101
|
Mohamed AF, Cars O, Friberg LE. A pharmacokinetic/pharmacodynamic model developed for the effect of colistin on Pseudomonas aeruginosa in vitro with evaluation of population pharmacokinetic variability on simulated bacterial killing. J Antimicrob Chemother 2014; 69:1350-61. [DOI: 10.1093/jac/dkt520] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
102
|
PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane. Proc Natl Acad Sci U S A 2014; 111:1963-8. [PMID: 24449881 DOI: 10.1073/pnas.1316901111] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gram-negative bacteria have two lipid membranes separated by a periplasmic space containing peptidoglycan. The surface bilayer, or outer membrane (OM), provides a barrier to toxic molecules, including host cationic antimicrobial peptides (CAMPs). The OM comprises an outer leaflet of lipid A, the bioactive component of lipopolysaccharide (LPS), and an inner leaflet of glycerophospholipids (GPLs). The structure of lipid A is environmentally regulated in a manner that can promote bacterial infection by increasing bacterial resistance to CAMP and reducing LPS recognition by the innate immune system. The gastrointestinal pathogen, Salmonella Typhimurium, responds to acidic pH and CAMP through the PhoPQ two-component regulatory system, which stimulates lipid A remodeling, CAMP resistance, and intracellular survival within acidified phagosomes. Work here demonstrates that, in addition to regulating lipid A structure, the S. Typhimurium PhoPQ virulence regulators also regulate acidic GPL by increasing the levels of cardiolipins and palmitoylated acylphosphatidylglycerols within the OM. Triacylated palmitoyl-PG species were diminished in strains deleted for the PhoPQ-regulated OM lipid A palmitoyltransferase enzyme, PagP. Purified PagP transferred palmitate to PG consistent with PagP acylation of both lipid A and PG within the OM. Therefore, PhoPQ coordinately regulates OM acidic GPL with lipid A structure, suggesting that GPLs cooperate with lipid A to form an OM barrier critical for CAMP resistance and intracellular survival of S. Typhimurium.
Collapse
|
103
|
Bansal AK. Role of bioinformatics in the development of new antibacterial therapy. Expert Rev Anti Infect Ther 2014; 6:51-65. [DOI: 10.1586/14787210.6.1.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
104
|
Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides. Appl Environ Microbiol 2013; 79:7770-9. [PMID: 24096425 DOI: 10.1128/aem.02593-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolipoprotein E. Investigation of the genetic response of Escherichia coli upon exposure to sublethal concentrations of ApoEdpL-W revealed that this antimicrobial peptide triggers activation of RcsCDB, CpxAR, and σ(E) envelope stress pathways. This genetic response is not restricted to ApoEdpL-W, since several other antimicrobial peptides, including polymyxin B, melittin, LL-37, and modified S4 dermaseptin, also activate several E. coli envelope stress pathways. Finally, we demonstrate that induction of the CpxAR two-component system directly contributes to E. coli tolerance toward ApoEdpL-W, polymyxin B, and melittin. These results therefore show that E. coli senses and responds to different antimicrobial peptides by activation of the CpxAR pathway. While this study further extends the understanding of the array of peptide-induced stress signaling systems, it also provides insight into the contribution of Cpx envelope stress pathway to E. coli tolerance to antimicrobial peptides.
Collapse
|
105
|
Lofton H, Pränting M, Thulin E, Andersson DI. Mechanisms and fitness costs of resistance to antimicrobial peptides LL-37, CNY100HL and wheat germ histones. PLoS One 2013; 8:e68875. [PMID: 23894360 PMCID: PMC3720879 DOI: 10.1371/journal.pone.0068875] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/02/2013] [Indexed: 12/04/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent a potential new class of antimicrobial drugs with potent and broad-spectrum activities. However, knowledge about the mechanisms and rates of resistance development to AMPs and the resulting effects on fitness and cross-resistance is limited. We isolated antimicrobial peptide (AMP) resistant Salmonella typhimurium LT2 mutants by serially passaging several independent bacterial lineages in progressively increasing concentrations of LL-37, CNY100HL and Wheat Germ Histones. Significant AMP resistance developed in 15/18 independent bacterial lineages. Resistance mutations were identified by whole genome sequencing in two-component signal transduction systems (pmrB and phoP) as well as in the LPS core biosynthesis pathway (waaY, also designated rfaY). In most cases, resistance was associated with a reduced fitness, observed as a decreased growth rate, which was dependent on growth conditions and mutation type. Importantly, mutations in waaY decreased bacterial susceptibility to all tested AMPs and the mutant outcompeted the wild type parental strain at AMP concentrations below the MIC for the wild type. Our data suggests that resistance to antimicrobial peptides can develop rapidly through mechanisms that confer cross-resistance to several AMPs. Importantly, AMP-resistant mutants can have a competitive advantage over the wild type strain at AMP concentrations similar to those found near human epithelial cells. These results suggest that resistant mutants could both be selected de novo and maintained by exposure to our own natural repertoire of defence molecules.
Collapse
Affiliation(s)
- Hava Lofton
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maria Pränting
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Thulin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
106
|
Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun 2013; 81:3552-65. [PMID: 23836821 DOI: 10.1128/iai.00391-13] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The implementation of infection models that approximate human disease is essential for understanding pathogenesis at the molecular level and for testing new therapies before they are entered into clinical stages. Insects are increasingly being used as surrogate hosts because they share, with mammals, essential aspects of the innate immune response to infections. We examined whether the larva of the wax moth Galleria mellonella could be used as a host model to conceptually approximate Klebsiella pneumoniae-triggered pneumonia. We report that the G. mellonella model is capable of distinguishing between pathogenic and nonpathogenic Klebsiella strains. Moreover, K. pneumoniae infection of G. mellonella models some of the known features of Klebsiella-induced pneumonia, i.e., cell death associated with bacterial replication, avoidance of phagocytosis by phagocytes, and the attenuation of host defense responses, chiefly the production of antimicrobial factors. Similar to the case for the mouse pneumonia model, activation of innate responses improved G. mellonella survival against subsequent Klebsiella challenge. Virulence factors necessary in the mouse pneumonia model were also implicated in the Galleria model. We found that mutants lacking capsule polysaccharide, lipid A decorations, or the outer membrane proteins OmpA and OmpK36 were attenuated in Galleria. All mutants activated G. mellonella defensive responses. The Galleria model also allowed us to monitor Klebsiella gene expression. The expression levels of cps and the loci implicated in lipid A remodeling peaked during the first hours postinfection, in a PhoPQ- and PmrAB-governed process. Taken together, these results support the utility of G. mellonella as a surrogate host for assessing infections with K. pneumoniae.
Collapse
|
107
|
Chen HD, Groisman EA. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu Rev Microbiol 2013; 67:83-112. [PMID: 23799815 DOI: 10.1146/annurev-micro-092412-155751] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of gram-negative bacteria to resist killing by antimicrobial agents and to avoid detection by host immune systems often entails modification to the lipopolysaccharide (LPS) in their outer membrane. In this review, we examine the biology of the PmrA/PmrB two-component system, the major regulator of LPS modifications in the enteric pathogen Salmonella enterica. We examine the signals that activate the sensor PmrB and the targets controlled by the transcriptional regulator PmrA. We discuss the PmrA/PmrB-dependent chemical decorations of the LPS and their role in resistance to antibacterial agents. We analyze the feedback mechanisms that modulate the activity and thus output of the PmrA/PmrB system, dictating when, where, and to what extent bacteria modify their LPS. Finally, we explore the qualitative and quantitative differences in gene expression outputs resulting from the distinct PmrA/PmrB circuit architectures in closely related bacteria, which may account for their differential survival in various ecological niches.
Collapse
|
108
|
Abstract
The human body is populated by an extremely diverse group of microbes that live in a symbiotic relationship with their host. Among these, intestinal commensals are the most abundant, induce homeostatic mucosal immune responses, and fulfill physiologic functions that benefit the host. In some cases, gut symbionts, including Escherichia coli, may contribute to the pathogenesis of chronic intestinal inflammation by causing dysregulated immune activation in genetically susceptible hosts. Although immune responses to bacterial products are well-characterized, the impact of intestinal inflammation on the function of commensal luminal microbes is only beginning to be elucidated. We recently reported that chronic intestinal inflammation induces commensal E. coli to upregulate stress response genes that paradoxically limit their growth in vivo. Herein, we discuss our findings in the context of host-microbial interactions in health and disease and a developing paradigm that may distinguish pathogens from commensals.
Collapse
Affiliation(s)
- Sandrine Tchaptchet
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, USA
| | | |
Collapse
|
109
|
Arpaia N, Barton GM. The impact of Toll-like receptors on bacterial virulence strategies. Curr Opin Microbiol 2013; 16:17-22. [PMID: 23290772 DOI: 10.1016/j.mib.2012.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/12/2012] [Accepted: 11/26/2012] [Indexed: 12/12/2022]
Abstract
The mammalian immune system has evolved in the presence of microbes, both pathogenic and commensal. The consequences of microbial recognition by the host has led to the development of compensatory mechanisms by both the host and microbe to either resist or tolerate the existence of the other. In this review we discuss examples of this co-evolutionary relationship. Because of space considerations and for conceptual clarity, we have focused on detection of bacteria by the Toll-like receptor (TLR) family and highlight examples of bacterial strategies to evade, subvert and in some cases even utilize these receptors.
Collapse
Affiliation(s)
- Nicholas Arpaia
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
110
|
Chen HD, Jewett MW, Groisman EA. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product. PLoS Genet 2012; 8:e1003060. [PMID: 23300460 PMCID: PMC3531487 DOI: 10.1371/journal.pgen.1003060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022] Open
Abstract
Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.
Collapse
Affiliation(s)
- H. Deborah Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mollie W. Jewett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
111
|
Yan X, Gurtler JB, Fratamico PM, Hu J, Juneja VK. Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food. Cell Biosci 2012. [PMID: 23186337 PMCID: PMC3519753 DOI: 10.1186/2045-3701-2-39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED BACKGROUND Toxin-antitoxin (TA) systems are commonly found in bacteria and Archaea, and it is the most common mechanism involved in bacterial programmed cell death or apoptosis. Recently, MazF, the toxin component of the toxin-antitoxin module, has been categorized as an endoribonuclease, or it may have a function similar to that of a RNA interference enzyme. RESULTS In this paper, with comparative data and phylogenetic analyses, we are able to identify several potential MazF-conserved motifs in limited subsets of foodborne pathogens and probiotic strains and further provide a molecular basis for the development of engineered/synthetic probiotic strains for the mitigation of foodborne illnesses. Our findings also show that some probiotic strains, as fit as many bacterial foodborne pathogens, can be genetically categorized into three major groups based on phylogenetic analysis of MazF. In each group, potential functional motifs are conserved in phylogenetically distant species, including foodborne pathogens and probiotic strains. CONCLUSION These data provide important knowledge for the identification and computational prediction of functional motifs related to programmed cell death. Potential implications of these findings include the use of engineered probiotic interventions in food or use of a natural probiotic cocktail with specificity for controlling targeted foodborne pathogens.
Collapse
Affiliation(s)
- Xianghe Yan
- Eastern Regional Research Center, Agricultural Research Service, U,S, Department of Agriculture, 600 E, Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | | | | | | | | |
Collapse
|
112
|
An altered immune response, but not individual cationic antimicrobial peptides, is associated with the oral attenuation of Ara4N-deficient Salmonella enterica serovar Typhimurium in mice. PLoS One 2012; 7:e49588. [PMID: 23166721 PMCID: PMC3499468 DOI: 10.1371/journal.pone.0049588] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) uses two-component regulatory systems (TCRS) to respond to stimuli in the local microenvironment. Upon infection, the Salmonella TCRSs PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB) are activated by environmental signals in the intestinal lumen and within host cells. TCRS-mediated gene expression results in lipopolysaccharide (LPS) modification and cationic antimicrobial peptide resistance. The PmrA-regulated pmrHFIJKLM operon mediates 4-amino-4-deoxy-L-arabinose (Ara4N) production and attachment to the lipid A of LPS. A ΔpmrF S. Typhimurium strain cannot produce Ara4N, exhibits increased sensitivity to cationic antimicrobial peptide (CAMP)-mediated killing, and attenuated virulence in mice upon oral infection. CAMPs are predicted to play a role in elimination of Salmonella, and may activate PhoPQ and PmrAB in vivo, which could increase bacterial resistance to host defenses. Competition experiments between wild type (WT) and ΔpmrF mutant strains of S. Typhimurium indicated that selection against this mutant first occurs within the intestinal lumen early during infection. However, CRAMP and active cryptdins alone are not responsible for elimination of Ara4N-deficient bacteria in vivo. Investigation into the early immune response to ΔpmrF showed that it differed slightly from the early immune response to WT S. Typhimurium. Further investigation into the early immune response to infection of Peyer's patches suggests a role for IL-13 in the attenution of the ΔpmrF mutant strain. Thus, prominent CAMPs present in the mouse intestine are not responsible for the selection against the ΔpmrF strain in this location, but limited alterations in innate immune induction were observed that affect bacterial survival and virulence.
Collapse
|
113
|
Cathelicidin antimicrobial peptide expression is not induced or required for bacterial clearance during salmonella enterica infection of human monocyte-derived macrophages. Infect Immun 2012; 80:3930-8. [PMID: 22927052 DOI: 10.1128/iai.00672-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is able to resist antimicrobial peptide killing by induction of the PhoP-PhoQ and PmrA-PmrB two-component systems and the lipopolysaccharide (LPS) modifications they mediate. Murine cathelin-related antimicrobial peptide (CRAMP) has been reported to inhibit S. Typhimurium growth in vitro and in vivo. We hypothesize that infection of human monocyte-derived macrophages (MDMs) with Salmonella enterica serovar Typhi and S. Typhimurium will induce human cathelicidin antimicrobial peptide (CAMP) production, and exposure to LL-37 (processed, active form of CAMP/hCAP18) will lead to upregulation of PmrAB-mediated LPS modifications and increased survival in vivo. Unlike in mouse macrophages, in which CRAMP is upregulated during infection, camp gene expression was not induced in human MDMs infected with S. Typhi or S. Typhimurium. Upon infection, intracellular levels of ΔphoPQ, ΔpmrAB, and PhoP(c) S. Typhi decreased over time but were not further inhibited by the vitamin D(3)-induced increase in camp expression. MDMs infected with wild-type (WT) S. Typhi or S. Typhimurium released similar levels of proinflammatory cytokines; however, the LPS modification mutant strains dramatically differed in MDM-elicited cytokine levels. Overall, these findings indicate that camp is not induced during Salmonella infection of MDMs nor is key to Salmonella intracellular clearance. However, the cytokine responses from MDMs infected with WT or LPS modification mutant strains differ significantly, indicating a role for LPS modifications in altering the host inflammatory response. Our findings also suggest that S. Typhi and S. Typhimurium elicit different proinflammatory responses from MDMs, despite being capable of adding similar modifications to their LPS structures.
Collapse
|
114
|
Kato A, Chen HD, Latifi T, Groisman EA. Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. Mol Cell 2012; 47:897-908. [PMID: 22921935 DOI: 10.1016/j.molcel.2012.07.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 06/18/2012] [Accepted: 07/14/2012] [Indexed: 01/29/2023]
Abstract
Gram-negative bacteria often modify their lipopolysaccharide (LPS), thereby increasing resistance to antimicrobial agents and avoidance of the host immune system. However, it is unclear how bacteria adjust the levels and activities of LPS-modifying enzymes in response to the modification status of their LPS. We now address this question by investigating the major regulator of LPS modifications in Salmonella enterica. We report that the PmrA/PmrB system controls expression of a membrane peptide that inhibits the activity of LpxT, an enzyme responsible for increasing the LPS negative charge. LpxT's inhibition and the PmrA-dependent incorporation of positively charged L-4-aminoarabinose into the LPS decrease Fe(3+) binding to the bacterial cell. Because Fe(3+) is an activating ligand for the sensor PmrB, transcription of PmrA-dependent LPS-modifying genes is reduced. This mechanism enables bacteria to sense their cell surface by its effect on the availability of an inducing signal for the system regulating cell-surface modifications.
Collapse
Affiliation(s)
- Akinori Kato
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
115
|
Richards SM, Strandberg KL, Conroy M, Gunn JS. Cationic antimicrobial peptides serve as activation signals for the Salmonella Typhimurium PhoPQ and PmrAB regulons in vitro and in vivo. Front Cell Infect Microbiol 2012; 2:102. [PMID: 22919691 PMCID: PMC3417628 DOI: 10.3389/fcimb.2012.00102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/06/2012] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica serovar Typhimurium uses two-component regulatory systems (TCRSs) to respond to environmental stimuli. Upon infection, the TCRSs PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB) are activated by environmental signals detected in the lumen of the intestine and within host cells. TCRS-mediated gene expression leads to upregulation of genes involved in lipopolysaccharide (LPS) modification and cationic antimicrobial peptide (CAMP) resistance. This research expands on previous studies which have shown that CAMPs can activate Salmonella TCRSs in vitro. The focus of this work was to determine if CAMPs can act as environmental signals for PhoPQ- and PmrAB-mediated gene expression in vitro, during infection of macrophages and in a mouse model of infection. Monitoring of PhoPQ and PmrAB activation using recombinase-based in vivo expression technology (RIVET), alkaline phosphtase and β-galactosidase reporter fusion constructs demonstrated that S. Typhimurium PhoQ can sense CAMPs in vitro. In mouse macrophages, the cathelecidin CRAMP does not activate the PhoPQ regulon. Acidification of the Salmonella-containing vacuole activates PhoP- and PmrA-regulated loci but blocking acidification still does not reveal a role for CRAMP in TCRS activation in mouse macrophages. However, assays performed in susceptible wild type (WT), CRAMP knockout (KO), and matrilysin (a metalloproteinase necessary for activating murine α-defensins) KO mice suggest CRAMP, but not α-defensins, serve as a putative direct TCRS activation signal in the mouse intestine. These studies provide a better understanding of the in vivo environments that result in activation of these virulence-associated TCRSs.
Collapse
Affiliation(s)
- Susan M Richards
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus OH, USA
| | | | | | | |
Collapse
|
116
|
Selection of Salmonella enterica serovar Typhi genes involved during interaction with human macrophages by screening of a transposon mutant library. PLoS One 2012; 7:e36643. [PMID: 22574205 PMCID: PMC3344905 DOI: 10.1371/journal.pone.0036643] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated.
Collapse
|
117
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
118
|
Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides. J Bacteriol 2012; 194:3173-88. [PMID: 22505678 DOI: 10.1128/jb.00308-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides (APs) belong to the arsenal of weapons of the innate immune system against infections. In the case of gram-negative bacteria, APs interact with the anionic lipid A moiety of the lipopolysaccharide (LPS). In yersiniae most virulence factors are temperature regulated. Studies from our laboratory demonstrated that Yersinia enterocolitica is more susceptible to polymyxin B, a model AP, when grown at 37°C than at 22°C (J. A. Bengoechea, R. Díaz, and I. Moriyón, Infect. Immun. 64:4891-4899, 1996), and here we have extended this observation to other APs, not structurally related to polymyxin B. Mechanistically, we demonstrate that the lipid A modifications with aminoarabinose and palmitate are downregulated at 37°C and that they contribute to AP resistance together with the LPS O-polysaccharide. Bacterial loads of lipid A mutants in Peyer's patches, liver, and spleen of orogastrically infected mice were lower than those of the wild-type strain at 3 and 7 days postinfection. PhoPQ and PmrAB two-component systems govern the expression of the loci required to modify lipid A with aminoarabinose and palmitate, and their expressions are also temperature regulated. Our findings support the notion that the temperature-dependent regulation of loci controlling lipid A modifications could be explained by H-NS-dependent negative regulation alleviated by RovA. In turn, our data also demonstrate that PhoPQ and PmrAB regulate positively the expression of rovA, the effect of PhoPQ being more important. However, rovA expression reached wild-type levels in the phoPQ pmrAB mutant background, hence indicating the existence of an unknown regulatory network controlling rovA expression in this background.
Collapse
|
119
|
Impact of two-component regulatory systems PhoP-PhoQ and PmrA-PmrB on colistin pharmacodynamics in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2012; 56:3453-6. [PMID: 22470116 DOI: 10.1128/aac.06380-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro pharmacodynamics of colistin against Pseudomonas aeruginosa PAO1 wild-type and isogenic knockout strains of phoP and pmrA were evaluated. Colistin killing at subinhibitory concentrations was greater against the phoP and pmrA mutants than the wild type within the first 8 h: the concentration that results in 50% of maximal effect (EC(50)) of the pmrA mutant (0.413 mg/liter) was less than that of the wild type (0.718 mg/liter) (P < 0.05). An in vitro pharmacodynamic model simulating human colistin regimens displayed initial killing followed by regrowth in the phoP mutant and gradual regrowth in the pmrA mutant and wild type.
Collapse
|
120
|
Kawasaki K. Complexity of lipopolysaccharide modifications in Salmonella enterica: Its effects on endotoxin activity, membrane permeability, and resistance to antimicrobial peptides. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
121
|
Repression of Salmonella enterica phoP expression by small molecules from physiological bile. J Bacteriol 2012; 194:2286-96. [PMID: 22366421 DOI: 10.1128/jb.00104-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Salmonella enterica serovar Typhi in humans causes the life-threatening disease typhoid fever. In the laboratory, typhoid fever can be modeled through the inoculation of susceptible mice with Salmonella enterica serovar Typhimurium. Using this murine model, we previously characterized the interactions between Salmonella Typhimurium and host cells in the gallbladder and showed that this pathogen can successfully invade gallbladder epithelial cells and proliferate. Additionally, we showed that Salmonella Typhimurium can use bile phospholipids to grow at high rates. These abilities are likely important for quick colonization of the gallbladder during typhoid fever and further pathogen dissemination through fecal shedding. To further characterize the interactions between Salmonella and the gallbladder environment, we compared the transcriptomes of Salmonella cultures grown in LB broth or physiological murine bile. Our data showed that many genes involved in bacterial central metabolism are affected by bile, with the citric acid cycle being repressed and alternative respiratory systems being activated. Additionally, our study revealed a new aspect of Salmonella interactions with bile through the identification of the global regulator phoP as a bile-responsive gene. Repression of phoP expression could also be achieved using physiological, but not commercial, bovine bile. The biological activity does not involve PhoPQ sensing of a bile component and is not caused by bile acids, the most abundant organic components of bile. Bioactivity-guided purification allowed the identification of a subset of small molecules from bile that can elicit full activity; however, a single compound with phoP inhibitory activity could not be isolated, suggesting that multiple molecules may act in synergy to achieve this effect. Due to the critical role of phoP in Salmonella virulence, further studies in this area will likely reveal aspects of the interaction between Salmonella and bile that are relevant to disease.
Collapse
|
122
|
Shen S, Fang FC. Integrated stress responses in Salmonella. Int J Food Microbiol 2012; 152:75-81. [PMID: 21570144 PMCID: PMC3164900 DOI: 10.1016/j.ijfoodmicro.2011.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/15/2011] [Accepted: 04/14/2011] [Indexed: 12/23/2022]
Abstract
The foodborne gram-negative pathogen Salmonella must adapt to varied environmental conditions encountered within foods, the host gastrointestinal tract and the phagosomes of host macrophages. Adaptation is achieved through the coordinate regulation of gene expression in response to environmental signals such as temperature, pH, osmolarity, redox state, antimicrobial peptides, and nutrient deprivation. This review will examine mechanisms by which the integration of regulatory responses to a broad array of environmental signals can be achieved. First, in the most straightforward case, tandem promoters allow gene expression to respond to multiple signals. Second, versatile sensor proteins may respond to more than one environmental signal. Third, transcriptional silencing and counter-silencing as demonstrated by the H-NS paradigm provides a general mechanism for the convergence of multiple regulatory inputs. Fourth, signaling cascades allow gene activation by independent sensory elements. These mechanisms allow Salmonella to utilize common adaptive stress pathways in response to a diverse range of environmental conditions.
Collapse
Affiliation(s)
- Shu Shen
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA, 98195-7242 USA
| | | |
Collapse
|
123
|
Wei Q, Tarighi S, Dötsch A, Häussler S, Müsken M, Wright VJ, Cámara M, Williams P, Haenen S, Boerjan B, Bogaerts A, Vierstraete E, Verleyen P, Schoofs L, Willaert R, De Groote VN, Michiels J, Vercammen K, Crabbé A, Cornelis P. Phenotypic and genome-wide analysis of an antibiotic-resistant small colony variant (SCV) of Pseudomonas aeruginosa. PLoS One 2011; 6:e29276. [PMID: 22195037 PMCID: PMC3240657 DOI: 10.1371/journal.pone.0029276] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 11/23/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch. METHODOLOGY/PRINCIPAL FINDINGS One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5) on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels. CONCLUSIONS By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system.
Collapse
Affiliation(s)
- Qing Wei
- Research Group Microbiology, VIB Department of Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Saeed Tarighi
- Research Group Microbiology, VIB Department of Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas Dötsch
- Chronic Pseudomonas Infections, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Chronic Pseudomonas Infections, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Twincore, Center for Experimental and Clinical Infection Research, Helmholtz Center for Infection Research and the Medical School Hannover, Hannover, Germany
| | - Mathias Müsken
- Chronic Pseudomonas Infections, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Twincore, Center for Experimental and Clinical Infection Research, Helmholtz Center for Infection Research and the Medical School Hannover, Hannover, Germany
| | - Victoria J. Wright
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Steven Haenen
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Bart Boerjan
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Annelies Bogaerts
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Evy Vierstraete
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Peter Verleyen
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Faculty of Sciences, K.U. Leuven, Leuven, Belgium
| | - Ronnie Willaert
- Structural Biology Brussels, VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Jan Michiels
- Centre of Microbial and Plant Genetics, K.U. Leuven, Heverlee, Belgium
| | - Ken Vercammen
- Research Group Microbiology, VIB Department of Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aurélie Crabbé
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Pierre Cornelis
- Research Group Microbiology, VIB Department of Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
124
|
Shprung T, Peleg A, Rosenfeld Y, Trieu-Cuot P, Shai Y. Effect of PhoP-PhoQ activation by broad repertoire of antimicrobial peptides on bacterial resistance. J Biol Chem 2011; 287:4544-51. [PMID: 22158870 DOI: 10.1074/jbc.m111.278523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pathogenic bacteria can resist their microenvironment by changing the expression of virulence genes. In Salmonella typhimurium, some of these genes are controlled by the two-component system PhoP-PhoQ. Studies have shown that activation of the system by cationic antimicrobial peptides (AMPs) results, among other changes, in outer membrane remodeling. However, it is not fully clear what characteristics of AMPs are required to activate the PhoP-PhoQ system and whether activation can induce resistance to the various AMPs. For that purpose, we investigated the ability of a broad repertoire of AMPs to traverse the inner membrane, to activate the PhoP-PhoQ system, and to induce bacterial resistance. The AMPs differ in length, composition, and net positive charge, and the tested bacteria include two wild-type (WT) Salmonella strains and their corresponding PhoP-PhoQ knock-out mutants. A lacZ-reporting system was adapted to follow PhoP-PhoQ activation. The data revealed that: (i) a good correlation exists among the extent of the positive charge, hydrophobicity, and amphipathicity of an AMP and its potency to activate PhoP-PhoQ; (ii) a +1 charged peptide containing histidines was highly potent, suggesting the existence of an additional mechanism independent of the peptide charge; (iii) the WT bacteria are more resistant to AMPs that are potent activators of PhoP-PhoQ; (iv) only a subset of AMPs, independent of their potency to activate the system, is more toxic to the mutated bacteria compared with the WT strains; and (v) short term exposure of WT bacteria to these AMPs does not enhance resistance. Overall, this study advances our understanding of the molecular mechanism by which AMPs activate PhoP-PhoQ and induce bacterial resistance. It also reveals that some AMPs can overcome such a resistance mechanism.
Collapse
Affiliation(s)
- Tal Shprung
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
125
|
Infection of mice by Salmonella enterica serovar Enteritidis involves additional genes that are absent in the genome of serovar Typhimurium. Infect Immun 2011; 80:839-49. [PMID: 22083712 DOI: 10.1128/iai.05497-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models.
Collapse
|
126
|
Shelton CL, Raffel FK, Beatty WL, Johnson SM, Mason KM. Sap transporter mediated import and subsequent degradation of antimicrobial peptides in Haemophilus. PLoS Pathog 2011; 7:e1002360. [PMID: 22072973 PMCID: PMC3207918 DOI: 10.1371/journal.ppat.1002360] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/21/2011] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial peptides (AMPs) contribute to host innate immune defense and are a critical component to control bacterial infection. Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human nasopharyngeal mucosa, yet is commonly associated with opportunistic infections of the upper and lower respiratory tracts. An important aspect of NTHI virulence is the ability to avert bactericidal effects of host-derived antimicrobial peptides (AMPs). The Sap (sensitivity to antimicrobial peptides) ABC transporter equips NTHI to resist AMPs, although the mechanism of this resistance has remained undefined. We previously determined that the periplasmic binding protein SapA bound AMPs and was required for NTHI virulence in vivo. We now demonstrate, by antibody-mediated neutralization of AMP in vivo, that SapA functions to directly counter AMP lethality during NTHI infection. We hypothesized that SapA would deliver AMPs to the Sap inner membrane complex for transport into the bacterial cytoplasm. We observed that AMPs localize to the bacterial cytoplasm of the parental NTHI strain and were susceptible to cytoplasmic peptidase activity. In striking contrast, AMPs accumulated in the periplasm of bacteria lacking a functional Sap permease complex. These data support a mechanism of Sap mediated import of AMPs, a novel strategy to reduce periplasmic and inner membrane accumulation of these host defense peptides. The opportunistic pathogen Haemophilus influenzae is a normal inhabitant of the human nasopharynx, and is commonly implicated in respiratory tract infections, particularly of the middle ear (otitis media), sinuses, and lung (pneumonia, chronic obstructive pulmonary disease and cystic fibrosis). We have identified a multifunctional bacterial uptake system that is required for critical mechanisms of bacterial survival in the host. This Sap transporter system recognizes and transports host immune defense molecules and is involved in uptake of an iron-containing nutrient (heme) that is host-limited, yet required for bacterial growth and survival. We propose that bacteria utilize this, and likely other similar transport systems, for numerous functions that are important for bacterial survival in the host, including host immune evasion and metabolism. Our findings significantly advance our understanding of how single bacterial protein systems co-operate and coordinate multiple functions to equip bacteria to survive and cause disease in the hostile host environment. Our long-range goal is to block this uptake system thereby starving the bacterium of essential nutrients and also promoting clearance by the host immune response. Removal of this important bacterial survival mechanism will thwart the ability for Haemophilus to survive as a pathogen and thus decrease the incidence of disease development.
Collapse
Affiliation(s)
- Catherine L. Shelton
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, Ohio, United States of America
| | - Forrest K. Raffel
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, Ohio, United States of America
| | - Wandy L. Beatty
- Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sara M. Johnson
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, Ohio, United States of America
| | - Kevin M. Mason
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, Ohio, United States of America
- The Ohio State University College of Medicine, Department of Pediatrics, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
127
|
PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother 2011; 55:5761-9. [PMID: 21968359 DOI: 10.1128/aac.05391-11] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa can develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of polymyxin resistance (MICs of 8 to 64 mg/liter) in laboratory and clinical strains of this organism. To explore the role of PhoPQ in high-level clinical polymyxin resistance, P. aeruginosa strains with colistin MICs > 512 mg/liter that had been isolated from cystic fibrosis patients treated with inhaled colistin (polymyxin E) were analyzed. Probable loss-of-function phoQ alleles found in these cystic fibrosis strains conferred resistance to polymyxin. Partial and complete suppressor mutations in phoP were identified in some cystic fibrosis strains with resistance-conferring phoQ mutations, suggesting that additional loci can be involved in polymyxin resistance in P. aeruginosa. Disruption of chromosomal phoQ in the presence of an intact phoP allele stimulated 4-amino-l-arabinose addition to lipid A and induced transcription from the promoter of the pmrH (arnB) operon, consistent with the known role of this lipid A modification in polymyxin resistance. These results indicate that phoQ loss-of-function mutations can contribute to high-level polymyxin resistance in clinical strains of P. aeruginosa.
Collapse
|
128
|
Edrington TC, Kintz E, Goldberg JB, Tamm LK. Structural basis for the interaction of lipopolysaccharide with outer membrane protein H (OprH) from Pseudomonas aeruginosa. J Biol Chem 2011; 286:39211-23. [PMID: 21865172 DOI: 10.1074/jbc.m111.280933] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is a major nosocomial pathogen that infects cystic fibrosis and immunocompromised patients. The impermeability of the P. aeruginosa outer membrane contributes substantially to the notorious antibiotic resistance of this human pathogen. This impermeability is partially imparted by the outer membrane protein H (OprH). Here we have solved the structure of OprH in a lipid environment by solution NMR. The structure reveals an eight-stranded β-barrel protein with four extracellular loops of unequal size. Fast time-scale dynamics measurements show that the extracellular loops are disordered and unstructured. It was previously suggested that the function of OprH is to provide increased stability to the outer membranes of P. aeruginosa by directly interacting with lipopolysaccharide (LPS) molecules. Using in vivo and in vitro biochemical assays, we show that OprH indeed interacts with LPS in P. aeruginosa outer membranes. Based upon NMR chemical shift perturbations observed upon the addition of LPS to OprH in lipid micelles, we conclude that the interaction is predominantly electrostatic and localized to charged regions near both rims of the barrel, but also through two conspicuous tyrosines in the middle of the bilayer. These results provide the first molecular structure of OprH and offer evidence for multiple interactions between OprH and LPS that likely contribute to the antibiotic resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Thomas C Edrington
- Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
129
|
Pastelin-Palacios R, Gil-Cruz C, Pérez-Shibayama CI, Moreno-Eutimio MA, Cervantes-Barragán L, Arriaga-Pizano L, Ludewig B, Cunningham AF, García-Zepeda EA, Becker I, Alpuche-Aranda C, Bonifaz L, Gunn JS, Isibasi A, López-Macías C. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium. Immunology 2011; 133:469-81. [PMID: 21631497 PMCID: PMC3143358 DOI: 10.1111/j.1365-2567.2011.03459.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 03/31/2011] [Accepted: 05/06/2011] [Indexed: 02/06/2023] Open
Abstract
Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.
Collapse
Affiliation(s)
- Rodolfo Pastelin-Palacios
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre 'Siglo XXI', Mexican Social Security Institute, Mexico City
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Loutet SA, Valvano MA. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Front Cell Infect Microbiol 2011; 1:6. [PMID: 22919572 PMCID: PMC3417367 DOI: 10.3389/fcimb.2011.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, Ontario, Canada
| | | |
Collapse
|
131
|
Loutet SA, Valvano MA. Extreme antimicrobial Peptide and polymyxin B resistance in the genus burkholderia. Front Microbiol 2011; 2:159. [PMID: 21811491 PMCID: PMC3143681 DOI: 10.3389/fmicb.2011.00159] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 01/04/2023] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, ON, Canada
| | | |
Collapse
|
132
|
Koprivnjak T, Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 2011; 68:2243-54. [PMID: 21560069 PMCID: PMC11115334 DOI: 10.1007/s00018-011-0716-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/30/2022]
Abstract
Host defense peptides and proteins are important components of the innate host defense against pathogenic microorganisms. They target negatively charged bacterial surfaces and disrupt microbial cytoplasmic membranes, which ultimately leads to bacterial destruction. Throughout evolution, pathogens devised several mechanisms to protect themselves from deleterious damage of host defense peptides. These strategies include (a) inactivation and cleavage of host defense peptides by production of host defense binding proteins and proteases, (b) repulsion of the peptides by alteration of pathogen's surface charge employing modifications by amino acids or amino sugars of anionic molecules (e.g., teichoic acids, lipid A and phospholipids), (c) alteration of bacterial membrane fluidity, and (d) expulsion of the peptides using multi drug pumps. Together with bacterial regulatory network(s) that regulate expression and activity of these mechanisms, they represent attractive targets for development of novel antibacterials.
Collapse
Affiliation(s)
- Tomaz Koprivnjak
- Department of Biotechnology, National Institute of Chemistry Slovenia, Hajdrihova 19, 1000, Ljubljana, Slovenia,
| | | |
Collapse
|
133
|
Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2011; 193:4509-15. [PMID: 21725004 DOI: 10.1128/jb.00200-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many enteric bacteria use bile as an environmental cue to signal resistance and virulence gene expression. Microarray analysis of enterohemorrhagic Escherichia coli O157:H7 (EHEC) treated with bile salts revealed upregulation of genes for an efflux system (acrAB), a two-component signal transduction system (basRS/pmrAB), and lipid A modification (arnBCADTEF and ugd). Bile salt treatment of EHEC produced a basS- and arnT-dependent resistance to polymyxin.
Collapse
|
134
|
Analysis of the networks controlling the antimicrobial-peptide-dependent induction of Klebsiella pneumoniae virulence factors. Infect Immun 2011; 79:3718-32. [PMID: 21708987 DOI: 10.1128/iai.05226-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial peptides (APs) impose a threat to the survival of pathogens, and it is reasonable to postulate that bacteria have developed strategies to counteract them. Polymyxins are becoming the last resort to treat infections caused by multidrug-resistant Gram-negative bacteria and, similar to APs, they interact with the anionic lipopolysaccharide. Given that polymyxins and APs share the initial target, it is possible that bacterial defense mechanisms against polymyxins will be also effective against host APs. We sought to determine whether exposure to polymyxin will increase Klebsiella pneumoniae resistance to host APs. Indeed, exposure of K. pneumoniae to polymyxin induces cross-resistance not only to polymyxin itself but also to APs present in the airways. Polymyxin treatment upregulates the expression of the capsule polysaccharide operon and the loci required to modify the lipid A with aminoarabinose and palmitate with a concomitant increase in capsule and lipid A species containing such modifications. Moreover, these surface changes contribute to APs resistance and also to polymyxin-induced cross-resistance to APs. Bacterial loads of lipid A mutants in trachea and lungs of intranasally infected mice were lower than those of wild-type strain. PhoPQ, PmrAB, and the Rcs system govern polymyxin-induced transcriptional changes, and there is a cross talk between PhoPQ and the Rcs system. Our findings support the notion that Klebsiella activates a defense program against APs that is controlled by three signaling systems. Therapeutic strategies directed to prevent the activation of this program could be a new approach worth exploring to facilitate the clearance of the pathogen from the airways.
Collapse
|
135
|
A novel sensor kinase is required for Bordetella bronchiseptica to colonize the lower respiratory tract. Infect Immun 2011; 79:3216-28. [PMID: 21606184 DOI: 10.1128/iai.00005-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacterial virulence is influenced by the activity of two-component regulator systems (TCSs), which consist of membrane-bound sensor kinases that allow bacteria to sense the external environment and cytoplasmic, DNA-binding response regulator proteins that control appropriate gene expression. Respiratory pathogens of the Bordetella genus require the well-studied TCS BvgAS to control the expression of many genes required for colonization of the mammalian respiratory tract. Here we describe the identification of a novel gene in Bordetella bronchiseptica, plrS, the product of which shares sequence homology to several NtrY-family sensor kinases and is required for B. bronchiseptica to colonize and persist in the lower, but not upper, respiratory tract in rats and mice. The plrS gene is located immediately 5' to and presumably cotranscribed with a gene encoding a putative response regulator, supporting the idea that PlrS and the product of the downstream gene may compose a TCS. Consistent with this hypothesis, the PlrS-dependent colonization phenotype requires a conserved histidine that serves as the site of autophosphorylation in other sensor kinases, and in strains lacking plrS, the production and/or cellular localization of several immune-recognized proteins is altered in comparison to that in the wild-type strain. Because plrS is required for colonization and persistence only in the lower respiratory tract, a site where innate and adaptive immune mechanisms actively target infectious agents, we hypothesize that its role may be to allow Bordetella to resist the host immune response.
Collapse
|
136
|
Shirron N, Yaron S. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS One 2011; 6:e18855. [PMID: 21541320 PMCID: PMC3082535 DOI: 10.1371/journal.pone.0018855] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 03/22/2011] [Indexed: 11/18/2022] Open
Abstract
The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants.
Collapse
Affiliation(s)
- Natali Shirron
- Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Sima Yaron
- Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
137
|
NAKAZATO G, PAGANELLI F, LAGO J, AOKI F, MOBILON C, BROCCHI M, STEHLING E, SILVEIRA W. LACTOBACILLUS ACIDOPHILUS DECREASES SALMONELLA TYPHIMURIUM INVASION IN VIVO. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2011.00299.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
138
|
Loutet SA, Mussen LE, Flannagan RS, Valvano MA. A two-tier model of polymyxin B resistance in Burkholderia cenocepacia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:278-285. [PMID: 23761261 DOI: 10.1111/j.1758-2229.2010.00222.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Burkholderia cenocepacia is an environmental bacterium causing serious human opportunistic infections and is extremely resistant to multiple antibiotics including antimicrobial peptides, such as polymyxin B (PmB). Extreme antibiotic resistance is attributed to outer membrane impermeability ('intrinsic' resistance). Previous work showed that production of full-length lipopolysaccharide (LPS) prevents surface binding of PmB. We hypothesized that two tiers of resistance mechanisms rendering different thresholds of PmB resistance exist in B. cenocepacia. To test this notion, candidate genes were mutated in two isogenic strains expressing full-length LPS or truncated LPS devoid of heptose ('heptoseless LPS') respectively. We uncovered various proteins required for PmB resistance only in the strain with heptoseless LPS. These proteins are not involved in preventing PmB binding to whole cells or permeabilization of the outer membrane. Our results support a two-tier model of PmB resistance in B. cenocepacia. One tier sets a very high threshold mediated by the LPS and the outer membrane permeability barrier. The second tier sets a lower threshold that may play a role in PmB resistance only when outer membrane permeability is compromised. This model may be of general applicability to understanding the high antimicrobial peptide resistance of environmental opportunistic pathogens.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1 Department of Medicine, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | |
Collapse
|
139
|
Naghmouchi K, Belguesmia Y, Baah J, Teather R, Drider D. Antibacterial activity of class I and IIa bacteriocins combined with polymyxin E against resistant variants of Listeria monocytogenes and Escherichia coli. Res Microbiol 2011; 162:99-107. [DOI: 10.1016/j.resmic.2010.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/11/2010] [Indexed: 11/30/2022]
|
140
|
Weatherspoon-Griffin N, Zhao G, Kong W, Kong Y, Morigen, Andrews-Polymenis H, McClelland M, Shi Y. The CpxR/CpxA two-component system up-regulates two Tat-dependent peptidoglycan amidases to confer bacterial resistance to antimicrobial peptide. J Biol Chem 2010; 286:5529-39. [PMID: 21149452 DOI: 10.1074/jbc.m110.200352] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that the twin arginine translocation (Tat) system contributes to bacterial resistance to cationic antimicrobial peptides (CAMPs). Our results show that a deletion at the tatC gene, which encodes a subunit of the Tat complex, caused Salmonella and Escherichia coli to become susceptible to protamine. We screened chromosomal loci that encode known and predicted Tat-dependent proteins and found that two N-acetylmuramoyl-l-alanine amidases, encoded by amiA and amiC, elevated bacterial resistance to protamine and α-helical peptides magainin 2 and melittin but not to β-sheet defensin HNP-1 and lipopeptide polymyxin B. Genetic analysis suggests that transcription of both amiA and amiC loci in Salmonella is up-regulated by the CpxR/CpxA two-component system when nlpE is overexpressed. A footprinting analysis reveals that CpxR protein can interact with amiA and amiC promoters at the CpxR box, which is localized between the predicted -10 and -35 regions but present on different strands in these two genes. In addition, our results show that activation of the CpxR/CpxA system can facilitate protamine resistance because nlpE overexpression elevates this resistance in the wild-type strain but not the cpxR deletion mutant. Thus, we uncover a new transcriptional regulation pathway in which the Cpx envelope stress response system modulates the integrity of the cell envelope in part by controlling peptidoglycan amidase activity, which confers bacterial resistance to protamine and α-helical CAMPs. Our studies have important implications for understanding transcriptional regulation of peptidoglycan metabolism and also provide new insights into the role of the bacterial envelope in CAMP resistance.
Collapse
|
141
|
Lim LM, Ly N, Anderson D, Yang JC, Macander L, Jarkowski A, Forrest A, Bulitta JB, Tsuji BT. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy 2010; 30:1279-91. [PMID: 21114395 PMCID: PMC4410713 DOI: 10.1592/phco.30.12.1279] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colistin is a polymyxin antibiotic that was discovered in the late 1940s for the treatment of gram-negative infections. After several years of clinical use, its popularity diminished because of reports of significant nephrotoxicity and neurotoxicity. Recently, the antibiotic has resurfaced as a last-line treatment option for multidrug-resistant organisms such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. The need for antibiotics with coverage of these gram-negative pathogens is critical because of their high morbidity and mortality, making colistin a very important treatment option. Unfortunately, however, resistance to colistin has been documented among all three of these organisms in case reports. Although the exact mechanism causing colistin resistance has not been defined, it is hypothesized that the PmrA-PmrB and PhoP-PhoQ genetic regulatory systems may play a role. Colistin dosages must be optimized, as colistin is a last-line treatment option; in addition, suboptimal doses have been linked to the development of resistance. The lack of pharmacokinetic and pharmacodynamic studies and no universal harmonization of dose units, however, have made it difficult to derive optimal dosing regimens and specific dosing guidelines for colistin. In critically ill patients who may have multiorgan failure, renal insufficiency may alter colistin pharmacokinetics. Therefore, dosage alterations in this patient population are imperative to achieve maximal efficacy and minimal toxicity. With regard to colistin toxicity, most studies show that nephrotoxicity is reversible and less frequent than once thought, and neurotoxicity is rare. Further research is needed to fully understand the impact that the two regulatory systems have on resistance, as well as the dosages of colistin needed to inhibit and overcome these developing patterns.
Collapse
Affiliation(s)
- Lauren M Lim
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences Buffalo, and The New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Han X, Geng J, Zhang L, Lu T. The role of Escherichia coli YrbB in the lethal action of quinolones. J Antimicrob Chemother 2010; 66:323-31. [PMID: 21098540 DOI: 10.1093/jac/dkq427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To explore bacterial cellular factors that protect against the lethal effect of antimicrobial stress as potential targets of antimicrobial potentiators, the role of Escherichia coli YrbB in protecting cells from quinolone-mediated cell death was studied. METHODS A set of isogenic strains containing different mutations in stress response genes of E. coli was constructed by P1-mediated transduction. The susceptibility of these strains to the lethal action of quinolones was determined by measuring viable colony counts on agar plates after treatment with quinolones under various conditions. RESULTS A yrbB mutation rendered E. coli cells more susceptible to the lethal action of quinolones under conditions in which bacteriostatic susceptibility was unaffected. YrbB worked in both lethal pathways of quinolone action. Hydroxyl radical accumulation was required for nalidixic acid-mediated killing; however, in the absence of functional YrbB there was an additional mechanism through which nalidixic acid could kill cells independently of hydroxyl radical action. The E. coli chromosomal toxin-antitoxin system ChpB, but not the SOS system, was found to be involved in the hydroxyl radical-independent lethal mechanism. In addition, proteases ClpP and Lon were also involved in the action of YrbB. Besides quinolones, YrbB also played a protective role in cellular responses to other stressors, such as mitomycin C, ultraviolet light and hydrogen peroxide. CONCLUSIONS YrbB played a protective role in the lethal action of quinolones through a hydroxyl radical-independent and toxin-antitoxin-dependent mechanism, which makes it a potential target for antimicrobial enhancement.
Collapse
Affiliation(s)
- Xiulin Han
- Yunnan Institute of Microbiology, Yunnan University, 2 Cui Hu Bei Lu, Kunming, Yunnan 650091, China
| | | | | | | |
Collapse
|
143
|
Abstract
Salmonella enterica are Gram-negative enteric pathogens that cause typhoid fever and gastroenteritis in humans. Many bacteria, including Salmonella, use signal transduction cascades such as two-component regulatory systems to detect and respond to stimuli in the local microenvironment. During infection, environmental sensing allows bacteria to regulate gene expression to evade host immune defenses and thrive in vivo. Activation of the Salmonella two-component regulatory systems PhoP-PhoQ and PmrA-PmrB and the RcsC-RcsD-RcsB phosphorylay by specific environmental signals in the intestine and within host cells leads to several lipopolysaccharide modifications that promote bacterial survival, cationic antimicrobial peptide resistance and virulence. Many pathogens encode orthologs to Salmonella two-component regulatory systems and also modify the lipopolysaccharide to escape killing by the host immune response. However, these organisms often regulate their virulence genes, including those responsible for lipopolysaccharide modification, in ways that differ from Salmonella. Further examination of bacterial virulence gene regulation and lipopolysaccharide modifications may lead to improved antimicrobial therapies and vaccines.
Collapse
|
144
|
Latency of the lipid A deacylase PagL is involved in producing a robust permeation barrier in the outer membrane of Salmonella enterica. J Bacteriol 2010; 192:5837-40. [PMID: 20833808 DOI: 10.1128/jb.00758-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid A deacylase PagL, which detoxifies endotoxin, is latent in Salmonella enterica. This study determined the biological significance of this latency. PagL latency was beneficial for bacteria in producing a robust permeation barrier through lipid A modifications under host-mimetic conditions that induced the modification enzymes, including PagL.
Collapse
|
145
|
Abstract
Yersinia enterocolitica is an important human pathogen. Y. enterocolitica must adapt to the host environment, and temperature is an important cue regulating the expression of most Yersinia virulence factors. Here, we report that Y. enterocolitica 8081 serotype O:8 synthesized tetra-acylated lipid A at 37 degrees C but that hexa-acylated lipid A predominated at 21 degrees C. By mass spectrometry and genetic methods, we have shown that the Y. enterocolitica msbB, htrB, and lpxP homologues encode the acyltransferases responsible for the addition of C(12), C(14) and C(16:1), respectively, to lipid A. The expression levels of the acyltransferases were temperature regulated. Levels of expression of msbB and lpxP were higher at 21 degrees C than at 37 degrees C, whereas the level of expression of htrB was higher at 37 degrees C. At 21 degrees C, an lpxP mutant was the strain most susceptible to polymyxin B, whereas at 37 degrees C, an htrB mutant was the most susceptible. We present evidence that the lipid A acylation status affects the expression of Yersinia virulence factors. Thus, expression of flhDC, the flagellar master regulatory operon, was downregulated in msbB and lpxP mutants, with a concomitant decrease in motility. Expression of the phospholipase yplA was also downregulated in both mutants. inv expression was downregulated in msbB and htrB mutants, and consistent with this finding, invasion of HeLa cells was diminished. However, the expression of rovA, the positive regulator of inv, was not affected in the mutants. The levels of pYV-encoded virulence factors Yops and YadA in the acyltransferase mutants were not affected. Finally, we show that only the htrB mutant was attenuated in vivo.
Collapse
|
146
|
Reactogenicity and immunogenicity of live attenuated Salmonella enterica serovar Paratyphi A enteric fever vaccine candidates. Vaccine 2010; 28:3679-87. [PMID: 20338215 DOI: 10.1016/j.vaccine.2010.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/01/2010] [Accepted: 03/10/2010] [Indexed: 11/23/2022]
Abstract
Eight Salmonella enterica serovar Paratyphi A strains were screened as candidates to create a live attenuated paratyphoid vaccine. Based on biochemical and phenotypic criteria, four strains, RKS2900, MGN9772, MGN9773 and MGN9779, were selected as progenitors for the construction of DeltaphoPQ mutant derivatives. All strains were evaluated in vitro for auxotrophic phenotypes and sensitivity to deoxycholate and polymyxin B. All DeltaphoPQ mutants were more sensitive to deoxycholate and polymyxin B than their wild-type progenitors, however MGN10028, MGN10044 and MGN10048, required exogenous purine for optimal growth. Purine requiring strains had acquired point mutations in purB during strain construction. All four mutants were evaluated for reactogenicity and immunogenicity in an oral rabbit model. Three strains were reactogenic in a dose-dependent manner, while one strain, MGN10028, was well-tolerated at all doses administered. All DeltaphoPQ strains were immunogenic following a single oral dose. The in vitro profile coupled with the favorable reactogenicity and immunogenicity profiles render MGN10028 a suitable live attenuated Paratyphi A vaccine candidate.
Collapse
|
147
|
Protecting against antimicrobial effectors in the phagosome allows SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium. J Bacteriol 2010; 192:2140-9. [PMID: 20154132 DOI: 10.1128/jb.00016-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium replicates in macrophages, where it is subjected to antimicrobial substances, including superoxide, antimicrobial peptides, and proteases. The bacterium produces two periplasmic superoxide dismutases, SodCI and SodCII. Although both are expressed during infection, only SodCI contributes to virulence in the mouse by combating phagocytic superoxide. The differential contribution to virulence is at least partially due to inherent differences in the SodCI and SodCII proteins that are independent of enzymatic activity. SodCII is protease sensitive, and like other periplasmic proteins, it is released by osmotic shock. In contrast, SodCI is protease resistant and is retained within the periplasm after osmotic shock, a phenomenon that we term "tethering." We hypothesize that in the macrophage, antimicrobial peptides transiently disrupt the outer membrane. SodCII is released and/or phagocytic proteases gain access to the periplasm, and SodCII is degraded. SodCI is tethered within the periplasm and is protease resistant, thereby remaining to combat superoxide. Here we test aspects of this model. SodCII was released by the antimicrobial peptide polymyxin B or a mouse macrophage antimicrobial peptide (CRAMP), while SodCI remained tethered within the periplasm. A Salmonella pmrA constitutive mutant no longer released SodCII in vitro. Moreover, in the constitutive pmrA background, SodCII could contribute to survival of Salmonella during infection. SodCII also provided a virulence benefit in mice genetically defective in production of CRAMP. Thus, consistent with our model, protecting the outer membrane against antimicrobial peptides allows SodCII to contribute to virulence in vivo. These data also suggest direct in vivo cooperative interactions between macrophage antimicrobial effectors.
Collapse
|
148
|
Nakka S, Qi M, Zhao Y. The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems. Microbiol Res 2010; 165:665-73. [PMID: 20116983 DOI: 10.1016/j.micres.2009.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/23/2009] [Accepted: 11/28/2009] [Indexed: 01/17/2023]
Abstract
The PhoPQ system is a pleiotropic two-component signal transduction system that controls many pathogenic properties in several mammalian and plant pathogens. Three different cues have been demonstrated to activate the PhoPQ system including a mild acidic pH, antimicrobial peptides, and low Mg(2+). In this study, our results showed that phoPQ mutants were more resistant to strong acidic conditions (pH 4.5 or 5) than that of the wild-type (WT) strain, suggesting that this system in Erwinia amylovora may negatively regulate acid resistance gene expression. Furthermore, the PhoPQ system negatively regulated gene expression of two novel type III secretion systems in E. amylovora. These results are in contrast to those reported for the PhoPQ system in Salmonella and Xanthomonas, where it positively regulates type III secretion system and acid resistance. In addition, survival of phoPQ mutants was about 10-fold lower than that of WT when treated with cecropin A at pH 5.5, suggesting that the PhoPQ system renders the pathogen more resistant to cecropin A.
Collapse
Affiliation(s)
- Sridevi Nakka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201W. Gregory Dr., Urbana, IL 61801, USA
| | | | | |
Collapse
|
149
|
Salmonella enterica serovar Typhimurium can detect acyl homoserine lactone production by Yersinia enterocolitica in mice. J Bacteriol 2010; 192:29-37. [PMID: 19820103 DOI: 10.1128/jb.01139-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LuxR-type transcription factors detect acyl homoserine lactones (AHLs) and are typically used by bacteria to determine the population density of their own species. Escherichia coli and Salmonella enterica serovar Typhimurium cannot synthesize AHLs but can detect the AHLs produced by other bacterial species using the LuxR homolog, SdiA. Previously we determined that S. Typhimurium did not detect AHLs during transit through the gastrointestinal tract of a guinea pig, a rabbit, a cow, 5 mice, 6 pigs, or 12 chickens. However, SdiA was activated during transit through turtles colonized by Aeromonas hydrophila, leading to the hypothesis that SdiA is used for detecting the AHL production of other pathogens. In this report, we determined that SdiA is activated during the transit of S. Typhimurium through mice infected with the AHL-producing pathogen Yersinia enterocolitica. SdiA is not activated during transit through mice infected with a yenI mutant of Y. enterocolitica that cannot synthesize AHLs. However, activation of SdiA did not confer a fitness advantage in Yersinia-infected mice. We hypothesized that this is due to infrequent or short interactions between S. Typhimurium and Y. enterocolitica or that the SdiA regulon members do not function in mice. To test these hypotheses, we constructed an S. Typhimurium strain that synthesizes AHLs to mimic a constant interaction with Y. enterocolitica. In this background, sdiA(+) S. Typhimurium rapidly outcompetes the sdiA mutant in mice. All known members of the sdiA regulon are required for this phenotype. Thus, all members of the sdiA regulon are functional in mice.
Collapse
|
150
|
Lippa AM, Goulian M. Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS Genet 2009; 5:e1000788. [PMID: 20041203 PMCID: PMC2789325 DOI: 10.1371/journal.pgen.1000788] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/24/2009] [Indexed: 01/09/2023] Open
Abstract
The PhoQ/PhoP signaling system responds to low magnesium and the presence of certain cationic antimicrobial peptides. It regulates genes important for growth under these conditions, as well as additional genes important for virulence in many gram-negative pathogens. PhoQ is a sensor kinase that phosphorylates and activates the transcription factor PhoP. Since feedback inhibition is a common theme in stress-response circuits, we hypothesized that some members of the PhoP regulon may play such a role in the PhoQ/PhoP pathway. We therefore screened for PhoP-regulated genes that mediate feedback in this system. We found that deletion of mgrB (yobG), which encodes a 47 amino acid peptide, results in a potent increase in PhoP-regulated transcription. In addition, over-expression of mgrB decreased transcription at both high and low concentrations of magnesium. Localization and bacterial two-hybrid studies suggest that MgrB resides in the inner-membrane and interacts directly with PhoQ. We further show that MgrB homologs from Salmonella typhimurium and Yersinia pestis also repress PhoP-regulated transcription in these organisms. In cell regulatory circuits, feedback has been associated with modulating the induction kinetics and/or the cell-to-cell variability in response to stimulus. Interestingly, we found that elimination of MgrB-mediated feedback did not have a significant effect on the kinetics of reporter protein production and did not decrease the variability in expression among cells. Our results indicate MgrB is a broadly conserved membrane peptide that is a critical mediator of negative feedback in the PhoQ/PhoP circuit. This new regulator may function as a point of control that integrates additional input signals to modulate the activity of this important signaling system. The proteins PhoQ and PhoP comprise an environmental sensing system that has been extensively studied in numerous bacteria, including Salmonella typhimurium and Escherichia coli. The PhoQ/PhoP system is stimulated by conditions of low extracellular magnesium or the presence of certain cationic antimicrobial peptides; and it controls genes, whose protein products protect the cell under these conditions or play other critical roles in regulating the virulence of pathogens. The functions of many members of the PhoP regulon, however, remain uncharacterized. This leaves open the possibility that some PhoP-regulated genes may mediate feedback in this system. Regulatory circuits that allow adaptation to environmental change often make use of negative feedback to achieve the appropriate level of response. To look for negative feedback, we screened knockouts of PhoP-regulated genes in E. coli. We have identified a remarkably small membrane protein of just 47 amino acids that mediates potent negative feedback on the PhoQ/PhoP circuit in E. coli, S. typhimurium, Yersinia pestis, and likely other related bacteria. This represents a striking example of a small, easily-overlooked open reading frame that plays a critical role in regulating a broadly conserved signal transduction pathway.
Collapse
Affiliation(s)
- Andrew M. Lippa
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark Goulian
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|