, Kurata HT. Extracellular redox sensitivity of Kv1.2 potassium channels. Sci Rep 2017; 7:9142. [PMID: 28831076 PMCID: PMC5567313 DOI: 10.1038/s41598-017-08718-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/17/2017] [Indexed: 12/03/2022] Open
Abstract
Kv1.2 is a prominent potassium channel subtype in the nervous system and serves as an important structural template for investigation of ion channel function. However, Kv1.2 voltage-dependence exhibits dramatic cell-to-cell variability due to a gating mode shift that is regulated by an unknown mechanism. We report that this variable behavior is regulated by the extracellular redox environment. Exposure to reducing agents promotes a shift in gating properties towards an 'inhibited' gating mode that resists opening, and causes channels to exhibit pronounced use-dependent activation during trains of repetitive depolarizations. This sensitivity to extracellular redox potential is absent in other Kv1 channels, but is apparent in heteromeric channels containing Kv1.2 subunits, and overlaps with the reported physiological range of extracellular redox couples. Mutagenesis of candidate cysteine residues fails to abolish redox sensitivity. Therefore, we suggest that an extrinsic, redox-sensitive binding partner imparts these properties.
Collapse
Affiliation(s)
- Victoria A Baronas
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Runying Y Yang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
109
|
Munoz FM, Zhang F, Islas-Robles A, Lau SS, Monks TJ. From the Cover: ROS-Induced Store-Operated Ca2+ Entry Coupled to PARP-1 Hyperactivation Is Independent of PARG Activity in Necrotic Cell Death. Toxicol Sci 2017; 158:444-453. [PMID: 28525621 PMCID: PMC5837598 DOI: 10.1093/toxsci/kfx106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
2,3,5-tris(Glutathion-S-yl)hydroquinone, a potent nephrotoxic and nephrocarcinogenic metabolite of benzene and hydroquinone, generates reactive oxygen species (ROS) causing DNA strand breaks and the subsequent activation of DNA repair enzymes, including poly(ADP-ribose) polymerase (PARP)-1. Under robust oxidative DNA damage, PARP-1 is hyperactivated, resulting in the depletion of NAD+ and ATP with accompanying elevations in intracellular calcium concentrations (iCa2+), and ultimately necrotic cell death. The role of Ca2+ during PARP-dependent necrotic cell death remains unclear. We therefore sought to determine the relationship between Ca2+ and PARP-1 during ROS-induced necrotic cell death in human renal proximal tubule epithelial cells (HK-2). Our experiments suggest that store-operated Ca2+ channel (SOC) entry contributes to the coupling of PARP-1 activation to increases in iCa2+ during ROS-induced cell death. Poly(ADP-ribose)glycohydrolase (PARG), which catalyzes the degradation of PARs to yield free ADP-ribose (ADPR), is known to activate Ca2+ channels such as TRPM2. However, siRNA knockdown of PARG did not restore cell viability, indicating that free ADPR is not responsible for SOC activation in HK-2 cells. The data indicate that PARP-1 and iCa2+ are coupled through activation of SOC mediated Ca2+ entry in an apparently ADPR-independent fashion; alternative PAR-mediated signaling likely contributes to PARP-dependent necrotic cell death, perhaps via PAR-mediated signaling proteins that regulate iCa2+ homeostasis.
Collapse
Affiliation(s)
- Frances M. Munoz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Fengjiao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Argel Islas-Robles
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Serrine S. Lau
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Terrence J. Monks
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| |
Collapse
|
110
|
Abstract
Calcium (Ca2+) signaling plays a critical role in regulating plethora of cellular functions including cell survival, proliferation and migration. The perturbations in cellular Ca2+ homeostasis can lead to cell death either by activating autophagic pathways or through induction of apoptosis. Endoplasmic reticulum (ER) is the major storehouse of Ca2+ within cells and a number of physiological agonists mediate ER Ca2+ release by activating IP3 receptors (IP3R). This decrease in ER Ca2+ levels is sensed by STIM, which physically interacts and activates plasma membrane Ca2+ selective Orai channels. Emerging literature implicates a key role for STIM1, STIM2, Orai1 and Orai3 in regulating both cell survival and death pathways. In this review, we will retrospect the work highlighting the role of STIM and Orai homologs in regulating cell death signaling. We will further discuss the rationales that could explain the dual role of STIM and Orai proteins in regulating cell fate decisions.
Collapse
|
111
|
Maher P, van Leyen K, Dey PN, Honrath B, Dolga A, Methner A. The role of Ca 2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium 2017; 70:47-55. [PMID: 28545724 DOI: 10.1016/j.ceca.2017.05.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
Ca2+ ions play a fundamental role in cell death mediated by oxidative glutamate toxicity or oxytosis, a form of programmed cell death similar and possibly identical to other forms of cell death like ferroptosis. Ca2+ influx from the extracellular space occurs late in a cascade characterized by depletion of the intracellular antioxidant glutathione, increases in cytosolic reactive oxygen species and mitochondrial dysfunction. Here, we aim to compare oxidative glutamate toxicity with ferroptosis, address the signaling pathways that culminate in Ca2+ influx and cell death and discuss the proteins that mediate this. Recent evidence hints toward a role of the machinery responsible for store-operated Ca2+ entry (SOCE), which refills the endoplasmic reticulum (ER) after receptor-mediated ER Ca2+ release or other forms of store depletion. Pharmacological inhibition of SOCE or transcriptional downregulation of proteins involved in SOCE like the ER Ca2+ sensor STIM1, the plasma membrane Ca2+ channels Orai1 and TRPC1 and the linking protein Homer protects against oxidative glutamate toxicity and direct oxidative stress caused by hydrogen peroxide or 1-methyl-4-phenylpyridinium (MPP+) injury, a cellular model of Parkinson's disease. This suggests that SOCE inhibition might have some potential therapeutic effects in human disease associated with oxidative stress like neurodegenerative disorders.
Collapse
Affiliation(s)
- Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Partha Narayan Dey
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Birgit Honrath
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Axel Methner
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany.
| |
Collapse
|
112
|
Chen TX, Xu XY, Zhao Z, Zhao FY, Gao YM, Yan XH, Wan Y. Hydrogen peroxide is a critical regulator of the hypoxia-induced alterations of store-operated Ca2+ entry into rat pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L477-L487. [DOI: 10.1152/ajplung.00138.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
To investigate the association between store-operated Ca2+ entry (SOCE) and reactive oxygen species (ROS) during hypoxia, this study determined the changes of transient receptor potential canonical 1 (TRPC1) and Orai1, two candidate proteins for store-operated Ca2+ (SOC) channels and their gate regulator, stromal interaction molecule 1 (STIM1), in a hypoxic environment and their relationship with ROS in pulmonary arterial smooth muscle cells (PASMCs). Exposure to hypoxia caused a transient Ca2+ spike and subsequent Ca2+ plateau of SOCE to be intensified in PASMCs when TRPC1, STIM1, and Orai1 were upregulated. SOCE in cells transfected with specific short hairpin RNA (shRNA) constructs was almost completely eliminated by the knockdown of TRPC1, STIM1, or Orai1 alone and was no longer affected by hypoxia exposure. Hypoxia-induced SOCE enhancement was further strengthened by PEG-SOD but was attenuated by PEG-catalase, with correlated changes to intracellular hydrogen peroxide (H2O2) levels and protein levels of TRPC1, STIM1, and Orai1. Exogenous H2O2 could mimic alterations of the interactions of STIM1 with TRPC1 and Orai1 in hypoxic cells. These findings suggest that TRPC1, STIM1, and Orai1 are essential for the initiation of SOCE in PASMCs. Hypoxia-induced ROS promoted the expression and interaction of the SOC channel molecules and their gate regulator via their converted product, H2O2.
Collapse
Affiliation(s)
- Tao-Xiang Chen
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Ya Xu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhao Zhao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fang-Yu Zhao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yi-Mei Gao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Hong Yan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yu Wan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
113
|
Ball JA, Vlisidou I, Blunt MD, Wood W, Ward SG. Hydrogen Peroxide Triggers a Dual Signaling Axis To Selectively Suppress Activated Human T Lymphocyte Migration. THE JOURNAL OF IMMUNOLOGY 2017; 198:3679-3689. [PMID: 28363904 PMCID: PMC5392728 DOI: 10.4049/jimmunol.1600868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/03/2017] [Indexed: 01/09/2023]
Abstract
H2O2 is an early danger cue required for innate immune cell recruitment to wounds. To date, little is known about whether H2O2 is required for the migration of human adaptive immune cells to sites of inflammation. However, oxidative stress is known to impair T cell activity, induce actin stiffness, and inhibit cell polarization. In this study, we show that low oxidative concentrations of H2O2 also impede chemokinesis and chemotaxis of previously activated human T cells to CXCL11, but not CXCL10 or CXCL12. We show that this deficiency in migration is due to a reduction in inflammatory chemokine receptor CXCR3 surface expression and cellular activation of lipid phosphatase SHIP-1. We demonstrate that H2O2 acts through an Src kinase to activate a negative regulator of PI3K signaling, SHIP-1 via phosphorylation, providing a molecular mechanism for H2O2-induced chemotaxis deficiency. We hypothesize that although H2O2 serves as an early recruitment trigger for innate immune cells, it appears to operate as an inhibitor of T lymphocyte immune adaptive responses that are not required until later in the repair process.
Collapse
Affiliation(s)
- Jennifer A Ball
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom; and
| | - Isabella Vlisidou
- Department of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Matthew D Blunt
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom; and
| | - Will Wood
- Department of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Stephen G Ward
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom; and
| |
Collapse
|
114
|
Zhou X, Zhao R, Schwarz K, Mangeat M, Schwarz EC, Hamed M, Bogeski I, Helms V, Rieger H, Qu B. Bystander cells enhance NK cytotoxic efficiency by reducing search time. Sci Rep 2017; 7:44357. [PMID: 28287155 PMCID: PMC5347013 DOI: 10.1038/srep44357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 02/10/2017] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells play a central role during innate immune responses by eliminating pathogen-infected or tumorigenic cells. In the microenvironment, NK cells encounter not only target cells but also other cell types including non-target bystander cells. The impact of bystander cells on NK killing efficiency is, however, still elusive. In this study we show that the presence of bystander cells, such as P815, monocytes or HUVEC, enhances NK killing efficiency. With bystander cells present, the velocity and persistence of NK cells were increased, whereas the degranulation of lytic granules remained unchanged. Bystander cell-derived H2O2 was found to mediate the acceleration of NK cell migration. Using mathematical diffusion models, we confirm that local acceleration of NK cells in the vicinity of bystander cells reduces their search time to locate target cells. In addition, we found that integrin β chains (β1, β2 and β7) on NK cells are required for bystander-enhanced NK migration persistence. In conclusion, we show that acceleration of NK cell migration in the vicinity of H2O2-producing bystander cells reduces target cell search time and enhances NK killing efficiency.
Collapse
Affiliation(s)
- Xiao Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Karsten Schwarz
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Matthieu Mangeat
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Eva C. Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Mohamed Hamed
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
115
|
Dong Z, Shanmughapriya S, Tomar D, Siddiqui N, Lynch S, Nemani N, Breves SL, Zhang X, Tripathi A, Palaniappan P, Riitano MF, Worth AM, Seelam A, Carvalho E, Subbiah R, Jaña F, Soboloff J, Peng Y, Cheung JY, Joseph SK, Caplan J, Rajan S, Stathopulos PB, Madesh M. Mitochondrial Ca 2+ Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity. Mol Cell 2017; 65:1014-1028.e7. [PMID: 28262504 DOI: 10.1016/j.molcel.2017.01.032] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/02/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS, and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.
Collapse
Affiliation(s)
- Zhiwei Dong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PRC
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Naveed Siddiqui
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Solomon Lynch
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Neeharika Nemani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah L Breves
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xueqian Zhang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aparna Tripathi
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Palaniappan Palaniappan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Massimo F Riitano
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alison M Worth
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajay Seelam
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Edmund Carvalho
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ramasamy Subbiah
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Fabián Jaña
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jonathan Soboloff
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PRC
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Suresh K Joseph
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Sudarsan Rajan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
116
|
Ben-Kasus Nissim T, Zhang X, Elazar A, Roy S, Stolwijk JA, Zhou Y, Motiani RK, Gueguinou M, Hempel N, Hershfinkel M, Gill DL, Trebak M, Sekler I. Mitochondria control store-operated Ca 2+ entry through Na + and redox signals. EMBO J 2017; 36:797-815. [PMID: 28219928 DOI: 10.15252/embj.201592481] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/25/2016] [Accepted: 01/05/2017] [Indexed: 02/05/2023] Open
Abstract
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.
Collapse
Affiliation(s)
- Tsipi Ben-Kasus Nissim
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Assaf Elazar
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Soumitra Roy
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Judith A Stolwijk
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Rajender K Motiani
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maxime Gueguinou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nadine Hempel
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Michal Hershfinkel
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Israel Sekler
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
117
|
Hempel N, Trebak M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 2017; 63:70-96. [PMID: 28143649 DOI: 10.1016/j.ceca.2017.01.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 02/07/2023]
Abstract
The interplay between Ca2+ and reactive oxygen species (ROS) signaling pathways is well established, with reciprocal regulation occurring at a number of subcellular locations. Many Ca2+ channels at the cell surface and intracellular organelles, including the endoplasmic reticulum and mitochondria are regulated by redox modifications. In turn, Ca2+ signaling can influence the cellular generation of ROS, from sources such as NADPH oxidases and mitochondria. This relationship has been explored in great depth during the process of apoptosis, where surges of Ca2+ and ROS are important mediators of cell death. More recently, coordinated and localized Ca2+ and ROS transients appear to play a major role in a vast variety of pro-survival signaling pathways that may be crucial for both physiological and pathophysiological functions. While much work is required to firmly establish this Ca2+-ROS relationship in cancer, existing evidence from other disease models suggests this crosstalk is likely of significant importance in tumorigenesis. In this review, we describe the regulation of Ca2+ channels and transporters by oxidants and discuss the potential consequences of the ROS-Ca2+ interplay in tumor cells.
Collapse
Affiliation(s)
- Nadine Hempel
- Department of Pharmacology, Penn State College of Medicine, Hershey PA 17033, United States; Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States.
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey PA 17033, United States; Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States.
| |
Collapse
|
118
|
Groschner K, Shrestha N, Fameli N. Cardiovascular and Hemostatic Disorders: SOCE in Cardiovascular Cells: Emerging Targets for Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:473-503. [PMID: 28900929 DOI: 10.1007/978-3-319-57732-6_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of the store-operated Ca2+ entry (SOCE) phenomenon is tightly associated with its recognition as a pathway of high (patho)physiological significance in the cardiovascular system. Early on, SOCE has been investigated primarily in non-excitable cell types, and the vascular endothelium received particular attention, while a role of SOCE in excitable cells, specifically cardiac myocytes and pacemakers, was initially ignored and remains largely enigmatic even to date. With the recent gain in knowledge on the molecular components of SOCE as well as their cellular organization within nanodomains, potential tissue/cell type-dependent heterogeneity of the SOCE machinery along with high specificity of linkage to downstream signaling pathways emerged for cardiovascular cells. The basis of precise decoding of cellular Ca2+ signals was recently uncovered to involve correct spatiotemporal organization of signaling components, and even minor disturbances in these assemblies trigger cardiovascular pathologies. With this chapter, we wish to provide an overview on current concepts of cellular organization of SOCE signaling complexes in cardiovascular cells with particular focus on the spatiotemporal aspects of coupling to downstream signaling and the potential disturbance of these mechanisms by pathogenic factors. The significance of these mechanistic concepts for the development of novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria.
| | - Niroj Shrestha
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
| | - Nicola Fameli
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
119
|
Niemeyer BA. The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:99-116. [PMID: 28900911 DOI: 10.1007/978-3-319-57732-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteines are among the least abundant amino acids found in proteins. Due to their unique nucleophilic thiol group, they are able to undergo a broad range of chemical modifications besides their known role in disulfide formation, such as S-sulfenylation (-SOH), S-sulfinylation (-SO(2)H), S-sufonylation (-SO(3)H), S-glutathionylation (-SSG), and S-sulfhydration (-SSH), among others. These posttranslational modifications can be irreversible and act as transitional modifiers or as reversible on-off switches for the function of proteins. Disturbances of the redox homeostasis, for example, in situations of increased oxidative stress, can contribute to a range of diseases. Because Ca2+ signaling mediated by store-operated calcium entry (SOCE) is involved in a plethora of cellular responses, the cross-talk between reactive oxygen species (ROS) and Ca2+ is critical for homeostatic control. Identification of calcium regulatory protein targets of thiol redox modifications is needed to understand their role in biology and disease.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
120
|
Bollimuntha S, Pani B, Singh BB. Neurological and Motor Disorders: Neuronal Store-Operated Ca 2+ Signaling: An Overview and Its Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:535-556. [PMID: 28900932 PMCID: PMC5821072 DOI: 10.1007/978-3-319-57732-6_27] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that performs significant physiological task such as neurosecretion, exocytosis, neuronal growth/differentiation, and the development and/or maintenance of neural circuits. An important regulatory aspect of neuronal Ca2+ homeostasis is store-operated Ca2+ entry (SOCE) which, in recent years, has gained much attention for influencing a variety of nerve cell responses. Essentially, activation of SOCE ensues following the activation of the plasma membrane (PM) store-operated Ca2+ channels (SOCC) triggered by the depletion of endoplasmic reticulum (ER) Ca2+ stores. In addition to the TRPC (transient receptor potential canonical) and the Orai family of ion channels, STIM (stromal interacting molecule) proteins have been baptized as key molecular regulators of SOCE. Functional significance of the TRPC channels in neurons has been elaborately studied; however, information on Orai and STIM components of SOCE, although seems imminent, is currently limited. Importantly, perturbations in SOCE have been implicated in a spectrum of neuropathological conditions. Hence, understanding the precise involvement of SOCC in neurodegeneration would presumably unveil avenues for plausible therapeutic interventions. We thus review the role of SOCE-regulated neuronal Ca2+ signaling in selecting neurodegenerative conditions.
Collapse
Affiliation(s)
- Sunitha Bollimuntha
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Biswaranjan Pani
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA.
| |
Collapse
|
121
|
Chandel A, Bachhawat AK. Redox regulation of the yeast voltage-gated calcium channel homolog, Cch1p, by glutathionylation of specific cysteines. J Cell Sci 2017; 130:2317-2328. [DOI: 10.1242/jcs.202853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/26/2017] [Indexed: 01/12/2023] Open
Abstract
CCH1, the yeast homolog of the pore-forming subunit α1 of the mammalian Voltage-gated calcium channel (VGCC) located on the plasma membrane mediates the redox-dependent influx of calcium. Cch1p is known to undergo both rapid activation (oxidative stress, high pH) and slow activation (ER stress, mating pheromone activation), but the mechanism of activation is not known. We demonstrate here that the fast activation, as well as the slow activation (tunicamycin or α-factor) is mediated through a common redox-dependant manner. Further, through mutational analysis of all 18 exposed cysteines in the Cch1p protein, we show that four of these mutants, C587A, C606A, C636A and C642A, which are clustered together in a common cytoplasmic loop region were functionally defective during both fast and slow activations and also showed reduced glutathionylation. These four cysteines are also conserved across phyla suggesting a conserved mechanism of activation. Investigations into the enzymes involved in the activation reveal that the yeast glutathione-s-transferase, Gtt1p is involved in the glutathionylation of Cch1p, while the thioredoxin, Trx2p plays a role in the Cch1p deglutathionylation.
Collapse
Affiliation(s)
- Avinash Chandel
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER), Sector 81, Mohali, 140306, Punjab, India
| | - Anand K. Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER), Sector 81, Mohali, 140306, Punjab, India
| |
Collapse
|
122
|
ER-luminal thiol/selenol-mediated regulation of Ca2+ signalling. Biochem Soc Trans 2016; 44:452-9. [PMID: 27068954 DOI: 10.1042/bst20150233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/05/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular Ca(2+)storage unit. Among other signalling outputs, the ER can release Ca(2+)ions, which can, for instance, communicate the status of ER protein folding to the cytosol and to other organelles, in particular the mitochondria. As a consequence, ER Ca(2+)flux can alter the apposition of the ER with mitochondria, influence mitochondrial ATP production or trigger apoptosis. All aspects of ER Ca(2+)flux have emerged as processes that are intimately controlled by intracellular redox conditions. In this review, we focus on ER-luminal redox-driven regulation of Ca(2+)flux. This involves the direct reduction of disulfides within ER Ca(2+)handling proteins themselves, but also the regulated interaction of ER chaperones and oxidoreductases such as calnexin or ERp57 with them. Well-characterized examples are the activating interactions of Ero1α with inositol 1,4,5-trisphosphate receptors (IP3Rs) or of selenoprotein N (SEPN1) with sarco/endoplasmic reticulum Ca(2+)transport ATPase 2 (SERCA2). The future discovery of novel ER-luminal modulators of Ca(2+)handling proteins is likely. Based on the currently available information, we describe how the variable ER redox conditions govern Ca(2+)flux from the ER.
Collapse
|
123
|
Alansary D, Schmidt B, Dörr K, Bogeski I, Rieger H, Kless A, Niemeyer BA. Thiol dependent intramolecular locking of Orai1 channels. Sci Rep 2016; 6:33347. [PMID: 27624281 PMCID: PMC5022029 DOI: 10.1038/srep33347] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022] Open
Abstract
Store-operated Ca(2+) entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca(2+) selective Orai1 with the oxidant H2O2 reduces ICRAC with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.
Collapse
Affiliation(s)
- Dalia Alansary
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Barbara Schmidt
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
- Department of Biophysics, Saarland University, 66421 Homburg, Germany
- Department of Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Kathrin Dörr
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Ivan Bogeski
- Department of Biophysics, Saarland University, 66421 Homburg, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Achim Kless
- Gruenenthal Innovation, Drug Discovery Technologies, Gruenenthal GmbH, 52078 Aachen, Germany
| | | |
Collapse
|
124
|
Ravi S, Peña KA, Chu CT, Kiselyov K. Biphasic regulation of lysosomal exocytosis by oxidative stress. Cell Calcium 2016; 60:356-362. [PMID: 27593159 DOI: 10.1016/j.ceca.2016.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 02/02/2023]
Abstract
Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca2+. We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.
Collapse
Affiliation(s)
- Sreeram Ravi
- Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | - Karina A Peña
- Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, Pittsburgh, PA 15260, USA.
| |
Collapse
|
125
|
Beedle AEM, Lynham S, Garcia-Manyes S. Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding. Nat Commun 2016; 7:12490. [PMID: 27546612 PMCID: PMC4996944 DOI: 10.1038/ncomms12490] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/08/2016] [Indexed: 12/31/2022] Open
Abstract
The post-translational modification S-sulfenylation functions as a key sensor of oxidative stress. Yet the dynamics of sulfenic acid in proteins remains largely elusive due to its fleeting nature. Here we use single-molecule force-clamp spectroscopy and mass spectrometry to directly capture the reactivity of an individual sulfenic acid embedded within the core of a single Ig domain of the titin protein. Our results demonstrate that sulfenic acid is a crucial short-lived intermediate that dictates the protein's fate in a conformation-dependent manner. When exposed to the solution, sulfenic acid rapidly undergoes further chemical modification, leading to irreversible protein misfolding; when cryptic in the protein's microenvironment, it readily condenses with a neighbouring thiol to create a protective disulfide bond, which assists the functional folding of the protein. This mechanism for non-enzymatic oxidative folding provides a plausible explanation for redox-modulated stiffness of proteins that are physiologically exposed to mechanical forces, such as cardiac titin. Protein S-sulfenylation is a posttranslational modification that can act as a sensor of redox oxidative stress. Here the authors show that, following mechanical unfolding, sulfenic acid drives disulfide bond reformation and guides non-enzymatic oxidative folding.
Collapse
Affiliation(s)
- Amy E M Beedle
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| | - Steven Lynham
- Centre of Excellence for Mass Spectrometry, King's College London, London SE5 8AF, UK
| | - Sergi Garcia-Manyes
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| |
Collapse
|
126
|
Rivet CA, Kniss-James AS, Gran MA, Potnis A, Hill A, Lu H, Kemp ML. Calcium Dynamics of Ex Vivo Long-Term Cultured CD8+ T Cells Are Regulated by Changes in Redox Metabolism. PLoS One 2016; 11:e0159248. [PMID: 27526200 PMCID: PMC4985122 DOI: 10.1371/journal.pone.0159248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
T cells reach a state of replicative senescence characterized by a decreased ability to proliferate and respond to foreign antigens. Calcium release associated with TCR engagement is widely used as a surrogate measure of T cell response. Using an ex vivo culture model that partially replicates features of organismal aging, we observe that while the amplitude of Ca2+ signaling does not change with time in culture, older T cells exhibit faster Ca2+ rise and a faster decay. Gene expression analysis of Ca2+ channels and pumps expressed in T cells by RT-qPCR identified overexpression of the plasma membrane CRAC channel subunit ORAI1 and PMCA in older T cells. To test whether overexpression of the plasma membrane Ca2+ channel is sufficient to explain the kinetic information, we adapted a previously published computational model by Maurya and Subramaniam to include additional details on the store-operated calcium entry (SOCE) process to recapitulate Ca2+ dynamics after T cell receptor stimulation. Simulations demonstrated that upregulation of ORAI1 and PMCA channels is not sufficient to explain the observed alterations in Ca2+ signaling. Instead, modeling analysis identified kinetic parameters associated with the IP3R and STIM1 channels as potential causes for alterations in Ca2+ dynamics associated with the long term ex vivo culturing protocol. Due to these proteins having known cysteine residues susceptible to oxidation, we subsequently investigated and observed transcriptional remodeling of metabolic enzymes, a shift to more oxidized redox couples, and post-translational thiol oxidation of STIM1. The model-directed findings from this study highlight changes in the cellular redox environment that may ultimately lead to altered T cell calcium dynamics during immunosenescence or organismal aging.
Collapse
Affiliation(s)
- Catherine A. Rivet
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ariel S. Kniss-James
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Margaret A. Gran
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Anish Potnis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Abby Hill
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Hang Lu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States of America
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States of America
| |
Collapse
|
127
|
Holzmann C, Kilch T, Kappel S, Dörr K, Jung V, Stöckle M, Bogeski I, Peinelt C. Differential Redox Regulation of Ca²⁺ Signaling and Viability in Normal and Malignant Prostate Cells. Biophys J 2016; 109:1410-9. [PMID: 26445441 DOI: 10.1016/j.bpj.2015.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
In prostate cancer, reactive oxygen species (ROS) are elevated and Ca(2+) signaling is impaired. Thus, several novel therapeutic strategies have been developed to target altered ROS and Ca(2+) signaling pathways in prostate cancer. Here, we investigate alterations of intracellular Ca(2+) and inhibition of cell viability caused by ROS in primary human prostate epithelial cells (hPECs) from healthy tissue and prostate cancer cell lines (LNCaP, DU145, and PC3). In hPECs, LNCaP and DU145 H2O2 induces an initial Ca(2+) increase, which in prostate cancer cells is blocked at high concentrations of H2O2. Upon depletion of intracellular Ca(2+) stores, store-operated Ca(2+) entry (SOCE) is activated. SOCE channels can be formed by hexameric Orai1 channels; however, Orai1 can form heteromultimers with its homolog, Orai3. Since the redox sensor of Orai1 (Cys-195) is absent in Orai3, the Orai1/Orai3 ratio in T cells determines the redox sensitivity of SOCE and cell viability. In prostate cancer cells, SOCE is blocked at lower concentrations of H2O2 compared with hPECs. An analysis of data from hPECs, LNCaP, DU145, and PC3, as well as previously published data from naive and effector TH cells, demonstrates a strong correlation between the Orai1/Orai3 ratio and the SOCE redox sensitivity and cell viability. Therefore, our data support the concept that store-operated Ca(2+) channels in hPECs and prostate cancer cells are heteromeric Orai1/Orai3 channels with an increased Orai1/Orai3 ratio in cells derived from prostate cancer tumors. In addition, ROS-induced alterations in Ca(2+) signaling in prostate cancer cells may contribute to the higher sensitivity of these cells to ROS.
Collapse
Affiliation(s)
- Christian Holzmann
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Tatiana Kilch
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany; Center of Human and Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Kappel
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Kathrin Dörr
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Volker Jung
- Clinics of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Michael Stöckle
- Clinics of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Christine Peinelt
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany; Center of Human and Molecular Biology, Saarland University, Homburg, Germany.
| |
Collapse
|
128
|
Bhardwaj R, Hediger MA, Demaurex N. Redox modulation of STIM-ORAI signaling. Cell Calcium 2016; 60:142-52. [DOI: 10.1016/j.ceca.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022]
|
129
|
Affiliation(s)
- Indu S Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD 20892, USA.
| | - Shmuel Muallem
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
130
|
Tajeddine N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochim Biophys Acta Gen Subj 2016; 1860:1079-88. [DOI: 10.1016/j.bbagen.2016.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
131
|
Kienhöfer D, Boeltz S, Hoffmann MH. Reactive oxygen homeostasis – the balance for preventing autoimmunity. Lupus 2016; 25:943-54. [DOI: 10.1177/0961203316640919] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Being mainly known for their role in the antimicrobial defense and collateral damage they cause in tissues as agents of oxidative stress, reactive oxygen species were considered “the bad guys” for decades. However, in the last years it was shown that the absence of reactive oxygen species can lead to the development of immune-mediated inflammatory diseases. Animal models of lupus, arthritis and psoriasis revealed reactive oxygen species-deficiency as a potent driver of pathogenesis. On the contrary, in chronic stages oxidative stress can still contribute to progression of inflammation. It seems that a neatly adjusted redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity and attenuates chronic stages of disease.
Collapse
Affiliation(s)
- D Kienhöfer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3—Rheumatology and Immunology, Erlangen, Germany
| | - S Boeltz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3—Rheumatology and Immunology, Erlangen, Germany
| | - M H Hoffmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3—Rheumatology and Immunology, Erlangen, Germany
| |
Collapse
|
132
|
Criddle DN. Reactive oxygen species, Ca(2+) stores and acute pancreatitis; a step closer to therapy? Cell Calcium 2016; 60:180-9. [PMID: 27229361 DOI: 10.1016/j.ceca.2016.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/18/2022]
Abstract
Disruption of Ca(2+) homeostasis can lead to severe damage of the pancreas, resulting in premature activation of digestive enzymes, vacuolisation and necrotic cell death, features typical of acute pancreatitis (AP). Therefore a fine balance between Ca(2+) release from internal stores, Ca(2+) entry and extrusion mechanisms is necessary to avoid injury. Precipitants of AP induce Ca(2+) overload of the pancreatic acinar cell that causes mitochondrial dysfunction, via formation of the mitochondrial permeability transition pore (MPTP), loss of ATP production and consequent necrosis. Oxidative stress has been shown to occur in the development of AP and may modify Ca(2+) signalling events in the acinar cell. However, the precise pathophysiological involvement is currently unclear and antioxidant therapy in the clinic has largely proved ineffective. Possible reasons for this are discussed, including evidence that ROS generation may determine cell death patterns. In contrast, recent evidence has indicated the potential for AP therapy via the prevention of Ca(2+)-dependent mitochondrial damage. Multiple approaches are indicated from preclinical findings; 1) inhibition of Ca(2+) release by IP3R blockade, 2) inhibition of Ca(2+) entry through Orai1 blockade and 3) prevention of MPTP formation. Clinical trials of drugs which prevent mitochondrial dysfunction induced by Ca(2+) overload of pancreatic acinar cells are imminent and may provide patient benefit for a disease that currently lacks specific therapy.
Collapse
Affiliation(s)
- David N Criddle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, L69 3BX, UK.
| |
Collapse
|
133
|
Gibhardt CS, Zimmermann KM, Zhang X, Belousov VV, Bogeski I. Imaging calcium and redox signals using genetically encoded fluorescent indicators. Cell Calcium 2016; 60:55-64. [PMID: 27142890 DOI: 10.1016/j.ceca.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022]
Abstract
Calcium and redox signals are presently established as essential regulators of many cellular processes. Nevertheless, we are still far from fully understanding the physiological and pathological importance of these universal second messengers. It is becoming increasingly apparent that many cellular functions are not regulated by global changes in the abundance of Ca(2+) ions and/or reactive oxygen and nitrogen species (ROS and RNS), but by the formation of transient local micro-domains or by signaling limited to a particular cellular compartment. Therefore, it is essential to identify and quantify Ca(2+) and redox signals in single cells with a high spatial and temporal resolution. The best tools for this purpose are the genetically encoded fluorescent indicators (GEFI). These protein sensors can be targeted into different cellular compartments, feature different colors, can be used to establish transgenic animal models, and are relatively inert to the cellular environment. Based on the chemical properties of Ca(2+) and ROS/RNS, currently more sensors exist for the detection of Ca(2+)- than for redox signals. Here, we shortly describe the most popular genetically encoded fluorescent Ca(2+) and redox indicators, discuss advantages and disadvantages based on our experience, show examples of different applications, and thus provide a brief guide that will help scientists choose the right combination of Ca(2+) and redox sensors to answer specific scientific questions.
Collapse
Affiliation(s)
- Christine S Gibhardt
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Katharina M Zimmermann
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Xin Zhang
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | | | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
134
|
Stanisz H, Vultur A, Herlyn M, Roesch A, Bogeski I. The role of Orai-STIM calcium channels in melanocytes and melanoma. J Physiol 2016; 594:2825-35. [PMID: 26864956 DOI: 10.1113/jp271141] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Calcium signalling within normal and cancer cells regulates many important cellular functions such as migration, proliferation, differentiation and cytokine secretion. Store operated Ca(2+) entry (SOCE) via the Ca(2+) release activated Ca(2+) (CRAC) channels, which are composed of the plasma membrane based Orai channels and the endoplasmic reticulum stromal interaction molecules (STIMs), is a major Ca(2+) entry route in many cell types. Orai and STIM have been implicated in the growth and metastasis of multiple cancers; however, while their involvement in cancer is presently indisputable, how Orai-STIM-controlled Ca(2+) signals affect malignant transformation, tumour growth and invasion is not fully understood. Here, we review recent studies linking Orai-STIM Ca(2+) channels with cancer, with a particular focus on melanoma. We highlight and examine key molecular players and the signalling pathways regulated by Orai and STIM in normal and malignant cells, we expose discrepancies, and we reflect on the potential of Orai-STIMs as anticancer drug targets. Finally, we discuss the functional implications of future discoveries in the field of Ca(2+) signalling.
Collapse
Affiliation(s)
- Hedwig Stanisz
- Department of Dermatology, Venerology and Allergology, University Hospital of the Saarland, Homburg, Germany
| | - Adina Vultur
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
135
|
Fiorio Pla A, Kondratska K, Prevarskaya N. STIM and ORAI proteins: crucial roles in hallmarks of cancer. Am J Physiol Cell Physiol 2016; 310:C509-19. [DOI: 10.1152/ajpcell.00364.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intracellular Ca2+ signals play a central role in several cellular processes; therefore it is not surprising that altered Ca2+ homeostasis regulatory mechanisms lead to a variety of severe pathologies, including cancer. Stromal interaction molecules (STIM) and ORAI proteins have been identified as critical components of Ca2+ entry in both store-dependent (SOCE mechanism) and independent by intracellular store depletion and have been implicated in several cellular functions. In recent years, both STIMs and ORAIs have emerged as possible molecular targets for cancer therapeutics. In this review we focus on the role of STIM and ORAI proteins in cancer progression. In particular we analyze their role in the different hallmarks of cancer, which represent the organizing principle that describes the complex multistep process of neoplastic diseases.
Collapse
Affiliation(s)
- A. Fiorio Pla
- Université des Sciences et Technologies de Lille, Inserm, U1003 - PHYCELL - Physiologie Cellulaire, Lille, France; and
- Department of Life Science and Systems Biology, and Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino, Torino, Italy
| | - K. Kondratska
- Université des Sciences et Technologies de Lille, Inserm, U1003 - PHYCELL - Physiologie Cellulaire, Lille, France; and
| | - N. Prevarskaya
- Université des Sciences et Technologies de Lille, Inserm, U1003 - PHYCELL - Physiologie Cellulaire, Lille, France; and
| |
Collapse
|
136
|
Dörr K, Kilch T, Kappel S, Alansary D, Schwär G, Niemeyer BA, Peinelt C. Cell type-specific glycosylation of Orai1 modulates store-operated Ca2+ entry. Sci Signal 2016; 9:ra25. [PMID: 26956484 DOI: 10.1126/scisignal.aaa9913] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-glycosylation of cell surface proteins affects protein function, stability, and interaction with other proteins. Orai channels, which mediate store-operated Ca(2+) entry (SOCE), are composed of N-glycosylated subunits. Upon activation by Ca(2+) sensor proteins (stromal interaction molecules STIM1 or STIM2) in the endoplasmic reticulum, Orai Ca(2+) channels in the plasma membrane mediate Ca(2+) influx. Lectins are carbohydrate-binding proteins, and Siglecs are a family of sialic acid-binding lectins with immunoglobulin-like repeats. Using Western blot analysis and lectin-binding assays from various primary human cells and cancer cell lines, we found that glycosylation of Orai1 is cell type-specific. Ca(2+) imaging experiments and patch-clamp experiments revealed that mutation of the only glycosylation site of Orai1 (Orai1N223A) enhanced SOCE in Jurkat T cells. Knockdown of the sialyltransferase ST6GAL1 reduced α-2,6-linked sialic acids in the glycan structure of Orai1 and was associated with increased Ca(2+) entry in Jurkat T cells. In human mast cells, inhibition of sialyl sulfation altered the N-glycan of Orai1 (and other proteins) and increased SOCE. These data suggest that cell type-specific glycosylation influences the interaction of Orai1 with specific lectins, such as Siglecs, which then attenuates SOCE. In summary, the glycosylation state of Orai1 influences SOCE-mediated Ca(2+) signaling and, thus, may contribute to pathophysiological Ca(2+) signaling observed in immune disease and cancer.
Collapse
Affiliation(s)
- Kathrin Dörr
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Center of Human and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - Tatiana Kilch
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Center of Human and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - Sven Kappel
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Center of Human and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Christine Peinelt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany. Center of Human and Molecular Biology, Saarland University, Homburg 66421, Germany.
| |
Collapse
|
137
|
Saul S, Gibhardt CS, Schmidt B, Lis A, Pasieka B, Conrad D, Jung P, Gaupp R, Wonnenberg B, Diler E, Stanisz H, Vogt T, Schwarz EC, Bischoff M, Herrmann M, Tschernig T, Kappl R, Rieger H, Niemeyer BA, Bogeski I. A calcium-redox feedback loop controls human monocyte immune responses: The role of ORAI Ca2+ channels. Sci Signal 2016; 9:ra26. [PMID: 26956485 DOI: 10.1126/scisignal.aaf1639] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In phagocytes, pathogen recognition is followed by Ca(2+) mobilization and NADPH oxidase 2 (NOX2)-mediated "oxidative burst," which involves the rapid production of large amounts of reactive oxygen species (ROS). We showed that ORAI Ca(2+) channels control store-operated Ca(2+) entry, ROS production, and bacterial killing in primary human monocytes. ROS inactivate ORAI channels that lack an ORAI3 subunit. Staphylococcal infection of mice reduced the expression of the gene encoding the redox-sensitive Orai1 and increased the expression of the gene encoding the redox-insensitive Orai3 in the lungs or in bronchoalveolar lavages. A similar switch from ORAI1 to ORAI3 occurred in primary human monocytes exposed to bacterial peptides in culture. These alterations in ORAI1 and ORAI3 abundance shifted the channel assembly toward a more redox-insensitive configuration. Accordingly, silencing ORAI3 increased the redox sensitivity of the channel and enhanced oxidation-induced inhibition of NOX2. We generated a mathematical model that predicted additional features of the Ca(2+)-redox interplay. Our results identified the ORAI-NOX2 feedback loop as a determinant of monocyte immune responses.
Collapse
Affiliation(s)
- Stephanie Saul
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Christine S Gibhardt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Barbara Schmidt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany. Department of Theoretical Physics, Saarland University, Saarbrücken 66123, Germany. Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Bastian Pasieka
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - David Conrad
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Rosmarie Gaupp
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Bodo Wonnenberg
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Ebru Diler
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Hedwig Stanisz
- Department of Dermatology, Venereology and Allergology, University Hospital of Saarland, Homburg 66421, Germany
| | - Thomas Vogt
- Department of Dermatology, Venereology and Allergology, University Hospital of Saarland, Homburg 66421, Germany
| | - Eva C Schwarz
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg 66421, Germany
| | - Thomas Tschernig
- Department of Anatomy, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, Saarbrücken 66123, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Ivan Bogeski
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPPM), School of Medicine, Saarland University, Homburg 66421, Germany.
| |
Collapse
|
138
|
Niemeyer BA. Changing calcium: CRAC channel (STIM and Orai) expression, splicing, and posttranslational modifiers. Am J Physiol Cell Physiol 2016; 310:C701-9. [PMID: 26911279 DOI: 10.1152/ajpcell.00034.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A wide variety of cellular function depends on the dynamics of intracellular Ca(2+) signals. Especially for relatively slow and lasting processes such as gene expression, cell proliferation, and often migration, cells rely on the store-operated Ca(2+) entry (SOCE) pathway, which is particularly prominent in immune cells. SOCE is initiated by the sensor proteins (STIM1, STIM2) located within the endoplasmic reticulum (ER) registering the Ca(2+) concentration within the ER, and upon its depletion, cluster and trap Orai (Orai1-3) proteins located in the plasma membrane (PM) into ER-PM junctions. These regions become sites of highly selective Ca(2+) entry predominantly through Orai1-assembled channels, which, among other effector functions, is necessary for triggering NFAT translocation into the nucleus. What is less clear is how the spatial and temporal spread of intracellular Ca(2+) is shaped and regulated by differential expression of the individual SOCE genes and their splice variants, their heteromeric combinations and pre- and posttranslational modifications. This review focuses on principle mechanisms regulating expression, splicing, and targeting of Ca(2+) release-activated Ca(2+) (CRAC) channels.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
139
|
Demaurex N, Nunes P. The role of STIM and ORAI proteins in phagocytic immune cells. Am J Physiol Cell Physiol 2016; 310:C496-508. [PMID: 26764049 PMCID: PMC4824159 DOI: 10.1152/ajpcell.00360.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytic cells, such as neutrophils, macrophages, and dendritic cells, migrate to sites of infection or damage and are integral to innate immunity through two main mechanisms. The first is to directly neutralize foreign agents and damaged or infected cells by secreting toxic substances or ingesting them through phagocytosis. The second is to alert the adaptive immune system through the secretion of cytokines and the presentation of the ingested materials as antigens, inducing T cell maturation into helper, cytotoxic, or regulatory phenotypes. While calcium signaling has been implicated in numerous phagocyte functions, including differentiation, maturation, migration, secretion, and phagocytosis, the molecular components that mediate these Ca(2+) signals have been elusive. The discovery of the STIM and ORAI proteins has allowed researchers to begin clarifying the mechanisms and physiological impact of store-operated Ca(2+) entry, the major pathway for generating calcium signals in innate immune cells. Here, we review evidence from cell lines and mouse models linking STIM and ORAI proteins to the control of specific innate immune functions of neutrophils, macrophages, and dendritic cells.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
140
|
Kilch T, Kappel S, Peinelt C. Regulation of Ca(2+) signaling in prostate cancer cells. Channels (Austin) 2016; 10:170-1. [PMID: 26745455 PMCID: PMC4954580 DOI: 10.1080/19336950.2015.1137176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 10/26/2022] Open
Affiliation(s)
- Tatiana Kilch
- a Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University , Homburg , Germany
| | - Sven Kappel
- a Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University , Homburg , Germany
| | - Christine Peinelt
- a Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University , Homburg , Germany
| |
Collapse
|
141
|
Hoth M. CRAC channels, calcium, and cancer in light of the driver and passenger concept. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1408-17. [PMID: 26705695 DOI: 10.1016/j.bbamcr.2015.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of “Ca(2+) genes” might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Building 48, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|
142
|
TMEM110 regulates the maintenance and remodeling of mammalian ER-plasma membrane junctions competent for STIM-ORAI signaling. Proc Natl Acad Sci U S A 2015; 112:E7083-92. [PMID: 26644574 DOI: 10.1073/pnas.1521924112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The stromal interaction molecule (STIM)-ORAI calcium release-activated calcium modulator (ORAI) pathway controls store-dependent calcium entry, a major mechanism of physiological calcium signaling in mammalian cells. The core elements of the pathway are the regulatory protein STIM1, located in the endoplasmic reticulum (ER) membrane, the calcium channel ORAI1 in the plasma membrane, and sites of close contact between the ER and the plasma membrane that permit the two proteins to interact. Research on calcium signaling has centered on STIM1, ORAI1, and a few proteins that directly modulate STIM-ORAI function. However, little is known about proteins that organize ER-plasma membrane junctions for STIM-ORAI-dependent calcium signaling. Here, we report that an ER-resident membrane protein identified in a previous genome-wide RNAi screen, transmembrane protein 110 (TMEM110), regulates the long-term maintenance of ER-plasma membrane junctions and the short-term physiological remodeling of the junctions during store-dependent calcium signaling.
Collapse
|
143
|
Santiago E, Climent B, Muñoz M, García-Sacristán A, Rivera L, Prieto D. Hydrogen peroxide activates store-operated Ca(2+) entry in coronary arteries. Br J Pharmacol 2015; 172:5318-32. [PMID: 26478127 DOI: 10.1111/bph.13322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/20/2015] [Accepted: 09/06/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Abnormal Ca(2+) metabolism has been involved in the pathogenesis of vascular dysfunction associated with oxidative stress. Here, we have investigated the actions of H2 O2 on store-operated Ca(2+) (SOC) entry in coronary arteries and assessed whether it is impaired in arteries from a rat model of metabolic syndrome. EXPERIMENTAL APPROACH Simultaneous measurements of intracellular Ca(2+) concentration and contractile responses were made in coronary arteries from Wistar and obese Zucker rats, mounted in microvascular myographs, and the effects of H2 O2 were assessed. KEY RESULTS H2 O2 raised intracellular Ca(2+) concentrations, accompanied by simultaneous vasoconstriction that was markedly reduced in a Ca(2+) -free medium. Upon Ca(2+) re-addition, a nifedipine-resistant sustained Ca(2+) entry, not coupled to contraction, was obtained in endothelium-denuded coronary arteries. The effect of H2 O2 on this voltage-independent Ca(2+) influx was concentration-dependent, and high micromolar H2 O2 concentrations were inhibitory and reduced SOC entry evoked by inhibition of the sarcoplasmic reticulum ATPase (SERCA). H2 O2 -induced increases in Fura signals were mimicked by Ba(2+) and reduced by heparin, Gd(3+) ions and by Pyr6, a selective inhibitor of the Orai1-mediated Ca(2+) entry,. In coronary arteries from obese Zucker rats, intracellular Ca(2+) mobilization and SOC entry activated by acute exposure to H2 O2 were augmented and associated with local oxidative stress. CONCLUSION AND IMPLICATIONS H2 O2 exerted dual concentration-dependent stimulatory/inhibitory effects on store-operated, IP3 receptor-mediated and Orai1-mediated Ca(2+) entry, not coupled to vasoconstriction in coronary vascular smooth muscle. SOC entry activated by H2 O2 was enhanced and associated with vascular oxidative stress in coronary arteries in metabolic syndrome.
Collapse
Affiliation(s)
- Elvira Santiago
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
144
|
Belikov AV, Schraven B, Simeoni L. T cells and reactive oxygen species. J Biomed Sci 2015; 22:85. [PMID: 26471060 PMCID: PMC4608155 DOI: 10.1186/s12929-015-0194-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) have been long considered simply as harmful by-products of metabolism, which damage cellular proteins, lipids, and nucleic acids. ROS are also known as a weapon of phagocytes, employed against pathogens invading the host. However, during the last decade, an understanding has emerged that ROS also have important roles as signaling messengers in a multitude of pathways, in all cells, tissues, and organs. T lymphocytes are the key players of the adaptive immune response, which both coordinate other immune cells and destroy malignant and virus-infected cells. ROS have been extensively implicated in T-cell hyporesponsiveness, apoptosis, and activation. It has also become evident that the source, the kinetics, and the localization of ROS production all influence cell responses. Thus, the characterization of the precise mechanisms by which ROS are involved in the regulation of T-cell functions is important for our understanding of the immune response and for the development of new therapeutic treatments against immune-mediated diseases. This review summarizes the 30-year-long history of research on ROS in T lymphocytes, with the emphasis on the physiological roles of ROS.
Collapse
Affiliation(s)
- Aleksey V Belikov
- Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany.
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany.
| |
Collapse
|
145
|
Abstract
Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.
Collapse
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| | - Richard S Lewis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
146
|
X-ray irradiation activates K+ channels via H2O2 signaling. Sci Rep 2015; 5:13861. [PMID: 26350345 PMCID: PMC4642570 DOI: 10.1038/srep13861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.
Collapse
|
147
|
Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol 2015; 6:260-271. [PMID: 26296072 PMCID: PMC4556774 DOI: 10.1016/j.redox.2015.08.010] [Citation(s) in RCA: 1059] [Impact Index Per Article: 105.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. Calcium and ROS act as signaling molecules inside the cell and their pathways can interact. The mutual interplay of calcium and ROS is required for the fine tuning of signaling. Failure in the interplay results in dysfunction and pathologies.
Collapse
Affiliation(s)
- Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Katharina Bertram
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Germany
| | - Sona Hudecova
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Krizanova
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
148
|
Abstract
Stromal interaction molecules (STIM) 1 and 2 are sensors of the calcium concentration in the endoplasmic reticulum. Depletion of endoplasmic reticulum calcium stores activates STIM proteins which, in turn, bind and open calcium channels in the plasma membrane formed by the proteins ORAI1, ORAI2, and ORAI3. The resulting store-operated calcium entry (SOCE), mostly controlled by the principal components STIM1 and ORAI1, has been particularly characterized in immune cells. In the nervous system, all STIM and ORAI homologs are expressed. This review summarizes current knowledge on distribution and function of STIM and ORAI proteins in central neurons and glial cells, i.e. astrocytes and microglia. STIM2 is required for SOCE in hippocampal synapses and cortical neurons, whereas STIM1 controls calcium store replenishment in cerebellar Purkinje neurons. In microglia, STIM1, STIM2, and ORAI1 regulate migration and phagocytosis. The isoforms ORAI2 and ORAI3 are candidates for SOCE channels in neurons and astrocytes, respectively. Due to the role of SOCE in neuronal and glial calcium homeostasis, dysfunction of STIM and ORAI proteins may have consequences for the development of neurodegenerative disorders, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Robert Kraft
- a Carl-Ludwig-Institute for Physiology, University of Leipzig ; Leipzig , Germany
| |
Collapse
|
149
|
Store-operated calcium entry: Mechanisms and modulation. Biochem Biophys Res Commun 2015; 460:40-9. [PMID: 25998732 DOI: 10.1016/j.bbrc.2015.02.110] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/20/2015] [Indexed: 11/22/2022]
Abstract
Store-operated calcium entry is a central mechanism in cellular calcium signalling and in maintaining cellular calcium balance. This review traces the history of research on store-operated calcium entry, the discovery of STIM and ORAI as central players in calcium entry, and the role of STIM and ORAI in biology and human disease. It describes current knowledge of the basic mechanism of STIM-ORAI signalling and of the varied mechanisms by which STIM-ORAI signalling can be modulated.
Collapse
|
150
|
Moccia F, Zuccolo E, Soda T, Tanzi F, Guerra G, Mapelli L, Lodola F, D'Angelo E. Stim and Orai proteins in neuronal Ca(2+) signaling and excitability. Front Cell Neurosci 2015; 9:153. [PMID: 25964739 PMCID: PMC4408853 DOI: 10.3389/fncel.2015.00153] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/03/2015] [Indexed: 02/01/2023] Open
Abstract
Stim1 and Orai1 are ubiquitous proteins that have long been known to mediate Ca2+ release-activated Ca2+ (CRAC) current (ICRAC) and store-operated Ca2+ entry (SOCE) only in non-excitable cells. SOCE is activated following the depletion of the endogenous Ca2+ stores, which are mainly located within the endoplasmic reticulum (ER), to replete the intracellular Ca2+ reservoir and engage specific Ca2+-dependent processes, such as proliferation, migration, cytoskeletal remodeling, and gene expression. Their paralogs, Stim2, Orai2 and Orai3, support SOCE in heterologous expression systems, but their physiological role is still obscure. Ca2+ inflow in neurons has long been exclusively ascribed to voltage-operated and receptor-operated channels. Nevertheless, recent work has unveiled that Stim1–2 and Orai1-2, but not Orai3, proteins are also expressed and mediate SOCE in neurons. Herein, we survey current knowledge about the neuronal distribution of Stim and Orai proteins in rodent and human brains; we further discuss that Orai2 is the main pore-forming subunit of CRAC channels in central neurons, in which it may be activated by either Stim1 or Stim2 depending on species, brain region and physiological stimuli. We examine the functions regulated by SOCE in neurons, where this pathway is activated under resting conditions to refill the ER, control spinogenesis and regulate gene transcription. Besides, we highlighted the possibility that SOCE also controls neuronal excitation and regulate synaptic plasticity. Finally, we evaluate the involvement of Stim and Orai proteins in severe neurodegenerative and neurological disorders, such as Alzheimer’s disease and epilepsy.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia Pavia, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia Pavia, Italy
| | - Teresa Soda
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Franco Tanzi
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Lisa Mapelli
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Roma, Italy
| | - Francesco Lodola
- Laboratory of Molecular Cardiology, IRCCS Fondazione Salvatore Maugeri Pavia, Italy
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Brain Connectivity Center, C. Mondino National Neurological Institute, Fondazione IRCCS Policlinico San Matteo Pavia Pavia, Italy
| |
Collapse
|