101
|
Kaye JF, Lever AM. trans-acting proteins involved in RNA encapsidation and viral assembly in human immunodeficiency virus type 1. J Virol 1996; 70:880-6. [PMID: 8551627 PMCID: PMC189891 DOI: 10.1128/jvi.70.2.880-886.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The human immunodeficiency virus type 1 gag gene product Pr55gag self-assembles when expressed on its own in a variety of eukaryotic systems. Assembly in T lymphocytes has not previously been studied, nor is it clear whether Pr55gag particles can package genomic RNA or if the Gag-Pol polyprotein is required. We have used a series of constructs that express Gag or Gag-Pol proteins with or without the viral protease in transient transfections in COS-1 cells and also expressed stably in CD4+ T cells to study this. Deletion of the p6 domain at the C terminus of protease-negative Pr55gag did not abolish particle release, while truncation of the nucleocapsid protein reduced it significantly, particularly in lymphocytes. Gag-Pol polyprotein was released from T cells in the absence of Pr55gag but did not encapsidate RNA. Pr55gag encapsidated human immunodeficiency virus type 1 RNA whether expressed in a protease-positive or protease-negative context. p6 was dispensable for RNA encapsidation. Marked differences in the level of RNA export were noted between the different cell lines.
Collapse
Affiliation(s)
- J F Kaye
- Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
102
|
Arts EJ, Wainberg MA. Human immunodeficiency virus type 1 reverse transcriptase and early events in reverse transcription. Adv Virus Res 1996; 46:97-163. [PMID: 8824699 DOI: 10.1016/s0065-3527(08)60071-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- E J Arts
- McGill University AIDS Centre, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | |
Collapse
|
103
|
Srinivasakumar N, Hammarskjöld ML, Rekosh D. Characterization of deletion mutations in the capsid region of human immunodeficiency virus type 1 that affect particle formation and Gag-Pol precursor incorporation. J Virol 1995; 69:6106-14. [PMID: 7666514 PMCID: PMC189507 DOI: 10.1128/jvi.69.10.6106-6114.1995] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The core of human immunodeficiency virus type 1 is derived from two precursor polyproteins, Pr55gag and Pr160gag-pol. The Gag precursor can assemble into immature virus-like particles when expressed by itself, while the Gag-Pol precursor lacks particle-forming ability. We have shown previously that the Gag precursor is able to "rescue" the Gag-Pol precursor into virus-like particles when the two polyproteins are expressed in the same cell by using separate simian virus 40-based plasmid expression vectors. To understand this interaction in greater detail, we have made deletion mutations in the capsid-coding regions of Gag- and Gag-Pol-expressing plasmids and assayed for the abilities of these precursors to assemble into virus-like particles. When we tested the abilities of Gag-Pol precursors to be incorporated into particles of Gag by coexpressing the precursors, we found that mutant Gag-Pol precursors lacking a conserved region in retroviral capsid proteins, the major homology region (MHR), were excluded from wild-type Gag particles. Mutant precursors lacking MHR were also less efficient in processing the Gag precursor in trans. These results suggest that the MHR is critical for interactions between Gag and Gag-Pol molecules. In contrast to these results, expression of mutated Gag precursors alone showed that deletions in the capsid region, including those which removed the MHR, reduced the efficiency of particle formation by only 40 to 50%. The mutant particles, however, were clearly lighter than the wild type in sucrose density gradients. These results indicate that the requirements for Gag particle formation differ from the ones essential for efficient incorporation of the Gag-Pol precursor into these particles.
Collapse
Affiliation(s)
- N Srinivasakumar
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
104
|
Carrière C, Gay B, Chazal N, Morin N, Boulanger P. Sequence requirements for encapsidation of deletion mutants and chimeras of human immunodeficiency virus type 1 Gag precursor into retrovirus-like particles. J Virol 1995; 69:2366-77. [PMID: 7884882 PMCID: PMC188909 DOI: 10.1128/jvi.69.4.2366-2377.1995] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interacting domains in human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55gag) expressed in recombinant baculovirus-infected cells were investigated by three different methods: (i) trans rescue and coencapsidation of C-terminal deletion (amber) Gag mutants and Gag chimeras into retrovirus-like particles in complementation experiments with HIV-1 wild-type (WT) Pr55gag, (ii) Gag-Gag interactions in vitro in Gag ligand affinity blotting assays, and (iii) quantitative immunoelectron microscopy of retrovirus-like Gag particles, using a panel of monoclonal antibodies to probe the epitope accessibility of encapsidated HIV-1 WT Pr55gag. Four discrete regions, within residues 210 to 241, 277 to 306 (major homology region), and 307 to 333 in the capsid (CA) protein and residues 358 to 374 at the CA-spacer peptide 2 (sp2) junction, were found to have a significant influence on Gag trans-packaging efficiency. A fifth region, within residues 375 to 426, overlapping the sp2-nucleocapsid (NC) protein junction and most of the NC, seemed to be essential for stable inter-Gag binding in vitro. The coincidence of the two regions from 358 to 374 and 375 to 426 with an immunologically silent domain in WT Gag particles suggested that they could participate in direct Gag interactions.
Collapse
Affiliation(s)
- C Carrière
- Faculté de Médecine, Laboratoire de Virologie et Pathogénèse Moléculaires (CNRS URA-1487), Montpellier, France
| | | | | | | | | |
Collapse
|
105
|
Chazal N, Gay B, Carrière C, Tournier J, Boulanger P. Human immunodeficiency virus type 1 MA deletion mutants expressed in baculovirus-infected cells: cis and trans effects on the Gag precursor assembly pathway. J Virol 1995; 69:365-75. [PMID: 7983731 PMCID: PMC188584 DOI: 10.1128/jvi.69.1.365-375.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The role of the matrix protein (MA) of human immunodeficiency virus type 1 in intracellular transport, assembly, and extracellular release of Gag polyprotein precursor (Pr55gag) was investigated by deletion mutagenesis of the MA domain of recombinant Gag precursor expressed in baculovirus-infected cells. In addition, three carboxy-terminally truncated forms of the Gag precursor, representing mainly the MA, were constructed. One corresponded to an MA with a deletion of its last 12 residues (amb120), while the others corresponded to the entire MA with an additional sequence from the N-terminal portion of the CA (amb143 and och180). Deletions within the MA central region (residues 41 to 78) appeared to be detrimental to Gag particle assembly and budding from the plasma membrane. A slightly narrower domain, between amino acids 41 and 68, was found to be critical for soluble Gag secretion. Mutations which totally or partially deleted one or the other of the two polybasic signals altered the transport of N-myristylated Gag precursor to the plasma membrane. In coexpression with wild-type Gag precursor, a discrete trans-dominant negative effect on wild-type Gag particle assembly and release was observed with deletion mutants located in the central MA region (residues 41 to 78). A more significant negative effect was obtained with the two recombinant proteins of amb120 and och180, which redirected the Gag particle assembly pathway from the plasma membrane compartment to intracellular vesicles (amb120) and to the nuclear compartment (och180).
Collapse
Affiliation(s)
- N Chazal
- Laboratoire de Virologie et Pathogénèse Moléculaires, CNRS URA-1487, Faculté de Médecine, Montpellier, France
| | | | | | | | | |
Collapse
|
106
|
Franke EK, Luban J. Cyclophilin and gag in HIV-1 replication and pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 374:217-28. [PMID: 7572395 DOI: 10.1007/978-1-4615-1995-9_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E K Franke
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
107
|
Morrow CD, Park J, Wakefield JK. Viral gene products and replication of the human immunodeficiency type 1 virus. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C1135-56. [PMID: 8203479 DOI: 10.1152/ajpcell.1994.266.5.c1135] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The acquired immunodeficiency syndrome (AIDS) epidemic represents a modern-day plague that has not only resulted in a tragic loss of people from a wide spectrum of society but has reshaped our viewpoints regarding health care, the treatment of infectious diseases, and social issues regarding sexual behavior. There is little doubt now that the cause of the disease AIDS is a virus known as the human immunodeficiency virus (HIV). The HIV virus is a member of a large family of viruses termed retroviruses, which have as a hallmark the capacity to convert their RNA genome into a DNA form that then undergoes a process of integration into the host cell chromosome, followed by the expression of the viral genome and translation of viral proteins in the infected cell. This review describes the organization of the HIV-1 viral genome, the expression of viral proteins, as well as the functions of the accessory viral proteins in HIV replication. The replication of the viral genome is divided into two phases, the early phase and the late phase. The early phase consists of the interaction of the virus with the cell surface receptor (CD4 molecule in most cases), the uncoating and conversion of the viral RNA genome into a DNA form, and the integration into the host cell chromosome. The late phase consists of the expression of the viral proteins from the integrated viral genome, the translation of viral proteins, and the assembly and release of the virus. Points in the HIV-1 life cycle that are targets for therapeutic intervention are also discussed.
Collapse
Affiliation(s)
- C D Morrow
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | |
Collapse
|
108
|
Zhou W, Parent LJ, Wills JW, Resh MD. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol 1994; 68:2556-69. [PMID: 8139035 PMCID: PMC236733 DOI: 10.1128/jvi.68.4.2556-2569.1994] [Citation(s) in RCA: 445] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviral Gag proteins are targeted to the plasma membrane, where they play the central role in virion formation. Several studies have suggested that the membrane-binding signal is contained within the amino-terminal matrix sequence; however, the precise location has never been determined for the Gag protein of any retrovirus. In this report, we show that the first 31 residues of human immunodeficiency virus type 1 Gag protein can function independently as a membrane-targeting domain when fused to heterologous proteins. A bipartite membrane-targeting motif was identified, consisting of the myristylated N-terminal 14 amino acids and a highly basic region that binds acidic phospholipids. Replacement of the N-terminal membrane-targeting domain of pp60v-src with that of human immunodeficiency virus type 1 Gag elicits efficient membrane binding and a transforming phenotype. Removal of myristate or the basic region results in decreased membrane binding of Gag-Src chimeras in vitro and impaired virion formation by Pr55gag in vivo. We propose that the N-terminal Gag sequence functions as a targeting signal to direct interaction with acidic phospholipids on the cytoplasmic leaflet of the plasma membrane.
Collapse
Affiliation(s)
- W Zhou
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | | | | | |
Collapse
|
109
|
Darke PL, Huff JR. HIV protease as an inhibitor target for the treatment of AIDS. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 25:399-454. [PMID: 8204507 DOI: 10.1016/s1054-3589(08)60438-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P L Darke
- Department of Biological Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486
| | | |
Collapse
|
110
|
Yuan X, Yu X, Lee TH, Essex M. Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J Virol 1993; 67:6387-94. [PMID: 8411340 PMCID: PMC238073 DOI: 10.1128/jvi.67.11.6387-6394.1993] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The matrix domain of human immunodeficiency virus type 1 Gag polyprotein was studied for its role in virus assembly. Deletion and substitution mutations caused a dramatic reduction in virus production. Mutant Gag polyproteins were myristoylated and had a high affinity for membrane association. Immunofluorescence staining revealed a large accumulation of mutant Gag precursors in the cytoplasm, while wild-type Gag proteins were primarily associated with the cell surface membrane. These results suggest a defect in intracellular transport of the mutant Gag precursors. Thus, in addition to myristoylation, the N-terminal region of the matrix domain is involved in determining Gag protein transport to the plasma membrane. Wild-type Gag polyproteins interacted with and efficiently packaged mutant Gag into virions. This finding is consistent with the hypothesis that intermolecular interaction of Gag polyproteins might occur in the cytoplasm prior to being transported to the assembly site on the plasma membrane.
Collapse
Affiliation(s)
- X Yuan
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
111
|
Porter DC, Ansardi DC, Lentz MR, Morrow CD. Expression of poliovirus P3 proteins using a recombinant vaccinia virus results in proteolytically active 3CD precursor protein without further processing to 3Cpro and 3Dpol. Virus Res 1993; 29:241-54. [PMID: 8237109 DOI: 10.1016/0168-1702(93)90064-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The expression of the poliovirus genome occurs by the translation of a single open reading frame to generate a long polyprotein which is subsequently processed by viral encoded proteases. The initial proteolytic cleavages result in the production of a P1 polyprotein which contains the capsid proteins, and the P2 and P3 polyproteins which contain proteins required for replication. The P3 polyprotein consists of the 3AB protein (containing the viral genome-linked protein, VPg), the viral protease, 3Cpro, and RNA polymerase, 3Dpol. To further study the expression and proteolytic processing of poliovirus P3 proteins in vivo, we have utilized recombinant vaccinia virus vectors to express nucleotides 5240-7400 containing the P3 region proteins of poliovirus. The P3 protein expressed from the recombinant vaccinia virus VV-P3 exhibited in vivo proteolytic activity as evident by processing of the polyprotein to generate the 3CD protein, consisting of a fusion between the 3Cpro and 3Dpol proteins. Further processing of the 3CD protein to 3Cpro and 3Dpol, however, was not detected in cells infected with VV-P3. Subcellular fractionation of VV-P3-infected cells demonstrated that the 3CD protein was present in both the soluble and membrane fractions. Finally, the 3CD protein expressed from VV-P3 was stable in cells co-infected with VV-P3 and poliovirus and no further processing to 3Dpol was detected. These results are discussed with regards to in vivo studies which suggest that the 3CD polyprotein is not a precursor to 3Dpol in poliovirus-infected cells.
Collapse
Affiliation(s)
- D C Porter
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | | | |
Collapse
|