101
|
Silencing viral microRNA as a novel antiviral therapy? J Biomed Biotechnol 2009; 2009:419539. [PMID: 19704916 PMCID: PMC2688686 DOI: 10.1155/2009/419539] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 03/20/2009] [Indexed: 12/16/2022] Open
Abstract
Viruses are intracellular parasites that ensure their existence by converting host cells into viral particle producing entities or into hiding places rendering the virus invisible to the host immune system. Some viruses may also survive by transforming the infected cell into an immortal tumour cell. MicroRNAs are small non-coding transcripts that function as posttranscriptional regulators of gene expression. Viruses encode miRNAs that regulate expression of both cellular and viral genes, and contribute to the pathogenic properties of viruses. Hence, neutralizing the action of viral miRNAs expression by complementary single-stranded oligonucleotides or so-called anti-miRNAs may represent a strategy to combat viral infections and viral-induced pathogenesis. This review describes the miRNAs encoded by human viruses, and discusses the possible therapeutic applications of anti-miRNAs against viral diseases.
Collapse
|
102
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
103
|
Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X, Zarate R, Diaz-Gonzalez JA, Ramirez N, Sola JJ, Jimenez P, Rodriguez J, Garcia-Foncillas J. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 2009; 15:2281-90. [PMID: 19318487 DOI: 10.1158/1078-0432.ccr-08-1818] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE microRNAs (miRNA) are small RNAs that function as post-transcriptional regulators of gene expression. Recent evidence has shown that some miRNAs can act as oncogenes or tumor suppressors. This study was conducted to evaluate the potential association of miRNA expression with clinical outcome in patients with gastric cancer. EXPERIMENTAL DESIGN Expression of 250 human mature miRNAs was measured by real-time PCR on paraffin-embedded tumor samples of 21 patients with gastric cancer stage III uniformly treated with surgical resection followed by chemoradiation. We identified the miRNAs correlated with disease-free and overall survival times, and the results were evaluated including 24 other patients. In vitro cell proliferation and radiosensitivity studies were done to support clinical data. RESULTS The results revealed that down-regulation of miR-451 was associated with worse prognosis. miR-451 was detected by in situ hybridization in epithelial cells and showed decreased expression in gastric and colorectal cancer versus nontumoral tissues. Overexpression of miR-451 in gastric and colorectal cancer cells reduced cell proliferation and increased sensitivity to radiotherapy. Microarray and bioinformatic analysis identified the novel oncogene macrophage migration inhibitory factor (MIF) as a potential target of miR-451. In fact, overexpression of miR-451 down-regulated mRNA and protein levels of MIF and decreased expression of reporter genes with MIF target sequences. Moreover, we found a significant inverse correlation between miR-451 and MIF expression in tumoral gastric biopsies. CONCLUSIONS These findings support the role of miR-451 as a regulator of cancer proliferation and open new perspectives for the development of effective therapies for chemoradioresistant cancers.
Collapse
Affiliation(s)
- Eva Bandres
- Division of Oncology and Hepatology, Center for Applied Medical Research, Clinica Universitaria, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Sullivan CS, Sung CK, Pack CD, Grundhoff A, Lukacher AE, Benjamin TL, Ganem D. Murine Polyomavirus encodes a microRNA that cleaves early RNA transcripts but is not essential for experimental infection. Virology 2009; 387:157-67. [PMID: 19272626 DOI: 10.1016/j.virol.2009.02.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/10/2008] [Accepted: 02/06/2009] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small regulatory RNAs that post-transcriptionally regulate gene expression and can be encoded by viral as well as cellular genomes. The functions of most viral miRNAs are unknown and few have been studied in an in vivo context. Here we show that the murine polyomavirus (PyV) encodes a precursor microRNA that is processed into two mature microRNAs, both of which are active at directing the cleavage of the early PyV mRNAs. Furthermore, we identify a deletion mutant of polyomavirus that is defective in encoding the microRNAs. This mutant replicates normally and transforms cultured cells with efficiencies comparable to wildtype PyV. The miRNA mutant is competent to establish a transient infection of mice following parenteral inoculation, and is cleared post infection at approximately the same rate as the wildtype virus. In addition, under these laboratory conditions, we observe no differences in anti-viral CD8 T cell responses. These results indicate that PyV miRNA expression is not essential for infection of cultured cells or experimentally inoculated mice, and raise the possibility that its role in natural infection might involve aspects of acquisition or spread that are not recapitulated by experimental inoculation.
Collapse
Affiliation(s)
- Christopher S Sullivan
- The University of Texas at Austin, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, 1 University Station A5000, Austin TX 78712-0162, USA.
| | | | | | | | | | | | | |
Collapse
|
105
|
Agirre X, Jiménez-Velasco A, San José-Enériz E, Garate L, Bandrés E, Cordeu L, Aparicio O, Saez B, Navarro G, Vilas-Zornoza A, Pérez-Roger I, García-Foncillas J, Torres A, Heiniger A, Calasanz MJ, Fortes P, Román-Gómez J, Prósper F. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res 2009; 6:1830-40. [PMID: 19074828 DOI: 10.1158/1541-7786.mcr-08-0167] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNA) are small noncoding, single-stranded RNAs that inhibit gene expression at a posttranscriptional level, whose abnormal expression has been described in different tumors. The aim of our study was to identify miRNAs potentially implicated in chronic myeloid leukemia (CML). We detected an abnormal miRNA expression profile in mononuclear and CD34(+) cells from patients with CML compared with healthy controls. Of 157 miRNAs tested, hsa-miR-10a, hsa-miR-150, and hsa-miR-151 were down-regulated, whereas hsa-miR-96 was up-regulated in CML cells. Down-regulation of hsa-miR-10a was not dependent on BCR-ABL1 activity and contributed to the increased cell growth of CML cells. We identified the upstream stimulatory factor 2 (USF2) as a potential target of hsa-miR-10a and showed that overexpression of USF2 also increases cell growth. The clinical relevance of these findings was shown in a group of 85 newly diagnosed patients with CML in which expression of hsa-miR-10a was down-regulated in 71% of the patients, whereas expression of USF2 was up-regulated in 60% of the CML patients, with overexpression of USF2 being significantly associated with decreased expression of hsa-miR-10a (P = 0.004). Our results indicate that down-regulation of hsa-miR-10a may increase USF2 and contribute to the increase in cell proliferation of CML implicating a miRNA in the abnormal behavior of CML.
Collapse
Affiliation(s)
- Xabier Agirre
- Foundation for Applied Medical Research, Division of Cancer, Clínica Universitaria, University of Navarre, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
MicroRNAs (miRNAs) are key regulators of messenger RNA (mRNA) translation known to be involved in a wide variety of cellular processes. In fact, their individual importance is reflected in the diseases that may arise upon the loss, mutation or dysfunction of specific miRNAs. It has been appreciated only recently that diseases may also develop when the protein components of the miRNA machinery itself are affected. The core enzymes of the major protein complexes involved in miRNA biogenesis and function, such as the ribonucleases III (RNases III) Drosha and Dicer as well as Argonaute 2 (Ago2), appear to be essential. However, the accessory proteins of the miRNA pathway, such as the DiGeorge syndrome critical region gene 8 (DGCR8) protein, Exportin-5 (Exp-5), TAR RNA binding protein (TRBP) and fragile X mental retardation protein (FMRP), are each related, in various ways, to specific genetic diseases.
Collapse
Affiliation(s)
| | - Patrick Provost
- Corresponding author: Patrick Provost, Centre de Recherche en Rhumatologie et Immunologie, 2705 Blvd Laurier, Local T1-49, Quebec, QC, G1V 4G2 Canada, Phone: 1 418 656 4141 (ext. 48842), Fax: 1 418 654 2765,
| |
Collapse
|
107
|
He S, Yang Z, Skogerbo G, Ren F, Cui H, Zhao H, Chen R, Zhao Y. The properties and functions of virus encoded microRNA, siRNA, and other small noncoding RNAs. Crit Rev Microbiol 2008; 34:175-88. [PMID: 18972284 DOI: 10.1080/10408410802482008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
microRNAs (miRNAs) represent a class of noncoding RNA species, believed to be regulating gene expression by binding to complementary sites in the 3'UTRs of target mRNAs. They play important regulatory roles in various metabolic pathways in most eukaryotes. The recent discovery of virus encoded miRNAs suggests that viruses may be using them to regulate host and viral gene expression. Another class of closely related small interfering RNAs (siRNAs) also has been found within the HIV-1 genome and shown to be exerting a limited impact on virus reproduction. Additionally, an additional type of viral noncoding RNAs named small noncoding RNAs (sncRNAs) ranging from a few tens to a few hundred nucleotides in length, has also been identified. sncRNAs have a wide phylogenesis and high levels of expression, suggesting they may play an important roles in different species. Here we discuss the genomic organization, expression, conservation as well as potential function of virally encoded miRNA, siRNA, and sncRNAs.
Collapse
Affiliation(s)
- Shunmin He
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, CAMS & PUMC, Chinese Academy of Science, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Gottwein E, Cullen BR. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 2008; 3:375-87. [PMID: 18541214 DOI: 10.1016/j.chom.2008.05.002] [Citation(s) in RCA: 342] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/28/2008] [Accepted: 05/06/2008] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) have recently emerged as key posttranscriptional regulators of gene expression in multicellular eukaryotes. It is increasingly clear that miRNAs of both viral and cellular origin can positively or negatively influence viral replication. Viral miRNAs can directly alter host physiology, including components of the immune system, and host miRNAs can directly alter the virus life cycle. Here, we discuss what is known about how viral and cellular miRNAs influence viral replication and pathogenic potential through their regulation of viral mRNAs or by reshaping cellular gene expression.
Collapse
Affiliation(s)
- Eva Gottwein
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
109
|
van Rij RP. Virus meets RNAi. Symposium on antiviral applications of RNA interference. EMBO Rep 2008; 9:725-9. [PMID: 18636088 DOI: 10.1038/embor.2008.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/17/2008] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen Centre for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
110
|
Abad X, Vera M, Jung SP, Oswald E, Romero I, Amin V, Fortes P, Gunderson SI. Requirements for gene silencing mediated by U1 snRNA binding to a target sequence. Nucleic Acids Res 2008; 36:2338-52. [PMID: 18299285 PMCID: PMC2367729 DOI: 10.1093/nar/gkn068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
U1 interference (U1i) is a novel method to block gene expression. U1i requires expression of a 5'-end-mutated U1 snRNA designed to base pair to the 3'-terminal exon of the target gene's pre-mRNA that leads to inhibition of polyadenylation. Here, we show U1i is robust (> or =95%) and a 10-nt target length is sufficient for good silencing. Surprisingly, longer U1 snRNAs, which could increase annealing to the target, fail to improve silencing. Extensive mutagenesis of the 10-bp U1 snRNA:target duplex shows that any single mismatch different from GU at positions 3-8, destroys silencing. However, mismatches within the other positions give partial silencing, suggesting that off-target inhibition could occur. The specificity of U1i may be enhanced, however, by the fact that silencing is impaired by RNA secondary structure or by splicing factors binding nearby, the latter mediated by Arginine-Serine (RS) domains. U1i inhibition can be reconstituted in vivo by tethering of RS domains of U1-70K and U2AF65. These results help to: (i) define good target sites for U1i; (ii) identify and understand natural cellular examples of U1i; (iii) clarify the contribution of hydrogen bonding to U1i and to U1 snRNP binding to 5' splice sites and (iv) understand the mechanism of U1i.
Collapse
Affiliation(s)
- Xabi Abad
- Division of Hepatology and Gene Therapy, CIMA/UNAV. Pio XII, 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Choy EYW, Kok KH, Tsao SW, Jin DY. Utility of Epstein–Barr virus-encoded small RNA promoters for driving the expression of fusion transcripts harboring short hairpin RNAs. Gene Ther 2007; 15:191-202. [DOI: 10.1038/sj.gt.3303055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
112
|
Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 2007; 81:13771-82. [PMID: 17942535 DOI: 10.1128/jvi.01313-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Originally identified in a variety of organisms ranging from plants to mammals, miRNAs have recently been identified in several viruses. Viral miRNAs may play a role in modulating both viral and host gene expression. Here, we report on the identification and characterization of 18 viral miRNAs from mouse fibroblasts lytically infected with the murine cytomegalovirus (MCMV). The MCMV miRNAs are expressed at early times of infection and are scattered in small clusters throughout the genome with up to four distinct miRNAs processed from a single transcript. No significant homologies to human CMV-encoded miRNAs were found. Remarkably, as soon as 24 h after infection, MCMV miRNAs constituted about 35% of the total miRNA pool, and at 72 h postinfection, this proportion was increased to more than 60%. However, despite the abundance of viral miRNAs during the early phase of infection, the expression of some MCMV miRNAs appeared to be regulated. Hence, for three miRNAs we observed polyuridylation of their 3' end, coupled to subsequent degradation. Individual knockout mutants of two of the most abundant MCMV miRNAs, miR-m01-4 and miR-M44-1, or a double knockout mutant of miR-m21-1 and miR-M23-2, incurred no or only a very mild growth deficit in murine embryonic fibroblasts in vitro.
Collapse
|
113
|
Wu Y, Maruo S, Yajima M, Kanda T, Takada K. Epstein-Barr virus (EBV)-encoded RNA 2 (EBER2) but not EBER1 plays a critical role in EBV-induced B-cell growth transformation. J Virol 2007; 81:11236-45. [PMID: 17686859 PMCID: PMC2045559 DOI: 10.1128/jvi.00579-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded RNA 1 (EBER1) and EBER2 are untranslated RNAs and the most abundant viral transcripts in latently EBV-infected cells. We previously reported that EBERs play a critical role in efficient EBV-induced growth transformation of primary B cells. To investigate whether EBER1 and EBER2 have distinct roles in B-cell growth transformation, recombinant EBVs carrying either EBER1 or EBER2 were generated. The transforming ability of recombinant EBVs expressing EBER2 was as high as that of EBVs expressing both EBER1 and EBER2. In contrast, the transforming ability of recombinant EBVs carrying EBER1 was impaired and was similar to that of EBV lacking both EBER1 and EBER2. Lymphoblastoid cell lines (LCLs) established with EBVs carrying EBER2 proliferated at low cell densities, while LCLs established with EBVs carrying EBER1 did not. Interleukin 6 (IL-6) production in LCLs expressing EBER2 was more abundant than in those lacking EBER2. The growth of LCLs lacking EBER2 was enhanced by the addition of recombinant IL-6 to the cell culture, while the growth of EBER2-expressing LCLs was inhibited by a neutralizing anti-IL-6 antibody. These results demonstrate that EBER2, but not EBER1, contributes to efficient B-cell growth transformation. We conclude that EBER1 and EBER2, despite their structural similarity, have different functions in latently infected lymphoblastoid cells.
Collapse
Affiliation(s)
- Yi Wu
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | |
Collapse
|
114
|
Xu N, Segerman B, Zhou X, Akusjärvi G. Adenovirus virus-associated RNAII-derived small RNAs are efficiently incorporated into the rna-induced silencing complex and associate with polyribosomes. J Virol 2007; 81:10540-9. [PMID: 17652395 PMCID: PMC2045446 DOI: 10.1128/jvi.00885-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adenovirus type 5 encodes two highly structured short RNAs, the virus-associated (VA) RNAI and RNAII. Both are processed by Dicer into small RNAs that are incorporated into the RNA-induced silencing complex (RISC). We show here, by cloning of small RNAs, that approximately 80% of Ago2-containing RISC immunopurified from late-infected cells is associated with VA RNA-derived small RNAs (mivaRNAs). Most surprisingly, VA RNAII, which is expressed at 20-fold lower levels compared to that of VA RNAI, appears to be the preferred substrate for Dicer and accounts for approximately 60% of all small RNAs in RISC. The mivaRNAs are derived from the 3' strand of the terminal stems of the VA RNAs, with the major fraction of VA RNAII starting at position 138. The small RNAs derived from VA RNAI were more heterogeneous in size, with the two predominant small RNAs starting at positions 137 and 138. Collectively, our results suggest that the mivaRNAs are efficiently used for RISC assembly in late-infected cells. Potentially, they function as miRNAs, regulating translation of cellular mRNAs. In support of this hypothesis, we detected a fraction of the VA RNAII-derived mivaRNAs on polyribosomes.
Collapse
Affiliation(s)
- Ning Xu
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Husargatan 3, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
115
|
Narvaiza I, Aparicio O, Vera M, Razquin N, Bortolanza S, Prieto J, Fortes P. Effect of adenovirus-mediated RNA interference on endogenous microRNAs in a mouse model of multidrug resistance protein 2 gene silencing. J Virol 2006; 80:12236-47. [PMID: 17020948 PMCID: PMC1676304 DOI: 10.1128/jvi.01205-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 09/19/2006] [Indexed: 12/24/2022] Open
Abstract
RNA interference with viral vectors that express short hairpin RNAs (shRNAs) has emerged as a powerful tool for functional genomics and therapeutic purposes. However, little is known about shRNA in vivo processing, accumulation, functional kinetics, and side effects related to shRNA saturation of the cellular gene silencing machinery. Therefore, we constructed first-generation recombinant adenoviruses encoding different shRNAs against murine ATP-binding cassette multidrug resistance protein 2 (Abcc2), which is involved in liver transport of bilirubin to bile, and analyzed Abcc2 silencing kinetics. C57/BL6 mice injected with these viruses showed significant impairment of Abcc2 function for up to 3 weeks, as reflected by increased serum bilirubin levels. The lack of Abcc2 function correlated with a specific reduction of Abcc2 mRNA and with high levels of processed shRNAs targeting Abcc2. Inhibition was lost at longer times postinfection, correlating with a decrease in the accumulation of processed shRNAs. This finding suggests that a minimal amount of processed shRNAs is required for efficient silencing in vivo. This system was also used to evaluate the effect of shRNA expression on the saturation of silencing factors. Saturation of the cellular silencing processing machinery alters the accumulation and functionality of endogenous microRNAs (miRNAs) and pre-miRNAs. However, expression of functional exogenous shRNAs did not change the levels of endogenous miRNAs or their precursors. In summary, this work shows that adenoviral vectors can deliver sufficient shRNAs to mediate inhibition of gene expression without saturating the silencing machinery.
Collapse
Affiliation(s)
- Iñigo Narvaiza
- Division of Gene Therapy and Hepatology, CIMA, University of Navarra, Pio XII 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Viruses represent one of the main factors that cause normal cells to proliferate and to become malignant: up to 15% of all human cancers are associated with single or multiple virus infections, and several viruses have been recognized as causal agents of specific types of cancer. Viruses have evolved many strategies to prevent infected cells from becoming apoptotic and to evade the innate and adaptive immune responses of their hosts. The recent discovery that Epstein-Barr virus and other herpesviruses produce their own sets of micro (mi)RNAs brings an additional layer of complexity in this ongoing host-virus arms race and changes our initial views of the antiviral roles of RNA silencing in plants and insects. It seems that, rather than being inhibited by this process, many mammalian viruses can usurp or divert the host RNA silencing machinery to their advantage. Viral-encoded miRNAs can act both in cis, to ensure accurate expression of viral genomes, and in trans, to modify the expression of host transcripts. Here, we review the current knowledge on viral miRNAs and discuss how mammalian viruses can also perturb host miRNA expression. Those recent findings provide new insights into the role of viruses and miRNAs in cancer development.
Collapse
Affiliation(s)
- S Pfeffer
- IBMP-CNRS, rue du Général Zimmer, Strasbourg, France.
| | | |
Collapse
|
117
|
Sarnow P, Jopling CL, Norman KL, Schütz S, Wehner KA. MicroRNAs: expression, avoidance and subversion by vertebrate viruses. Nat Rev Microbiol 2006; 4:651-9. [PMID: 16912711 DOI: 10.1038/nrmicro1473] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs), which can be expressed in a cell-type and tissue-specific manner, can influence the activities of genes that control cell growth and differentiation. Viruses often have clear tissue tropisms, raising the possibility that cellular miRNAs might modulate their pathogenesis. In this Review, we discuss recent findings that some vertebrate viruses either encode miRNAs or subvert cellular miRNAs, and that these miRNAs participate in both the infectious and the latent phase of the viral life cycle.
Collapse
Affiliation(s)
- Peter Sarnow
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94301, USA.
| | | | | | | | | |
Collapse
|
118
|
Abstract
The discovery of RNA interference and cellular microRNAs (miRNAs) has not only affected how biological research is conducted but also revealed an entirely new level of post-transcriptional gene regulation. Here, I discuss the potential functions of the virally encoded miRNAs recently identified in several pathogenic human viruses and propose that cellular miRNAs may have had a substantial effect on viral evolution and may continue to influence the in vivo tissue tropism of viruses. Our increasing knowledge of the role and importance of virally encoded miRNAs will probably offer new insights into how viruses that establish latent infections, such as herpesviruses, avoid elimination by the host innate or adaptive immune system. Research into viral miRNA function might also suggest new approaches for treating some virally induced diseases.
Collapse
Affiliation(s)
- Bryan R Cullen
- Center for Virology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|