101
|
Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. Cells 2018; 7:cells7030017. [PMID: 29498679 PMCID: PMC5870349 DOI: 10.3390/cells7030017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation.
Collapse
|
102
|
Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget 2018; 8:458-471. [PMID: 27888797 PMCID: PMC5352134 DOI: 10.18632/oncotarget.13444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Abstract
Developmental transcription programs are epigenetically regulated by the competing actions of polycomb and trithorax (TrxG) protein complexes, which repress and activate genes, respectively. Ewing sarcoma is a developmental tumor that is associated with widespread de-regulation of developmental transcription programs, including HOX programs. Posterior HOXD genes are abnormally over-expressed by Ewing sarcoma and HOXD13, in particular, contributes to the tumorigenic phenotype. In MLL1 fusion-driven leukemia, aberrant activation of HOXA genes is epigenetically mediated by the TrxG complex and HOXA gene expression and leukemogenesis are critically dependent on the protein-protein interaction between the TrxG proteins MLL1 and menin. Based on these data, we investigated whether posterior HOXD gene activation and Ewing sarcoma tumorigenicity are similarly mediated by and dependent on MLL1 and/or menin. Our findings demonstrate that Ewing sarcomas express high levels of both MLL1 and menin and that continued expression of both proteins is required for maintenance of tumorigenicity. In addition, exposure of Ewing sarcoma cells to MI-503, an inhibitor of the MLL1-menin protein-protein interaction developed for MLL1-fusion driven leukemia, leads to loss of tumorigenicity and down-regulated expression of the posterior HOXD gene cluster. Together these data demonstrate an essential role for MLL1 and menin in mediating tumor maintenance and posterior HOXD gene activation in Ewing sarcoma. A critical dependency of these tumors on the MLL1-menin interaction presents a potentially novel therapeutic target.
Collapse
|
103
|
Bieluszewska A, Weglewska M, Bieluszewski T, Lesniewicz K, Poreba E. PKA
‐binding domain of
AKAP
8 is essential for direct interaction with
DPY
30 protein. FEBS J 2018; 285:947-964. [DOI: 10.1111/febs.14378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/01/2017] [Accepted: 12/22/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Anna Bieluszewska
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Martyna Weglewska
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Tomasz Bieluszewski
- Department of Genome Biology Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Elzbieta Poreba
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| |
Collapse
|
104
|
Cao K, Collings CK, Morgan MA, Marshall SA, Rendleman EJ, Ozark PA, Smith ER, Shilatifard A. An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells. SCIENCE ADVANCES 2018; 4:eaap8747. [PMID: 29404406 PMCID: PMC5796793 DOI: 10.1126/sciadv.aap8747] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/04/2018] [Indexed: 05/19/2023]
Abstract
Chromatin regulators control cellular differentiation by orchestrating dynamic developmental gene expression programs, and hence, malfunctions in the regulation of chromatin state contribute to both developmental disorders and disease state. Mll4 (Kmt2d), a member of the COMPASS (COMplex of Proteins ASsociated with Set1) protein family that implements histone H3 lysine 4 monomethylation (H3K4me1) at enhancers, is essential for embryonic development and functions as a pancancer tumor suppressor. We define the roles of Mll4/COMPASS and its catalytic activity in the maintenance and exit of ground-state pluripotency in murine embryonic stem cells (ESCs). Mll4 is required for ESC to exit the naive pluripotent state; however, its intrinsic catalytic activity is dispensable for this process. The depletion of the H3K4 demethylase Lsd1 (Kdm1a) restores the ability of Mll4 null ESCs to transition from naive to primed pluripotency. Thus, we define an opposing regulatory axis, wherein Lsd1 and associated co-repressors directly repress Mll4-activated gene targets. This finding has broad reaching implications for human developmental syndromes and the treatment of tumors carrying Mll4 mutations.
Collapse
Affiliation(s)
- Kaixiang Cao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Clayton K. Collings
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Marc A. Morgan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Stacy A. Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Emily J. Rendleman
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Patrick A. Ozark
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Edwin R. Smith
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
105
|
Melamed P, Haj M, Yosefzon Y, Rudnizky S, Wijeweera A, Pnueli L, Kaplan A. Multifaceted Targeting of the Chromatin Mediates Gonadotropin-Releasing Hormone Effects on Gene Expression in the Gonadotrope. Front Endocrinol (Lausanne) 2018; 9:58. [PMID: 29535683 PMCID: PMC5835078 DOI: 10.3389/fendo.2018.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility.
Collapse
Affiliation(s)
- Philippa Melamed
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
- *Correspondence: Philippa Melamed,
| | - Majd Haj
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Yahav Yosefzon
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Sergei Rudnizky
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Andrea Wijeweera
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
106
|
Grey W, Ivey A, Milne TA, Haferlach T, Grimwade D, Uhlmann F, Voisset E, Yu V. The Cks1/Cks2 axis fine-tunes Mll1 expression and is crucial for MLL-rearranged leukaemia cell viability. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:105-116. [PMID: 28939057 PMCID: PMC5701546 DOI: 10.1016/j.bbamcr.2017.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/09/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.
Collapse
Affiliation(s)
- William Grey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK.
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, UK
| | | | - David Grimwade
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Edwige Voisset
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK.
| | - Veronica Yu
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| |
Collapse
|
107
|
Liu Y, Zheng X, Yu Q, Wang H, Tan F, Zhu Q, Yuan L, Jiang H, Yu L, Zeng S. Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Sci Transl Med 2017; 8:348ra97. [PMID: 27440728 DOI: 10.1126/scitranslmed.aaf3124] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
Renal cell carcinoma (RCC) is known for its multidrug resistance. Using data obtained from the cancer transcriptome database Oncomine and the proteome database The Human Protein Atlas, we identified the repression of organic cation transporter OCT2 as a potential factor contributing to oxaliplatin resistance in RCC. By analyzing OCT2 expression in collected patient tissues and commercial tissue microarray specimens, we demonstrated OCT2 repression in RCC at both transcription and protein levels. Epigenetic analysis revealed that the repressed OCT2 promoter in RCC is characterized by hypermethylated CpG islands and the absence of H3K4 methylation. Further mechanistic studies showed that DNA hypermethylation blocked MYC activation of OCT2 by disrupting its interaction with the E-Box motif, which prevented MYC from recruiting MLL1 to catalyze H3K4me3 at the OCT2 promoter and resulted in repressed OCT2 transcription. Targeting this mechanism, we designed a sequential combination therapy and demonstrated that epigenetic activation of OCT2 by decitabine sensitizes RCC cells to oxaliplatin both in vitro and in xenografts. Our study highlights the potential of translating "omics" data into the development of targeted therapies.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Zheng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinqin Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou 310022, China
| | - Fuqing Tan
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qianying Zhu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingmin Yuan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
108
|
Lebrun N, Giurgea I, Goldenberg A, Dieux A, Afenjar A, Ghoumid J, Diebold B, Mietton L, Briand-Suleau A, Billuart P, Bienvenu T. Molecular and cellular issues of KMT2A variants involved in Wiedemann-Steiner syndrome. Eur J Hum Genet 2017; 26:107-116. [PMID: 29203834 DOI: 10.1038/s41431-017-0033-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022] Open
Abstract
Variants in KMT2A, encoding the histone methyltransferase KMT2A, are a growing cause of intellectual disability (ID). Up to now, the majority of KMT2A variants are non-sense and frameshift variants causing a typical form of Wiedemann-Steiner syndrome. We studied KMT2A gene in a cohort of 200 patients with unexplained syndromic and non-syndromic ID and identified four novel variants, one splice and three missense variants, possibly deleterious. We used primary cells from the patients and molecular approaches to determine the deleterious effects of those variants on KMT2A expression and function. For the putative splice variant c.11322-1G>A, we showed that it led to only one nucleotide deletion and loss of the C-terminal part of the protein. For two studied KMT2A missense variants, c.3460C>T (p.(Arg1154Trp)) and c.8558T>G (p.(Met2853Arg)), located at the cysteine-rich CXXC domain and the transactivation domain of the protein, respectively, we found altered KMT2A target genes expression in patient's fibroblasts compared to controls. Furthermore, we found a disturbed subcellular distribution of KMT2A for the c.3460C>T mutant. Taken together, our results demonstrated the deleterious impact of the splice variant and of the missense variants located at two different functional domains and suggested reduction of KMT2A function as the disease-causing mechanism.
Collapse
Affiliation(s)
- Nicolas Lebrun
- Inserm, Institut Cochin, U1016, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Irina Giurgea
- Service de Génétique, Hôpital Trousseau, Paris, France
| | - Alice Goldenberg
- Service de génétique, CHU de Rouen et Inserm U1079, Université de Rouen, Center Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - Anne Dieux
- Service de génétique clinique Guy Fontaine CHRU de Lille - Hôpital Jeanne de Flandre Avenue Eugène Avinée, 59037, LILLE, France
| | - Alexandra Afenjar
- GRC Concer-LD, Sorbonne universités, Département de Génétique et Embryologie Médicale, Hôpital Trousseau, Paris, France
| | - Jamal Ghoumid
- Service de génétique clinique Guy Fontaine CHRU de Lille - Hôpital Jeanne de Flandre Avenue Eugène Avinée, 59037, LILLE, France
| | - Bertrand Diebold
- Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, Paris, France
| | - Léo Mietton
- Inserm, Institut Cochin, U1016, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Briand-Suleau
- Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, Paris, France
| | - Pierre Billuart
- Inserm, Institut Cochin, U1016, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thierry Bienvenu
- Inserm, Institut Cochin, U1016, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, Paris, France.
| |
Collapse
|
109
|
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. JOURNAL OF CANCER RESEARCH AND PRACTICE 2017. [DOI: 10.1016/j.jcrpr.2017.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
110
|
Krivtsov AV, Hoshii T, Armstrong SA. Mixed-Lineage Leukemia Fusions and Chromatin in Leukemia. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026658. [PMID: 28242784 DOI: 10.1101/cshperspect.a026658] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies have shown the importance of chromatin-modifying complexes in the maintenance of developmental gene expression and human disease. The mixed lineage leukemia gene (MLL1) encodes a chromatin-modifying protein and was discovered as a result of the cloning of translocations involved in human leukemias. MLL1 is a histone lysine 4 (H3K4) methyltransferase that supports transcription of genes that are important for normal development including homeotic (Hox) genes. MLL1 rearrangements result in expression of fusion proteins without H3K4 methylation activity but may gain the ability to recruit other chromatin-associated complexes such as the H3K79 methyltransferase DOT1L and the super elongation complex. Therefore, chromosomal translocations involving MLL1 appear to directly perturb the regulation of multiple chromatin-associated complexes to allow inappropriate expression of developmentally regulated genes and thus drive leukemia development.
Collapse
Affiliation(s)
- Andrei V Krivtsov
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215
| | - Takayuki Hoshii
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215
| |
Collapse
|
111
|
Saul MJ, Groher F, Hegewald AB, Müller-McNicoll M, Marschalek R, Suess B, Steinhilber D. TGFβ/SMAD signalling modulates MLL and MLL-AF4 mediated 5-lipoxygenase promoter activation. Prostaglandins Other Lipid Mediat 2017; 133:60-67. [DOI: 10.1016/j.prostaglandins.2017.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/28/2017] [Accepted: 07/31/2017] [Indexed: 01/11/2023]
|
112
|
Sepulveda H, Villagra A, Montecino M. Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment. Mol Cell Biol 2017; 37:e00177-17. [PMID: 28784721 PMCID: PMC5615189 DOI: 10.1128/mcb.00177-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/15/2017] [Accepted: 07/22/2017] [Indexed: 12/22/2022] Open
Abstract
Here we assess histone modification, chromatin remodeling, and DNA methylation processes that coordinately control the expression of the bone master transcription factor Sp7 (osterix) during mesenchymal lineage commitment in mammalian cells. We find that Sp7 gene silencing is mediated by DNA methyltransferase1/3 (DNMT1/3)-, histone deacetylase 1/2/4 (HDAC1/2/4)-, Setdb1/Suv39h1-, and Ezh1/2-containing complexes. In contrast, Sp7 gene activation involves changes in histone modifications, accompanied by decreased nucleosome enrichment and DNA demethylation mediated by SWI/SNF- and Tet1/Tet2-containing complexes, respectively. Inhibition of DNA methylation triggers changes in the histone modification profile and chromatin-remodeling events leading to Sp7 gene expression. Tet1/Tet2 silencing prevents Sp7 expression during osteoblast differentiation as it impairs DNA demethylation and alters the recruitment of histone methylase (COMPASS)-, histone demethylase (Jmjd2a/Jmjd3)-, and SWI/SNF-containing complexes to the Sp7 promoter. The dissection of these interconnected epigenetic mechanisms that govern Sp7 gene activation reveals a hierarchical process where regulatory components mediating DNA demethylation play a leading role.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
113
|
Ali A, Veeranki SN, Chinchole A, Tyagi S. MLL/WDR5 Complex Regulates Kif2A Localization to Ensure Chromosome Congression and Proper Spindle Assembly during Mitosis. Dev Cell 2017. [PMID: 28633016 DOI: 10.1016/j.devcel.2017.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer.
Collapse
Affiliation(s)
- Aamir Ali
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India; Graduate Studies, Manipal University, Manipal, India
| | - Sailaja Naga Veeranki
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| | - Akash Chinchole
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India; Graduate Studies, Manipal University, Manipal, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India.
| |
Collapse
|
114
|
Not All H3K4 Methylations Are Created Equal: Mll2/COMPASS Dependency in Primordial Germ Cell Specification. Mol Cell 2017; 65:460-475.e6. [PMID: 28157506 DOI: 10.1016/j.molcel.2017.01.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/16/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022]
Abstract
The spatiotemporal regulation of gene expression is central for cell-lineage specification during embryonic development and is achieved through the combinatorial action of transcription factors/co-factors and epigenetic states at cis-regulatory elements. Here, we show that in addition to implementing H3K4me3 at promoters of bivalent genes, Mll2 (KMT2B)/COMPASS can also implement H3K4me3 at a subset of non-TSS regulatory elements, a subset of which shares epigenetic signatures of active enhancers. Our mechanistic studies reveal that association of Mll2's CXXC domain with CpG-rich regions plays an instrumental role for chromatin targeting and subsequent implementation of H3K4me3. Although Mll2/COMPASS is required for H3K4me3 implementation on thousands of loci, generation of catalytically mutant MLL2/COMPASS demonstrated that H3K4me3 implemented by this enzyme was essential for expression of a subset of genes, including those functioning in the control of transcriptional programs during embryonic development. Our findings suggest that not all H3K4 trimethylations implemented by MLL2/COMPASS are functionally equivalent.
Collapse
|
115
|
An Evolutionary Conserved Epigenetic Mark of Polycomb Response Elements Implemented by Trx/MLL/COMPASS. Mol Cell 2017; 63:318-328. [PMID: 27447986 DOI: 10.1016/j.molcel.2016.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/07/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022]
Abstract
Polycomb response elements (PREs) are specific DNA sequences that stably maintain the developmental pattern of gene expression. Drosophila PREs are well characterized, whereas the existence of PREs in mammals remains debated. Accumulating evidence supports a model in which CpG islands recruit Polycomb group (PcG) complexes; however, which subset of CGIs is selected to serve as PREs is unclear. Trithorax (Trx) positively regulates gene expression in Drosophila and co-occupies PREs to antagonize Polycomb-dependent silencing. Here we demonstrate that Trx-dependent H3K4 dimethylation (H3K4me2) marks Drosophila PREs and maintains the developmental expression pattern of nearby genes. Similarly, the mammalian Trx homolog, MLL1, deposits H3K4me2 at CpG-dense regions that could serve as PREs. In the absence of MLL1 and H3K4me2, H3K27me3 levels, a mark of Polycomb repressive complex 2 (PRC2), increase at these loci. By inhibiting PRC2-dependent H3K27me3 in the absence of MLL1, we can rescue expression of these loci, demonstrating a functional balance between MLL1 and PRC2 activities at these sites. Thus, our study provides rules for identifying cell-type-specific functional mammalian PREs within the human genome.
Collapse
|
116
|
Soo BPC, Tay J, Ng S, Ho SCL, Yang Y, Chao SH. Correlation Between Expression of Recombinant Proteins and Abundance of H3K4Me3 on the Enhancer of Human Cytomegalovirus Major Immediate-Early Promoter. Mol Biotechnol 2017; 59:315-322. [DOI: 10.1007/s12033-017-0019-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
117
|
Yin M, Chen Z, Ouyang Y, Zhang H, Wan Z, Wang H, Wu W, Yin X. Thrombin-induced, TNFR-dependent miR-181c downregulation promotes MLL1 and NF-κB target gene expression in human microglia. J Neuroinflammation 2017; 14:132. [PMID: 28662718 PMCID: PMC5492717 DOI: 10.1186/s12974-017-0887-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Controlling thrombin-driven microglial activation may serve as a therapeutic target for intracerebral hemorrhage (ICH). Here, we investigated microRNA (miRNA)-based regulation of thrombin-driven microglial activation using an in vitro thrombin toxicity model applied to primary human microglia. METHODS A miRNA array identified 22 differential miRNA candidates. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) identified miR-181c as the most significantly downregulated miRNA. TargetScan analysis identified mixed lineage leukemia-1 (MLL1) as a putative gene target for miR-181c. qRT-PCR was applied to assess tumor necrosis factor-alpha (TNF-α), miR-181c, and MLL1 levels following thrombin or proteinase-activated receptor-4-specific activating peptide (PAR4AP) exposure. Anti-TNF-α antibodies and tumor necrosis factor receptor (TNFR) silencing were employed to test TNF-α/TNFR dependence. A dual-luciferase reporter system and miR-181c mimic transfection assessed whether mir-181c directly binds to and negatively regulates MLL1. Nuclear factor kappa-B (NF-κB)-dependent luciferase reporter assays and NF-κB target gene expression were assessed in wild-type (MLL1+) and MLL1-silenced cells. RESULTS Thrombin or PAR4AP-induced miR-181c downregulation (p < 0.05) and MLL1 upregulation (p < 0.05) that were dependent upon TNF-α/TNFR. miR-181c decreased wild-type MLL1 3'-UTR luciferase reporter activity (p < 0.05), and a miR-181c mimic suppressed MLL1 expression (p < 0.05). Thrombin treatment increased, while miR-181c reduced, NF-κB activity and NF-κB target gene expression in both wild-type (MLL1+) and MLL1-silenced cells (p < 0.05). CONCLUSIONS Thrombin-induced, TNF-α/TNFR-dependent miR-181c downregulation promotes MLL1 expression, increases NF-κB activity, and upregulates NF-κB target gene expression. As miR-181c opposes thrombin's stimulation of pro-inflammatory NF-κB activity, miR-181c mimic therapy may show promise in controlling thrombin-driven microglial activation following ICH.
Collapse
Affiliation(s)
- Min Yin
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Zhiying Chen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, 332000, Jiangxi Province, China
| | - Yetong Ouyang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Huiyan Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Zhigang Wan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Han Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China.
| | - Xiaoping Yin
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China. .,Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, 332000, Jiangxi Province, China.
| |
Collapse
|
118
|
Xu X, Nagel S, Quentmeier H, Wang Z, Pommerenke C, Dirks WG, Macleod RAF, Drexler HG, Hu Z. KDM3B shows tumor-suppressive activity and transcriptionally regulates HOXA1 through retinoic acid response elements in acute myeloid leukemia. Leuk Lymphoma 2017; 59:204-213. [PMID: 28540746 DOI: 10.1080/10428194.2017.1324156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
KDM3B reportedly shows both tumor-suppressive and tumor-promoting activities in leukemia. The function of KDM3B is likely cell-type dependent and its seeming functional discordance may reflect its phenotypic dependence on downstream targets. Here, we first showed the underexpression of KDM3B in acute myeloid leukemia (AML) patients and AML cell lines with MLL-AF6/9 or PML-RARA translocations. Overexpression of KDM3B repressed colony formation of AML cell line with 5q deletion. We then performed global microarray profiling to identify potential downstream targets of KDM3B, notably HOXA1, which was verified by real time PCR and Western blotting. We further showed KDM3B binding at retinoic acid response elements (RARE) but not at the promoter region of HOXA1 gene. KDM3B knockdown resulted in increased mono-methylation but decreased di-methylation of H3K9 at RARE while eschewing the promoter region of HOXA1. Collectively, we found that KDM3B exhibits potential tumor-suppressive activity and transcriptionally modulates HOXA1 expression via RARE in AML.
Collapse
Affiliation(s)
- Xin Xu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Stefan Nagel
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hilmar Quentmeier
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhanju Wang
- c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Claudia Pommerenke
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Wilhelm G Dirks
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Roderick A F Macleod
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hans G Drexler
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhenbo Hu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China.,c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| |
Collapse
|
119
|
Cao K, Collings CK, Marshall SA, Morgan MA, Rendleman EJ, Wang L, Sze CC, Sun T, Bartom ET, Shilatifard A. SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression. Genes Dev 2017; 31:787-801. [PMID: 28487406 PMCID: PMC5435891 DOI: 10.1101/gad.294744.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/12/2017] [Indexed: 01/16/2023]
Abstract
In this study, Cao et al. identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Their results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development. The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development.
Collapse
Affiliation(s)
- Kaixiang Cao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Marc A Morgan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Christie C Sze
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Tianjiao Sun
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
120
|
Pradeepa MM, McKenna F, Taylor GCA, Bengani H, Grimes GR, Wood AJ, Bhatia S, Bickmore WA. Psip1/p52 regulates posterior Hoxa genes through activation of lncRNA Hottip. PLoS Genet 2017; 13:e1006677. [PMID: 28384324 PMCID: PMC5383017 DOI: 10.1371/journal.pgen.1006677] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in various biological functions including the regulation of gene expression, however, the functionality of lncRNAs is not clearly understood and conflicting conclusions have often been reached when comparing different methods to investigate them. Moreover, little is known about the upstream regulation of lncRNAs. Here we show that the short isoform (p52) of a transcriptional co-activator-PC4 and SF2 interacting protein (Psip1), which is known to be involved in linking transcription to RNA processing, specifically regulates the expression of the lncRNA Hottip-located at the 5' end of the Hoxa locus. Using both knockdown and knockout approaches we show that Hottip expression is required for activation of the 5' Hoxa genes (Hoxa13 and Hoxa10/11) and for retaining Mll1 at the 5' end of Hoxa. Moreover, we demonstrate that artificially inducing Hottip expression is sufficient to activate the 5' Hoxa genes and that Hottip RNA binds to the 5' end of Hoxa. By engineering premature transcription termination, we show that it is the Hottip lncRNA molecule itself, not just Hottip transcription that is required to maintains active expression of posterior Hox genes. Our data show a direct role for a lncRNA molecule in regulating the expression of developmentally-regulated mRNA genes in cis.
Collapse
Affiliation(s)
- Madapura M. Pradeepa
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Edinburgh, United Kingdom
- School of biological sciences, University of Essex, Colchester, United Kingdom
| | - Fionnuala McKenna
- School of biological sciences, University of Essex, Colchester, United Kingdom
| | - Gillian C. A. Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Edinburgh, United Kingdom
| | - Hemant Bengani
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme R. Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. Wood
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Edinburgh, United Kingdom
| | - Shipra Bhatia
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
121
|
Nayak A, Reck A, Morsczeck C, Müller S. Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes. Epigenetics Chromatin 2017; 10:15. [PMID: 28344658 PMCID: PMC5364561 DOI: 10.1186/s13072-017-0122-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite recent studies on the role of ubiquitin-related SUMO modifier in cell fate decisions, our understanding on precise molecular mechanisms of these processes is limited. Previously, we established that the SUMO isopeptidase SENP3 regulates chromatin assembly of the MLL1/2 histone methyltransferase complex at distinct HOX genes, including the osteogenic master regulator DLX3. A comprehensive mechanism that regulates SENP3 transcriptional function was not understood. RESULTS Here, we identified flightless-I homolog (FLII), a member of the gelsolin family of actin-remodeling proteins, as a novel regulator of SENP3. We demonstrate that FLII is associated with SENP3 and the MLL1/2 complex. We further show that FLII determines SENP3 recruitment and MLL1/2 complex assembly on the DLX3 gene. Consequently, FLII is indispensible for H3K4 methylation and proper loading of active RNA polymerase II at this gene locus. Most importantly, FLII-mediated SENP3 regulation governs osteogenic differentiation of human mesenchymal stem cells. CONCLUSION Altogether, these data reveal a crucial functional interconnection of FLII with the sumoylation machinery that converges on epigenetic regulation and cell fate determination.
Collapse
Affiliation(s)
- Arnab Nayak
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
122
|
Vedadi M, Blazer L, Eram MS, Barsyte-Lovejoy D, Arrowsmith CH, Hajian T. Targeting human SET1/MLL family of proteins. Protein Sci 2017; 26:662-676. [PMID: 28160335 PMCID: PMC5368065 DOI: 10.1002/pro.3129] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
The SET1 family of proteins, and in particular MLL1, are essential regulators of transcription and key mediators of normal development and disease. Here, we summarize the detailed characterization of the methyltransferase activity of SET1 complexes and the role of the key subunits, WDR5, RbBP5, ASH2L, and DPY30. We present new data on full kinetic characterization of human MLL1, MLL3, SET1A, and SET1B trimeric, tetrameric, and pentameric complexes to elaborate on substrate specificities and compare our findings with what has been reported before. We also review exciting recent work identifying potent inhibitors of oncogenic MLL1 function through disruption of protein–protein interactions within the MLL1 complex.
Collapse
Affiliation(s)
- Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8
| | - Levi Blazer
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7
| | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7
| |
Collapse
|
123
|
Meeks JJ, Shilatifard A. Multiple Roles for the MLL/COMPASS Family in the Epigenetic Regulation of Gene Expression and in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joshua J. Meeks
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
124
|
Lintas C, Persico AM. Unraveling molecular pathways shared by Kabuki and Kabuki-like syndromes. Clin Genet 2017; 94:283-295. [PMID: 28139835 DOI: 10.1111/cge.12983] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Kabuki syndrome (KS) is a rare genetic syndrome characterized by a typical facial gestalt, variable degrees of intellectual disability, organ malformations, postnatal growth retardation and skeletal abnormalities. So far, KMT2D or KDM6A mutation has been identified as the main cause of KS, accounting for 56%-75% and 3%-8% of cases, respectively. Patients without mutations in 1 of the 2 causative KS genes are often referred to as affected by Kabuki-like syndrome. Overall, they represent approximately 30% of KS cases, pointing toward substantial genetic heterogeneity for this condition. Here, we review all currently available literature describing KS-like phenotypes (or phenocopies) associated with genetic variants located in loci different from KMT2D and KDM6A . We also report on a new KS phenocopy harboring a 5 Mb de novo deletion in chr10p11.22-11.21. An enrichment analysis aimed at identifying functional Gene Ontology classes shared by the 2 known KS causative genes and by new candidate genes currently associated with KS-like phenotypes primarily converges upon abnormal chromatin remodeling and transcriptional dysregulation as pivotal to the pathophysiology of KS phenotypic hallmarks. The identification of mutations in genes belonging to the same functional pathways of KMT2D and KDM6A can help design molecular screenings targeted to KS-like phenotypes.
Collapse
Affiliation(s)
- C Lintas
- Unit of Child and Adolescent NeuroPsychiatry, University Campus Bio-Medico, Rome, Italy.,Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - A M Persico
- Unit of Child and Adolescent NeuroPsychiatry, "G. Martino" University Hospital, University of Messina, Messina, Italy.,Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
125
|
Xie W, Nagarajan S, Baumgart SJ, Kosinsky RL, Najafova Z, Kari V, Hennion M, Indenbirken D, Bonn S, Grundhoff A, Wegwitz F, Mansouri A, Johnsen SA. RNF40 regulates gene expression in an epigenetic context-dependent manner. Genome Biol 2017; 18:32. [PMID: 28209164 PMCID: PMC5314486 DOI: 10.1186/s13059-017-1159-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background Monoubiquitination of H2B (H2Bub1) is a largely enigmatic histone modification that has been linked to transcriptional elongation. Because of this association, it has been commonly assumed that H2Bub1 is an exclusively positively acting histone modification and that increased H2Bub1 occupancy correlates with increased gene expression. In contrast, depletion of the H2B ubiquitin ligases RNF20 or RNF40 alters the expression of only a subset of genes. Results Using conditional Rnf40 knockout mouse embryo fibroblasts, we show that genes occupied by low to moderate amounts of H2Bub1 are selectively regulated in response to Rnf40 deletion, whereas genes marked by high levels of H2Bub1 are mostly unaffected by Rnf40 loss. Furthermore, we find that decreased expression of RNF40-dependent genes is highly associated with widespread narrowing of H3K4me3 peaks. H2Bub1 promotes the broadening of H3K4me3 to increase transcriptional elongation, which together lead to increased tissue-specific gene transcription. Notably, genes upregulated following Rnf40 deletion, including Foxl2, are enriched for H3K27me3, which is decreased following Rnf40 deletion due to decreased expression of the Ezh2 gene. As a consequence, increased expression of some RNF40-“suppressed” genes is associated with enhancer activation via FOXL2. Conclusion Together these findings reveal the complexity and context-dependency whereby one histone modification can have divergent effects on gene transcription. Furthermore, we show that these effects are dependent upon the activity of other epigenetic regulatory proteins and histone modifications. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1159-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanhua Xie
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Simon J Baumgart
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Magali Hennion
- Research Group for Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), Griesebachstraße 5, 37077, Göttingen, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Stefan Bonn
- Research Group for Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), Griesebachstraße 5, 37077, Göttingen, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ahmed Mansouri
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg, 37077, Göttingen, Germany.,Department of Clinical Neurophysiology, University of Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
126
|
Lu C, Paschall AV, Shi H, Savage N, Waller JL, Sabbatini ME, Oberlies NH, Pearce C, Liu K. The MLL1-H3K4me3 Axis-Mediated PD-L1 Expression and Pancreatic Cancer Immune Evasion. J Natl Cancer Inst 2017; 109:2962333. [PMID: 28131992 DOI: 10.1093/jnci/djw283] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the cancers where anti-PD-L1/PD-1 immunotherapy has been unsuccessful. What confers pancreatic cancer resistance to checkpoint immunotherapy is unknown. The aim of this study is to elucidate the underlying mechanism of PD-L1 expression regulation in the context of pancreatic cancer immune evasion. METHODS Pancreatic cancer mouse models and human specimens were used to determine PD-L1 and PD-1 expression and cancer immune evasion. Histone methyltransferase inhibitors, RNAi, and overexpression were used to elucidate the underlying molecular mechanism of PD-L1 expression regulation. All statistical tests were two-sided. RESULTS PD-L1 is expressed in 60% to 90% of tumor cells in human pancreatic carcinomas and in nine of 10 human pancreatic cancer cell lines. PD-1 is expressed in 51.2% to 52.1% of pancreatic tumor-infiltrating cytotoxic T lymphocytes (CTLs). Tumors grow statistically significantly faster in FasL-deficient mice than in wild-type mice (P = .03-.001) and when CTLs are neutralized (P = .03-<.001). H3K4 trimethylation (H3K4me3) is enriched in the cd274 promoter in pancreatic tumor cells. MLL1 directly binds to the cd274 promoter to catalyze H3K4me3 to activate PD-L1 transcription in tumor cells. Inhibition or silencing of MLL1 decreases the H3K4me3 level in the cd274 promoter and PD-L1 expression in tumor cells. Accordingly, inhibition of MLL1 in combination with anti-PD-L1 or anti-PD-1 antibody immunotherapy effectively suppresses pancreatic tumor growth in a FasL- and CTL-dependent manner. CONCLUSIONS The Fas-FasL/CTLs and the MLL1-H3K4me3-PD-L1 axis play contrasting roles in pancreatic cancer immune surveillance and evasion. Targeting the MLL1-H3K4me3 axis is an effective approach to enhance the efficacy of checkpoint immunotherapy against pancreatic cancer.
Collapse
Affiliation(s)
- Chunwan Lu
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Amy V Paschall
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Huidong Shi
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Natasha Savage
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Jennifer L Waller
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Maria E Sabbatini
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Nicholas H Oberlies
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Cedric Pearce
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Kebin Liu
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| |
Collapse
|
127
|
Liang K, Volk AG, Haug JS, Marshall SA, Woodfin AR, Bartom ET, Gilmore JM, Florens L, Washburn MP, Sullivan KD, Espinosa JM, Cannova J, Zhang J, Smith ER, Crispino JD, Shilatifard A. Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia. Cell 2017; 168:59-72.e13. [PMID: 28065413 DOI: 10.1016/j.cell.2016.12.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/26/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.
Collapse
Affiliation(s)
- Kaiwei Liang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Andrew G Volk
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA; Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - Joshua M Gilmore
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66150, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome & Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome & Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph Cannova
- Oncology Institute, Loyola University Chicago, Maywood, IL 60153, USA; Department of Pathology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jiwang Zhang
- Oncology Institute, Loyola University Chicago, Maywood, IL 60153, USA; Department of Pathology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA; Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, Il 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, Il 60611, USA.
| |
Collapse
|
128
|
Yu Q, Liu Y, Zheng X, Zhu Q, Shen Z, Wang H, He H, Lin N, Jiang H, Yu L, Zeng S. Histone H3 Lysine 4 Trimethylation, Lysine 27 Trimethylation, and Lysine 27 Acetylation Contribute to the Transcriptional Repression of Solute Carrier Family 47 Member 2 in Renal Cell Carcinoma. Drug Metab Dispos 2017; 45:109-117. [PMID: 27821436 DOI: 10.1124/dmd.116.073734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/02/2016] [Indexed: 02/13/2025] Open
Abstract
In recent years, finding effective biomarkers for identifying early stage cancer and predicating prognosis is crucial for renal cell carcinoma (RCC) diagnosis and treatment. In this study, a dramatic decrease of the solute carrier family 47 member 2 (SLC47A2) mRNA in RCC comparing with the paired adjacent nontumor tissues from patients at low Tumor Node Metastasis stage was observed. Thus, patients with SLC47A2 transcriptional repression are susceptible to RCC. Little is known about the regulation mechanism of SLC47A2 We found that it was a bivalent gene that was enriched with both histone H3 lysine 4 trimethylation (H3K4me3) and lysine 27 trimethylation (H3K27me3). Loss of mixed lineage leukemia 1 binding at the gene promoter caused decreased H3K4me3 enrichment and H3K4me3/H3K27me3 ratio, and subsequently repressed the expression of SLC47A2 These two epigenetic markers modulated the expression of SLC47A2 simultaneously, suggesting the regulation pattern for bivalent genes. Histone H3 lysine 27 acetylation also contributed to the expression of SLC47A2 An E2F1-histone deacetylase 10 complex catalyzed deacetylation of H3K27, then prevented the enrichment of H3K4me3, and finally reduced SLC47A2 expression. Consequently, the combined effect of all these factors determined SLC47A2 transcriptional repression in RCC tissues.
Collapse
Affiliation(s)
- Qinqin Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Yanqing Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Xiaoli Zheng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Qianying Zhu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Zhuowei Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Hua Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Huadong He
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Nengming Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| |
Collapse
|
129
|
Agarwal SK. Molecular Genetics of MEN1-Related Neuroendocrine Tumors. DIAGNOSTIC AND THERAPEUTIC NUCLEAR MEDICINE FOR NEUROENDOCRINE TUMORS 2017:47-64. [DOI: 10.1007/978-3-319-46038-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
130
|
Wu S, Yang Z, Ye R, An D, Li C, Wang Y, Wang Y, Huang Y, Liu H, Li F, He L, Sun D, Yu Y, Li Q, Huang P, Zhang M, Zhao X, Bi T, Zhuang X, Zhang L, Lu J, Sun X, Zhou F, Liu C, Yang G, Hou Y, Fan Z, Cai Z. Novel variants in MLL confer to bladder cancer recurrence identified by whole-exome sequencing. Oncotarget 2016; 7:2629-45. [PMID: 26625313 PMCID: PMC4823060 DOI: 10.18632/oncotarget.6380] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
Bladder cancer (BC) is distinguished by high rate of recurrence after surgery, but the underlying mechanisms remain poorly understood. Here we performed the whole-exome sequencing of 37 BC individuals including 20 primary and 17 recurrent samples in which the primary and recurrent samples were not from the same patient. We uncovered that MLL, EP400, PRDM2, ANK3 and CHD5 exclusively altered in recurrent BCs. Specifically, the recurrent BCs and bladder cancer cells with MLL mutation displayed increased histone H3 tri-methyl K4 (H3K4me3) modification in tissue and cell levels and showed enhanced expression of GATA4 and ETS1 downstream. What's more, MLL mutated bladder cancer cells obtained with CRISPR/Cas9 showed increased ability of drug-resistance to epirubicin (a chemotherapy drug for bladder cancer) than wild type cells. Additionally, the BC patients with high expression of GATA4 and ETS1 significantly displayed shorter lifespan than patients with low expression. Our study provided an overview of the genetic basis of recrudescent bladder cancer and discovered that genetic alterations of MLL were involved in BC relapse. The increased modification of H3K4me3 and expression of GATA4 and ETS1 would be the promising targets for the diagnosis and therapy of relapsed bladder cancer.
Collapse
Affiliation(s)
- Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China.,Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhao Yang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui Ye
- BGI-Shenzhen, Shenzhen, China
| | - Dan An
- BGI-Shenzhen, Shenzhen, China
| | - Chong Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yitian Wang
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Anhui Medical University, Hefei, China
| | - Yongqiang Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Huang
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | | | | | - Luyun He
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Da Sun
- BGI-Shenzhen, Shenzhen, China
| | - Yuan Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | | | | | - Jingxiao Lu
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaojuan Sun
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Guosheng Yang
- Guangdong Second People's Hospital, Guangzhou, China
| | | | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhiming Cai
- Department of Urological Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Anhui Medical University, Hefei, China
| |
Collapse
|
131
|
Iguchi E, Safgren SL, Marks DL, Olson RL, Fernandez-Zapico ME. Pancreatic Cancer, A Mis-interpreter of the Epigenetic Language. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:575-590. [PMID: 28018146 PMCID: PMC5168833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic cancer is the third leading cause of cancer mortality in the U.S. with close to 40,000 deaths per year. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90 percent of all pancreatic cancer cases and is the most lethal form of the disease. Current therapies for PDAC are ineffective and most patients cannot be treated by surgical resection. Most research efforts have primarily focused on how genetic alterations cause, alter progression, contribute to diagnosis, and influence PDAC management. Over the past two decades, a model has been advanced of PDAC initiation and progression as a multi-step process driven by the acquisition of mutations leading to loss of tumor suppressors and activation of oncogenes. The recognition of the essential roles of these genetic alterations in the development of PDAC has revolutionized our knowledge of this disease. However, none of these findings have turned into effective treatment for this dismal malignancy. In recent years, studies in the areas of chromatin modifications, and non-coding RNAs have uncovered mechanisms for regulating gene expression which occur independently of genetic alterations. Chromatin-based mechanisms are interwoven with microRNA-driven regulation of protein translation to create an integrated epigenetic language, which is grossly dysregulated in PDAC. Thus in PDAC, key tumor suppressors that are well established to play a role in PDAC may be repressed, and oncogenes can be upregulated secondary to epigenetic alterations. Unlike mutations, epigenetic changes are potentially reversible. Given this feature of epigenetic mechanisms, it is conceivable that targeting epigenetic-based events promoting and maintaining PDAC could serve as foundation for the development of new therapeutic and diagnostic approaches for this disease.
Collapse
Affiliation(s)
- Eriko Iguchi
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - David L. Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Rachel L. Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
132
|
Shen EY, Jiang Y, Javidfar B, Kassim B, Loh YHE, Ma Q, Mitchell AC, Pothula V, Stewart AF, Ernst P, Yao WD, Martin G, Shen L, Jakovcevski M, Akbarian S. Neuronal Deletion of Kmt2a/Mll1 Histone Methyltransferase in Ventral Striatum is Associated with Defective Spike-Timing-Dependent Striatal Synaptic Plasticity, Altered Response to Dopaminergic Drugs, and Increased Anxiety. Neuropsychopharmacology 2016; 41:3103-3113. [PMID: 27485686 PMCID: PMC5101561 DOI: 10.1038/npp.2016.144] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022]
Abstract
Lysine (K) methyltransferase 2a (Kmt2a) and other regulators of H3 lysine 4 methylation, a histone modification enriched at promoters and enhancers, are widely expressed throughout the brain, but molecular and cellular phenotypes in subcortical areas remain poorly explored. We report that Kmt2a conditional deletion in postnatal forebrain is associated with excessive nocturnal activity and with absent or blunted responses to stimulant and dopaminergic agonist drugs, in conjunction with near-complete loss of spike-timing-dependent long-term potentiation in medium spiny neurons (MSNs). Selective ablation of Kmt2a, but not the ortholog Kmt2b, in adult ventral striatum/nucleus accumbens neurons markedly increased anxiety scores in multiple behavioral paradigms. Striatal transcriptome sequencing in adult mutants identified 262 Kmt2a-sensitive genes, mostly downregulated in Kmt2a-deficient mice. Transcriptional repression includes the 5-Htr2a serotonin receptor, strongly associated with anxiety- and depression-related disorders in human and animal models. Consistent with the role of Kmt2a in promoting gene expression, the transcriptional regulators Bahcc1, Isl1, and Sp9 were downregulated and affected by H3K4 promoter hypomethylation. Therefore, Kmt2a regulates synaptic plasticity in striatal neurons and provides an epigenetic drug target for anxiety and dopamine-mediated behaviors.
Collapse
Affiliation(s)
| | - Yan Jiang
- Department of Psychiatry, New York, NY, USA
| | | | | | - Yong-Hwee E Loh
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY, USA
| | - Qi Ma
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | - Patricia Ernst
- University of Colorado School of Medicine, Department of Pediatrics, Aurora, CO, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gilles Martin
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Li Shen
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY, USA
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany, Tel: +49 89 30622 643, E-mail:
| | - Schahram Akbarian
- Department of Psychiatry, New York, NY, USA,Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, Floor 9 Room 105, 1470 Madison Avenue, New York, NY 10029, USA, Tel: +1 212 824 8984, E-mail:
| |
Collapse
|
133
|
Zhang Q, Ding S, Zhang H, Long H, Wu H, Zhao M, Chan V, Lau CS, Lu Q. Increased Set1 binding at the promoter induces aberrant epigenetic alterations and up-regulates cyclic adenosine 5'-monophosphate response element modulator alpha in systemic lupus erythematosus. Clin Epigenetics 2016; 8:126. [PMID: 27904655 PMCID: PMC5122196 DOI: 10.1186/s13148-016-0294-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Up-regulated cyclic adenosine 5'-monophosphate response element modulator α (CREMα) which can inhibit IL-2 and induce IL-17A in T cells plays a critical role in the pathogenesis of systemic lupus erythematosus (SLE). This research aimed to investigate the mechanisms regulating CREMα expression in SLE. RESULTS From the chromatin immunoprecipitation (ChIP) microarray data, we found a sharply increased H3 lysine 4 trimethylation (H3K4me3) amount at the CREMα promoter in SLE CD4+ T cells compared to controls. Then, by ChIP and real-time PCR, we confirmed this result. Moreover, H3K4me3 amount at the promoter was positively correlated with CREMα mRNA level in SLE CD4+ T cells. In addition, a striking increase was observed in SET domain containing 1 (Set1) enrichment, but no marked change in mixed-lineage leukemia 1 (MLL1) enrichment at the CREMα promoter in SLE CD4+ T cells. We also proved Set1 enrichment was positively correlated with both H3K4me3 amount at the CREMα promoter and CREMα mRNA level in SLE CD4+ T cells. Knocking down Set1 with siRNA in SLE CD4+ T cells decreased Set1 and H3K4me3 enrichments, and elevated the levels of DNMT3a and DNA methylation, while the amounts of H3 acetylation (H3ac) and H4 acetylation (H4ac) didn't alter greatly at the CREMα promoter. All these changes inhibited the expression of CREMα, then augmented IL-2 and down-modulated IL-17A productions. Subsequently, we observed that DNA methyltransferase (DNMT) 3a enrichment at the CREMα promoter was down-regulated significantly in SLE CD4+ T cells, and H3K4me3 amount was negatively correlated with both DNA methylation level and DNMT3a enrichment at the CREMα promoter in SLE CD4+ T cells. CONCLUSIONS In SLE CD4+ T cells, increased Set1 enrichment up-regulates H3K4me3 amount at the CREMα promoter, which antagonizes DNMT3a and suppresses DNA methylation within this region. All these factors induce CREMα overexpression, consequently result in IL-2 under-expression and IL-17A overproduction, and contribute to SLE at last. Our findings provide a novel approach in SLE treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Shu Ding
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Huilin Zhang
- Emergency Department, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Hai Long
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Vera Chan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chak-Sing Lau
- Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| |
Collapse
|
134
|
Dafflon C, Craig VJ, Méreau H, Gräsel J, Schacher Engstler B, Hoffman G, Nigsch F, Gaulis S, Barys L, Ito M, Aguadé-Gorgorió J, Bornhauser B, Bourquin JP, Proske A, Stork-Fux C, Murakami M, Sellers WR, Hofmann F, Schwaller J, Tiedt R. Complementary activities of DOT1L and Menin inhibitors in MLL-rearranged leukemia. Leukemia 2016; 31:1269-1277. [PMID: 27840424 DOI: 10.1038/leu.2016.327] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/16/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022]
Abstract
Chromosomal rearrangements of the mixed lineage leukemia (MLL/KMT2A) gene leading to oncogenic MLL-fusion proteins occur in ~10% of acute leukemias and are associated with poor clinical outcomes, emphasizing the need for new treatment modalities. Inhibition of the DOT1-like histone H3K79 methyltransferase (DOT1L) is a specific therapeutic approach for such leukemias that is currently being tested in clinical trials. However, in most MLL-rearranged leukemia models responses to DOT1L inhibitors are limited. Here, we performed deep-coverage short hairpin RNA sensitizer screens in DOT1L inhibitor-treated MLL-rearranged leukemia cell lines and discovered that targeting additional nodes of MLL complexes concomitantly with DOT1L inhibition bears great potential for superior therapeutic results. Most notably, combination of a DOT1L inhibitor with an inhibitor of the MLL-Menin interaction markedly enhanced induction of differentiation and cell killing in various MLL disease models including primary leukemia cells, while sparing normal hematopoiesis and leukemias without MLL rearrangements. Gene expression analysis on human and murine leukemic cells revealed that target genes of MLL-fusion proteins and MYC were suppressed more profoundly upon combination treatment. Our findings provide a strong rationale for a novel targeted combination therapy that is expected to improve therapeutic outcomes in patients with MLL-rearranged leukemia.
Collapse
Affiliation(s)
- C Dafflon
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - V J Craig
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - H Méreau
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - J Gräsel
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - B Schacher Engstler
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - G Hoffman
- Novartis Institutes for BioMedical Research, Developmental and Molecular Pathways, Cambridge, MA, USA
| | - F Nigsch
- Novartis Institutes for BioMedical Research, Developmental and Molecular Pathways, Basel, Switzerland
| | - S Gaulis
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - L Barys
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - M Ito
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - J Aguadé-Gorgorió
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - B Bornhauser
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - J-P Bourquin
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - A Proske
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - C Stork-Fux
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - M Murakami
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - W R Sellers
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Cambridge, MA, USA
| | - F Hofmann
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| | - J Schwaller
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - R Tiedt
- Novartis Institutes for BioMedical Research, Disease Area Oncology, Basel, Switzerland
| |
Collapse
|
135
|
|
136
|
Su CH, Lin IH, Tzeng TY, Hsieh WT, Hsu MT. Regulation of IL-20 Expression by Estradiol through KMT2B-Mediated Epigenetic Modification. PLoS One 2016; 11:e0166090. [PMID: 27806114 PMCID: PMC5091760 DOI: 10.1371/journal.pone.0166090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
Cytokines are low molecular weight regulatory proteins, or glycoproteins, with both tumor-promoting and inhibitory effects on breast cancer growth. Different cytokines play important roles in breast cancer initiation and progression. Here, we show that of the 39 interleukin (IL) genes, IL-20 is the only gene over-expressed in MCF-7 cells treated with estradiol (E2) and that induction of IL-20 expression by estrogen was epigenetically regulated. Methylation of histone H3K4 in the IL-20 promoter was shown to occur via the specific recruitment of KMT2B by estrogen receptor alpha (ERα), but not by other members of the mixed-lineage leukemia (MLL) family of histone methyltransferases. Depletion of KMT2B, or IL-20, disrupts estrogen signaling, attenuates cell proliferation, reduces colony formation, and results in cell cycle arrest. Furthermore, we demonstrated that KMT2B-mediated epigenetic modification also affected the expression of several ERα target genes. IL-20 and KMT2B expression were also associated with ERα-positive breast cancer tissues. We have revealed an important role for KMT2B in the epigenetic transcriptional regulation of cytokine IL-20, and other ERα-responsive genes, in breast cancer cells. Inhibition of IL-20 and KMT2B may have therapeutic benefits in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Chia-Hsin Su
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | - I-Hsuan Lin
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Tzeng
- VYM Genome Research Center, National Yang-Ming University, University System of Taiwan, Taipei 11221, Taiwan, Republic of China
| | - Wen-Ting Hsieh
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | - Ming-Ta Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
- Chien-Tien Hsu Cancer Research Foundation, Taipei 11221, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
137
|
Sze CC, Shilatifard A. MLL3/MLL4/COMPASS Family on Epigenetic Regulation of Enhancer Function and Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026427. [PMID: 27638352 DOI: 10.1101/cshperspect.a026427] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During development, precise spatiotemporal patterns of gene expression are coordinately controlled by cis-regulatory modules known as enhancers. Their crucial role in development helped spur numerous studies aiming to elucidate the functional properties of enhancers within their physiological and disease contexts. In recent years, the role of enhancer malfunction in tissue-specific tumorigenesis is increasingly investigated. Here, we direct our focus to two primary players in enhancer regulation and their role in cancer pathogenesis: MLL3 and MLL4, members of the COMPASS family of histone H3 lysine 4 (H3K4) methyltransferases, and their complex-specific subunit UTX, a histone H3 lysine 27 (H3K27) demethylase. We review the most recent evidence on the underlying roles of MLL3/MLL4 and UTX in cancer and highlight key outstanding questions to help drive future research and contribute to our fundamental understanding of cancer and facilitate identification of therapeutic opportunities.
Collapse
Affiliation(s)
- Christie C Sze
- Department of Biochemistry and Molecular Genetics and Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics and Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
138
|
Liu L, Lei I, Karatas H, Li Y, Wang L, Gnatovskiy L, Dou Y, Wang S, Qian L, Wang Z. Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. Cell Discov 2016; 2:16036. [PMID: 27924221 PMCID: PMC5113048 DOI: 10.1038/celldisc.2016.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 09/05/2016] [Indexed: 12/17/2022] Open
Abstract
Generation of induced cardiomyocytes (iCMs) directly from fibroblasts offers a great opportunity for cardiac disease modeling and cardiac regeneration. A major challenge of iCM generation is the low conversion rate. To address this issue, we attempted to identify small molecules that could potentiate the reprogramming ability towards cardiac fate by removing inhibitory roadblocks. Using mouse embryonic fibroblasts as the starting cell source, we first screened 47 cardiac development related epigenetic and transcription factors, and identified an unexpected role of H3K4 methyltransferase Mll1 and related factor Men1 in inhibiting iCM reprogramming. We then applied small molecules (MM408 and MI503) of Mll1 pathway inhibitors and observed an improved efficiency in converting embryonic fibroblasts and cardiac fibroblasts into functional cardiomyocyte-like cells. We further observed that these inhibitors directly suppressed the expression of Mll1 target gene Ebf1 involved in adipocyte differentiation. Consequently, Mll1 inhibition significantly decreased the formation of adipocytes during iCM induction. Therefore, Mll1 inhibitors likely increased iCM efficiency by suppressing alternative lineage gene expression. Our studies show that targeting Mll1 dependent H3K4 methyltransferase activity provides specificity in the process of cardiac reprogramming. These findings shed new light on the molecular mechanisms underlying cardiac conversion of fibroblasts and provide novel targets and small molecules to improve iCM reprogramming for clinical applications.
Collapse
Affiliation(s)
- Liu Liu
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan , Ann Arbor, MI, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI, USA; Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hacer Karatas
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Yangbing Li
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Li Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; McAllister Heart Institute University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Leonid Gnatovskiy
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan , Ann Arbor, MI, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, 1301 Catherine , Ann Arbor, MI, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; McAllister Heart Institute University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
139
|
Poynter ST, Kadoch C. Polycomb and trithorax opposition in development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:659-688. [PMID: 27581385 DOI: 10.1002/wdev.244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/07/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023]
Abstract
Early discoveries in chromatin biology and epigenetics heralded new insights into organismal development. From these studies, two mediators of cellular differentiation were discovered: the Polycomb group (PcG) of transcriptional repressors, and the trithorax group (trxG) of transcriptional activators. These protein families, while opposed in function, work together to coordinate the appropriate cellular developmental programs that allow for both embryonic stem cell self-renewal and differentiation. Recently, both the PcG and trxG chromatin modulators have been observed to be deregulated in a wide spectrum diseases including developmental disorders and cancer. To understand the impact of these findings we outline the past, present, and future. WIREs Dev Biol 2016, 5:659-688. doi: 10.1002/wdev.244 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Steven T Poynter
- Chemical Biology Program, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
140
|
Ntziachristos P, Abdel-Wahab O, Aifantis I. Emerging concepts of epigenetic dysregulation in hematological malignancies. Nat Immunol 2016; 17:1016-24. [PMID: 27478938 PMCID: PMC5134743 DOI: 10.1038/ni.3517] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
The past decade brought a revolution in understanding of the structure, topology and disease-inducing lesions of RNA and DNA, fueled by unprecedented progress in next-generation sequencing. This technological revolution has also affected understanding of the epigenome and has provided unique opportunities for the analysis of DNA and histone modifications, as well as the first map of the non-protein-coding genome and three-dimensional (3D) chromosomal interactions. Overall, these advances have facilitated studies that combine genetic, transcriptomics and epigenomics data to address a wide range of issues ranging from understanding the role of the epigenome in development to targeting the transcription of noncoding genes in human cancer. Here we describe recent insights into epigenetic dysregulation characteristic of the malignant differentiation of blood stem cells based on studies of alterations that affect epigenetic complexes, enhancers, chromatin, long noncoding RNAs (lncRNAs), RNA splicing, nuclear topology and the 3D conformation of chromatin.
Collapse
Affiliation(s)
- Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Iannis Aifantis
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
141
|
Alicea-Velázquez NL, Shinsky SA, Loh DM, Lee JH, Skalnik DG, Cosgrove MS. Targeted Disruption of the Interaction between WD-40 Repeat Protein 5 (WDR5) and Mixed Lineage Leukemia (MLL)/SET1 Family Proteins Specifically Inhibits MLL1 and SETd1A Methyltransferase Complexes. J Biol Chem 2016; 291:22357-22372. [PMID: 27563068 DOI: 10.1074/jbc.m116.752626] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/23/2016] [Indexed: 11/06/2022] Open
Abstract
MLL1 belongs to the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases, composed of MLL1-4 and SETd1A/B. MLL1 translocations are present in acute leukemias, and mutations in several family members are associated with cancer and developmental disorders. MLL1 associates with a subcomplex containing WDR5, RbBP5, ASH2L, and DPY-30 (WRAD), forming the MLL1 core complex required for H3K4 mono- and dimethylation and transcriptional activation. Core complex assembly requires interaction of WDR5 with the MLL1 Win (WDR5 interaction) motif, which is conserved across the SET1 family. Agents that mimic the SET1 family Win motif inhibit the MLL1 core complex and have become an attractive approach for targeting MLL1 in cancers. Like MLL1, other SET1 family members interact with WRAD, but the roles of the Win motif in complex assembly and enzymatic activity remain unexplored. Here, we show that the Win motif is necessary for interaction of WDR5 with all members of the human SET1 family. Mutation of the Win motif-WDR5 interface severely disrupts assembly and activity of MLL1 and SETd1A complexes but only modestly disrupts MLL2/4 and SETd1B complexes without significantly altering enzymatic activity in vitro Notably, in the absence of WDR5, MLL3 interacts with RAD and shows enhanced activity. To further probe the role of the Win motif-WDR5 interaction, we designed a peptidomimetic that binds WDR5 (Kd ∼3 nm) and selectively inhibits activity of MLL1 and SETd1A core complexes within the SET1 family. Our results reveal that SET1 family complexes with the weakest Win motif-WDR5 interaction are more susceptible to Win motif-based inhibitors.
Collapse
Affiliation(s)
- Nilda L Alicea-Velázquez
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Stephen A Shinsky
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Daniel M Loh
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Jeong-Heon Lee
- the Biology Department, School of Science, Indiana University-Purdue University, Indianapolis, Indiana 46202
| | - David G Skalnik
- the Biology Department, School of Science, Indiana University-Purdue University, Indianapolis, Indiana 46202
| | - Michael S Cosgrove
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| |
Collapse
|
142
|
D'Urso A, Takahashi YH, Xiong B, Marone J, Coukos R, Randise-Hinchliff C, Wang JP, Shilatifard A, Brickner JH. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife 2016; 5:e16691. [PMID: 27336723 DOI: 10.7554/elife.16691.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 05/21/2023] Open
Abstract
In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8(-) Mediator, during memory, Cdk8(+) Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism.
Collapse
Affiliation(s)
- Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Bin Xiong
- Department of Statistics, Northwestern University, Evanston, United States
| | - Jessica Marone
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, United States
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
143
|
D'Urso A, Takahashi YH, Xiong B, Marone J, Coukos R, Randise-Hinchliff C, Wang JP, Shilatifard A, Brickner JH. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife 2016; 5. [PMID: 27336723 PMCID: PMC4951200 DOI: 10.7554/elife.16691] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 12/17/2022] Open
Abstract
In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8- Mediator, during memory, Cdk8+ Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism. DOI:http://dx.doi.org/10.7554/eLife.16691.001 Cells respond to stressful conditions by changing which of their genes are switched on. Such stress-specific genes are typically switched off again when the conditions improve, but can remain primed and ready to be switched on again when needed. This phenomenon is known as “epigenetic transcriptional memory” and allows for a faster or stronger response to the same stress in the future. In fact, these memories can last for a long time, even after the cell divides many times. Inside cells, most of the DNA is wrapped tightly around proteins called histones. To activate – or transcribe – a gene, the DNA must be re-packaged to allow better access for specific proteins including the enzyme called RNA polymerase II. This repackaging involves a number of changes including chemical modification of the histone proteins. Genes that have been previously transcribed under stress are packaged in a different way so that they are poised and ready for the next time they are needed. However, the details of this process were not clear. Using yeast as a model, D'Urso et al. have dissected the changes that are responsible for priming genes to respond to future events. The yeast gene INO1, which shows transcriptional memory, was studied in cells by characterizing the proteins bound at and around the gene and the histone modifications in the region. D'Urso et al. found that a protein called SfI1 bound to this gene only during transcriptional memory and that this binding was critical to start the phenomenon. Further experiments showed that transcriptional memory also required altering two protein complexes that normally bind to genes when they are switched on. One complex, which includes an enzyme that modifies histones, was altered so that the histones at the INO1 gene were marked in a unique way. The other complex was responsible for recruiting an inactive, poised form of RNA polymerase II to the gene, which allowed the gene to be activated when needed. In addition, D'Urso found that other genes that show transcriptional memory in yeast, as well as such genes in human cells, were also marked in the same ways. A future challenge will be to understand how different conditions in different organisms can lead to transcriptional memory. Further studies could also explore how this memory phenomenon is inherited and how it influences an organism’s fitness. DOI:http://dx.doi.org/10.7554/eLife.16691.002
Collapse
Affiliation(s)
- Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Bin Xiong
- Department of Statistics, Northwestern University, Evanston, United States
| | - Jessica Marone
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, United States
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
144
|
Carugo A, Genovese G, Seth S, Nezi L, Rose JL, Bossi D, Cicalese A, Shah PK, Viale A, Pettazzoni PF, Akdemir KC, Bristow CA, Robinson FS, Tepper J, Sanchez N, Gupta S, Estecio MR, Giuliani V, Dellino GI, Riva L, Yao W, Di Francesco ME, Green T, D'Alesio C, Corti D, Kang Y, Jones P, Wang H, Fleming JB, Maitra A, Pelicci PG, Chin L, DePinho RA, Lanfrancone L, Heffernan TP, Draetta GF. In Vivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer. Cell Rep 2016; 16:133-147. [PMID: 27320920 DOI: 10.1016/j.celrep.2016.05.063] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/21/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022] Open
Abstract
Current treatment regimens for pancreatic ductal adenocarcinoma (PDAC) yield poor 5-year survival, emphasizing the critical need to identify druggable targets essential for PDAC maintenance. We developed an unbiased and in vivo target discovery approach to identify molecular vulnerabilities in low-passage and patient-derived PDAC xenografts or genetically engineered mouse model-derived allografts. Focusing on epigenetic regulators, we identified WDR5, a core member of the COMPASS histone H3 Lys4 (H3K4) MLL (1-4) methyltransferase complex, as a top tumor maintenance hit required across multiple human and mouse tumors. Mechanistically, WDR5 functions to sustain proper execution of DNA replication in PDAC cells, as previously suggested by replication stress studies involving MLL1, and c-Myc, also found to interact with WDR5. We indeed demonstrate that interaction with c-Myc is critical for this function. By showing that ATR inhibition mimicked the effects of WDR5 suppression, these data provide rationale to test ATR and WDR5 inhibitors for activity in this disease.
Collapse
Affiliation(s)
- Alessandro Carugo
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy.
| | - Giannicola Genovese
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sahil Seth
- Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luigi Nezi
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Johnathon Lynn Rose
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniela Bossi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Angelo Cicalese
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | | | - Andrea Viale
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Piergiorgio Francesco Pettazzoni
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir Caner Akdemir
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Frederick Scott Robinson
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James Tepper
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nora Sanchez
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sonal Gupta
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcos Roberto Estecio
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Virginia Giuliani
- Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Laura Riva
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Wantong Yao
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Emilia Di Francesco
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tessa Green
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carolina D'Alesio
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Denise Corti
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ya'an Kang
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip Jones
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason Bates Fleming
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Lynda Chin
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy.
| | | | - Giulio Francesco Draetta
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
145
|
Li Y, Schulz VP, Deng C, Li G, Shen Y, Tusi BK, Ma G, Stees J, Qiu Y, Steiner LA, Zhou L, Zhao K, Bungert J, Gallagher PG, Huang S. Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation. Nucleic Acids Res 2016; 44:7173-88. [PMID: 27141965 PMCID: PMC5009724 DOI: 10.1093/nar/gkw327] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/15/2016] [Indexed: 01/08/2023] Open
Abstract
The modulation of chromatin structure is a key step in transcription regulation in mammalian cells and eventually determines lineage commitment and differentiation. USF1/2, Setd1a and NURF complexes interact to regulate chromatin architecture in erythropoiesis, but the mechanistic basis for this regulation is hitherto unknown. Here we showed that Setd1a and NURF complexes bind to promoters to control chromatin structural alterations and gene activation in a cell context dependent manner. In human primary erythroid cells USF1/2, H3K4me3 and the NURF complex were significantly co-enriched at transcription start sites of erythroid genes, and their binding was associated with promoter/enhancer accessibility that resulted from nucleosome repositioning. Mice deficient for Setd1a, an H3K4 trimethylase, in the erythroid compartment exhibited reduced Ter119/CD71 positive erythroblasts, peripheral blood RBCs and hemoglobin levels. Loss of Setd1a led to a reduction of promoter-associated H3K4 methylation, inhibition of gene transcription and blockade of erythroid differentiation. This was associated with alterations in NURF complex occupancy at erythroid gene promoters and reduced chromatin accessibility. Setd1a deficiency caused decreased associations between enhancer and promoter looped interactions as well as reduced expression of erythroid genes such as the adult β-globin gene. These data indicate that Setd1a and NURF complexes are specifically targeted to and coordinately regulate erythroid promoter chromatin dynamics during erythroid lineage differentiation.
Collapse
Affiliation(s)
- Ying Li
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA Macau Institute for Applied Research in Medicine and Health, State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 519020, China
| | - Vincent P Schulz
- Department of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Changwang Deng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Guangyao Li
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Betsabeh K Tusi
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Gina Ma
- Public Health Studies, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jared Stees
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA Genetics Institute, University of Florida, Gainesville, FL 32610, USA UF health Cancer center, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Laurie A Steiner
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA Genetics Institute, University of Florida, Gainesville, FL 32610, USA UF health Cancer center, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Keji Zhao
- Systems Biology Center, NHLBI, National Institute of Health, Bethesda, MD 20814, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Patrick G Gallagher
- Department of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA Macau Institute for Applied Research in Medicine and Health, State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 519020, China Genetics Institute, University of Florida, Gainesville, FL 32610, USA UF health Cancer center, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
146
|
Zhao Z, Wang L, Di L. Compartmentation of metabolites in regulating epigenome of cancer. Mol Med 2016; 22:349-360. [PMID: 27258652 DOI: 10.2119/molmed.2016.00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023] Open
Abstract
Covalent modification of DNA and histones are important epigenetic events and the genome wide reshaping of epigenetic markers is common in cancer. The epigenetic markers are produced by enzymatic reactions and some of these reactions require the presence of metabolites as cofactors (termed Epigenetic Enzyme Required Metabolites, EERMs). Recent studies found that the abundance of these EERMs correlates with epigenetic enzyme activities. Also, the subcellular compartmentation, especially the nuclear localization of these EERMs may play a role in regulating the activities of epigenetic enzymes. Moreover, gene specific recruitment of enzymes which produce the EERMs in the proximity of the epigenetic modification events accompanying the gene expression regulation, were proposed. Therefore, it is of importance to summarize these findings of the EERMs in regulating the epigenetic modifications at both DNA and histone levels, and to understand how EERMs contribute to cancer development by addressing their global versus local distribution.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lijun Di
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
147
|
Ferry JJ, Smith RF, Denney N, Walsh CP, McCauley L, Qian J, Ma H, Horiuchi KY, Howitz KT. Development and Use of Assay Conditions Suited to Screening for and Profiling of SET-Domain-Targeted Inhibitors of the MLL/SET1 Family of Lysine Methyltransferases. Assay Drug Dev Technol 2016; 13:221-34. [PMID: 26065558 DOI: 10.1089/adt.2015.646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Methylation of histone H3 lysine-4 (H3K4) is an important, regulatory, epigenetic post-translational modification associated with actively transcribed genes. In humans, the principal mediators of this modification are part of the MLL/SET1 family of methyltransferases, which comprises six members, MLLs1-4 and SET1A/SET1B. Aberrations in the structure, expression, and regulation of these enzymes are implicated in various disease states, making them important potential targets for drug discovery, particularly for oncology indications. The MLL/SET1 family members are most enzymatically active when part of a "core complex," the catalytic SET-domain-containing subunits bound to a subcomplex consisting of the proteins WDR5, RbBP5, Ash2L and a homodimer of DPY-30 (WRAD2). The necessity of MLL/SET1 members to bind WRAD2 for full activity is the basis of a particular drug development strategy, which seeks to disrupt the interaction between the MLL/SET1 subunits and WDR5. This strategy is not without its theoretical and practical drawbacks, some of which relate to the ease with which complexes of Escherichia coli-expressed MLL/SET1 and WRAD2 fall apart. As an alternative strategy, we explore ways to stabilize the complex, focusing on the use of an excess of WRAD2 to drive the binding equilibria toward complex formation while maintaining low concentrations of the catalytic subunits. The purpose of this approach is to seek inhibitors that bind the SET domain, an approach proven successful with the related, but inherently more stable, enhancer of zeste homolog 2 (EZH2) complex.
Collapse
Affiliation(s)
- Joseph J Ferry
- 1 Department of Biochemistry, Reaction Biology Corporation , Malvern, Pennsylvania
| | - Robert F Smith
- 2 Department of Protein Sciences, Reaction Biology Corporation , Malvern, Pennsylvania
| | - Natalie Denney
- 2 Department of Protein Sciences, Reaction Biology Corporation , Malvern, Pennsylvania
| | - Colin P Walsh
- 2 Department of Protein Sciences, Reaction Biology Corporation , Malvern, Pennsylvania
| | - Lauren McCauley
- 2 Department of Protein Sciences, Reaction Biology Corporation , Malvern, Pennsylvania
| | - Jie Qian
- 3 Department of Cell Biology, Reaction Biology Corporation , Malvern, Pennsylvania
| | - Haiching Ma
- 2 Department of Protein Sciences, Reaction Biology Corporation , Malvern, Pennsylvania
| | - Kurumi Y Horiuchi
- 1 Department of Biochemistry, Reaction Biology Corporation , Malvern, Pennsylvania
| | - Konrad T Howitz
- 2 Department of Protein Sciences, Reaction Biology Corporation , Malvern, Pennsylvania
| |
Collapse
|
148
|
Ha SD, Reid C, Meshkibaf S, Kim SO. Inhibition of Interleukin 1β (IL-1β) Expression by Anthrax Lethal Toxin (LeTx) Is Reversed by Histone Deacetylase 8 (HDAC8) Inhibition in Murine Macrophages. J Biol Chem 2016; 291:8745-55. [PMID: 26912657 DOI: 10.1074/jbc.m115.695809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 12/18/2022] Open
Abstract
Many pathogenic microbes often release toxins that subvert the host's immune responses to render the environment suitable for their survival and proliferation. LeTx is one of the toxins causing immune paralysis by cleaving and inactivating the mitogen-activated protein kinase (MAPK) kinases (MEKs). Here, we show that inhibition of the histone deacetylase 8 (HDAC8) by either the HDAC8-specific inhibitor PCI-34051 or small interference (si)RNAs rendered LeTx-exposed murine macrophages responsive to LPS in pro-IL-1β production. HDAC8 selectively targeted acetylated histone H3 lysine 27 (H3K27Ac), which is known to associate with active enhancers. LeTx induced HDAC8 expression, in part through inhibiting p38 MAPK, which resulted in a decrease of H3K27Ac levels. Inhibition of HDAC8 increased H3K27Ac levels and enhanced NF-κB-mediated pro-IL-1β enhancer and messenger RNA production in LeTx-exposed macrophages. Collectively, this study demonstrates a novel role of HDAC8 in LeTx immunotoxicity and regulation of pro-IL-1β production likely through eRNAs. Targeting HDAC8 could be a strategy for enhancing immune responses in macrophages exposed to LeTx or other toxins that inhibit MAPKs.
Collapse
Affiliation(s)
- Soon-Duck Ha
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Chantelle Reid
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Shahab Meshkibaf
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| |
Collapse
|
149
|
Structural basis for activity regulation of MLL family methyltransferases. Nature 2016; 530:447-52. [PMID: 26886794 DOI: 10.1038/nature16952] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022]
Abstract
The mixed lineage leukaemia (MLL) family of proteins (including MLL1-MLL4, SET1A and SET1B) specifically methylate histone 3 Lys4, and have pivotal roles in the transcriptional regulation of genes involved in haematopoiesis and development. The methyltransferase activity of MLL1, by itself severely compromised, is stimulated by the three conserved factors WDR5, RBBP5 and ASH2L, which are shared by all MLL family complexes. However, the molecular mechanism of how these factors regulate the activity of MLL proteins still remains poorly understood. Here we show that a minimized human RBBP5-ASH2L heterodimer is the structural unit that interacts with and activates all MLL family histone methyltransferases. Our structural, biochemical and computational analyses reveal a two-step activation mechanism of MLL family proteins. These findings provide unprecedented insights into the common theme and functional plasticity in complex assembly and activity regulation of MLL family methyltransferases, and also suggest a universal regulation mechanism for most histone methyltransferases.
Collapse
|
150
|
Blum R. Stepping inside the realm of epigenetic modifiers. Biomol Concepts 2016; 6:119-36. [PMID: 25915083 DOI: 10.1515/bmc-2015-0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
The ability to regulate gene expression in response to environmental alterations is vital for the endurance of all cells. However, unlike bacteria and unicellular organisms, cells of multicellular eukaryotes have developed this competency in a highly sophisticated manner, which ultimately allows for multiple lineages of differentiated cells. To maintain stability and generate progeny, differentiated cells must remain lineage-committed through numerous cell generations, and therefore their transcriptional modus operandi ought to be memorized and transmittable. To preserve the specialized characteristics of differentiated cells, it is crucial that transcriptional alterations that are triggered by specific external or intrinsic stimuli can last also after stimuli fading and propagate onto daughter cells. The unique composition of DNA and histones, and their ability to acquire a variety of epigenetic modifications, enables eukaryotic chromatin to assimilate cellular plasticity and molecular memory. The most well-studied types of epigenetic modifiers are covalently modifying DNA or histones, mostly in a reversible manner. Additional epigenetic mechanisms include histone variant replacement, energy-utilizing remodeling factors, and noncoding transcripts assembled with modifying complexes. Working with multifunctional complexes including transcription factors, epigenetic modifiers have the potential to dictate a variety of transcriptional programs underlying all cellular lineages, while utilizing in each the same source DNA as their substrates.
Collapse
|