101
|
Bai F, Chen J, Chen Q, Luo X, Fang W, Jiang L. A single substitution in 5'-untranslated region of plcB is involved in enhanced broad-range phospholipase C activity in Listeria monocytogenes strain H4. Acta Biochim Biophys Sin (Shanghai) 2011; 43:275-83. [PMID: 21343163 DOI: 10.1093/abbs/gmr009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To examine whether the in vitro phospholipase activity in Listeria monocytogenes strain H4 was due to two nucleotide mutations (C to T at position -26 and A to G at position +1) in plcB or resulted from regulatory activation, two mutants H4-plcB-m1 (single mutation at position -26) and H4-plcB-m2 (substitution at both positions) were constructed by site-directed mutagenesis. It was found that the two mutants had significantly lower transcription of plcB than their parent strain H4 and did not show phospholipase activity on the egg yolk agar, implying that the apparent phospholipase activity of strain H4 could be related to single substitution at position -26 of plcB, most probably by its 5'-untranslated region (5'-UTR) regulation mechanism. Tn917-based transposon mutagenesis generated eight L. monocytogenes mutants lacking phospholipase activity among 560 mutant candidates. Seven mutants had transposon insertion into prfA (encoding positive regulatory factor A) open reading frame, whereas only one mutant (WF-L127) was inserted into the P1 promoter region of prfA (prfAP1). Transcription of major virulence genes was significantly lower in both types of mutants than in their parent strain H4. Disruption of prfAP1 in WF-L127 abolished its phospholipase C activity but did not change its hemolytic phenotype, indicating that plcB was more dependent on prfA regulation than hly. Taken together, this study presents some evidence for the regulation of plcB expression by its 5'-UTR mechanism.
Collapse
Affiliation(s)
- Fan Bai
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory for Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
102
|
The impact of iron on Listeria monocytogenes; inside and outside the host. Curr Opin Biotechnol 2011; 22:194-9. [DOI: 10.1016/j.copbio.2010.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 11/19/2022]
|
103
|
Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products. Int J Food Microbiol 2011; 146:88-93. [DOI: 10.1016/j.ijfoodmicro.2011.01.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/19/2010] [Accepted: 01/23/2011] [Indexed: 11/18/2022]
|
104
|
Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes. PLoS One 2011; 6:e16151. [PMID: 21264304 PMCID: PMC3019169 DOI: 10.1371/journal.pone.0016151] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/14/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. METHODOLOGY/PRINCIPAL FINDINGS By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. CONCLUSIONS/SIGNIFICANCE Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat.
Collapse
|
105
|
Dehus O, Pfitzenmaier M, Stuebs G, Fischer N, Schwaeble W, Morath S, Hartung T, Geyer A, Hermann C. Growth temperature-dependent expression of structural variants of Listeria monocytogenes lipoteichoic acid. Immunobiology 2011; 216:24-31. [PMID: 20413180 DOI: 10.1016/j.imbio.2010.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/12/2010] [Accepted: 03/14/2010] [Indexed: 11/23/2022]
Abstract
Investigating the expression of lipoteichoic acid (LTA) from Listeria monocytogenes, we found two distinct structural variants of LTA (LTA1 and LTA2) using NMR and MS technology. While both LTA consisted of a poly-glycerophosphate backbone (differing in length) bound via a disaccharide to a diacyl-glycerol moiety, one LTA type (LTA2) possessed a second diacyl-glycerol moiety linked to the disaccharide via a phosphodiester. As examined in vitro, LTA2 in contrast to LTA1 failed to activate the L-ficolin dependent pathway of complement. Most interestingly, growth temperature had a strong influence on the expression levels of LTA1 and LTA2 in the cell wall: while the amount of LTA1 was comparable, the expression of LTA2 was low when Listeria had grown at room temperature (ratio of LTA1 to LTA2 was 1:0.06), but increased when Listeria had been cultivated at 37°C (ratio of LTA1 to LTA2 was 1:0.68). The observed shift in LTA expression, probably accompanying the switch from the saprophytic to the virulent entity, indicates an important adaptation to the different structural requirements inside the host cells.
Collapse
Affiliation(s)
- Oliver Dehus
- Biochemical Pharmacology, University of Konstanz, Konstanz 78467, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Sleator RD, Hill C. Compatible solutes: the key to Listeria's success as a versatile gastrointestinal pathogen? Gut Pathog 2010; 2:20. [PMID: 21143981 PMCID: PMC3006354 DOI: 10.1186/1757-4749-2-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/10/2010] [Indexed: 01/05/2023] Open
Abstract
Recently we reported a role for compatible solute uptake in mediating bile tolerance and increased gastrointestinal persistence in the foodborne pathogen Listeria monocytogenes[1]. Herein, we review the evolution in our understanding of how these low molecular weight molecules contribute to growth and survival of the pathogen both inside and outside the body, and how this stress survival mechanism may ultimately be used to target and kill the pathogen.
Collapse
Affiliation(s)
- Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland.
| | | |
Collapse
|
107
|
Bruno JC, Freitag NE. Constitutive activation of PrfA tilts the balance of Listeria monocytogenes fitness towards life within the host versus environmental survival. PLoS One 2010; 5:e15138. [PMID: 21151923 PMCID: PMC2998416 DOI: 10.1371/journal.pone.0015138] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 10/25/2010] [Indexed: 01/21/2023] Open
Abstract
PrfA is a key regulator of Listeria monocytogenes pathogenesis and induces the expression of multiple virulence factors within the infected host. PrfA is post-translationally regulated such that the protein becomes activated upon bacterial entry into the cell cytosol. The signal that triggers PrfA activation remains unknown, however mutations have been identified (prfA* mutations) that lock the protein into a high activity state. In this report we examine the consequences of constitutive PrfA activation on L. monocytogenes fitness both in vitro and in vivo. Whereas prfA* mutants were hyper-virulent during animal infection, the mutants were compromised for fitness in broth culture and under conditions of stress. Broth culture prfA*-associated fitness defects were alleviated when glycerol was provided as the principal carbon source; under these conditions prfA* mutants exhibited a competitive advantage over wild type strains. Glycerol and other three carbon sugars have been reported to serve as primary carbon sources for L. monocytogenes during cytosolic growth, thus prfA* mutants are metabolically-primed for replication within eukaryotic cells. These results indicate the critical need for environment-appropriate regulation of PrfA activity to enable L. monocytogenes to optimize bacterial fitness inside and outside of host cells.
Collapse
Affiliation(s)
- Joseph C. Bruno
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Nancy E. Freitag
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
108
|
Listeria monocytogenes PrsA2 is required for virulence factor secretion and bacterial viability within the host cell cytosol. Infect Immun 2010; 78:4944-57. [PMID: 20823208 DOI: 10.1128/iai.00532-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of establishing its replication niche within the cytosol of infected host cells, the facultative intracellular bacterial pathogen Listeria monocytogenes must efficiently regulate the secretion and activity of multiple virulence factors. L. monocytogenes encodes two predicted posttranslocation secretion chaperones, PrsA1 and PrsA2, and evidence suggests that PrsA2 has been specifically adapted for bacterial pathogenesis. PrsA-like chaperones have been identified in a number of Gram-positive bacteria, where they are reported to function at the bacterial membrane-cell wall interface to assist in the folding of proteins translocated across the membrane; in some cases, these proteins have been found to be essential for bacterial viability. In this study, the contributions of PrsA2 and PrsA1 to L. monocytogenes growth and protein secretion were investigated in vitro and in vivo. Neither PrsA2 nor PrsA1 was found to be essential for L. monocytogenes growth in broth culture; however, optimal bacterial viability was found to be dependent upon PrsA2 for L. monocytogenes located within the cytosol of host cells. Proteomic analyses of prsA2 mutant strains in the presence of a mutationally activated allele of the virulence regulator PrfA revealed a critical requirement for PrsA2 activity under conditions of PrfA activation, an event which normally takes place within the host cell cytosol. Despite a high degree of amino acid similarity, no detectable degree of functional overlap was observed between PrsA2 and PrsA1. Our results indicate a critical requirement for PrsA2 under conditions relevant to host cell infection.
Collapse
|
109
|
Davis JA, Jackson CR. Comparative antimicrobial susceptibility of Listeria monocytogenes, L. innocua, and L. welshimeri. Microb Drug Resist 2010; 15:27-32. [PMID: 19216646 DOI: 10.1089/mdr.2009.0863] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current study compared antimicrobial susceptibility of Listeria innocua, L. welshimeri, and L. monocytogenes isolated from various sources. Antimicrobial susceptibility testing was performed using a microbroth procedure with Sensititre minimum inhibitory concentration plates containing 18 antimicrobials. Resistant isolates were analyzed for the presence of antimicrobial resistance genes using PCR. The majority of L. monocytogenes isolates were resistant to oxacillin (99%, 89/90) and ceftriaxone (72%, 65/90), while few isolates were resistant to clindamycin (21%, 19/90) and ciprofloxacin (2%, 2/90). When selected sources of L. monocytogenes are compared, resistance to ceftriaxone, clindamycin, and oxacillin ranged from 27% to 86%, 7% to 43%, and 96% to 100%, respectively. Resistance to ciprofloxacin (6%, 2/34), quinupristin/dalfopristin (7%, 1/14), and tetracycline (7%, 1/15) was observed with L. monocytogenes isolated from food, animal, and environmental sources, respectively. All L. welshimeri isolates (6/6) were resistant to streptomycin, quinupristin/dalfopristin, ciprofloxacin, rifampin, oxacillin, penicillin, and clindamycin, while most isolates (67%, 4/6) were resistant to trimethoprim/sulfamethoxazole. All L. innocua isolates (4/4) were resistant to oxacillin and penicillin, whereas 75% (3/4) of isolates were resistant to tetracycline, ceftriaxone, and clindamycin. Resistant isolates were negative for aadA, strA-B, sul I-II, penA, vat(A-E), vga(A-B), and vgb(A-B). However, tetM was detected among tetracycline-resistant isolates. L. welshimeri was resistant to more of the tested antimicrobials than the other two Listeria species tested, but resistance was not attributed to selected resistance genes. These data demonstrate the variability in resistance among Listeria species. However, the human pathogen L. monocytogenes appears to be the least resistant among the tested species.
Collapse
Affiliation(s)
- Johnnie A Davis
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Richard B. Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA
| | | |
Collapse
|
110
|
The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes. J Bacteriol 2010; 192:3969-76. [PMID: 20511507 DOI: 10.1128/jb.00179-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.
Collapse
|
111
|
den Bakker HC, Fortes ED, Wiedmann M. Multilocus sequence typing of outbreak-associated Listeria monocytogenes isolates to identify epidemic clones. Foodborne Pathog Dis 2010; 7:257-65. [PMID: 19911921 DOI: 10.1089/fpd.2009.0342] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Listeria monocytogenes is a foodborne pathogen found in a wide variety of environments. Subtype characterization of L. monocytogenes isolates from listeriosis outbreaks that have occurred over the last three decades has suggested that a number of outbreaks were caused by a small number of L. monocytogenes epidemic clones (ECs). In this study we compared the prevalence, ecology, and phylogenetic position of outbreak-associated isolates and non-outbreak-associated isolates to probe the evolutionary and ecological characteristics of outbreak-associated L. monocytogenes subtypes, including those representing previously described ECs. METHODS Multilocus sequence typing data for isolates from 15 listeriosis outbreaks in Europe and North America were generated and compared, using a phylogenetic framework, with 180 isolates representing a local sampling of diverse sources, including human sporadic cases. RESULTS Isolates from 15 listeriosis outbreaks represented eight sequence types (STs). STs corresponding to previously designated ECI (ST1 and ST93) and ECIa (ST29) represented isolates from eight outbreaks. ST17 (corresponding to ECII) was involved in two outbreaks in the United States (1998 and 2002). No other STs were involved in multiple outbreaks. While ST1 was the most common ST among sporadic human cases and non-human listeriosis-related isolates, ST29 was rare among non-human listeriosis-related isolates and was significantly overrepresented among isolates from human listeriosis outbreaks and sporadic cases as compared to isolates from other sources in our local sampling. CONCLUSIONS STs associated with outbreaks (and representing previously designated ECs) appear to differ in their ecology. While association of ECI with multiple human listeriosis outbreaks appears to reflect strain abundance across environments, ECIa seems to represent an L. monocytogenes EC that appears to be overrepresented among outbreaks and sporadic cases and thus may have increased transmission potential.
Collapse
Affiliation(s)
- Henk C den Bakker
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
112
|
Listeria monocytogenes {sigma}B has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains. Appl Environ Microbiol 2010; 76:4216-32. [PMID: 20453120 DOI: 10.1128/aem.00031-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes strains are classified in at least three distinct phylogenetic lineages. There are correlations between lineage classification and source of bacterial isolation; e.g., human clinical and food isolates usually are classified in either lineage I or II. However, human clinical isolates are overrepresented in lineage I, while food isolates are overrepresented in lineage II. sigma(B), a transcriptional regulator previously demonstrated to contribute to environmental stress responses and virulence in L. monocytogenes lineage II strains, was hypothesized to provide differential abilities for L. monocytogenes survival in various niches (e.g., food and human clinical niches). To determine if the contributions of sigma(B) to stress response and virulence differ across diverse L. monocytogenes strains, DeltasigB mutations were created in strains belonging to lineages I, II, IIIA, and IIIB. Paired parent and DeltasigB mutant strains were tested for survival under acid and oxidative stress conditions, Caco-2 cell invasion efficiency, and virulence using the guinea pig listeriosis infection model. Parent and DeltasigB mutant strain transcriptomes were compared using whole-genome expression microarrays. sigma(B) contributed to virulence in each strain. However, while sigma(B) contributed significantly to survival under acid and oxidative stress conditions and Caco-2 cell invasion in lineage I, II, and IIIB strains, the contributions of sigma(B) were not significant for these phenotypes in the lineage IIIA strain. A core set of 63 genes was positively regulated by sigma(B) in all four strains; different total numbers of genes were positively regulated by sigma(B) in the strains. Our results suggest that sigma(B) universally contributes to L. monocytogenes virulence but specific sigma(B)-regulated stress response phenotypes vary among strains.
Collapse
|
113
|
Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose. PLoS One 2010; 5:e10349. [PMID: 20436965 PMCID: PMC2860498 DOI: 10.1371/journal.pone.0010349] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/07/2010] [Indexed: 01/19/2023] Open
Abstract
Background In the environment as well as in the vertebrate intestine, Listeriae have access to complex carbohydrates like maltodextrins. Bacterial exploitation of such compounds requires specific uptake and utilization systems. Methodology/Principal Findings We could show that Listeria monocytogenes and other Listeria species contain genes/gene products with high homology to the maltodextrin ABC transporter and utilization system of B. subtilis. Mutant construction and growth tests revealed that the L. monocytogenes gene cluster was required for the efficient utilization of maltodextrins as well as maltose. The gene for the ATP binding protein of the transporter was located distant from the cluster. Transcription analyses demonstrated that the system was induced by maltose/maltodextrins and repressed by glucose. Its induction was dependent on a LacI type transcriptional regulator. Repression by glucose was independent of the catabolite control protein CcpA, but was relieved in a mutant defective for Hpr kinase/phosphorylase. Conclusions/Significance The data obtained show that in L. monocytogenes the uptake of maltodextrin and, in contrast to B. subtilis, also maltose is exclusively mediated by an ABC transporter. Furthermore, the results suggest that glucose repression of the uptake system possibly is by inducer exclusion, a mechanism not described so far in this organism.
Collapse
|
114
|
|
115
|
Kurek A, Grudniak AM, Szwed M, Klicka A, Samluk L, Wolska KI, Janiszowska W, Popowska M. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie Van Leeuwenhoek 2010; 97:61-8. [PMID: 19894138 DOI: 10.1007/s10482-009-9388-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
The plant pentacyclic triterpenoids, oleanolic and ursolic acids, inhibit the growth and survival of many bacteria, particularly Gram-positive species, including pathogenic ones. The effect of these compounds on the facultative human pathogen Listeria monocytogenes was examined. Both acids affected cell morphology and enhanced autolysis of the bacterial cells. Autolysis of isolated cell walls was inhibited by oleanolic acid, but the inhibitory activity of ursolic acid was less pronounced. Both compounds inhibited peptidoglycan turnover and quantitatively affected the profile of muropeptides obtained after digestion of peptidoglycan with mutanolysin. These results suggest that peptidoglycan metabolism is a cellular target of oleanolic and ursolic acids.
Collapse
Affiliation(s)
- Anna Kurek
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Sleator RD, Hill C. Compatible solutes: A listerial passe-partout? Gut Microbes 2010; 1:77-79. [PMID: 21326913 PMCID: PMC3023583 DOI: 10.4161/gmic.1.2.10968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 02/03/2023] Open
Abstract
Recently we reported a role for compatible solute uptake in mediating bile tolerance and increased gastrointestinal persistence in the foodborne pathogen Listeria monocytogenes.1 Herein, we review the evolution in our understanding of how these low molecular weight molecules contribute to growth and survival of the pathogen both inside and outside the body, and how this stress survival mechanism may ultimately be used to target and kill the pathogen.
Collapse
Affiliation(s)
- Roy D Sleator
- Department of Biological Sciences; Cork Institute of Technology; Cork, Ireland,Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
| |
Collapse
|
117
|
Culligan EP, Hill C, Sleator RD. Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathog 2009; 1:19. [PMID: 19930635 PMCID: PMC2789095 DOI: 10.1186/1757-4749-1-19] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/23/2009] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal disease is a major cause of morbidity and mortality worldwide each year. Treatment of chronic inflammatory gastrointestinal conditions such as ulcerative colitis and Crohn's disease is difficult due to the ambiguity surrounding their precise aetiology. Infectious gastrointestinal diseases, such as various types of diarrheal disease are also becoming increasingly difficult to treat due to the increasing dissemination of antibiotic resistance among microorganisms and the emergence of the so-called 'superbugs'. Taking into consideration these problems, the need for novel therapeutics is essential. Although described for over a century probiotics have only been extensively researched in recent years. Their use in the treatment and prevention of disease, particularly gastrointestinal disease, has yielded many successful results, some of which we outline in this review. Although promising, many probiotics are hindered by inherent physiological and technological weaknesses and often the most clinically promising strains are unusable. Consequently we discuss various strategies whereby probiotics may be engineered to create designer probiotics. Such innovative approaches include; a receptor mimicry strategy to create probiotics that target specific pathogens and toxins, a patho-biotechnology approach using pathogen-derived genes to create more robust probiotic stains with increased host and processing-associated stress tolerance profiles and meta-biotechnology, whereby, functional metagenomics may be used to identify novel genes from diverse and vastly unexplored environments, such as the human gut, for use in biotechnology and medicine.
Collapse
Affiliation(s)
- Eamonn P Culligan
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
118
|
Freitag NE. Complete transcriptional profile of an environmental pathogen. Future Microbiol 2009; 4:779-82. [PMID: 19722832 DOI: 10.2217/fmb.09.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Toledo-Arana A, Dussurget O, Nikitas G et al.: The Listeria transcriptional landscape from saprophytism to virulence. Nature 459 (7249), 950-956 (2009). Bacteria adapt to a variety of environmental conditions through changes in gene regulation and gene expression. Listeria monocytogenes is an environmental bacterium that exists as a saprophyte but is capable of transitioning into a pathogen upon ingestion by a susceptible host. In this report, Toledo-Arana et al. present the complete transcriptome of L. monocytogenes and identify a number of novel RNA regulatory elements that may facilitate bacterial adaptation to diverse environments. Their report illustrates a global coordination of transcriptional responses that takes place as the bacterium transitions from life in broth culture to life inside of an infected host.
Collapse
Affiliation(s)
- Nancy E Freitag
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, IL 60612-7344, USA.
| |
Collapse
|
119
|
Xayarath B, Marquis H, Port GC, Freitag NE. Listeria monocytogenes CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. Mol Microbiol 2009; 74:956-73. [PMID: 19818015 DOI: 10.1111/j.1365-2958.2009.06910.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The bacterial pathogen Listeria monocytogenes survives under a myriad of conditions in the outside environment and within the human host where infections can result in severe disease. Bacterial life within the host requires the expression of genes with roles in nutrient acquisition as well as the biosynthesis of bacterial products required to support intracellular growth. A gene product identified as the substrate-binding component of a novel oligopeptide transport system (encoded by lmo0135) was recently shown to be required for L. monocytogenes virulence. Here we demonstrate that lmo0135 encodes a multifunctional protein that is associated with cysteine transport, acid resistance, bacterial membrane integrity and adherence to host cells. The lmo0135 gene product (designated CtaP, for cysteine transport associated protein) was required for bacterial growth in the presence of low concentrations of cysteine in vitro, but was not required for bacterial replication within the host cytosol. Loss of CtaP increased membrane permeability and acid sensitivity, and reduced bacterial adherence to host cells. ctaP deletion mutants were severely attenuated following intragastric and intravenous inoculation of mice. Taken together, the data presented indicate that CtaP contributes to multiple facets of L. monocytogenes physiology, growth and survival both inside and outside of animal cells.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
120
|
Specific osmolyte transporters mediate bile tolerance in Listeria monocytogenes. Infect Immun 2009; 77:4895-904. [PMID: 19737907 DOI: 10.1128/iai.00153-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The food-borne pathogenic bacterium Listeria monocytogenes has the potential to adapt to an array of suboptimal growth environments encountered within the host. The pathogen is relatively bile tolerant and has the capacity to survive and grow within both the small intestine and the gallbladder in murine models of oral infection. We have previously demonstrated a role for the principal carnitine transport system of L. monocytogenes (OpuC) in gastrointestinal survival of the pathogen (R. Sleator, J. Wouters, C. G. M. Gahan, T. Abee, and C. Hill, Appl. Environ. Microbiol. 67:2692-2698, 2001). However, the mechanisms by which OpuC, or indeed carnitine, protects the pathogen in this environment are unclear. In the current study, systematic analysis of strains with mutations in osmolyte transporters revealed a role for OpuC in resisting the acute toxicity of bile, with a minor role also played by BetL, a secondary betaine uptake system which also exhibits a low affinity for carnitine. In addition, the toxic effects of bile on wild-type L. monocytogenes cells were ameliorated when carnitine (but not betaine) was added to the medium. lux-promoter fusions to the promoters of the genes encoding the principal osmolyte uptake systems Gbu, BetL, and OpuC and the known bile tolerance system BilE were constructed. Promoter activity for all systems was significantly induced in the presence of bile, with the opuC and bilE promoters exhibiting the highest levels of bile-dependent expression in vitro and the betL and bilE promoters showing the highest expression levels in the intestines of orally inoculated mice. A direct comparison of all osmolyte transporter mutants in a murine oral infection model confirmed a major role for OpuC in intestinal persistence and systemic invasion and a minor role for the BetL transporter in fecal carriage. This study therefore demonstrates a previously unrecognized function for osmolyte uptake systems in bile tolerance in L. monocytogenes.
Collapse
|
121
|
Freitag NE, Port GC, Miner MD. Listeria monocytogenes - from saprophyte to intracellular pathogen. Nat Rev Microbiol 2009; 7:623-8. [PMID: 19648949 DOI: 10.1038/nrmicro2171] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes is a bacterium that lives in the soil as a saprophyte but is capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. Recent studies suggest that L. monocytogenes mediates its saprophyte-to-cytosolic-parasite transition through the careful modulation of the activity of a virulence regulatory protein known as PrfA, using a range of environmental cues that include available carbon sources. In this Progress article we describe the regulation of PrfA and its role in the L. monocytogenes transition from the saprophytic stage to the virulent intracellular stage.
Collapse
Affiliation(s)
- Nancy E Freitag
- Department of Microbiology and Immunology (MC790), University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Illinois 606127344, USA.
| | | | | |
Collapse
|
122
|
Abstract
Listeria monocytogenes, a small, facultative anaerobic, Gram-positive motile bacillus, is an important cause of foodborne illness which disproportionately affects pregnant women and their newborns. Listeria infects many types of animals and contaminates numerous foods including vegetables, milk, chicken and beef. This organism has a unique proclivity to infect the fetoplacental unit with the ability to invade cells, multiply intracellularly and be transmitted cell-to-cell. The organism possesses several virulence factors, including internalin A and internalin B, which facilitate the direct invasion of cells. Cell-to-cell transmission is promoted by the bacterial surface protein ActA which is regulated by a transcriptional activator known as positive regulatory factor A. Both innate and adaptive immune responses enable the host to eliminate this pathogen. Clinical manifestations of infection in the newborn fall into the traditional categories of early- and late-onset sepsis. Therapeutic recommendations include ampicillin and gentamicin for 14-21 days.
Collapse
|
123
|
Role of growth temperature in freeze-thaw tolerance of Listeria spp. Appl Environ Microbiol 2009; 75:5315-20. [PMID: 19542335 DOI: 10.1128/aem.00458-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The food-borne pathogen Listeria monocytogenes can grow in a wide range of temperatures, and several key virulence determinants of the organism are expressed at 37 degrees C but are strongly repressed below 30 degrees C. However, the impact of growth temperature on the ability of the bacteria to tolerate environmental stresses remains poorly understood. In other microorganisms, cold acclimation resulted in enhanced tolerance against freezing and thawing (cryotolerance). In this study, we investigated the impact of growth temperature (4, 25, and 37 degrees C) on the cryotolerance of 14 strains of L. monocytogenes from outbreaks and from food processing plant environments and four strains of nonpathogenic Listeria spp. (L. welshimeri and L. innocua). After growth at different temperatures, cells were frozen at -20 degrees C, and repeated freeze-thaw cycles were applied every 24 h. Pronounced cryotolerance was exhibited by cells grown at 37 degrees C, with a <1-log decrease after 18 cycles of freezing and thawing. In contrast, freeze-thaw tolerance was significantly reduced (P < 0.05) when bacteria were grown at either 4 or 25 degrees C, with log decreases after 18 freeze-thaw cycles ranging from 2 to >4, depending on the strain. These findings suggest that growth at 37 degrees C, a temperature required for expression of virulence determinants of L. monocytogenes, is also required for protection against freeze-thaw stress. The negative impact of growth at low temperature on freeze-thaw stress was unexpected and has not been reported before with this or other psychrotrophic microorganisms.
Collapse
|
124
|
Sleator RD, Watson D, Hill C, Gahan CGM. The interaction between Listeria monocytogenes and the host gastrointestinal tract. MICROBIOLOGY-SGM 2009; 155:2463-2475. [PMID: 19542009 DOI: 10.1099/mic.0.030205-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Listeria monocytogenes is a ubiquitous bacterium that causes significant foodborne disease with high mortality rates in immunocompromised adults. In pregnant women foodborne infection can give rise to infection of the fetus resulting in miscarriage. In addition, the bacterium has recently been demonstrated to cause localized gastrointestinal symptoms, predominantly in immunocompetent individuals. The murine model of systemic L. monocytogenes infection has provided numerous insights into the mechanisms of pathogenesis of this organism. However, recent application of transcriptomic and proteomic approaches as well as the development of new model systems has allowed a focus upon factors that influence adaptation to gastrointestinal environments and adhesion to and invasion of the gastrointestinal mucosa. In addition, the availability of a large number of complete L. monocytogenes genome sequences has permitted inter-strain comparisons and the identification of factors that may influence the emergence of 'epidemic' phenotypes. Here we review some of the exciting recent developments in the analysis of the interaction between L. monocytogenes and the host gastrointestinal tract.
Collapse
Affiliation(s)
- Roy D Sleator
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Debbie Watson
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Colin Hill
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
125
|
Dumas E, Desvaux M, Chambon C, Hébraud M. Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis. Proteomics 2009; 9:3136-55. [DOI: 10.1002/pmic.200800765] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
126
|
Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. J Bacteriol 2009; 191:3950-64. [PMID: 19376879 DOI: 10.1128/jb.00016-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Listeriolysin O (LLO) is a pore-forming toxin that mediates phagosomal escape and cell-to-cell spread of the intracellular pathogen Listeria monocytogenes. In order to identify factors that control the production, activity, or secretion of this essential virulence factor, we constructed a Himar1 mariner transposon delivery system and screened 50,000 mutants for a hypohemolytic phenotype on blood agar plates. Approximately 200 hypohemolytic mutants were identified, and the 51 most prominent mutants were screened ex vivo for intracellular growth defects. Eight mutants with a phenotype were identified, and they contained insertions in the following genes: lmo0964 (similar to yjbH), lmo1268 (clpX), lmo1401 (similar to ymdB), lmo1575 (similar to ytqI), lmo1695 (mprF), lmo1821 (similar to prpC), lmo2219 (prsA2), and lmo2460 (similar to cggR). Some of these genes are involved in previously unexplored areas of research with L. monocytogenes: the genes yjbH and clpX regulate the disulfide stress response in Bacillus subtilis, and the prpC phosphatase has been implicated in virulence in other gram-positive pathogens. Here we demonstrate that prsA2, an extracytoplasmic peptidyl-prolyl cis/trans isomerase, is critical for virulence and contributes to the folding of LLO and to the activity of another virulence factor, the broad-range phospholipase C (PC-PLC). Furthermore, although it has been shown that prsA2 expression is linked to PrfA, the master virulence transcription factor in L. monocytogenes pathogenesis, we demonstrate that prsA2 is not directly controlled by PrfA. Finally, we show that PrsA2 is involved in flagellum-based motility, indicating that this factor likely serves a broad physiological role.
Collapse
|
127
|
Listeria monocytogenes sigmaB modulates PrfA-mediated virulence factor expression. Infect Immun 2009; 77:2113-24. [PMID: 19255187 DOI: 10.1128/iai.01205-08] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes sigma(B) and positive regulatory factor A (PrfA) are pleiotropic transcriptional regulators that coregulate a subset of virulence genes. A positive regulatory role for sigma(B) in prfA transcription has been well established; therefore, observations of increased virulence gene expression and hemolytic activity in a DeltasigB strain initially appeared paradoxical. To test the hypothesis that L. monocytogenes sigma(B) contributes to a regulatory network critical for appropriate repression as well as induction of virulence gene expression, genome-wide transcript profiling and follow-up quantitative reverse transcriptase PCR (qRT-PCR), reporter fusion, and phenotypic experiments were conducted using L. monocytogenes prfA*, prfA* DeltasigB, DeltaprfA, and DeltaprfA DeltasigB strains. Genome-wide transcript profiling and qRT-PCR showed that in the presence of active PrfA (PrfA*), sigma(B) is responsible for reduced expression of the PrfA regulon. sigma(B)-dependent modulation of PrfA regulon expression reduced the cytotoxic effects of a PrfA* strain in HepG2 cells, highlighting the functional importance of regulatory interactions between PrfA and sigma(B). The emerging model of the role of sigma(B) in regulating overall PrfA activity includes a switch from transcriptional activation at the P2(prfA) promoter (e.g., in extracellular bacteria when PrfA activity is low) to posttranscriptional downregulation of PrfA regulon expression (e.g., in intracellular bacteria when PrfA activity is high).
Collapse
|
128
|
Wen J, Anantheswaran RC, Knabel SJ. Changes in barotolerance, thermotolerance, and cellular morphology throughout the life cycle of Listeria monocytogenes. Appl Environ Microbiol 2009; 75:1581-8. [PMID: 19168646 PMCID: PMC2655472 DOI: 10.1128/aem.01942-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 01/12/2009] [Indexed: 11/20/2022] Open
Abstract
Changes in barotolerance, thermotolerance, and cellular morphology throughout the life cycle of Listeria monocytogenes were investigated. For part 1 of this analysis, L. monocytogenes ATCC 19115 was grown to log, stationary, death, and long-term-survival phases at 35 degrees C in tryptic soy broth with yeast extract (TSBYE). Cells were diluted in whole milk that had been subjected to ultrahigh temperatures (UHT whole milk) and then high-pressure processed (HPP) at 400 MPa for 180 s or thermally processed at 62.8 degrees C for 30 s. As cells transitioned from the log to the long-term-survival phase, the D(400 MPa) and D(62.8 degrees C) values increased 10- and 19-fold, respectively. Cells decreased in size as they transitioned from the log to the long-term-survival phase. Rod-shaped cells transitioned to cocci as they entered the late-death and long-term-survival phases. L. monocytogenes strains F5069 and Scott A showed similar results. For part 2 of the analysis, cells in long-term-survival phase were centrifuged, suspended in fresh TSBYE, and incubated at 35 degrees C. As cells transitioned from the long-term-survival phase to log and the stationary phase, they increased in size and log reductions increased following HPP or heat treatment. In part 3 of this analysis, cells in long-term-survival phase were centrifuged, suspended in UHT whole milk, and incubated at 4 degrees C. After HPP or heat treatment, similar results were observed as for part 2. We hypothesize that cells of L. monocytogenes enter a dormant, long-term-survival phase and become more barotolerant and thermotolerant due to cytoplasmic condensation when they transition from rods to cocci. Further research is needed to test this hypothesis and to determine the practical significance of these findings.
Collapse
Affiliation(s)
- Jia Wen
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
129
|
Ollinger J, Wiedmann M, Boor KJ. SigmaB- and PrfA-dependent transcription of genes previously classified as putative constituents of the Listeria monocytogenes PrfA regulon. Foodborne Pathog Dis 2008; 5:281-93. [PMID: 18564909 DOI: 10.1089/fpd.2008.0079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mounting evidence suggests that sigma(B) and PrfA coregulate transcription of multiple genes in Listeria monocytogenes, therefore, the relative contributions of sigma(B) and PrfA to transcript levels of genes identified previously as differentially regulated by PrfA were measured. Group I genes are recognized virulence genes that are positively regulated by PrfA; group II genes were reported previously as negatively regulated by PrfA; and multiple group III genes were proposed to be coregulated by sigma(B) and PrfA. Transcript levels for selected genes were measured by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in L. monocytogenes 10403S as well as in otherwise isogenic DeltasigB, DeltaprfA, and DeltasigBDeltaprfA strains grown under conditions demonstrated to induce either PrfA activity (0.2% activated charcoal) or both PrfA and sigma(B) activity (stationary phase). Although the Group I gene plcA was positively regulated by PrfA, transcript levels for the group II genes lmo0278 and lmo0178 were not affected by the prfA deletion. While the sigB deletion significantly affected transcript levels for the selected group III genes (i.e., lmo0596, lmo0654, bsh, and opuCA), with lower transcript levels in the DeltasigB strains under all conditions tested, transcript levels for these genes were not significantly affected by the prfA deletion. Our results suggest that the regulatory interactions between PrfA and sigma(B) contribute to PrfA's predominant role as a direct regulator of virulence genes critical for invasion and intracellular survival in L. monocytogenes 10403S, while sigma(B) regulates a wider range of virulence and stress response genes.
Collapse
Affiliation(s)
- Juliane Ollinger
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
130
|
Miner MD, Port GC, Freitag NE. Functional impact of mutational activation on the Listeria monocytogenes central virulence regulator PrfA. MICROBIOLOGY-SGM 2008; 154:3579-3589. [PMID: 18957610 DOI: 10.1099/mic.0.2008/021063-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transcriptional activator PrfA is required for the expression of virulence factors necessary for Listeria monocytogenes pathogenesis. PrfA is believed to become activated following L. monocytogenes entry into the cytosol of infected host cells, resulting in the induction of target genes whose products are required for bacterial intracellular growth and cell-to-cell spread. Several mutations have been identified that appear to lock PrfA into its highly activated cytosolic form (known as prfA* mutations). In this study PrfA and five PrfA* mutant proteins exhibiting differing degrees of activity were purified and analysed to define the influences of the mutations on distinct aspects of PrfA activity. Based on limited proteolytic digestion, conformational changes were detected for the PrfA* mutant proteins in comparison to wild-type PrfA. For all but one mutant (PrfA Y63C), the DNA binding affinity as measured by electophoretic mobility shift assay appeared to directly correlate with levels of PrfA mutational activation, such that the high-activity mutants exhibited the largest increases in DNA binding affinity and moderately activated mutants exhibited more moderate increases. Surprisingly, the ability of PrfA and PrfA* mutants to form dimers in solution appeared to inversely correlate with levels of PrfA-dependent gene expression. Based on comparisons of protein activity and structural similarities with PrfA family members Crp and CooA, the prfA* mutations modify distinct aspects of PrfA activity that include DNA binding and protein-protein interactions.
Collapse
Affiliation(s)
- Maurine D Miner
- Seattle Biomedical Research Institute, Seattle, WA, USA.,Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Gary C Port
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Nancy E Freitag
- Seattle Biomedical Research Institute, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA.,Program in Pathobiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
131
|
Brockstedt DG, Dubensky TW. Promises and challenges for the development of Listeria monocytogenes-based immunotherapies. Expert Rev Vaccines 2008; 7:1069-84. [PMID: 18767955 DOI: 10.1586/14760584.7.7.1069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Active immunotherapy has shown great promise in preclinical models for the treatment of infectious and malignant disease. Yet, these promising results have not translated into approved therapies. One of the major deficits of active immunotherapies tested to date in advanced clinical studies has been their inability to stimulate both arms of the immune system appropriately. The interest in using recombinant bacteria as vaccine vectors for active immunotherapy derives in part from their ability to stimulate multiple innate immune pathways and, at the same time, to deliver antigen for presentation to the adaptive immune system. This review will focus on the development of live-attenuated and killed strains of the intracellular bacterium Listeria monocytogenes for treatment of chronic infections and cancer. Early clinical trials intended to demonstrate safety as well as proof of concept have recently been initiated in several indications. Advances in molecular engineering as well as successes and challenges for clinical development of L. monocytogenes-based vaccines will be discussed.
Collapse
Affiliation(s)
- Dirk G Brockstedt
- Anza Therapeutics, Inc., 2550 Stanwell Drive, Concord, CA 94520, USA.
| | | |
Collapse
|
132
|
McGann P, Raengpradub S, Ivanek R, Wiedmann M, Boor KJ. Differential regulation of Listeria monocytogenes internalin and internalin-like genes by sigmaB and PrfA as revealed by subgenomic microarray analyses. Foodborne Pathog Dis 2008; 5:417-35. [PMID: 18713061 DOI: 10.1089/fpd.2008.0085] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Listeria monocytogenes genome contains more than 20 genes that encode cell surface-associated internalins. To determine the contributions of the alternative sigma factor sigma(B) and the virulence gene regulator PrfA to internalin gene expression, a subgenomic microarray was designed to contain two probes for each of 24 internalin-like genes identified in the L. monocytogenes 10403S genome. Competitive microarray hybridization was performed on RNA extracted from (i) the 10403S parent strain and an isogenic Delta sigB strain; (ii) 10403S and an isogenic Delta prfA strain; (iii) a (G155S) 10403S derivative that expresses the constitutively active PrfA (PrfA*) and the Delta prfA strain; and (iv) 10403S and an isogenic Delta sigB Delta prfA strain. Sigma(B)- and PrfA-dependent transcription of selected genes was further confirmed by quantitative reverse-transcriptase polymerase chain reaction. For the 24 internalin-like genes examined, (i) both sigma(B) and PrfA contributed to transcription of inlA and inlB, (ii) only sigma(B) contributed to transcription of inlC2, inlD, lmo0331, and lmo0610; (iii) only PrfA contributed to transcription of inlC and lmo2445; and (iv) neither sigma(B) nor PrfA contributed to transcription of the remaining 16 internalin-like genes under the conditions tested.
Collapse
Affiliation(s)
- Patrick McGann
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
133
|
Greger M. The Human/Animal Interface: Emergence and Resurgence of Zoonotic Infectious Diseases. Crit Rev Microbiol 2008; 33:243-99. [DOI: 10.1080/10408410701647594] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
134
|
den Bakker HC, Didelot X, Fortes ED, Nightingale KK, Wiedmann M. Lineage specific recombination rates and microevolution in Listeria monocytogenes. BMC Evol Biol 2008; 8:277. [PMID: 18842152 PMCID: PMC2576243 DOI: 10.1186/1471-2148-8-277] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 10/08/2008] [Indexed: 01/02/2023] Open
Abstract
Background The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II) and an uncommon lineage (lineage III). While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA) for 195 L. monocytogenes isolates. Results Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM) and the two virulence genes (actA and inlA). The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average) of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck. Conclusion Our study shows that evolutionary lineages within a single bacterial species can differ considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that account for the possibility of changes in the rate of recombination would be required. While previous studies suggested that only L. monocytogenes lineage I has experienced a recent bottleneck, our analyses clearly show that lineage II experienced a bottleneck at about the same time, which was subsequently obscured by abundant homologous recombination after the lineage II bottleneck. While lineage I and lineage II should be considered separate species from an evolutionary viewpoint, maintaining single species name may be warranted since both lineages cause the same type of human disease.
Collapse
|
135
|
Miner MD, Port GC, Bouwer HGA, Chang JC, Freitag NE. A novel prfA mutation that promotes Listeria monocytogenes cytosol entry but reduces bacterial spread and cytotoxicity. Microb Pathog 2008; 45:273-81. [PMID: 18675335 DOI: 10.1016/j.micpath.2008.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 06/17/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
Listeria monocytogenes is an environmental bacterium that becomes a pathogen following ingestion by a mammalian host. The transition from environmental organism to pathogen requires significant changes in gene expression, including the increased expression of gene products that contribute to bacterial growth within host cells. PrfA is an L. monocytogenes transcriptional regulator that becomes activated upon bacterial entry into mammalian cells and induces the expression of gene products required for virulence. How PrfA activation occurs is not known, however several mutations have been identified that increase PrfA activity in strains grown in vitro (prfA mutations). Here we describe a novel prfA mutation that enhances extracellular PrfA-dependent gene expression but in contrast to prfA mutants inhibits the cytosol-mediated induction of virulence genes. prfA Y154C strains entered cells and escaped from phagosomes with an efficiency similar to wild type bacteria, however the mutation prevented efficient L. monocytogenes actin polymerization and reduced spread of bacteria to adjacent cells. The prfA Y154C mutation severely attenuated bacterial virulence in mice but the mutant strains did generate target antigen specific CD8(+) effector cells. Interestingly, the prfA Y154C mutant was significantly less cytotoxic for host cells than wild type L. monocytogenes. The prfA Y154C mutant strain may therefore represent a novel attenuated strain of L. monocytogenes for antigen delivery with reduced host cell toxicity.
Collapse
Affiliation(s)
- Maurine D Miner
- Department of Pathobiology, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
136
|
Chaturongakul S, Raengpradub S, Wiedmann M, Boor KJ. Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol 2008; 16:388-96. [PMID: 18619843 DOI: 10.1016/j.tim.2008.05.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/10/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
Listeria monocytogenes can respond rapidly to changing environmental conditions, as illustrated by its ability to transition from a saprophyte to an orally transmitted facultative intracellular pathogen. Differential associations between various alternative sigma factors and a core RNA polymerase provide a transcriptional mechanism for regulating bacterial gene expression that is crucial for survival in rapidly changing conditions. Alternative sigma factors are key components of complex L. monocytogenes regulatory networks that include multiple transcriptional regulators of stress-response and virulence genes, regulation of genes encoding other regulators, and regulation of small RNAs. In this article, the contributions of various sigma factors to L. monocytogenes stress response and virulence are described.
Collapse
Affiliation(s)
- Soraya Chaturongakul
- Department of Microbiology, Mahidol University, 272 Rama 6 Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
137
|
Constitutive Activation of the PrfA regulon enhances the potency of vaccines based on live-attenuated and killed but metabolically active Listeria monocytogenes strains. Infect Immun 2008; 76:3742-53. [PMID: 18541651 DOI: 10.1128/iai.00390-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recombinant vaccines derived from the facultative intracellular bacterium Listeria monocytogenes are presently undergoing early-stage clinical evaluation in oncology treatment settings. This effort has been stimulated in part due to preclinical results that illustrate potent activation of innate and adaptive immune effectors by L. monocytogenes vaccines, combined with efficacy in rigorous animal models of malignant and infectious disease. Here, we evaluated the immunologic potency of a panel of isogenic vaccine strains that varied only in prfA. PrfA is an intracellularly activated transcription factor that induces expression of virulence genes and encoded heterologous antigens (Ags) in appropriately engineered vaccine strains. Mutant strains with PrfA locked into a constitutively active state are known as PrfA* mutants. We assessed the impacts of three PrfA* mutants, G145S, G155S, and Y63C, on the immunologic potencies of live-attenuated and photochemically inactivated nucleotide excision repair mutant (killed but metabolically active [KBMA]) vaccines. While PrfA* substantially increased Ag expression in strains grown in broth culture, Ag expression levels were equivalent in infected macrophage and dendritic cell lines, conditions that more closely parallel those in the immunized host. However, only the prfA(G155S) allele conferred significantly enhanced vaccine potency to KBMA vaccines. In the KBMA vaccine background, we show that PrfA*(G155S) enhanced functional cellular immunity following an intravenous or intramuscular prime-boost immunization regimen. These results form the basis of a rationale for including the prfA(G155S) allele in future live-attenuated or KBMA L. monocytogenes vaccines advanced to the clinical setting.
Collapse
|
138
|
Selected prfA* mutations in recombinant attenuated Listeria monocytogenes strains augment expression of foreign immunogens and enhance vaccine-elicited humoral and cellular immune responses. Infect Immun 2008; 76:3439-50. [PMID: 18474644 DOI: 10.1128/iai.00245-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While recombinant Listeria monocytogenes strains can be explored as vaccine candidates, it is important to develop attenuated but highly immunogenic L. monocytogenes vaccine vectors. Here, prfA* mutations selected on the basis of upregulated expression of L. monocytogenes PrfA-dependent genes and proteins were assessed to determine their abilities to augment expression of foreign immunogens in recombinant L. monocytogenes vectors and therefore enhance vaccine-elicited immune responses (a prfA* mutation is a mutation that results in constitutive overexpression of PrfA and PrfA-dependent virulence genes; the asterisk distinguishes the mutation from inactivation or stop mutations). A total of 63 recombinant L. monocytogenes vaccine vectors expressing seven individual viral or bacterial immunogens each in nine different L. monocytogenes strains carrying wild-type prfA or having prfA* mutations were constructed and investigated. Mutations selected on the basis of increased PrfA activation in recombinant L. monocytogenes prfA* vaccine vectors augmented expression of seven individual protein immunogens remarkably. Consistently, prime and boost vaccination studies with mice indicated that the prfA(G155S) mutation in recombinant L. monocytogenes DeltaactA prfA* strains enhanced vaccine-elicited cellular immune responses. Surprisingly, the prfA(G155S) mutation was found to enhance vaccine-elicited humoral immune responses as well. The highly immunogenic recombinant L. monocytogenes DeltaactA prfA* vaccine strains were as attenuated as the recombinant parent L. monocytogenes DeltaactA vaccine vector. Thus, recombinant attenuated L. monocytogenes DeltaactA prfA* vaccine vectors potentially are better antimicrobial and anticancer vaccines.
Collapse
|
139
|
Rebuffo-Scheer CA, Dietrich J, Wenning M, Scherer S. Identification of five Listeria species based on infrared spectra (FTIR) using macrosamples is superior to a microsample approach. Anal Bioanal Chem 2008; 390:1629-35. [DOI: 10.1007/s00216-008-1834-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/30/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
140
|
Ryan E, Gahan C, Hill C. A significant role for Sigma B in the detergent stress response of Listeria monocytogenes. Lett Appl Microbiol 2007; 46:148-54. [DOI: 10.1111/j.1472-765x.2007.02280.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
141
|
Identification of novel Listeria monocytogenes secreted virulence factors following mutational activation of the central virulence regulator, PrfA. Infect Immun 2007; 75:5886-97. [PMID: 17938228 DOI: 10.1128/iai.00845-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Upon bacterial entry into the cytosol of infected mammalian host cells, the central virulence regulator PrfA of Listeria monocytogenes becomes activated and induces the expression of numerous factors which contribute to bacterial pathogenesis. The mechanism or signal by which PrfA becomes activated during the course of infection has not yet been determined; however, several amino acid substitutions within PrfA (known as PrfA* mutations) that appear to lock the protein into a constitutively activated state have been identified. In this study, the PrfA activation statuses of several L. monocytogenes mutant strains were subjected to direct isogenic comparison and the mutant with the highest activity, the prfA(L140F) mutant, was identified. The prfA(L140F) strain was subsequently used as a tool to identify gene products secreted as a result of PrfA activation. By use of two-dimensional gel electrophoresis followed by liquid chromatography-electrospray ionization-tandem mass spectroscopy analyses, 15 proteins were identified as up-regulated in the prfA(L140F) secretome, while the secretion of two proteins was found to be reduced. Although some of the proteins identified were known to be subject to direct regulation by PrfA, the majority have not previously been associated with PrfA regulation and their expression or secretion may be influenced indirectly by a PrfA-dependent regulatory pathway. Plasmid insertion inactivation of the genes encoding four novel secreted products indicated that three of the four have significant roles in L. monocytogenes virulence. The use of mutationally activated prfA alleles therefore provides a useful approach towards identifying gene products that contribute to L. monocytogenes pathogenesis.
Collapse
|
142
|
Freitag NE. From hot dogs to host cells: how the bacterial pathogen Listeria monocytogenes regulates virulence gene expression. Future Microbiol 2007; 1:89-101. [PMID: 17661688 DOI: 10.2217/17460913.1.1.89] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental pathogens are organisms that normally spend a substantial part of their lifecycle outside of human hosts, but when introduced into humans are capable of causing disease. Such organisms are often able to transition between disparate environments ranging from the soil to the cytosol of host cells. The food-borne bacterial pathogen Listeria monocytogenes serves as a model system for understanding how an environmental organism makes the transition into mammalian hosts. A transcriptional regulatory protein known as PrfA appears to serve as a critical switch, enabling L. monocytogenes to transition from the outside environment to life within the host cell cytosol. PrfA is required for the expression of many L. monocytogenes gene products associated with virulence, and multiple mechanisms serve to regulate the expression and activity of PrfA. Increasing evidence suggests that specific environmental stresses help prime L. monocytogenes for life within the host, and cross-talk between the stress response regulator sigma-B and PrfA may mediate the transition from outside environment to cytosol. Once within the host cytosol, multiple changes in bacterial metabolism and gene expression help to complete the transformation of L. monocytogenes from soil dweller to intracellular pathogen.
Collapse
Affiliation(s)
- Nancy E Freitag
- University of Washington, Seattle Biomedical Research Institute and the Department of Pathobiology, WA 98109-5219, USA.
| |
Collapse
|
143
|
Liu D, Lawrence ML, Ainsworth AJ, Austin FW. Toward an improved laboratory definition of Listeria monocytogenes virulence. Int J Food Microbiol 2007; 118:101-15. [PMID: 17727992 DOI: 10.1016/j.ijfoodmicro.2007.07.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/07/2007] [Accepted: 07/28/2007] [Indexed: 11/23/2022]
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen that encompasses a diversity of strains with varied virulence. The ability to rapidly determine the pathogenic potential of L. monocytogenes strains is integral to the control and prevention campaign against listeriosis. Early methods for assessing L. monocytogenes virulence include in vivo bioassays and in vitro cell assays. While in vivo bioassays provide a measurement of all virulence determinants of L. monocytogenes, they are not applied routinely due to their reliance on experimental animals whose costs have become increasingly prohibitive. As a low cost alternative, in vitro cell assays are useful for estimating the virulence of L. monocytogenes strains. However, these assays are often slow, and at times variable. Prior attempts to ascertain L. monocytogenes virulence by targeting virulence-associated proteins and genes have been largely unsuccessful, since many of the assay targets are present in both virulent and avirulent strains. Recent identification of novel virulence-specific genes (particularly internalin gene inlJ) has opened a new avenue for rapid, sensitive, and precise differentiation of virulent L. monocytogenes strains from avirulent strains. The application of DNA sequencing technique also offers an additional tool for assessing L. monocytogenes virulence potential. By providing an update on the laboratory methods that have been reported for the determination of L. monocytogenes pathogenicity, this review discusses future research needs that may help achieve an improved laboratory definition of L. monocytogenes virulence.
Collapse
Affiliation(s)
- Dongyou Liu
- College of Veterinary Medicine, Mississippi State University, PO Box 6100, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|
144
|
de Paz LC. Redefining the Persistent Infection in Root Canals: Possible Role of Biofilm Communities. J Endod 2007; 33:652-62. [DOI: 10.1016/j.joen.2006.11.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 10/30/2006] [Accepted: 11/04/2006] [Indexed: 11/25/2022]
|
145
|
Patton BS, Dickson JS, Lonergan SM, Cutler SA, Stahl CH. Inhibitory activity of colicin E1 against Listeria monocytogenes. J Food Prot 2007; 70:1256-62. [PMID: 17536690 DOI: 10.4315/0362-028x-70.5.1256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Colicins are gram-negative bacteriocins produced by and effective against Escherichia coli and related species. Colicin E1 (ColE1) is composed of three functional domains, which collectively have a pore-forming effect on targeted bacteria. ColE1 binding and translocation domains are highly specific in contrast to the pore-forming domain, implying that ColE1 could be broadly effective. In this study, the activity of ColE1 against Listeria monocytogenes was evaluated in broth and on surfaces of ready-to-eat products. Individual strains of L. monocytogenes were examined in broth containing ColE1 at 0, 0.1, 1, or 10 microg/ml. Although strain differences in sensitivity to ColE1 existed, growth was significantly reduced in all strains at doses as low as 0.1 microg/ml. Sterilized ham slices were submerged in a five-strain L. monocytogenes cocktail (either 7 or 4 log CFU/ ml) and placed in vacuum packages containing 0, 1, 5, 10, 25, or 50 microg of ColE1. Ham slices were then stored at 4 or 10 degrees C, and samples were removed and examined for L. monocytogenes after 1, 3, 7, and 14 days. Reduction of L. monocytogenes by ColE1 was dependent on initial inoculum concentration and storage temperature. For slices stored at 4 degrees C, treatment with 25 microg reduced Listeria growth below detection limits for the slices inoculated with 4 log CFU/ml for the entire 14 days, whereas for the 7-log CFU/ml slices, growth was detected at 7 days postinoculation. For slices stored at 10 degrees C, 10 microg/ml ColE1 significantly inhibited growth of L. monocytogenes for up to 3 days for both inoculation groups. These data indicate that ColE1 is highly effective against Listeria.
Collapse
Affiliation(s)
- Brenda S Patton
- Food Safety Research Laboratory, Department of Food Science and Technology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
146
|
Ledala N, Pearson SL, Wilkinson BJ, Jayaswal RK. Molecular characterization of the Fur protein of Listeria monocytogenes. Microbiology (Reading) 2007; 153:1103-1111. [PMID: 17379719 DOI: 10.1099/mic.0.2006/000620-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron is essential for the survival of almost all organisms, although excess iron can result in the generation of free radicals which are toxic to cells. To avoid the toxic effects of free radicals, the concentration of intracellular iron is generally regulated by the ferric uptake regulator Fur in bacteria. The 150 aa fur ORF from Listeria monocytogenes was cloned into pRSETa, and the His-tagged fusion protein was purified by nickel affinity column chromatography. DNA binding activity of this protein was studied by an electrophoretic mobility shift assay using the end-labelled promoters P(fhuDC) and P(fur). The results showed a decrease in migration for both promoter DNAs in the presence of the Fur protein, and the change in migration was competitively inhibited with an excess of the same unlabelled promoters. No shift in migration was observed when a similar assay was performed using non-specific end-labelled DNA. The assay showed that binding of Fur to P(fur) or P(fhuDC) was independent of iron or manganese ions, and was not inhibited in the presence of 2 mM EDTA. Inductively coupled plasma MS of the Fur protein showed no iron or manganese, but 0.48 mole zinc per mole protein was detected. A DNase I protection assay revealed that Fur specifically bound to and protected a 19 bp consensus Fur box sequence located in the promoters of fur and fhuDC. There was no requirement for iron or manganese in this assay also. However, Northern blot analysis showed an increase in fur transcription under iron-restricted compared to high-level conditions. Thus, the study suggests that under in vitro conditions, the affinity of the Fur protein for the 19 bp Fur box sequence does not require iron, but iron availability regulates fur transcription in vivo. Thus, the regulation by Fur in this intracellular pathogen may be dependent on either the structure of the DNA binding domain or other intracellular factors yet to be identified.
Collapse
Affiliation(s)
- Nagender Ledala
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Stacy L Pearson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Brian J Wilkinson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - R K Jayaswal
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| |
Collapse
|
147
|
Cao M, Bitar AP, Marquis H. A mariner-based transposition system for Listeria monocytogenes. Appl Environ Microbiol 2007; 73:2758-61. [PMID: 17308180 PMCID: PMC1855599 DOI: 10.1128/aem.02844-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we developed a new mariner-based transposition system for Listeria monocytogenes. The mariner-based system has a high rate of transposition and a low rate of plasmid retention, and transposition is very random, making it an ideal tool for high-throughput transposon mutagenesis in L. monocytogenes.
Collapse
Affiliation(s)
- Min Cao
- Department of Microbiology and Immunology, VMC C5-169, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | |
Collapse
|
148
|
Abstract
Given the increasing commercial and clinical relevance of probiotic cultures, improving their stress tolerance profile and ability to overcome the physiochemical defences of the host is an important biological goal. Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, interact with the immune system and interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology and biomedicine. This approach shows promise for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications as well as the development of novel vaccine and drug delivery platforms.
Collapse
|
149
|
Rebuffo-Scheer CA, Schmitt J, Scherer S. Differentiation of Listeria monocytogenes serovars by using artificial neural network analysis of Fourier-transformed infrared spectra. Appl Environ Microbiol 2006; 73:1036-40. [PMID: 17142376 PMCID: PMC1800759 DOI: 10.1128/aem.02004-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A classification system based on Fourier transform infrared (FTIR) spectroscopy combined with artificial neural network analysis was designed to differentiate 12 serovars of Listeria monocytogenes using a reference database of 106 well-defined strains. External validation was performed using a test set of another 166 L. monocytogenes strains. The O antigens (serogroup) of 164 strains (98.8%) could be identified correctly, and H antigens were correctly determined in 152 (91.6%) of the test strains. Importantly, 40 out of 41 potentially epidemic serovar 4b strains were unambiguously identified. FTIR analysis is superior to PCR-based systems for serovar differentiation and has potential for the rapid, simultaneous identification of both species and serovar of an unknown Listeria isolate by simply measuring a whole-cell infrared spectrum.
Collapse
Affiliation(s)
- Cecilia A Rebuffo-Scheer
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| | | | | |
Collapse
|