101
|
Teh SH, Fong MY, Mohamed Z. Expression and analysis of the glycosylation properties of recombinant human erythropoietin expressed in Pichia pastoris. Genet Mol Biol 2011; 34:464-70. [PMID: 21931521 PMCID: PMC3168189 DOI: 10.1590/s1415-47572011005000022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 01/25/2011] [Indexed: 12/21/2022] Open
Abstract
The Pichia pastoris expression system was used to produce recombinant human erythropoietin, a protein synthesized by the adult kidney and responsible for the regulation of red blood cell production. The entire recombinant human erythropoietin (rhEPO) gene was constructed using the Splicing by Overlap Extension by PCR (SOE-PCR) technique, cloned and expressed through the secretory pathway of the Pichia expression system. Recombinant erythropoietin was successfully expressed in P. pastoris. The estimated molecular mass of the expressed protein ranged from 32 kDa to 75 kDa, with the variation in size being attributed to the presence of rhEPO glycosylation analogs. A crude functional analysis of the soluble proteins showed that all of the forms were active in vivo.
Collapse
Affiliation(s)
- Ser Huy Teh
- Unit of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
102
|
Pal Khasa Y, Conrad S, Sengul M, Plautz S, Meagher MM, Inan M. Isolation of Pichia pastoris PIR genes and their utilization for cell surface display and recombinant protein secretion. Yeast 2010; 28:213-26. [DOI: 10.1002/yea.1832] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 11/07/2010] [Indexed: 11/08/2022] Open
|
103
|
Jacobs PP, Inan M, Festjens N, Haustraete J, Van Hecke A, Contreras R, Meagher MM, Callewaert N. Fed-batch fermentation of GM-CSF-producing glycoengineered Pichia pastoris under controlled specific growth rate. Microb Cell Fact 2010; 9:93. [PMID: 21092289 PMCID: PMC3004841 DOI: 10.1186/1475-2859-9-93] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yeast expression systems with altered N-glycosylation are now available to produce glycoproteins with homogenous, defined N-glycans. However, data on the behaviour of these strains in high cell density cultivation are scarce. RESULTS Here, we report on cultivations under controlled specific growth rate of a GlycoSwitch-Man5 Pichia pastoris strain producing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) at high levels (hundreds of milligrams per liter). We demonstrate that homogenous Man5GlcNAc2 N-glycosylation of the secreted proteins is achieved at all specific growth rates tested. CONCLUSIONS Together, these data illustrate that the GlycoSwitch-Man5 P. pastoris is a robust production strain for homogenously N-glycosylated proteins.
Collapse
Affiliation(s)
- Pieter P Jacobs
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Current Address: Department of Dermatology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mehmet Inan
- Biological Process Development Facility, Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
- Current Address: Department of Food Engineering, Akdeniz, University, Antalya, Turkey
| | - Nele Festjens
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jurgen Haustraete
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Protein Service Facility, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Annelies Van Hecke
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roland Contreras
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Michael M Meagher
- Biological Process Development Facility, Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nico Callewaert
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry, Physiology and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
104
|
Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, Van Craenenbroeck K, Derycke R, Callewaert N. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact 2010; 9:49. [PMID: 20591165 PMCID: PMC2905327 DOI: 10.1186/1475-2859-9-49] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background The unfolded protein response (UPR) in eukaryotes upregulates factors that restore ER homeostasis upon protein folding stress and in yeast is activated by a non-conventional splicing of the HAC1 mRNA. The spliced HAC1 mRNA encodes an active transcription factor that binds to UPR-responsive elements in the promoter of UPR target genes. Overexpression of the HAC1 gene of S. cerevisiae can reportedly lead to increased production of heterologous proteins. To further such studies in the biotechnology favored yeast Pichia pastoris, we cloned and characterized the P. pastoris HAC1 gene and the splice event. Results We identified the HAC1 homologue of P. pastoris and its splice sites. Surprisingly, we could not find evidence for the non-spliced HAC1 mRNA when P. pastoris was cultivated in a standard growth medium without any endoplasmic reticulum stress inducers, indicating that the UPR is constitutively active to some extent in this organism. After identification of the sequence encoding active Hac1p we evaluated the effect of its overexpression in Pichia. The KAR2 UPR-responsive gene was strongly upregulated. Electron microscopy revealed an expansion of the intracellular membranes in Hac1p-overexpressing strains. We then evaluated the effect of inducible and constitutive UPR induction on the production of secreted, surface displayed and membrane proteins. Wherever Hac1p overexpression affected heterologous protein expression levels, this effect was always stronger when Hac1p expression was inducible rather than constitutive. Depending on the heterologous protein, co-expression of Hac1p increased, decreased or had no effect on expression level. Moreover, α-mating factor prepro signal processing of a G-protein coupled receptor was more efficient with Hac1p overexpression; resulting in a significantly improved homogeneity. Conclusions Overexpression of P. pastoris Hac1p can be used to increase the production of heterologous proteins but needs to be evaluated on a case by case basis. Inducible Hac1p expression is more effective than constitutive expression. Correct processing and thus homogeneity of proteins that are difficult to express, such as GPCRs, can be increased by co-expression with Hac1p.
Collapse
Affiliation(s)
- Mouna Guerfal
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
105
|
De Pourcq K, De Schutter K, Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 2010; 87:1617-31. [PMID: 20585772 DOI: 10.1007/s00253-010-2721-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
Abstract
With the increasing demand for recombinant proteins and glycoproteins, research on hosts for producing these proteins is focusing increasingly on more cost-effective expression systems. Yeasts and other fungi are promising alternatives because they provide easy and cheap systems that can perform eukaryotic post-translational modifications. Unfortunately, yeasts and other fungi modify their glycoproteins with heterogeneous high-mannose glycan structures, which is often detrimental to a therapeutic protein's pharmacokinetic behavior and can reduce the efficiency of downstream processing. This problem can be solved by engineering the glycosylation pathways to produce homogeneous and, if so desired, human-like glycan structures. In this review, we provide an overview of the most significant recently reported approaches for engineering the glycosylation pathways in yeasts and fungi.
Collapse
Affiliation(s)
- Karen De Pourcq
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, 9052, Ghent-Zwijnaarde, Belgium
| | | | | |
Collapse
|
106
|
Freigassner M, Pichler H, Glieder A. Tuning microbial hosts for membrane protein production. Microb Cell Fact 2009; 8:69. [PMID: 20040113 PMCID: PMC2807855 DOI: 10.1186/1475-2859-8-69] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/29/2009] [Indexed: 12/22/2022] Open
Abstract
The last four years have brought exciting progress in membrane protein research. Finally those many efforts that have been put into expression of eukaryotic membrane proteins are coming to fruition and enable to solve an ever-growing number of high resolution structures. In the past, many skilful optimization steps were required to achieve sufficient expression of functional membrane proteins. Optimization was performed individually for every membrane protein, but provided insight about commonly encountered bottlenecks and, more importantly, general guidelines how to alleviate cellular limitations during microbial membrane protein expression. Lately, system-wide analyses are emerging as powerful means to decipher cellular bottlenecks during heterologous protein production and their use in microbial membrane protein expression has grown in popularity during the past months. This review covers the most prominent solutions and pitfalls in expression of eukaryotic membrane proteins using microbial hosts (prokaryotes, yeasts), highlights skilful applications of our basic understanding to improve membrane protein production. Omics technologies provide new concepts to engineer microbial hosts for membrane protein production.
Collapse
Affiliation(s)
- Maria Freigassner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | | | | |
Collapse
|
107
|
Ohashi T, Takegawa K. N- and O-linked oligosaccharides completely lack galactose residues in the gms1och1 mutant of Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2009; 86:263-72. [DOI: 10.1007/s00253-009-2297-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/03/2009] [Accepted: 10/04/2009] [Indexed: 10/20/2022]
|
108
|
The use of mushroom-forming fungi for the production of N-glycosylated therapeutic proteins. Trends Microbiol 2009; 17:439-43. [PMID: 19758804 DOI: 10.1016/j.tim.2009.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 11/23/2022]
Abstract
The market for N-glycosylated therapeutic proteins represents multi-billion dollars in sales and is growing more than 10% each year. This requires cost-effective production platforms that display correct and homogeneous N-glycosylation. Based on recent results, we propose to use mushroom-forming basidiomycetes for the production of N-glycosylated therapeutic proteins.
Collapse
|
109
|
Liu B, Gong X, Chang S, Yang Y, Song M, Duan D, Wang L, Ma Q, Wu J. Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J Biotechnol 2009; 143:95-102. [PMID: 19559061 DOI: 10.1016/j.jbiotec.2009.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 11/26/2022]
Abstract
Glycoproteins secreted by the yeast Kluyveromyces lactis are usually modified by the addition at asparagines-linked glycosylation sites of heterogeneous mannan residues. The secreted glycoproteins in K. lactis that become hypermannosylated will bear a non-human glycosylation pattern and can adversely affect the half-life, tissue distribution and immunogenicity of a therapeutic protein. Here, we describe engineering a K. lactis strain to produce non-hypermannosylated glycoprotein, decreasing the outer-chain mannose residues of N-linked oligosaccharides. We investigated and developed the method of two-step homologous recombination to knockout the OCH1 gene, encoding alpha1,6-mannosyltransferase and MNN1 gene, which is homologue of Saccharomyces cerevisiae MNN1, encoding a putative alpha1,3-mannosyltransferase. We found the Kloch1 mutant strain has a defect in hyperglycosylation, inability in adding mannose to the core oligosaccharide. The N-linked oligosaccharides assembled on a secretory glycoprotein, HSA/GM-CSF in Kloch1 mutant, contained oligosaccharide Man(13-14)GlcNAc(2), and in Kloch1 mnn1 mutant, contained oligosaccharide Man(9-11)GlcNAc(2), whereas those in the wild-type strain, consisted of oligosaccharides with heterogeneous sizes, Man(>30)GlcNAc(2). Taken together, these results indicated that KlOch1p plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in K. lactis. The KlMnn1p, was proved to be certain contribution to the outer hypermannosylation, most possibly encodes alpha1,3-mannosyltransferase. Therefore, the Kloch1 and Kloch1 mnn1 mutants can be used as a foundational host to produce glycoproteins lacking the outer-chain hypermannoses and further maybe applicable to be a promising system for yeast therapeutic protein production.
Collapse
Affiliation(s)
- Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 2009; 27:561-6. [PMID: 19465926 DOI: 10.1038/nbt.1544] [Citation(s) in RCA: 388] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/06/2009] [Indexed: 01/19/2023]
Abstract
The methylotrophic yeast Pichia pastoris is widely used for the production of proteins and as a model organism for studying peroxisomal biogenesis and methanol assimilation. P. pastoris strains capable of human-type N-glycosylation are now available, which increases the utility of this organism for biopharmaceutical production. Despite its biotechnological importance, relatively few genetic tools or engineered strains have been generated for P. pastoris. To facilitate progress in these areas, we present the 9.43 Mbp genomic sequence of the GS115 strain of P. pastoris. We also provide manually curated annotation for its 5,313 protein-coding genes.
Collapse
Affiliation(s)
- Kristof De Schutter
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Ghent-Zwijnaarde, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Lee KJ, Jung JH, Lee JM, So Y, Kwon O, Callewaert N, Kang HA, Ko K, Oh DB. High-throughput quantitative analysis of plant N-glycan using a DNA sequencer. Biochem Biophys Res Commun 2009; 380:223-9. [PMID: 19167352 DOI: 10.1016/j.bbrc.2009.01.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 01/09/2009] [Indexed: 11/23/2022]
Abstract
High-throughput quantitative analytical method for plant N-glycan has been developed. All steps, including peptide N-glycosidase (PNGase) A treatment, glycan preparation, and exoglycosidase digestion, were optimized for high-throughput applications using 96-well format procedures and automatic analysis on a DNA sequencer. The glycans of horseradish peroxidase with plant-specific core alpha(1,3)-fucose can be distinguished by the comparison of the glycan profiles obtained via PNGase A and F treatments. The peaks of the glycans with (91%) and without (1.2%) alpha(1,3)-fucose could be readily quantified and shown to harbor bisecting beta(1,2)-xylose via simultaneous treatment with alpha(1,3)-mannosidase and beta(1,2)-xylosidase. This optimized method was successfully applied to analyze N-glycans of plant-expressed recombinant antibody, which was engineered to contain a minor amount of glycan harboring beta(1,2)-xylose. These results indicate that our DNA sequencer-based method provides quantitative information for plant-specific N-glycan analysis in a high-throughput manner, which has not previously been achieved by glycan profiling based on mass spectrometry.
Collapse
Affiliation(s)
- Kyung Jin Lee
- Integrative Omics Research Center, Korea Research Institute of Bioscience & Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abe H, Takaoka Y, Chiba Y, Sato N, Ohgiya S, Itadani A, Hirashima M, Shimoda C, Jigami Y, Nakayama KI. Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins. Glycobiology 2009; 19:428-36. [PMID: 19129247 DOI: 10.1093/glycob/cwn157] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yeast cells producing mammalian-type N-linked oligosaccharide show severe growth defects and the decreased protein productivity because of the disruption of yeast-specific glycosyltransferases. This decreased protein productivity in engineered yeast strains is an obstacle to the development of efficient glycoprotein production in yeast. For economic and effective synthesis of such therapeutic glycoproteins in yeast, the development of appropriate strains is highly desirable. We applied a novel mutagenesis technique that utilized the proofreading-deficient DNA polymerase delta variant encoded by the pol3-01 gene of Saccharomyces cerevisiae or the cdc6-1 gene of Schizosaccharomyces pombe to the engineered S. cerevisiae TIY20 strain and S. pombe KT97 strain, respectively. TIY20, which is deficient in the outer chain of mannan due to the disruption of three genes (och1Delta, mnn1 Delta, mnn4 Delta), and KT97, which is an och1 disruptant, are impractical as hosts for the production of therapeutic glycoproteins since they show a temperature-sensitive (ts) phenotype, a growth defect phenotype, and decreased protein productivity. We successfully isolated YAB mutants that alleviated the growth defect of the TIY20 strain. Surprisingly, these mutants generally secreted foreign proteins better than the wild-type strain. Furthermore, we successfully isolated YPAB mutants that alleviated the growth defect of the KT97 strain, too. The development of these new mutants by the combination of genetic engineering of yeast and this mutagenesis technique are major breakthroughs for the production of therapeutic glycoproteins in engineered yeast cells.
Collapse
Affiliation(s)
- Hiroko Abe
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi, Takamatsu, Kagawa 761-0395, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 2008; 4:58-70. [DOI: 10.1038/nprot.2008.213] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
114
|
Jacobs PP, Ryckaert S, Geysens S, De Vusser K, Callewaert N, Contreras R. Pichia surface display: display of proteins on the surface of glycoengineered Pichia pastoris strains. Biotechnol Lett 2008; 30:2173-81. [PMID: 18679585 DOI: 10.1007/s10529-008-9807-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/26/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Expression of proteins on the surface of yeasts has a wide range of applications in biotechnology, such as directed evolution of proteins for increased affinity and thermal stability, screening of antibody libraries, epitope mapping, and use as whole-cell biocatalysts. However, hyperglycosylation can interfere with overall protein accessibility on the surface. Therefore, the less elaborate hyperglycosylation in wild type Pichia pastoris and the availability of glycoengineered strains make this yeast an excellent alternative for surface display of glycoproteins. Here, we report the implementation of the well-established a-agglutinin-based yeast surface display technology in P. pastoris. Four heterologous proteins were expressed on the surface of a wild type and a glycoengineered strain. Surface display levels were monitored by Western blot, immunofluorescence microscopy, and FACS analysis. The availability of glycoengineered strains makes P. pastoris an excellent alternative for surface display of glycoproteins and paves the way for new applications.
Collapse
Affiliation(s)
- Pieter P Jacobs
- Department for Molecular Biomedical Research, Unit for Fundamental and Applied Molecular Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
115
|
Hamilton BS, Brede Y, Tolbert TJ. Expression and characterization of human glycosylated interleukin-1 receptor antagonist in Pichia pastoris. Protein Expr Purif 2008; 59:64-8. [DOI: 10.1016/j.pep.2008.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/07/2008] [Accepted: 01/10/2008] [Indexed: 01/14/2023]
|
116
|
Fontanella GH, De Vusser K, Laroy W, Daurelio L, Nocito AL, Revelli S, Contreras R. Immunization with an engineered mutant trans-sialidase highly protects mice from experimental Trypanosoma cruzi infection: a vaccine candidate. Vaccine 2008; 26:2322-34. [PMID: 18403070 DOI: 10.1016/j.vaccine.2008.02.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 02/21/2008] [Accepted: 02/28/2008] [Indexed: 01/22/2023]
Abstract
Chagas' disease is a major tropical disease for which a cure for chronic phase does not exist yet. Trypanosoma cruzi trans-sialidase (TS) seems to be involved in relevant processes such as infectivity, host survival and, very importantly, disease pathogenesis. In this study, we show that mice vaccinated with an engineered enzymatically deficient mutant TS containing the catalytic domain without the immunodominant SAPA (Shed Acute Phase Antigen) repeats, were highly protected against T. cruzi infection. Adult male BALB/c mice were immunized with mutant protein, purified from Pichia pastoris yeast, using three inoculations in Freund's adjuvant. All immunized mice were protected against challenge with a lethal dose of T. cruzi trypomastigotes. The protected immunized mice developed no clinical or tissue evidence of infection throughout the study. In contrast, 60-90% mortality and 100% occurrence of myocardial lesions were observed in the non-immunized counterparts. Titers of circulating antibody against TS did not correlate with protection, while anti-SAPA antibodies were coincident with disease severity. Further studies indicated that a single inoculation of mutant recombinant protein in Freund's complete adjuvant was not associated with blood or organic alterations, per se. Mutant TS vaccination seems to be a promising tool for immune intervention strategies in Chagas' disease, aimed at preventing T. cruzi-related heart tissue damage.
Collapse
Affiliation(s)
- Germán H Fontanella
- Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
117
|
Jolivet P, Bordes F, Fudalej F, Cancino M, Vignaud C, Dossat V, Burghoffer C, Marty A, Chardot T, Nicaud JM. Analysis ofYarrowia lipolyticaextracellular lipase Lip2p glycosylation. FEMS Yeast Res 2007; 7:1317-27. [PMID: 17784853 DOI: 10.1111/j.1567-1364.2007.00293.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Wild-type (WT) Yarrowia lipolytica strain secretes a major extracellular lipase Lip2p which is glycosylated. In silico sequence analysis reveals the presence of two potential N-glycosylation sites (N113IS and N134NT). Strains expressing glycosylation mutant forms were constructed. Esterase activities for the different forms were measured with three substrates: p-nitrophenol butyrate (p-NPB), tributyrin and triolein. Sodium dodecyl sulfate polacrylamide gel electrophoresis analysis of supernatant indicated that the suppression of the two sites of N-glycosylation did not affect secretion. S115V or N134Q mutations led to lipase with similar specific activity compared with WT lipase while a T136V mutation reduced specific activity toward p-NPB and tributyrin. Electrospray ionization MS of the WT entire protein led to an average mass of 36 950 Da, higher than the mass deduced from the amino acid sequence (33 385 Da) and to the observation of at least two different mannose structures: Man(8)GlcNAc(2) and Man(9)GlcNAc(2). LC-tandem MS analysis of the WT Lip2p after trypsin and endoproteinase Asp-N treatments led to high coverage (87%) of protein sequence but the peptides containing N113 and N134 were not identified. We confirmed that the presence of N-glycosylation occurred at both N113 and N134 by MS of digested proteins obtained after enzymatic deglycosylation or from mutant forms.
Collapse
Affiliation(s)
- Pascale Jolivet
- UMR206, Laboratoire de Chimie Biologique, Agro Paris Tech, INRA, Centre de Biotechnologie Agro-Industrielle, Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Chiba Y, Jigami Y. Production of humanized glycoproteins in bacteria and yeasts. Curr Opin Chem Biol 2007; 11:670-6. [DOI: 10.1016/j.cbpa.2007.08.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/30/2007] [Indexed: 11/26/2022]
|
119
|
From laboratory to Phase I/II cancer trials with recombinant biotherapeutics. Eur J Cancer 2007; 43:2515-22. [DOI: 10.1016/j.ejca.2007.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Accepted: 08/24/2007] [Indexed: 11/19/2022]
|
120
|
Hamilton SR, Gerngross TU. Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 2007; 18:387-92. [PMID: 17951046 DOI: 10.1016/j.copbio.2007.09.001] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/05/2007] [Indexed: 11/16/2022]
Abstract
Yeasts have been extensively used as model organisms to elucidate cellular processes and their mechanism in lower eukaryotes. Consequently, a large number of powerful genetic tools have been developed to engineer yeast and improve its utility. These tools and the development of efficient large-scale fermentation processes have made recombinant protein expression in yeast an attractive choice. However, for the production of glycoproteins for human use, native high-mannose yeast glycosylation is not suitable and therefore represents a major limitation for yeast based protein expression systems. Over the last two decades several groups have attempted to overcome this problem, yet with limited success. Recently however, major advances in the glycoengineering of the yeast Pichia pastoris, have culminated in the production of fully humanized sialylated glycoproteins.
Collapse
Affiliation(s)
- Stephen R Hamilton
- GlycoFi, Inc., 21 Lafayette Street (Suite 200), Lebanon, NH 03766, United States
| | | |
Collapse
|
121
|
Tolner B, Smith L, Begent RHJ, Chester KA. Production of recombinant protein in Pichia pastoris by fermentation. Nat Protoc 2007; 1:1006-21. [PMID: 17406338 DOI: 10.1038/nprot.2006.126] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This protocol is applicable to recombinant protein expression by small-scale fermentation using the Pichia pastoris expression system. P. pastoris has the capacity to produce large quantities of protein with eukaryotic processing. Expression is controlled by a methanol-inducible promoter, which allows a biomass-generation phase before protein production is initiated. The target protein is secreted directly into a protein-free mineral salt medium, and is relatively easy to purify. The protocol is readily interfaced with expanded bed adsorption for immediate capture and purification of recombinant protein. The setting up of the bioreactor plus the fermentation itself takes 1 wk. Making the master and user seed lots takes approximately 2 wk for each individual clone.
Collapse
Affiliation(s)
- Berend Tolner
- Department of Oncology, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
122
|
Abstract
Here we provide a detailed protocol for the analysis of protein-linked glycans on DNA sequencing equipment. This protocol satisfies the glyco-analytical needs of many projects and can form the basis of 'glycomics' studies, in which robustness, high throughput, high sensitivity and reliable quantification are of paramount importance. The protocol routinely resolves isobaric glycan stereoisomers, which is much more difficult by mass spectrometry (MS). Earlier methods made use of polyacrylamide gel-based sequencers, but we have now adapted the technique to multicapillary DNA sequencers, which represent the state of the art today. In addition, we have integrated an option for HPLC-based fractionation of highly anionic 8-amino-1,3,6-pyrenetrisulfonic acid (APTS)-labeled glycans before rapid capillary electrophoretic profiling. This option facilitates either two-dimensional profiling of complex glycan mixtures and exoglycosidase sequencing, or MS analysis of particular compounds of interest rather than of the total pool of glycans in a sample.
Collapse
Affiliation(s)
- Wouter Laroy
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, Ghent University, and VIB, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium.
| | | | | |
Collapse
|
123
|
Song Y, Choi MH, Park JN, Kim MW, Kim EJ, Kang HA, Kim JY. Engineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Appl Environ Microbiol 2007; 73:4446-54. [PMID: 17513593 PMCID: PMC1932813 DOI: 10.1128/aem.02058-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative alpha-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro alpha-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with alpha-1,2- and alpha-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first alpha-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.
Collapse
Affiliation(s)
- Yunkyoung Song
- School of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | |
Collapse
|
124
|
Porro D, Sauer M, Branduardi P, Mattanovich D. Recombinant protein production in yeasts. Mol Biotechnol 2007; 31:245-59. [PMID: 16230775 DOI: 10.1385/mb:31:3:245] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. These technologies, now approx 25 yr old, have become one of the most important technologies developed in the twentieth century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances in rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we summarize advantages and limitations of the main and most promising yeast hosts.
Collapse
Affiliation(s)
- Danilo Porro
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, p.zza della Scienza 2, 20126 Milano, Italy.
| | | | | | | |
Collapse
|
125
|
Vervecken W, Callewaert N, Kaigorodov V, Geysens S, Contreras R. Modification of the N-glycosylation pathway to produce homogeneous, human-like glycans using GlycoSwitch plasmids. Methods Mol Biol 2007; 389:119-38. [PMID: 17951639 DOI: 10.1007/978-1-59745-456-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glycosylation is an important issue in heterologous protein production for therapeutic applications. Glycoproteins produced in Pichia pastoris contain high mannose glycan structures that can hamper downstream processing, might be immunogenic, and cause rapid clearance from the circulation. This chapter describes a method that helps solving these glycosylation-related problems by inactivation of OCH1, overexpression of an HDEL-tagged mannosidase, and overexpression of a Kre2/GlcNAc-transferase I chimeric enzyme. Different plasmids are described as well as glycan analysis methods.
Collapse
Affiliation(s)
- Wouter Vervecken
- Department of Molecular Biomedical Research, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
126
|
Gasser B, Mattanovich D. Antibody production with yeasts and filamentous fungi: on the road to large scale? Biotechnol Lett 2006; 29:201-12. [PMID: 17120087 DOI: 10.1007/s10529-006-9237-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/11/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
Yeasts and filamentous fungi have gained significant interest for the production of recombinant antibodies and antibody fragments. The opportunities and constraints of antibody (fragment) production in these hosts are highlighted as well as cell engineering strategies to overcome the constraints. Following aspects are addressed: folding, assembly and secretion of antibody related proteins, process optimization to improve productivity and quality, proteolysis, and, as a major point of interest, glycosylation.
Collapse
Affiliation(s)
- Brigitte Gasser
- Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | |
Collapse
|
127
|
Karnaukhova E, Ophir Y, Golding B. Recombinant human alpha-1 proteinase inhibitor: towards therapeutic use. Amino Acids 2006; 30:317-32. [PMID: 16773239 DOI: 10.1007/s00726-005-0324-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/31/2006] [Indexed: 01/07/2023]
Abstract
Human alpha-1-proteinase inhibitor is a well-characterized protease inhibitor with a wide spectrum of anti-protease activity. Its major physiological role is inhibition of neutrophil elastase in the lungs, and its deficiency is associated with progressive ultimately fatal emphysema. Currently in the US, only plasma-derived human alpha-1-proteinase inhibitor is available for augmentation therapy, which appears to be insufficient to meet the anticipated clinical demand. Moreover, despite effective viral clearance steps in the manufacturing process, the potential risk of contamination with new and unknown pathogens still exists. In response, multiple efforts to develop recombinant versions of human alpha-1-proteinase inhibitor, as an alternative to the plasma-derived protein, have been reported. Over the last two decades, various systems have been used to express the human gene for alpha-1-proteinase inhibitor. This paper reviews the recombinant versions of human alpha-1-proteinase inhibitor produced in various hosts, considers current major safety and efficacy issues regarding recombinant glycoproteins as potential therapeutics, and the factors that are impeding progress in this area(1).
Collapse
Affiliation(s)
- E Karnaukhova
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
128
|
Weide T, Herrmann L, Bockau U, Niebur N, Aldag I, Laroy W, Contreras R, Tiedtke A, Hartmann MWW. Secretion of functional human enzymes by Tetrahymena thermophila. BMC Biotechnol 2006; 6:19. [PMID: 16542419 PMCID: PMC1431531 DOI: 10.1186/1472-6750-6-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 03/16/2006] [Indexed: 11/10/2022] Open
Abstract
Background The non-pathogenic ciliate Tetrahymena thermophila is one of the best-characterized unicellular eucaryotes used in various research fields. Previous work has shown that this unicellular organism provides many biological features to become a high-quality expression system, like multiplying to high cell densities with short generation times in bioreactors. In addition, the expression of surface antigens from the malaria parasite Plasmodium falciparum and the ciliate Ichthyophthirius multifiliis suggests that T. thermophila might play an important role in vaccine development. However, the expression of functional mammalian or human enzymes remains so far to be seen. Results We have been able to express a human enzyme in T. thermophila using expression modules that encode a fusion protein consisting of the endogenous phospholipase A1 precursor and mature human DNaseI. The recombinant human enzyme is active, indicating that also disulfide bridges are correctly formed. Furthermore, a detailed N-glycan structure of the recombinant enzyme is presented, illustrating a very consistent glycosylation pattern. Conclusion The ciliate expression system has the potential to become an excellent expression system. However, additional optimisation steps including host strain improvement as wells as measures to increase the yield of expression are necessary to be able to provide an alternative to the common E. coli and yeast-based systems as well as to transformed mammalian cell lines.
Collapse
Affiliation(s)
- Thomas Weide
- Cilian AG, Johann-Krane-Weg 42, D-48149 Münster, Germany
| | - Lutz Herrmann
- Cilian AG, Johann-Krane-Weg 42, D-48149 Münster, Germany
| | - Ulrike Bockau
- Cilian AG, Johann-Krane-Weg 42, D-48149 Münster, Germany
- Institut für allgemeine Zoologie und Genetik, Universität Münster, Schlossplatz 5, D-48149 Münster, Germany
| | - Nadine Niebur
- Cilian AG, Johann-Krane-Weg 42, D-48149 Münster, Germany
- Institut für allgemeine Zoologie und Genetik, Universität Münster, Schlossplatz 5, D-48149 Münster, Germany
| | - Ingo Aldag
- Cilian AG, Johann-Krane-Weg 42, D-48149 Münster, Germany
| | - Wouter Laroy
- Department of Molecular Biology Research, Unit for Fundamental and Applied Molecular Biology, Ghent and Flanders Interuniversity Institute for Biotechnology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Roland Contreras
- Department of Molecular Biology Research, Unit for Fundamental and Applied Molecular Biology, Ghent and Flanders Interuniversity Institute for Biotechnology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Arno Tiedtke
- Institut für allgemeine Zoologie und Genetik, Universität Münster, Schlossplatz 5, D-48149 Münster, Germany
| | - Marcus WW Hartmann
- Cilian AG, Johann-Krane-Weg 42, D-48149 Münster, Germany
- Institut für allgemeine Zoologie und Genetik, Universität Münster, Schlossplatz 5, D-48149 Münster, Germany
| |
Collapse
|
129
|
Warnock D, Bai X, Autote K, Gonzales J, Kinealy K, Yan B, Qian J, Stevenson T, Zopf D, Bayer RJ. In vitro galactosylation of human IgG at 1 kg scale using recombinant galactosyltransferase. Biotechnol Bioeng 2006; 92:831-42. [PMID: 16187338 DOI: 10.1002/bit.20658] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Fc effector functions of immunoglobulin G (IgG) antibodies are in part determined by structural features of carbohydrates linked to each of the paired gamma heavy chains in the antibody constant domain (C(H)2). One glycoform that has been shown to be advantageous is G2, where both arms of complex bi-antennary N-glycans terminate in galactose. In vitro treatment with glycosyltransferases can remodel heterogeneous IgG glycoforms, enabling preparation of IgG molecules with homogeneous glycan chains. Here we describe optimization of conditions for use of a soluble recombinant galactosyltransferase in vitro to remodel glycans of human serum IgG, and we demonstrate a scaled-up reaction in which >98% of neutral glycans attached to 1 kg IgG are converted to the G2 glycoform. Removal of glycosylation reagents from the product is achieved in one step by affinity chromatography on immobilized Protein A.
Collapse
Affiliation(s)
- Dale Warnock
- Neose Technologies, Inc., 102 Witmer Road, Horsham, Pennsylvania 19044, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kang KY, Kim SG, Kim WK, You HK, Kim YJ, Lee JH, Jung KH, Kim CW. Purification and characterization of a recombinant anti-angiogenic kringle fragment expressed in Escherichia coli: Purification and characterization of a tri-kringle fragment from human apolipoprotein (a) (kringle IV (9)–kringle IV (10)–kringle V). Protein Expr Purif 2006; 45:216-25. [PMID: 16260151 DOI: 10.1016/j.pep.2005.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 08/13/2005] [Accepted: 08/19/2005] [Indexed: 11/28/2022]
Abstract
A kringle fragment (type IV (9)-IV (10)-V) from human apolipoprotein (a) (called LK68) was expressed in an inclusion body in Escherichia coli. The LK68 in this inclusion body was rendered soluble with urea, and efficiently refolded via oxidation in the presence of re-dox couple. The refolded LK68 was then purified via two steps of ion exchange chromatography, concentrated via preparative reversed-phase chromatography, and freeze-dried, at a final yield of approximately 30%. The purified LK68 exhibited profound affinity for lysine and fibrinogen, which suggests the proper folding of the kringle fragment, and also indicates that the native characteristics of apolipoprotein (a) were preserved. The purified LK68 was determined to be highly homogeneous upon reversed-phase HPLC analysis and size-exclusion HPLC analysis, in the presence of 20% (v/v) acetonitrile. However, on size-exclusion HPLC analysis without acetonitrile, it was determined to be somewhat heterogeneous, and this was corroborated by native analyses, including native PAGE and IEF.
Collapse
Affiliation(s)
- Kwan-Yub Kang
- Laboratory of Pharmaceutical Technology, Mogam Biotechnology Research Institute, 341, Pojung-ri, Guseong-eup, Yongin-city, Kyonggi-do 449-913, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Bates S, Hughes HB, Munro CA, Thomas WPH, MacCallum DM, Bertram G, Atrih A, Ferguson MAJ, Brown AJP, Odds FC, Gow NAR. Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem 2005; 281:90-8. [PMID: 16263704 DOI: 10.1074/jbc.m510360200] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The outer layer of the Candida albicans cell wall is enriched in highly glycosylated mannoproteins that are the immediate point of contact with the host and strongly influence the host-fungal interaction. N-Glycans are the major form of mannoprotein modification and consist of a core structure, common to all eukaryotes, that is further elaborated in the Golgi to form the highly branched outer chain that is characteristic of fungi. In yeasts, outer chain branching is initiated by the action of the alpha1,6-mannosyltransferase Och1p; therefore, we disrupted the C. albicans OCH1 homolog to determine the importance of outer chain N-glycans on the host-fungal interaction. Loss of CaOCH1 resulted in a temperature-sensitive growth defect and cellular aggregation. Outer chain elongation of N-glycans was absent in the null mutant, demonstrated by the lack of the alpha1,6-linked polymannose backbone and the underglycosylation of N-acetylglucosaminidase. A null mutant lacking OCH1 was hypersensitive to a range of cell wall perturbing agents and had a constitutively activated cell wall integrity pathway. These mutants had near normal growth rates in vitro but were attenuated in virulence in a murine model of systemic infection. However, tissue burdens for the Caoch1delta null mutant were similar to control strains with normal N-glycosylation, suggesting the host-fungal interaction was altered such that high burdens were tolerated. This demonstrates the importance of N-glycan outer chain epitopes to the host-fungal interaction and virulence.
Collapse
Affiliation(s)
- Steven Bates
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Ryckaert S, Martens V, De Vusser K, Contreras R. Development of a S. cerevisiae whole cell biocatalyst for in vitro sialylation of oligosaccharides. J Biotechnol 2005; 119:379-88. [PMID: 15982773 DOI: 10.1016/j.jbiotec.2005.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/29/2005] [Accepted: 04/06/2005] [Indexed: 11/21/2022]
Abstract
Absence of sialylation on recombinant glycoproteins compromises their efficacy as therapeutic agents, as it results in rapid clearance from the human bloodstream. To circumvent this, several strategies are followed, including the implementation of a post-secretion glycosylation step. In this paper we describe the engineering of yeast cells expressing active surface exposed Trypanosoma cruzi trans-sialidase (TS) fused to the yeast Aga2 protein, and the use of this yeast in the sialylation of synthetic oligosaccharides. In an attempt to improve overall protein accessibility on the yeast surface, we abolished hyperglycosylation on the yeast cell wall proteins. This was achieved by disrupting the OCH1 gene of the TS surface expressing strain, which resulted in increased enzymatic activity. Using a fluorescence-based activity assay and DSA-FACE structural analysis, we obtained almost complete conversion to a fully sialylated acceptor, whereas in the wild type situation this conversion was only partial. Increasing protein accessibility on the yeast surface by modifying the glycosylation content thus proved to be a valuable approach in increasing the cell wall associated activity of an immobilised enzyme, hence resulting in a more effective biocatalyst system.
Collapse
Affiliation(s)
- Stefan Ryckaert
- Fundamental and Applied Molecular Biology, Department for Molecular Biomedical Research, Ghent University and VIB, FSVM-Research Building, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | | | | | | |
Collapse
|
133
|
Abstract
Yeast and other fungal protein-expression hosts have been extensively used to produce industrial enzymes, and are often the expression system of choice when manufacturing costs are of primary concern. However, for the production of therapeutic glycoproteins intended for use in humans, yeast have been less useful owing to their inability to modify proteins with human glycosylation structures. Yeast N-glycosylation is of the high-mannose type, which confers a short half-life in vivo and thereby compromises the efficacy of most therapeutic glycoproteins. Several approaches to humanizing yeast N-glycosylation pathways have been attempted over the past decade with limited success. Recently however, advances in the glycoengineering of yeast and the expression of therapeutic glycoproteins with humanized N-glycosylation structures have shown significant promise - this review summarizes the most important developments in the field.
Collapse
Affiliation(s)
- Stefan Wildt
- GlycoFi Inc., 21 Lafayette Street, Lebanon, New Hampshire 03766, USA
| | | |
Collapse
|
134
|
|
135
|
Nevalainen H, Te'o V, Penttilä M, Pakula T. Heterologous Gene Expression in Filamentous Fungi: A Holistic View. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
136
|
Gerngross TU. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 2004; 22:1409-14. [PMID: 15529166 DOI: 10.1038/nbt1028] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Yeast and fungal protein expression systems are used for the production of many industrially relevant enzymes, and are widely used by the research community to produce proteins that cannot be actively expressed in Escherichia coli or require glycosylation for proper folding and biological activity. However, for the production of therapeutic glycoproteins intended for use in humans, yeasts have been less useful because of their inability to modify proteins with human glycosylation structures. Yeast glycosylation is of the high-mannose type, which confers a short in vivo half-life to the protein and may render it less efficacious or even immunogenic. Several ways of humanizing yeast-derived glycoproteins have been tried, including enzymatically modifying proteins in vitro and modulating host glycosylation pathways in vivo. Recent advances in the glycoengineering of yeasts and the expression of therapeutic glycoproteins in humanized yeasts have shown significant promise, and are challenging the current dominance of therapeutic protein production based on mammalian cell culture.
Collapse
Affiliation(s)
- Tillman U Gerngross
- Thayer School of Engineering, the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| |
Collapse
|