101
|
Martinho FC, Chiesa WMM, Leite FR, Cirelli JA, Gomes BP. Antigenic Activity of Bacterial Endodontic Contents from Primary Root Canal Infection with Periapical Lesions against Macrophage in the Release of Interleukin-1β and Tumor Necrosis Factor α. J Endod 2010; 36:1467-74. [DOI: 10.1016/j.joen.2010.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
102
|
Chang J, Jain S, Carl DJ, Paolella L, Darveau RP, Gravett MG, Adams Waldorf KM. Differential host response to LPS variants in amniochorion and the TLR4/MD-2 system in Macaca nemestrina. Placenta 2010; 31:811-7. [PMID: 20619890 PMCID: PMC2934902 DOI: 10.1016/j.placenta.2010.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/11/2010] [Accepted: 06/16/2010] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Microbial-specific factors are likely critical in determining whether bacteria trigger preterm labor. Structural variations in lipopolysaccharide (LPS), a component of gram-negative bacteria, can determine whether LPS has an inflammatory (agonist) or anti-inflammatory (antagonist) effect through Toll-like receptor 4 (TLR4). Our objective was to determine whether amniochorion could discriminate between LPS variants in a nonhuman primate model. We also cloned Macaca nemestrina TLR4 and MD-2 and compared this complex functionally to the human homologue to establish whether nonhuman primates could be used to study TLR4 signaling in preterm birth. STUDY DESIGN Amniochorion explants from M. nemestrina were stimulated with a panel of LPS variants for 24 h. Supernatants were analyzed for IL-1beta, TNF-alpha, IL-6, IL-8 and prostaglandins E2 and F2alpha. Tissue expression of TLR1, 2, 4, 6, MyD88 and NF-kappaB was studied by RT-PCR. M. nemestrina TLR4 and MD-2 genes were cloned and compared with their human counterparts in a recombinant TLR4 signaling system to determine LPS sensitivity. RESULTS LPS variants differentially stimulated cytokines and prostaglandins, which was not related to transcriptional changes of TLR4 or other TLRs. Nearly all elements of LPS binding and TLR4 leucine-rich repeats were conserved between humans and M. nemestrina. TLR4/MD-2 signaling complexes from both species were equally sensitive to LPS variants. CONCLUSIONS LPS variants elicit a hierarchical inflammatory response within amniochorion that may contribute to preterm birth. LPS sensitivity is similar between M. nemestrina and humans, validating M. nemestrina as an appropriate model to study TLR4 signaling in preterm birth.
Collapse
Affiliation(s)
- J Chang
- Department of Obstetrics & Gynecology, Magee Women's Hospital, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Walters SM, Dubey VS, Jeffrey NR, Dixon DR. Antibiotic-induced Porphyromonas gingivalis LPS release and inhibition of LPS-stimulated cytokines by antimicrobial peptides. Peptides 2010; 31:1649-53. [PMID: 20541574 DOI: 10.1016/j.peptides.2010.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 11/25/2022]
Abstract
Bacterial lipopolysaccharide (LPS) release during periodontal infection is a significant component of periodontal disease. We hypothesized that some bacterial LPS release results from bacterial exposure to antibiotics. Therefore, we examined the ability of various classes of antibiotics to induce LPS release from Porphyromonas gingivalis as well as the ability of antimicrobial peptides (AMPs) to inhibit purified LPS. All antibiotics tested against P. gingivalis were able to liberate 1.9-12.9 times more LPS as compared to untreated bacteria. Among the three AMPs tested, LL-37 was found to be the most potent inhibitor of cytokine (tumor necrosis factor-alpha, interleukin-1beta, interleukin-6) production and completely neutralized purified P. ginigivalis LPS activity in the chromogenic limulus amebocyte lysate (LAL) and whole blood cytokine stimulation assays. These observations suggest that therapeutic approaches utilizing AMPs as adjuncts to neutralize released LPS should be considered.
Collapse
Affiliation(s)
- S M Walters
- Immunology and Microbiology Branch, US Army Dental and Trauma Research Detachment, Walter Reed Army Institute of Research, Great Lakes Naval Training Center, Great Lakes, IL 60088, USA
| | | | | | | |
Collapse
|
104
|
Impaired immune tolerance to Porphyromonas gingivalis lipopolysaccharide promotes neutrophil migration and decreased apoptosis. Infect Immun 2010; 78:4151-6. [PMID: 20679442 DOI: 10.1128/iai.00600-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontitis, a chronic inflammatory disease of the tissues supporting the teeth, is characterized by an exaggerated host immune and inflammatory response to periopathogenic bacteria. Toll-like receptor activation, cytokine network induction, and accumulation of neutrophils at the site of inflammation are important in the host defense against infection. At the same time, induction of immune tolerance and the clearance of neutrophils from the site of infection are essential in the control of the immune response, resolution of inflammation, and prevention of tissue destruction. Using a human monocytic cell line, we demonstrate that Porphyromonas gingivalis lipopolysaccharide (LPS), which is a major etiological factor in periodontal disease, induces only partial immune tolerance, with continued high production of interleukin-8 (IL-8) but diminished secretion of tumor necrosis factor alpha (TNF-α) after repeated challenge. This cytokine response has functional consequences for other immune cells involved in the response to infection. Primary human neutrophils incubated with P. gingivalis LPS-treated naïve monocyte supernatant displayed a high migration index and increased apoptosis. In contrast, neutrophils treated with P. gingivalis LPS-tolerized monocyte supernatant showed a high migration index but significantly decreased apoptosis. Overall, these findings suggest that induction of an imbalanced immune tolerance in monocytes by P. gingivalis LPS, which favors continued secretion of IL-8 but decreased TNF-α production, may be associated with enhanced migration of neutrophils to the site of infection but also with decreased apoptosis and may play a role in the chronic inflammatory state seen in periodontal disease.
Collapse
|
105
|
Porphyromonas gingivalis lipids inhibit osteoblastic differentiation and function. Infect Immun 2010; 78:3726-35. [PMID: 20584977 DOI: 10.1128/iai.00225-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Porphyromonas gingivalis produces unusual sphingolipids that are known to promote inflammatory reactions in gingival fibroblasts and Toll-like receptor 2 (TLR2)-dependent secretion of interleukin-6 from dendritic cells. The aim of the present study was to examine whether P. gingivalis lipids inhibit osteoblastic function. Total lipids from P. gingivalis and two fractions, phosphoglycerol dihydroceramides and phosphoethanolamine dihydroceramides, were prepared free of lipid A. Primary calvarial osteoblast cultures derived from 5- to 7-day-old CD-1 mice were used to examine the effects of P. gingivalis lipids on mineralized nodule formation, cell viability, apoptosis, cell proliferation, and gene expression. P. gingivalis lipids inhibited osteoblast differentiation and fluorescence expression of pOBCol2.3GFP in a concentration-dependent manner. However, P. gingivalis lipids did not significantly alter osteoblast proliferation, viability, or apoptosis. When administered during specific intervals of osteoblast growth, P. gingivalis total lipids demonstrated inhibitory effects on osteoblast differentiation only after the proliferation stage of culture. Reverse transcription-PCR confirmed the downregulation of osteoblast marker genes, including Runx2, ALP, OC, BSP, OPG, and DMP-1, with concurrent upregulation of RANKL, tumor necrosis factor alpha, and MMP-3 genes. P. gingivalis total lipids and lipid fractions inhibited calvarial osteoblast gene expression and function in vivo, as determined by the loss of expression of another osteoblast differentiation reporter, pOBCol3.6GFPcyan, and reduced uptake of Alizarin complexone stain. Finally, lipid inhibition of mineral nodule formation in vitro was dependent on TLR2 expression. Our results indicate that inhibition of osteoblast function and gene expression by P. gingivalis lipids represents a novel mechanism for altering alveolar bone homeostasis at periodontal disease sites.
Collapse
|
106
|
Lu Q, Darveau RP, Samaranayake LP, Wang CY, Jin L. Differential modulation of human {beta}-defensins expression in human gingival epithelia by Porphyromonas gingivalis lipopolysaccharide with tetra- and penta-acylated lipid A structures. Innate Immun 2010; 15:325-35. [PMID: 19675119 DOI: 10.1177/1753425909104899] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Porphyromonas gingivalis lipopolysaccharide (LPS) is a crucial virulence factor strongly involved in the development of chronic periodontitis. It displays a significant amount of lipid A structural heterogeneity, containing both tetra- (LPS(1435/1449) ) and penta-acylated (LPS( 1690)) lipid A structures with opposing effects on E-selectin expression in human endothelial cells. Little is known about how these two isoforms of P. gingivalis LPS could differentially affect host innate immune responses in human gingival epithelia. The present study compares the modulatory effects of P. gingivalis LPS(1435/1449) and LPS(1690) on the expression of human beta-defensins (hBDs) in the reconstituted human gingival epithelium, and examines the involvements of a panel of pattern recognition receptors in the modulatory effects concerned. It is shown that hBD-1, hBD-2 and hBD-3 mRNAs are significantly up-regulated by P. gingivalis LPS(1690), but down-regulated by P. gingivalis LPS( 1435/1449). Toll-like receptor (TLR) 2 and CD14 mRNAs are also differentially regulated, and the modulation of hBD-2 expression may be through the co-operation of both TLR2 and TLR4. This study suggests that P. gingivalis LPS with different lipid A structures could differentially modulate host innate immune responses in human gingival epithelia, which may be a hitherto undescribed novel pathogenic mechanism of P. gingivalis in periodontal pathogenesis.
Collapse
Affiliation(s)
- Qian Lu
- The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong
| | | | | | | | | |
Collapse
|
107
|
|
108
|
Lewis JP. Metal uptake in host-pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. Periodontol 2000 2010; 52:94-116. [PMID: 20017798 DOI: 10.1111/j.1600-0757.2009.00329.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
109
|
Fan MHM, Wong KL, Wu S, Leung WK, Yam WC, Wong TM. Preconditioning withPorphyromonas gingivalislipopolysaccharide may confer cardioprotection and improve recovery of the electrically induced intracellular calcium transient during ischemia and reperfusion. J Periodontal Res 2010; 45:100-8. [DOI: 10.1111/j.1600-0765.2009.01206.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
110
|
Braham P, Herron C, Street C, Darveau R. Antimicrobial photodynamic therapy may promote periodontal healing through multiple mechanisms. J Periodontol 2009; 80:1790-8. [PMID: 19905948 DOI: 10.1902/jop.2009.090214] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) as an adjunctive treatment in addition to scaling and root planing for the treatment of periodontitis has been shown to be clinically useful. Its beneficial effect is reported to be due to its potent bactericidal activity. However, aPDT treatment has the potential to inactivate bacterial and host factors that contribute to disease. In this report, we demonstrate that aPDT treatment can simultaneously kill Porphyromonas gingivalis and inactivate its virulence-associated protease. It also inactivates host destructive cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 beta. METHODS We developed a 96-well-based bacterial killing and protease inactivation assay that determined aPDT bactericidal and protease inactivation from the same sample. A cytokine inactivation assay that measured E-selectin expression in response to TNF-alpha and IL-1 beta was developed to measure the ability of aPDT to inactivate cytokine function. RESULTS A single aPDT treatment in vitro potently inactivated protease activity and resulted in a 4-log(10) reduction in the viability of P. gingivalis. Dose and time-of-exposure experiments revealed that protease inactivation occurred at lower concentrations of photosensitizer and less time of light exposure. Also, aPDT treatment potently and functionally inactivated IL-1 beta and TNF-alpha. CONCLUSIONS aPDT treatment may augment periodontal treatment by increasing bacterial killing, inactivating bacterial virulence factors, and inactivating host cytokines that impair periodontal restoration. Therefore, aPDT treatment may provide a more favorable healing environment.
Collapse
Affiliation(s)
- Pam Braham
- Department of Periodontics, University of Washington, Seattle, WA 98195-7444, USA
| | | | | | | |
Collapse
|
111
|
Coats SR, Jones JW, Do CT, Braham PH, Bainbridge BW, To TT, Goodlett DR, Ernst RK, Darveau RP. Human Toll-like receptor 4 responses to P. gingivalis are regulated by lipid A 1- and 4'-phosphatase activities. Cell Microbiol 2009; 11:1587-99. [PMID: 19552698 PMCID: PMC3074576 DOI: 10.1111/j.1462-5822.2009.01349.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Signal transduction following binding of lipopolysaccharide (LPS) to Toll-like receptor 4 (TLR4) is an essential aspect of host innate immune responses to infection by Gram-negative pathogens. Here, we describe a novel molecular mechanism used by a prevalent human bacterial pathogen to evade and subvert the human innate immune system. We show that the oral pathogen, Porphyromonas gingivalis, uses endogenous lipid A 1- and 4'-phosphatase activities to modify its LPS, creating immunologically silent, non-phosphorylated lipid A. This unique lipid A provides a highly effective mechanism employed by this bacterium to evade TLR4 sensing and to resist killing by cationic antimicrobial peptides. In addition, lipid A 1-phosphatase activity is suppressed by haemin, an important nutrient in the oral cavity. Specifically, P. gingivalis grown in the presence of high haemin produces lipid A that acts as a potent TLR4 antagonist. These results suggest that haemin-dependent regulation of lipid A 1-dephosphorylation can shift P. gingivalis lipid A activity from TLR4 evasive to TLR4 suppressive, potentially altering critical interactions between this bacterium, the local microbial community and the host innate immune system.
Collapse
Affiliation(s)
- Stephen R Coats
- Department of Periodontics, School of Dentistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195-7444, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Paramonov NA, Aduse-Opoku J, Hashim A, Rangarajan M, Curtis MA. Structural analysis of the core region of O-lipopolysaccharide of Porphyromonas gingivalis from mutants defective in O-antigen ligase and O-antigen polymerase. J Bacteriol 2009; 191:5272-82. [PMID: 19525343 PMCID: PMC2725592 DOI: 10.1128/jb.00019-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis synthesizes two lipopolysaccharides (LPSs), O-LPS and A-LPS. Here, we elucidate the structure of the core oligosaccharide (OS) of O-LPS from two mutants of P. gingivalis W50, Delta PG1051 (WaaL, O-antigen ligase) and Delta PG1142 (O-antigen polymerase), which synthesize R-type LPS (core devoid of O antigen) and SR-type LPS (core plus one repeating unit of O antigen), respectively. Structural analyses were performed using one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy in combination with composition and methylation analysis. The outer core OS of O-LPS occurs in two glycoforms: an "uncapped core," which is devoid of O polysaccharide (O-PS), and a "capped core," which contains the site of O-PS attachment. The inner core region lacks L(D)-glycero-D(l)-manno-heptosyl residues and is linked to the outer core via 3-deoxy-D-manno-octulosonic acid, which is attached to a glycerol residue in the outer core via a monophosphodiester bridge. The outer region of the "uncapped core" is attached to the glycerol and is composed of a linear alpha-(1-->3)-linked d-Man OS containing four or five mannopyranosyl residues, one-half of which are modified by phosphoethanolamine at position 6. An amino sugar, alpha-D-allosamine, is attached to the glycerol at position 3. In the "capped core," there is a three- to five-residue extension of alpha-(1-->3)-linked Man residues glycosylating the outer core at the nonreducing terminal residue. beta-D-GalNAc from the O-PS repeating unit is attached to the nonreducing terminal Man at position 3. The core OS of P. gingivalis O-LPS is therefore a highly unusual structure, and it is the basis for further investigation of the mechanism of assembly of the outer membrane of this important periodontal bacterium.
Collapse
Affiliation(s)
- Nikolay A Paramonov
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Centre for Infectious Disease, Institute of Cell and Molecular Science, 4 Newark Street, London E1 2AT, United Kingdom
| | | | | | | | | |
Collapse
|
113
|
Berezow AB, Ernst RK, Coats SR, Braham PH, Karimi-Naser LM, Darveau RP. The structurally similar, penta-acylated lipopolysaccharides of Porphyromonas gingivalis and Bacteroides elicit strikingly different innate immune responses. Microb Pathog 2009; 47:68-77. [PMID: 19460428 PMCID: PMC2707506 DOI: 10.1016/j.micpath.2009.04.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/12/2009] [Accepted: 04/27/2009] [Indexed: 11/21/2022]
Abstract
Lipid A structural modifications can substantially impact the host's inflammatory response to bacterial LPS. Bacteroides fragilis, an opportunistic pathogen associated with life-threatening sepsis and intra-abdominal abscess formation, and Bacteroides thetaiotaomicron, a symbiont pivotal for proper host intestinal tissue development, both produce an immunostimulatory LPS comprised of penta-acylated lipid A. Under defined conditions, Porphyromonas gingivalis, an oral pathogen associated with periodontitis, also produces an LPS bearing a penta-acylated lipid A. However, this LPS preparation is 100-1000 times less potent than Bacteroides LPS in stimulating endothelial cells. We analyzed Bacteroides and P. gingivalis lipid A structures using MALDI-TOF MS and gas chromatography to determine the structural basis for this phenomenon. Even though both Bacteroides and P. gingivalis lipid A molecules are penta-acylated and mono-phosphorylated, subtle differences in mass and fatty acid content could account for the observed difference in LPS potency. This fatty acid heterogeneity is also responsible for the peak "clusters" observed in the mass spectra and obfuscates the correlation between LPS structure and immunostimulatory ability. Further, we show the difference in potency between Bacteroides and P. gingivalis LPS is TLR4-dependent. Altogether, the data suggest subtle changes in lipid A structure may profoundly impact the host's innate immune response.
Collapse
Affiliation(s)
- Alex B. Berezow
- Dept. of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Robert K. Ernst
- Dept. of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen R. Coats
- Dept. of Periodontics, University of Washington School of Dentistry, Seattle, WA, USA
| | - Pamela H. Braham
- Dept. of Periodontics, University of Washington School of Dentistry, Seattle, WA, USA
| | - Lisa M. Karimi-Naser
- Dept. of Periodontics, University of Washington School of Dentistry, Seattle, WA, USA
| | - Richard P. Darveau
- Dept. of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Dept. of Periodontics, University of Washington School of Dentistry, Seattle, WA, USA
- Dept. of Oral Biology, University of Washington School of Dentistry, Seattle, WA, USA
| |
Collapse
|
114
|
Hajishengallis G. Porphyromonas gingivalis-host interactions: open war or intelligent guerilla tactics? Microbes Infect 2009; 11:637-45. [PMID: 19348960 PMCID: PMC2704251 DOI: 10.1016/j.micinf.2009.03.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 03/18/2009] [Accepted: 03/18/2009] [Indexed: 12/19/2022]
Abstract
This review summarizes and discusses virulence mechanisms whereby Porphyromonas gingivalis can persist in the oral cavity. It is proposed that the virulence of P. gingivalis is dependent, at least in part, upon its ability to establish a complex host-pathogen molecular crosstalk which subverts innate immunity. The sophisticated stealth and sabotage tactics used by P. gingivalis may additionally benefit co-habiting organisms occupying the same niche.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Periodontics/Oral Health and Systemic Disease, School of Dentistry, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.
| |
Collapse
|
115
|
Huang MTH, Taxman DJ, Holley-Guthrie EA, Moore CB, Willingham SB, Madden V, Parsons RK, Featherstone GL, Arnold RR, O'Connor BP, Ting JPY. Critical role of apoptotic speck protein containing a caspase recruitment domain (ASC) and NLRP3 in causing necrosis and ASC speck formation induced by Porphyromonas gingivalis in human cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:2395-404. [PMID: 19201894 DOI: 10.4049/jimmunol.0800909] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Periodontal disease is a chronic inflammatory disorder that leads to the destruction of tooth-supporting tissue and affects 10-20 million people in the U.S. alone. The oral pathogen Porphyromonas gingivalis causes inflammatory host response leading to periodontal and other secondary inflammatory diseases. To identify molecular components that control host response to P. gingivalis in humans, roles for the NLR (NBD-LRR) protein, NLRP3 (cryopyrin, NALP3), and its adaptor apoptotic speck protein containing a C-terminal caspase recruitment domain (ASC) were studied. P. gingivalis strain A7436 induces cell death in THP1 monocytic cells and in human primary peripheral blood macrophages. This process is ASC and NLRP3 dependent and can be replicated by P. gingivalis LPS and Escherichia coli. P. gingivalis-induced cell death is caspase and IL-1 independent and exhibits morphological features consistent with necrosis including loss of membrane integrity and release of cellular content. Intriguingly, P. gingivalis-induced cell death is accompanied by the formation of ASC aggregation specks, a process not previously described during microbial infection. ASC specks are observed in P. gingivalis-infected primary human mononuclear cells and are dependent on NLRP3. This work shows that P. gingivalis causes ASC- and NLRP3-dependent necrosis, accompanied by ASC speck formation.
Collapse
Affiliation(s)
- Max Tze-Han Huang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Blair P, Rex S, Vitseva O, Beaulieu L, Tanriverdi K, Chakrabarti S, Hayashi C, Genco CA, Iafrati M, Freedman JE. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104:346-54. [PMID: 19106411 PMCID: PMC2732983 DOI: 10.1161/circresaha.108.185785] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells of the innate immune system use Toll-like receptors (TLRs) to initiate the proinflammatory response to microbial infection. Recent studies have shown acute infections are associated with a transient increase in the risk of vascular thrombotic events. Although platelets play a central role in acute thrombosis and accumulating evidence demonstrates their role in inflammation and innate immunity, investigations into the expression and functionality of platelet TLRs have been limited. In the present study, we demonstrate that human platelets express TLR2, TLR1, and TLR6. Incubation of isolated platelets with Pam(3)CSK4, a synthetic TLR2/TLR1 agonist, directly induced platelet aggregation and adhesion to collagen. These functional responses were inhibited in TLR2-deficient mice and, in human platelets, by pretreatment with TLR2-blocking antibody. Stimulation of platelet TLR2 also increased P-selectin surface expression, activation of integrin alpha(IIb)beta(3), generation of reactive oxygen species, and, in human whole blood, formation of platelet-neutrophil heterotypic aggregates. TLR2 stimulation also activated the phosphoinositide 3-kinase (PI3-K)/Akt signaling pathway in platelets, and inhibition of PI3-K significantly reduced Pam(3)CSK4-induced platelet responses. In vivo challenge with live Porphyromonas gingivalis, a Gram-negative pathogenic bacterium that uses TLR2 for innate immune signaling, also induced significant formation of platelet-neutrophil aggregates in wild-type but not TLR2-deficient mice. Together, these data provide the first demonstration that human platelets express functional TLR2 capable of recognizing bacterial components and activating the platelet thrombotic and/or inflammatory pathways. This work substantiates the role of platelets in the immune and inflammatory response and suggests a mechanism by which bacteria could directly activate platelets.
Collapse
Affiliation(s)
- Price Blair
- Whitaker Cardiovascular Institute, Evans Department of Medicine, Boston, MA 02118-2526, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Toll-like receptors (TLRs) are central mediators of innate antimicrobial and inflammatory responses and play instructive roles in the development of the adaptive immune response. Thus when stimulated by certain agonists, TLRs serve as adjuvant receptors that link innate and adaptive immunity. However, when excessively activated or inadequately controlled during an infection, TLRs may contribute to immunopathology associated with inflammatory diseases, such as periodontitis. Moreover, certain microbial pathogens appear to exploit aspects of TLR signalling in ways that enhance their adaptive fitness. The diverse and important roles played by TLRs suggest that therapeutic manipulation of TLR signalling may have implications in the control of infection, attenuation of inflammation, and the development of vaccine adjuvants for the treatment of periodontitis. Successful application of TLR-based therapeutic modalities in periodontitis would require highly selective and precisely targeted intervention. This would in turn necessitate precise characterization of TLR signalling pathways in response to periodontal pathogens, as well as development of effective and specific agonists or antagonists of TLR function and signalling. This review summarizes the current status of TLR biology as it relates to periodontitis, and evaluates the potential of TLR-based approaches for host-modulation therapy in this oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Periodontics/ Oral Health and Systemic Disease, School of Dentistry, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
- Department of Immunology and Microbiology, School of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| |
Collapse
|
118
|
Reddi D, Bostanci N, Hashim A, Aduse-Opoku J, Curtis MA, Hughes FJ, Belibasakis GN. Porphyromonas gingivalis regulates the RANKL-OPG system in bone marrow stromal cells. Microbes Infect 2008; 10:1459-68. [PMID: 18789397 DOI: 10.1016/j.micinf.2008.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/07/2008] [Accepted: 08/15/2008] [Indexed: 11/17/2022]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobe implicated in chronic periodontitis, a bacterial-induced inflammatory condition that causes destruction of the periodontal connective tissues and underlying alveolar bone. The receptor activator of nuclear factor-kappaB ligand (RANKL) is a cytokine that directly stimulates osteoclastogenesis and bone resorption, whereas its decoy receptor osteoprotegerin (OPG) blocks this action. This study aimed to investigate the effects of P. gingivalis culture supernatants on RANKL and OPG expression in W20-17 bone marrow stromal cells, and evaluate the involvement of its virulence factors, particularly gingipains and lipopolysaccharide. P. gingivalis up-regulated RANKL and down-regulated OPG mRNA expression and protein production. These effects were blocked by indomethacin, suggesting mediation by prostaglandins. Furthermore, P gingivalis induced the production of prostaglandin E(2). Heat-inactivation, or chemical inhibition of P. gingivalis gingipains did not affect RANKL and OPG regulation. However, lipopolysaccharide depletion by polymyxin B abolished RANKL induction, and partly rescued the suppression of OPG. In conclusion, P. gingivalis regulates the RANKL-OPG system via prostaglandin E(2) in bone marrow stromal cells, in a manner that favours osteoclastogenesis. A non-proteolytic and non-proteinaceous P. gingivalis component is involved in these events, most probably its lipopolysaccharide. This activity may contribute to the bone loss characteristic of periodontitis.
Collapse
Affiliation(s)
- Durga Reddi
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AD, UK
| | | | | | | | | | | | | |
Collapse
|
119
|
Yoshioka H, Yoshimura A, Kaneko T, Golenbock DT, Hara Y. Analysis of the activity to induce toll-like receptor (TLR)2- and TLR4-mediated stimulation of supragingival plaque. J Periodontol 2008; 79:920-8. [PMID: 18454672 DOI: 10.1902/jop.2008.070516] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The deleterious effects of the accumulation of supragingival plaque are well known, but the role of the proinflammatory property of supragingival plaque in periodontal diseases has not been completely elucidated. The aim of this study was to determine the relevance of Toll-like receptor (TLR)2- and TLR4-stimulating activity of supragingival plaque to periodontal parameters. METHODS We isolated 144 supragingival plaque samples and analyzed TLR2- and TLR4-stimulating activity using genetically engineered Chinese hamster ovary reporter cells that express a reporter molecule upon activation of nuclear factor-kappa B through TLR2 or TLR4. The numbers of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans), and Streptococcus mutans cells in each plaque sample were determined by real-time polymerase chain reaction. RESULTS The activity to induce TLR4-mediated stimulation, but not TLR2-mediated stimulation, was positively associated with the plaque score and bleeding on probing score of the teeth from which the plaque samples were taken. The activity to induce TLR2-mediated stimulation, but not TLR4-mediated stimulation, was negatively associated with probing depth and clinical attachment level. The ratio of TLR4-/TLR2-mediated stimulation was positively associated with all of those parameters. The number of P. gingivalis cells in each plaque sample was associated with the plaque score and clinical attachment level, but no strong association was observed between the ratio of examined bacteria in each plaque sample and the activity to induce TLR2- or TLR4-mediated stimulation, except for a weak correlation between the ratio of A. actinomycetemcomitans cells and the activity to induce TLR4-mediated stimulation. CONCLUSION The TLR2- and TLR4-stimulating activity of supragingival plaque is associated with clinical parameters for gingivitis and periodontitis.
Collapse
Affiliation(s)
- Hidenobu Yoshioka
- Department of Periodontology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
120
|
Acyl chain specificity of the acyltransferases LpxA and LpxD and substrate availability contribute to lipid A fatty acid heterogeneity in Porphyromonas gingivalis. J Bacteriol 2008; 190:4549-58. [PMID: 18456814 DOI: 10.1128/jb.00234-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis lipid A is heterogeneous with regard to the number, type, and placement of fatty acids. Analysis of lipid A by matrix-assisted laser desorption ionization-time of flight mass spectrometry reveals clusters of peaks differing by 14 mass units indicative of an altered distribution of the fatty acids generating different lipid A structures. To examine whether the transfer of hydroxy fatty acids with different chain lengths could account for the clustering of lipid A structures, P. gingivalis lpxA (lpxA(Pg)) and lpxD(Pg) were cloned and expressed in Escherichia coli strains in which the homologous gene was mutated. Lipid A from strains expressing either of the P. gingivalis transferases was found to contain 16-carbon hydroxy fatty acids in addition to the normal E. coli 14-carbon hydroxy fatty acids, demonstrating that these acyltransferases display a relaxed acyl chain length specificity. Both LpxA and LpxD, from either E. coli or P. gingivalis, were also able to incorporate odd-chain fatty acids into lipid A when grown in the presence of 1% propionic acid. This indicates that E. coli lipid A acyltransferases do not have an absolute specificity for 14-carbon hydroxy fatty acids but can transfer fatty acids differing by one carbon unit if the fatty acid substrates are available. We conclude that the relaxed specificity of the P. gingivalis lipid A acyltransferases and the substrate availability account for the lipid A structural clusters that differ by 14 mass units observed in P. gingivalis lipopolysaccharide preparations.
Collapse
|
121
|
Kumada H, Haishima Y, Watanabe K, Hasegawa C, Tsuchiya T, Tanamoto K, Umemoto T. Biological properties of the native and synthetic lipid A of Porphyromonas gingivalis lipopolysaccharide. ACTA ACUST UNITED AC 2008; 23:60-9. [PMID: 18173800 DOI: 10.1111/j.1399-302x.2007.00392.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION AND METHODS A pentaacyl and diphosphoryl lipid A molecule found in the lipid A isolated from Porphyromonas gingivalis lipopolysaccharide (LPS) was chemically synthesized, and its characteristics were evaluated to reconfirm its interesting bioactivities including low endotoxicity and activity against LPS-unresponsive C3H/HeJ mouse cells. RESULTS The synthesized P. gingivalis lipid A (synthetic Pg-LA) exhibited strong activities almost equivalent to those of Escherichia coli-type synthetic lipid A (compound 506) in all assays on LPS-responsive mice, and cells. LPS and native lipid A of P. gingivalis displayed overall endotoxic activities, but its potency was reduced in comparison to the synthetic analogs. In the assays using C3H/HeJ mouse cells, the LPS and native lipid A significantly stimulated splenocytes to cause mitosis, and peritoneal macrophages to induce tumor necrosis factor-alpha and interleukin-6 production. However, synthetic Pg-LA and compound 506 showed no activity on the LPS-unresponsive cells. Inhibition assays using some inhibitors including anti-human Toll-like receptor 2 (TLR2) and TLR4/MD-2 complex monoclonal antibodies showed that the biological activity of synthetic Pg-LA was mediated only through the TLR4 signaling pathway, which might act as a receptor for LPS, whereas TLR2, possibly together with CD14, was associated with the signaling cascade for LPS and native lipid A of P. gingivalis, in addition to the TLR4 pathway. CONCLUSION These results suggested that the moderated and reduced biological activity of P. gingivalis LPS and native lipid A, including their activity on C3H/HeJ mouse cells via the TLR2-mediated pathway, may be mediated by bioactive contaminants or low acylated molecules present in the native preparations having multiple lipid A moieties.
Collapse
Affiliation(s)
- H Kumada
- Department of Oral Microbiology, Kanagawa Dental College, Yokosuka, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
122
|
Silipo A, Sturiale L, Garozzo D, Erbs G, Jensen TT, Lanzetta R, Dow JM, Parrilli M, Newman MA, Molinaro A. The Acylation and Phosphorylation Pattern of Lipid A fromXanthomonas Campestris Strongly Influence its Ability to Trigger the Innate Immune Response in Arabidopsis. Chembiochem 2008; 9:896-904. [DOI: 10.1002/cbic.200700693] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
123
|
Identification of a second lipopolysaccharide in Porphyromonas gingivalis W50. J Bacteriol 2008; 190:2920-32. [PMID: 18263730 DOI: 10.1128/jb.01868-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously described a cell surface anionic polysaccharide (APS) in Porphyromonas gingivalis that is required for cell integrity and serum resistance. APS is a phosphorylated branched mannan that shares a common epitope with posttranslational additions to some of the Arg-gingipains. This study aimed to determine the mechanism of anchoring of APS to the surface of P. gingivalis. APS was purified on concanavalin A affinity columns to minimize the loss of the anchoring system that occurred during chemical extraction. (1)H nuclear magnetic resonance spectroscopy of the lectin-purified APS confirmed the previous structure but also revealed additional signals that suggested the presence of a lipid A. This was confirmed by fatty acid analysis of the APS and matrix-assisted laser desorption ionization-time of flight mass spectrometry of the lipid A released by treatment with sodium acetate buffer (pH 4.5). Hence, P. gingivalis synthesizes two distinct lipopolysaccharide (LPS) macromolecules containing different glycan repeating units: O-LPS (with O-antigen tetrasaccharide repeating units) and A-LPS (with APS repeating units). Nonphosphorylated penta-acylated and nonphosphorylated tetra-acylated species were detected in lipid A from P. gingivalis total LPS and in lipid A from A-LPS. These lipid A species were unique to lipid A derived from A-LPS. Biological assays demonstrated a reduced proinflammatory activity of A-LPS compared to that of total LPS. Inactivation of a putative O-antigen ligase (waaL) at PG1051, which is required for the final step of LPS biosynthesis, abolished the linkage of both the O antigen and APS to the lipid A core of O-LPS and A-LPS, respectively, suggesting that WaaL in P. gingivalis has dual specificity for both O-antigen and APS repeating units.
Collapse
|
124
|
Taylor JJ. Vasoactive intestinal peptide, periodontal disease, and the innate immune response: an interview with Dr. John J. Taylor. J Leukoc Biol 2007; 81:904-906. [PMID: 17389584 DOI: 10.1189/jlb.1306086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
125
|
Coats SR, Do CT, Karimi-Naser LM, Braham PH, Darveau RP. Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Cell Microbiol 2007; 9:1191-202. [PMID: 17217428 DOI: 10.1111/j.1462-5822.2006.00859.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharides containing underacylated lipid A structures exhibit reduced abilities to activate the human (h) Toll-like receptor 4 (TLR4) signalling pathway and function as potent antagonists against lipopolysaccharides bearing canonical lipid A structures. Expression of underacylated lipopolysaccharides has emerged as a novel mechanism utilized by microbial pathogens to modulate host innate immune responses. Notably, antagonistic lipopolysaccharides are prime therapeutic candidates for combating Gram negative bacterial sepsis. Penta-acylated msbB and tetra-acylated Porphyromonas gingivalis lipopolysaccharides functionally antagonize hexa-acylated Escherichia coli lipopolysaccharide-dependent activation of hTLR4 through the coreceptor, hMD-2. Here, the molecular mechanism by which these antagonistic lipopolysaccharides act at hMD-2 is examined. We present evidence that both msbB and P. gingivalis lipopolysaccharides are capable of direct binding to hMD-2. These antagonistic lipopolysaccharides can utilize at least two distinct mechanisms to block E. coli lipopolysaccharide-dependent activation of hTLR4. The main mechanism consists of direct competition between the antagonistic lipopolysaccharides and E. coli lipopolysaccharide for the same binding site on hMD-2, while the secondary mechanism involves the ability of antagonistic lipopolysaccharide-hMD-2 complexes to inhibit E. coli lipopolysaccharide-hMD-2 complexes function at hTLR4. It is also shown that both hTLR4 and hMD-2 contribute to the species-specific recognition of msbB and P. gingivalis lipopolysaccharides as antagonists at the hTLR4 complex.
Collapse
Affiliation(s)
- Stephen R Coats
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
126
|
Hajishengallis G. Potential for Immunological and Microbiological Intervention against Porphyromonas gingivalis Infection. J Oral Biosci 2007. [DOI: 10.1016/s1349-0079(07)80009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
127
|
Chen C, Coats SR, Bumgarner RE, Darveau RP. Hierarchical gene expression profiles of HUVEC stimulated by different lipid A structures obtained from Porphyromonas gingivalis and Escherichia coli. Cell Microbiol 2006; 9:1028-38. [PMID: 17166236 DOI: 10.1111/j.1462-5822.2006.00849.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of lipid A structural variants to elicit unique endothelial cell gene expression was examined by measuring global gene expression profiles in human umbilical cord vein endothelial cells (HUVEC) using Affymetrix full genome chips. Two lipid A structural variants obtained from Porphyromonas gingivalis designated PgLPS(1435/1449) and PgLPS(1690) as well as LPS obtained from Escherichia coli wild type and an E. coli msbB mutant (missing myristic acid in the lipid A) were examined. Each of these lipid A structures has been shown to interact with TLR4; however, PgLPS(1435/1449) and E. coli msbB LPS have been shown to be TLR4 antagonists while PgLPS(1690) and wild-type E. coli LPS are TLR4 agonists. It was found that PgLPS(1435/1449) and PgLPS(1690) as well as E. coli msbB LPS activated a subset of those genes significantly transcribed in response to E. coli wild-type LPS. Furthermore, the subset of genes expressed in response to the different lipid A structural forms were those most significantly activated by wild-type E. coli LPS demonstrating a hierarchy in TLR4-dependent endothelial cell gene activation. A unique gene expression profile for the weak TLR4 agonist PgLPS(1690) was observed and represents a TLR4 hierarchy in endothelial cell gene activation.
Collapse
Affiliation(s)
- Casey Chen
- Department of Periodontics and Oral Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|