101
|
Nussbaum O, Broder CC, Berger EA. Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J Virol 1994; 68:5411-22. [PMID: 8057423 PMCID: PMC236941 DOI: 10.1128/jvi.68.9.5411-5422.1994] [Citation(s) in RCA: 301] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The fusogenic activities of enveloped-virus glycoproteins were analyzed by using a quantitative, sensitive, rapid, and highly versatile recombinant vaccinia virus-based assay measuring activation of a reporter gene upon fusion of two distinct cell populations. One population uniformly expressed vaccinia virus-encoded viral glycoproteins mediating specific binding and fusion activities; the other expressed the corresponding cellular receptor(s). The cytoplasm of one population also contained vaccinia virus-encoded bacteriophage T7 RNA polymerase; the cytoplasm of the other contained a transfected plasmid with the Escherichia coli lacZ gene linked to the T7 promoter. When the two populations were mixed, cell fusion resulted in activation of the LacZ gene in the cytoplasm of the fused cells; beta-galactosidase activity was assessed by colorimetric assay of detergent cell lysates or by in situ staining. We applied this approach to study the human immunodeficiency virus type 1 envelope glycoprotein (Env)-CD4 interaction. Beta-Galactosidase was detected within 1 h after cell mixing and accumulated over the next several hours. Cell fusion dependence was demonstrated by the strict requirement for both CD4 and functional Env expression and by the inhibitory effects of known fusion-blocking monoclonal antibodies and pharmacological agents. Quantitative measurements indicated much higher sensitivity compared with analysis of syncytium formation. The assay was used to probe mechanisms of the cell type specificity for Env-CD4-mediated fusion. In agreement with known restrictions, cell fusion occurred only when CD4 was expressed on a human cell type. Membrane vesicle transfer experiments indicated that CD4 initially produced in either human or nonhuman cells was functional when delivered to human cells, suggesting that the fusion deficiency with nonhuman cells was not associated with irreversible defects in CD4. We also demonstrated that the infectivity specificities of different human immunodeficiency virus type 1 isolates for peripheral blood lymphocytes versus continuous CD4+ cell lines were associated with corresponding fusion selectivities of the respective recombinant Env proteins. The assay enabled analysis of the fusogenic activity of the fusion glycoprotein/hemagglutinin-neuraminidase of the paramyxovirus simian virus 5. This system provides a powerful tool to study fusion mechanisms mediated by enveloped-virus glycoproteins, as well as to screen fusion-blocking antibodies and pharmacological agents.
Collapse
Affiliation(s)
- O Nussbaum
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
102
|
Broder CC, Nussbaum O, Gutheil WG, Bachovchin WW, Berger EA. CD26 antigen and HIV fusion? Science 1994; 264:1156-9; author reply 1162-5. [PMID: 7909959 DOI: 10.1126/science.7909959] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
103
|
|
104
|
Mayaux JF, Bousseau A, Pauwels R, Huet T, Hénin Y, Dereu N, Evers M, Soler F, Poujade C, De Clercq E. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells. Proc Natl Acad Sci U S A 1994; 91:3564-8. [PMID: 8170948 PMCID: PMC43620 DOI: 10.1073/pnas.91.9.3564] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A series of triterpene compounds characterized by a stringent structure-activity relationship were identified as potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) replication. Currently studied botulinic derivatives have 50% inhibitory concentrations (IC50) against HIV-1 strain IIIB/LAI in the 10 nM range in several cellular infection assays but are inactive against HIV-2. These compounds did not significantly inhibit the in vitro activities of several purified HIV-1 enzymes. Rather, they appeared to block virus infection at a postbinding, envelope-dependent step involved in the fusion of the virus to the cell membrane.
Collapse
Affiliation(s)
- J F Mayaux
- Rhône Poulenc Rorer S.A., Centre de Recherche de Vitry-Alfortville, Vitry Sur Seine, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Kabat D, Kozak SL, Wehrly K, Chesebro B. Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. J Virol 1994; 68:2570-7. [PMID: 8139036 PMCID: PMC236734 DOI: 10.1128/jvi.68.4.2570-2577.1994] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD4 is known to be an important receptor for human immunodeficiency virus type 1 (HIV-1) infection of T lymphocytes and macrophages. However, the limiting steps in CD4-dependent HIV-1 infections in vivo and in vitro are poorly understood. To address this issue, we produced a panel of HeLa-CD4 cell clones that express widely different amounts of CD4 and quantitatively analyzed their infection by laboratory-adapted and primary patient HIV-1 isolates. For all HIV-1 isolates, adsorption from the medium onto HeLa-CD4 cells was inefficient and appeared to be limiting for infection in the conditions of our assays. Adsorption of HIV-1 onto CD4-positive peripheral blood mononuclear cells was also inefficient. Moreover, there was a striking difference between laboratory-adapted and primary T-cell-tropic HIV-1 isolates in the infectivity titers detected on different HeLa-CD4 cells. Laboratory-adapted HIV-1 isolates infected all HeLa-CD4 cell clones with equal efficiencies regardless of the levels of CD4, whereas primary HIV-1 isolates infected these clones in direct proportion to cellular CD4 expression. Our interpretation is that for laboratory-adapted isolates, a barrier step that preceeds CD4 encounter was limiting and the subsequent CD4-dependent virus capture process was highly efficient, even at very low cell surface concentrations. In contrast, for primary HIV-1 isolates, the CD4-dependent steps appeared to be much less efficient. We conclude that primary isolates of HIV-1 infect inefficiently following contact with surfaces of CD4-positive cells, and we propose that this confers a selective disadvantage during passage in rapidly dividing leukemia cell lines. Conversely, in vivo selective pressure appears to favor HIV-1 strains that require large amounts of CD4 for infection.
Collapse
Affiliation(s)
- D Kabat
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098
| | | | | | | |
Collapse
|
106
|
Golding H, Manischewitz J, Vujcic L, Blumenthal R, Dimitrov DS. The phorbol ester phorbol myristate acetate inhibits human immunodeficiency virus type 1 envelope-mediated fusion by modulating an accessory component(s) in CD4-expressing cells. J Virol 1994; 68:1962-9. [PMID: 7906314 PMCID: PMC236659 DOI: 10.1128/jvi.68.3.1962-1969.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phorbol ester phorbol myristate acetate (PMA) strongly inhibits human immunodeficiency virus type 1 (HIV-1)-induced syncytium formation; it has been suggested that this inhibitory effect is due to the transient downmodulation of the surface-associated CD4 receptors by PMA (I. H. Chowdhury, Y. Koyanagi, S. Kobayashi, Y. Hamamoto, H. Yoshiyama, T. Yoshida, and N. Yamamoto, Virology 176:126-132, 1990). Surprisingly, PMA treatment of cells expressing truncated (A2.01.CD4.401) and hybrid (A2.01.CD4.CD8) CD4 molecules, which are not downmodulated (P. Bedinger, A. Moriarty, R. C. von Borstel II, N. J. Donovan, K. S. Steimer, and D. R. Littman, Nature [London] 334:162-165, 1988), inhibited their fusion with CD4- (12E1) cells expressing vaccinia virus-encoded HIV-1 envelope glycoprotein (gp120-gp41) and with chronically HIV-1-infected H9 (MN, IIIB, or RF) cells. PMA pretreatment of T (12E1) and non-T (HeLa, U937.3, and Epstein-Barr virus-transformed B) cell lines expressing vaccinia virus-encoded CD4 also blocked fusion with 12E1 cells expressing vaccinia virus-encoded gp120-gp41. Interestingly, pretreatment of the gp120-gp41-expressing 12E1 cells with PMA did not alter their fusion with untreated CD4-expressing cells. Although the inhibitory effect of PMA was rapid and treatment for 1.5 h with 5 ng of PMA per ml was sufficient to reduce fusion by more than 50%, the recovery after treatment was slow and more than 40 h was needed before the cells regained half of their fusion potential. The inhibitory effect of PMA was blocked by staurosporine in a dose-dependent fashion, suggesting that it is mediated by protein kinase C. PMA treatment of A2.01.CD4.401 cells reduced the number of infected cells 6.7-fold, as estimated by a quantitative analysis of the HIV-1 MN infection kinetics, probably by affecting the stage of virus entry into cells. CD26 surface expression was not significantly changed by PMA treatment. We conclude that PMA inhibits the CD4-gp120-gp41-mediated fusion by modulating an accessory component(s), different from CD26, in the target CD4-expressing cells. These findings suggest a novel approach for identification of accessory molecules involved in fusion and may have implications for the development of antiviral agents.
Collapse
Affiliation(s)
- H Golding
- Division of Virology, CBER, Food and Drug Administration, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
107
|
Agadjanyan MG, Ugen KE, Wang B, Williams WV, Weiner DB. Identification of an 80-kilodalton membrane glycoprotein important for human T-cell leukemia virus type I and type II syncytium formation and infection. J Virol 1994; 68:485-93. [PMID: 8254759 PMCID: PMC236309 DOI: 10.1128/jvi.68.1.485-493.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human T-cell leukemia virus type I and type II (HTLV-I and HTLV-II, respectively) infect certain sublines of the BJAB human B-cell line. We observed that the WH subline, but not the CC/84 subline, of BJAB cells were infectible by cell-free HTLV-I or HTLV-II and formed syncytia with cells infected by these retroviruses. This suggests that the BJAB-CC/84 cells possibly lack a membrane molecule(s) important for syncytium formation and infectibility. In order to identify this antigen, we generated polyclonal anti-BJAB-WH antisera which were adsorbed on BJAB-CC/84 cells. The adsorbed antisera bound only BJAB-WH and BJAB-CC/79 cells as demonstrated by complement-dependent cytotoxicity and flow cytometric assays. Furthermore, this adsorbed antisera bound several human T-cell clones, including SupT-1, as determined by flow cytometric assays. The adsorbed antiserum was monospecific as it immunoprecipitated only one 78- to 80-kDa protein from lysates of metabolically labeled BJAB-WH, BJAB-CC/79, and SupT-1, but not BJAB-CC/84, cells. The monospecific antisera detected a glycoprotein composed of a 64- to 66-kDa core protein containing tunicamycin-sensitive N-linked oligosaccharides. This membrane glycoprotein appears to be involved in HTLV-I- and HTLV-II-induced fusion and infection, as the monospecific antisera were capable of inhibiting both of these processes. The monospecific antisera diluted 1:50 and 1:90 inhibited 85 to 90% of syncytium formation induced in BJAB-WH, BJAB-CC/79, and SupT-1 cells cultured with HTLV-I- or HTLV-II-infected MT2, MoT, or FLW human T- or B-cell lines. At the same dilution, antisera inhibited 70 to 80% of infection of BJAB-WH cells by cell-free HTLV-I or HTLV-II. Thus, these studies indicate a role for a 78- to 80-kDa glycoprotein in HTLV-I or HTLV-II infection and syncytium formation.
Collapse
Affiliation(s)
- M G Agadjanyan
- Department of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | |
Collapse
|
108
|
Callebaut C, Krust B, Jacotot E, Hovanessian AG. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science 1993; 262:2045-50. [PMID: 7903479 DOI: 10.1126/science.7903479] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The CD4 molecule is essential for binding HIV particles, but is not sufficient for efficient viral entry and infection. The cofactor was shown to be dipeptidyl peptidase IV (DPP IV), also known as CD26. This serine protease cleaves its substrates at specific motifs; such motifs area also highly conserved in the V3 loops of HIV-1, HIV-2, and related simian isolates. Entry of HIV-1 or HIV-2 into T lymphoblastoid and monocytoid cell lines was inhibited by a specific monoclonal antibody against DPP IV or specific peptide inhibitors of this protease. Coexpression of human CD4 and CD26 in murine NIH 3T3 cells rendered them permissive to infection by HIV-1 and HIV-2. These observations could provide the basis for developing simple and specific inhibitors of HIV and open a possibility for vaccine development.
Collapse
Affiliation(s)
- C Callebaut
- Unité de Virologie et Immunologie Cellulaire, UA CNRS, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
109
|
Ramarli D, Cambiaggi C, De Giuli Morghen C, Tripputi P, Ortolani R, Bolzanelli M, Tridente G, Accolla RS. Susceptibility of human-mouse T cell hybrids to HIV-productive infection. AIDS Res Hum Retroviruses 1993; 9:1269-75. [PMID: 8142144 DOI: 10.1089/aid.1993.9.1269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Interspecies human x mouse cell hybrids were used to investigate the genetic basis of human permissivity to HTLV-IIIB infection. T cell hybrids between the mouse BW 51.47 T lymphoma line and normal, PHA-IL-2 activated, human peripheral mononuclear cells (PBMCs) were generated. These hybrids preferentially segregated human chromosomes, as assessed by phenotype and karyotype analysis. Viral integration occurred only in those hybrids expressing CD4+ at the cell surface. However, infectious progeny production was demonstrated only in two of the three CD4+ hybrids tested. By segregation analysis, we could correlate the absence of human chromosomes 1, 3, and 9 with the lack of infectious viral progeny.
Collapse
Affiliation(s)
- D Ramarli
- Istituto di Immunologia e Malattie Infettive, Università di Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Signoret N, Poignard P, Blanc D, Sattentau QJ. Human and simian immunodeficiency viruses: virus-receptor interactions. Trends Microbiol 1993; 1:328-33. [PMID: 8162421 DOI: 10.1016/0966-842x(93)90072-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The major cellular receptor for the primate immunodeficiency viruses is the CD4 molecule. As well as mediating virion attachment to the cell surface, CD4 is thought to activate the viral fusion pathway. CD4 is not, however, sufficient for viral entry; other molecules are probably involved, and in certain circumstances these may substitute for CD4. Viral tropism and cytopathogenicity are also influenced by receptor interactions.
Collapse
Affiliation(s)
- N Signoret
- Centre d'Immunologie de Marseille-Luminy, France
| | | | | | | |
Collapse
|
111
|
Golding H, Blumenthal R, Manischewitz J, Littman DR, Dimitrov DS. Cell fusion mediated by interaction of a hybrid CD4.CD8 molecule with the human immunodeficiency virus type 1 envelope glycoprotein does occur after a long lag time. J Virol 1993; 67:6469-75. [PMID: 8411350 PMCID: PMC238083 DOI: 10.1128/jvi.67.11.6469-6475.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Several domains of CD4 have been suggested to play a critical role in events that follow its binding to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120-gp41). It has been reported previously that cells expressing a chimeric molecule consisting of the first 177 residues of human CD4 attached to residues from the hinge, transmembrane, and cytoplasmic domains of human CD8 did not form syncytia with HIV-1-infected cells (L. Poulin, L.A. Evans, S. Tang, A. Barboza, H. Legg, D.R. Littman, and J.A. Levy, J. Virol. 65: 4893-4901, 1991). In contrast, we found that the hybrid CD4.CD8 molecule expressed in human cells did render them susceptible to fusion with cells expressing HIV-1IIIB or HIV-1RF envelope glycoproteins encoded by vaccinia virus recombinants, but only after long lag times. The lag time of membrane fusion mediated by the hybrid CD4.CD8 molecule was fivefold longer than that for the wild-type CD4 molecule. However, the rate of binding to and the affinity of soluble gp120 for membrane-associated CD4.CD8 were the same as for CD4. Both molecules were laterally mobile, as determined by patching experiments. Coexpression of the CD4.CD8 chimera with wild-type CD4 did not lead to interference in fusion but had an additive effect. Therefore, the proximal membrane domains of CD4 play an important role in determining the kinetics of postbinding events leading to membrane fusion. We hypothesize that the long lag time is due to the inability of the CD4.CD8-gp120-gp41 complex to undergo the rapid conformational changes which occur during the fusion mediated by wild-type CD4.
Collapse
Affiliation(s)
- H Golding
- Division of Virology, Food and Drug Administration, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
112
|
Clapham P, McKnight A, Simmons G, Weiss R. Is CD4 sufficient for HIV entry? Cell surface molecules involved in HIV infection. Philos Trans R Soc Lond B Biol Sci 1993; 342:67-73. [PMID: 7904349 DOI: 10.1098/rstb.1993.0137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-1, HIV-2 and SIV each bind to CD4 as the first step in virus entry. However, alternative receptors may also be used. HIV-1 binds to glycolipids with terminal galactosylceramide residues on neural cells; opsonized virus binds to Fc receptors; HIV-2 can infect certain CD4-negative cells. Further receptors may also play a role in CD4-mediated infection, including cell adhesion molecules and possibly cell surface proteinases. After binding to CD4, immunodeficiency viruses require secondary molecules to effect fusion between the virus envelope and the cell membrane; these accessory requirements differ between HIV-1, HIV-2 and SIV.
Collapse
Affiliation(s)
- P Clapham
- Chester Beatty Laboratories, Institute of Cancer Research, London, U.K
| | | | | | | |
Collapse
|
113
|
Harrington RD, Geballe AP. Cofactor requirement for human immunodeficiency virus type 1 entry into a CD4-expressing human cell line. J Virol 1993; 67:5939-47. [PMID: 7690415 PMCID: PMC238014 DOI: 10.1128/jvi.67.10.5939-5947.1993] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of the human immunodeficiency virus type 1 (HIV-1) receptor CD4 on many nonhuman and some human cell lines is not sufficient to permit HIV-1 infection. We describe a human glioblastoma cell line (U373-MG) which remains resistant to HIV-1 despite the added expression of an authentic CD4 molecule. The block to HIV-1 infection of these cells is strain independent and appears to be at viral entry. Heterokaryons of CD4-expressing U373-MG (U373-CD4) cells fused to HeLa cells allow HIV-1 entry. A U373-CD4/HeLa hybrid clone allows efficient HIV-1 replication. These results suggest that HeLa cells express a factor(s) that can complement the viral entry defect of U373-CD4 cells and is necessary for efficient CD4-mediated HIV-1 infection.
Collapse
Affiliation(s)
- R D Harrington
- Department of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104-2092
| | | |
Collapse
|
114
|
|
115
|
Allaway GP, Ryder AM, Beaudry GA, Maddon PJ. Synergistic inhibition of HIV-1 envelope-mediated cell fusion by CD4-based molecules in combination with antibodies to gp120 or gp41. AIDS Res Hum Retroviruses 1993; 9:581-7. [PMID: 8369162 DOI: 10.1089/aid.1993.9.581] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
CD4-based molecules were tested in combination with HIV-1-neutralizing antibodies directed against the V3 loop of gp120 or against gp41, for inhibition of HIV-1 envelope-mediated cell fusion. A virus-free cell fusion assay was developed, using Chinese hamster ovary cells that stably express HIV-1 gp120/gp41. These cells were incubated with dilutions of CD4-based molecules, antibodies, or mixtures of both, then overlaid with C8166 CD4+ T cells. Syncytia were counted and the degree of inhibition of cell fusion was determined. Synergy, additivity, or antagonism was calculated by the combination index (CI) method. The CD4-based molecules included soluble human CD4 as well as fusion proteins composed of CD4 linked to human immunoglobulin gamma 1 or gamma 2 heavy chains. Combinations of CD4-based molecules and monoclonal or polyclonal anti-V3 loop antibodies were synergistic in blocking HIV-1 envelope-mediated cell fusion (CI = 0.21-0.91 at 95% inhibition). Synergy was also observed with combinations of the CD4-based molecules and a broadly neutralizing anti-gp41 monoclonal antibody (2F5) (CI = 0.29-0.65 at 95% inhibition). These results demonstrate that molecules inhibiting HIV attachment act synergistically with molecules inhibiting HIV-1 fusion. The results suggest that CD4-based therapeutics would be more effective in patients with naturally occurring anti-V3 loop or anti-gp41 antibodies. In addition, there may be an advantage in coadministering CD4-based molecules and antibodies that block fusion, especially broadly neutralizing anti-gp41 antibodies, as a combination therapy for HIV-1 infections.
Collapse
Affiliation(s)
- G P Allaway
- Progenics Pharmaceuticals, Inc., Tarrytown, New York 10591
| | | | | | | |
Collapse
|
116
|
Dragic T, Alizon M. Different requirements for membrane fusion mediated by the envelopes of human immunodeficiency virus types 1 and 2. J Virol 1993; 67:2355-9. [PMID: 8095307 PMCID: PMC240396 DOI: 10.1128/jvi.67.4.2355-2359.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CD4+ cells derived from the human cell lines U87MG and SCL1 cannot be infected by human immunodeficiency virus type 1 (HIV-1) or fuse with cells expressing the HIV-1 envelope. This block was complemented in heterokaryons with HeLa cells and probably reflects the absence of cellular factors necessary for membrane fusion. Since U87MG cells expressing CD4 are permissive to HIV-2, distinct cellular factors could be required for fusion mediated by two related human retroviruses.
Collapse
Affiliation(s)
- T Dragic
- Institut National de la Santé et de la Recherche Médicale U332, Institut Cochin de Génétique Moléculaire, Paris, France
| | | |
Collapse
|
117
|
Abstract
The lentivirus human immunodeficiency virus (HIV) causes AIDS by interacting with a large number of different cells in the body and escaping the host immune response against it. HIV is transmitted primarily through blood and genital fluids and to newborn infants from infected mothers. The steps occurring in infection involve an interaction of HIV not only with the CD4 molecule on cells but also with other cellular receptors recently identified. Virus-cell fusion and HIV entry subsequently take place. Following virus infection, a variety of intracellular mechanisms determine the relative expression of viral regulatory and accessory genes leading to productive or latent infection. With CD4+ lymphocytes, HIV replication can cause syncytium formation and cell death; with other cells, such as macrophages, persistent infection can occur, creating reservoirs for the virus in many cells and tissues. HIV strains are highly heterogeneous, and certain biologic and serologic properties determined by specific genetic sequences can be linked to pathogenic pathways and resistance to the immune response. The host reaction against HIV, through neutralizing antibodies and particularly through strong cellular immune responses, can keep the virus suppressed for many years. Long-term survival appears to involve infection with a relatively low-virulence strain that remains sensitive to the immune response, particularly to control by CD8+ cell antiviral activity. Several therapeutic approaches have been attempted, and others are under investigation. Vaccine development has provided some encouraging results, but the observations indicate the major challenge of preventing infection by HIV. Ongoing research is necessary to find a solution to this devastating worldwide epidemic.
Collapse
Affiliation(s)
- J A Levy
- Department of Medicine, University of California School of Medicine, San Francisco 94143-0128
| |
Collapse
|
118
|
Dimitrov DS, Broder CC, Berger EA, Blumenthal R. Calcium ions are required for cell fusion mediated by the CD4-human immunodeficiency virus type 1 envelope glycoprotein interaction. J Virol 1993; 67:1647-52. [PMID: 8437234 PMCID: PMC237536 DOI: 10.1128/jvi.67.3.1647-1652.1993] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Calcium ions are required for fusion of a wide variety of artificial and biological membranes. To examine the role of calcium ions for cell fusion mediated by interactions between CD4 and the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120-gp41), we used two experimental systems: (i) cells expressing gp120-gp41 and its receptor CD4, both encoded by recombinant vaccinia viruses, and (ii) chronically infected cells producing low levels of HIV-1. Fusion was measured by counting the number of syncytia and by monitoring the redistribution of fluorescence dyes by video microscopy. Syncytia did not form in solutions without calcium ions. Addition of calcium ions partially restored the formation of syncytia. EDTA and EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] blocked syncytium formation in culture media containing calcium ions. Membrane fusion as monitored by fluorescence dye redistribution also required calcium ions. Cell fusion increased with an increase in calcium ion concentration from 100 microM to 10 mM but was not affected by magnesium ions in the concentration range from 0 to 30 mM. Fibrinogen and fibronectin did not promote fusion in the absence or presence of Ca2+. Binding of soluble CD4 to gp120-gp41-expressing cells was not affected by Ca2+ and Mg2+. We conclude that Ca2+ is involved in postbinding steps in cell fusion mediated by the CD4-HIV-1 envelope glycoprotein interaction.
Collapse
Affiliation(s)
- D S Dimitrov
- Section on Membrane Structure and Function, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
119
|
Caruso M, Tsikas G, Roussel M, Alizon M, Klatzmann D. Can diphtheria toxin be used for gene therapy of human immunodeficiency virus infection? AIDS Res Hum Retroviruses 1992; 8:1949-50. [PMID: 1493044 DOI: 10.1089/aid.1992.8.1949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|