101
|
Yu C, Argyropoulos G, Zhang Y, Kastin AJ, Hsuchou H, Pan W. Neuroinflammation activates Mdr1b efflux transport through NFkappaB: promoter analysis in BBB endothelia. Cell Physiol Biochem 2008; 22:745-56. [PMID: 19088456 PMCID: PMC2677694 DOI: 10.1159/000185558] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2008] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND/AIMS Although it is known that drug delivery across the blood-brain barrier (BBB) may be hampered by efflux transport activity of the multidrug resistance (mdr) gene product P-glycoprotein, it is not clear how inflammation regulates efflux transporters. In rat brain endothelial (RBE4) cells of BBB origin, the proinflammatory cytokine TNF mainly induced transcriptional upregulation of mdr1b, and to a lesser extent mdr1a, resulting in greater efflux of the substrates. This study further determines the mechanisms by which TNF activates mdr1b promoter activity. METHODS/RESULTS Luciferase reporter assays and DNA binding studies show that (1) maximal basal promoter activity was conferred by a 476 bp sequence upstream to the mdr1b transcriptional initiation site; (2) TNF induced upregulation of promoter activity by NFkappaB nuclear translocation; and (3) the NFkappaB binding site of the mdr1b promoter was solely responsible for basal and TNF-activated gene transcription, whereas the p53 binding site was not involved. Binding of the p65 subunit of NFkappaB to nuclear DNA from RBE4 cells was shown by electrophoretic mobility shift assay and chromatin immunoprecipitation assays. CONCLUSION NFkappaB mediates TNF-induced upregulation of mdr1b promoter activity, illustrating how inflammation activates BBB efflux transport.
Collapse
Affiliation(s)
- Chuanhui Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
102
|
Zhou SF, Lecureur V, Guillouzo A. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008; 38:802-32. [PMID: 18668431 DOI: 10.1080/00498250701867889] [Citation(s) in RCA: 383] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. P-glycoprotein (P-gp/MDR1), one of the most clinically important transmembrane transporters in humans, is encoded by the ABCB1/MDR1 gene. Recent insights into the structural features of P-gp/MDR1 enable a re-evaluation of the biochemical evidence on the binding and transport of drugs by P-gp/MDR1. 2. P-gp/MDR1 is found in various human tissues in addition to being expressed in tumours cells. It is located on the apical surface of intestinal epithelial cells, bile canaliculi, renal tubular cells, and placenta and the luminal surface of capillary endothelial cells in the brain and testes. 3. P-gp/MDR1 confers a multi-drug resistance (MDR) phenotype to cancer cells that have developed resistance to chemotherapy drugs. P-gp/MDR1 activity is also of great clinical importance in non-cancer-related drug therapy due to its wide-ranging effects on the absorption and excretion of a variety of drugs. 4. P-gp/MDR1 excretes xenobiotics such as cytotoxic compounds into the gastrointestinal tract, bile and urine. It also participates in the function of the blood-brain barrier. 5. One of the most interesting characteristics of P-gp/MDR1 is that its many substrates vary greatly in their structure and functionality, ranging from small molecules such as organic cations, carbohydrates, amino acids and some antibiotics to macromolecules such as polysaccharides and proteins. 6. Quite a number of single nucleotide polymorphisms have been found for the MDR1 gene. These single nucleotide polymorphisms are associated with altered oral bioavailability of P-gp/MDR1 substrates, drug resistance, and a susceptibility to some human diseases. 7. Altered P-gp/MDR1 activity due to induction and/or inhibition can cause drug-drug interactions with altered drug pharmacokinetics and response. 8. Further studies are warranted to explore the physiological function and pharmacological role of P-gp/MDR1.
Collapse
Affiliation(s)
- S-F Zhou
- Division of Chinese Medicine, School of Health Science, WHO Collaborating Centre for Traditional Medicine, RMIT University, Bundoora, Vic., Australia.
| | | | | |
Collapse
|
103
|
Manni I, Caretti G, Artuso S, Gurtner A, Emiliozzi V, Sacchi A, Mantovani R, Piaggio G. Posttranslational regulation of NF-YA modulates NF-Y transcriptional activity. Mol Biol Cell 2008; 19:5203-13. [PMID: 18815279 DOI: 10.1091/mbc.e08-03-0295] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
NF-Y binds to CCAAT motifs in the promoter region of a variety of genes involved in cell cycle progression. The NF-Y complex comprises three subunits, NF-YA, -YB, and -YC, all required for DNA binding. Expression of NF-YA fluctuates during the cell cycle and is down-regulated in postmitotic cells, indicating its role as the regulatory subunit of the complex. Control of NF-YA accumulation is posttranscriptional, NF-YA mRNA being relatively constant. Here we show that the levels of NF-YA protein are regulated posttranslationally by ubiquitylation and acetylation. A NF-YA protein carrying four mutated lysines in the C-terminal domain is more stable than the wild-type form, indicating that these lysines are ubiquitylated Two of the lysines are acetylated in vitro by p300, suggesting a competition between ubiquitylation and acetylation of overlapping residues. Interestingly, overexpression of a degradation-resistant NF-YA protein leads to sustained expression of mitotic cyclin complexes and increased cell proliferation, indicating that a tight regulation of NF-YA levels contributes to regulate NF-Y activity.
Collapse
Affiliation(s)
- Isabella Manni
- Molecular Oncogenesis Laboratory, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol Cell Biol 2008; 28:7066-80. [PMID: 18809583 DOI: 10.1128/mcb.00244-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human AP-endonuclease (APE1/Ref-1), a central enzyme involved in the repair of oxidative base damage and DNA strand breaks, has a second activity as a transcriptional regulator that binds to several trans-acting factors. APE1 overexpression is often observed in tumor cells and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to such agents. Because the involvement of APE1 in repairing the DNA damage induced by many of these drugs is unlikely, drug resistance may be linked to APE1's transcriptional regulatory function. Here, we show that APE1, preferably in the acetylated form, stably interacts with Y-box-binding protein 1 (YB-1) and enhances its binding to the Y-box element, leading to the activation of the multidrug resistance gene MDR1. The enhanced MDR1 level due to the ectopic expression of wild-type APE1 but not of its nonacetylable mutant underscores the importance of APE1's acetylation in its coactivator function. APE1 downregulation sensitizes MDR1-overexpressing tumor cells to cisplatin or doxorubicin, showing APE1's critical role in YB-1-mediated gene expression and, thus, drug resistance in tumor cells. A systematic increase in both APE1 and MDR1 expression was observed in non-small-cell lung cancer tissue samples. Thus, our study has established the novel role of the acetylation-mediated transcriptional regulatory function of APE1, making it a potential target for the drug sensitization of tumor cells.
Collapse
|
105
|
Kang JH, Kim MJ, Chang SY, Sim SS, Kim MS, Jo YH. CCAAT box is required for the induction of human thrombospondin-1 gene by trichostatin A. J Cell Biochem 2008; 104:1192-203. [PMID: 18275041 DOI: 10.1002/jcb.21697] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been reported to inhibit angiogenesis as well as tumor growth. Thrombospondin-1 (TSP1) has been recognized as a potent inhibitor of angiogenesis. Such an action of TSP1 may account for the effect of HDAC inhibitors. In the present study, we investigated the molecular mechanism by which trichostatin A, a HDAC inhibitor, induces the expression of TSP1 gene. Trichostatin A increased both mRNA and protein levels of TSP1 in HeLa cells. Promoter and actinomycin D chase assays showed that trichostatin A-induced TSP1 expression was regulated at the transcriptional level without changing mRNA stability. CCAAT box on the TSP1 promoter was found to primarily mediate the trichostatin A response by deletion and mutation analyses of the TSP1 promoter. Electrophoretic mobility shift assay indicated that CCAAT-binding factor (CBF) was specifically bound to the CCAAT box of TSP1 promoter. Moreover, chromatin immunoprecipitation assay showed that trichostatin A increased the binding of acetylated form of histone H3 to the CCAAT box region of TSP1 promoter. Taken together, these results strongly suggest that trichostatin A activates the transcription of TSP1 gene through the binding of transcription factor CBF to CCAAT box and the enhanced histone acetylation. Thus, the present study provides the clue that the inhibition of angiogenesis by trichostatin A is accomplished through the upregulation of TSP1, the anti-angiogenic factor.
Collapse
Affiliation(s)
- Jung-Hoon Kang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
106
|
Lee TB, Park JH, Min YD, Kim KJ, Choi CH. Epigenetic mechanisms involved in differential MDR1 mRNA expression between gastric and colon cancer cell lines and rationales for clinical chemotherapy. BMC Gastroenterol 2008; 8:33. [PMID: 18673531 PMCID: PMC2529328 DOI: 10.1186/1471-230x-8-33] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 08/01/2008] [Indexed: 01/03/2023] Open
Abstract
Background The membrane transporters such as P-glycoprotein (Pgp), the MDR1 gene product, are one of causes of treatment failure in cancer patients. In this study, the epigenetic mechanisms involved in differential MDR1 mRNA expression were compared between 10 gastric and 9 colon cancer cell lines. Methods The MDR1 mRNA levels were determined using PCR and real-time PCR assays after reverse transcription. Cytotoxicity was performed using the MTT assay. Methylation status was explored by quantification PCR-based methylation and bisulfite DNA sequencing analyses. Results The MDR1 mRNA levels obtained by 35 cycles of RT-PCR in gastric cancer cells were just comparable to those obtained by 22 cycles of RT-PCR in colon cancer cells. Real-time RT-PCR analysis revealed that MDR1 mRNA was not detected in the 10 gastric cancer cell lines but variable MDR1 mRNA levels in 7 of 9 colon cancer cell lines except the SNU-C5 and HT-29 cells. MTT assay showed that Pgp inhibitors such as cyclosporine A, verapamil and PSC833 sensitized Colo320HSR (colon, highest MDR1 expression) but not SNU-668 (gastric, highest) and SNU-C5 (gastric, no expression) to paclitaxel. Quantification PCR-based methylation analysis revealed that 90% of gastric cancer cells, and 33% of colon cancer cells were methylated, which were completely matched with the results obtained by bisulfite DNA sequencing analysis. 5-aza-2'-deoxcytidine (5AC, a DNA methyltransferase inhibitor) increased the MDR1 mRNA levels in 60% of gastric cells, and in 11% of colon cancer cells. Trichostatin A (TSA, histone deacetylase inhibitor) increased the MDR1 mRNA levels in 70% of gastric cancer cells and 55% of colon cancer cells. The combined treatment of 5AC with TSA increased the MDR1 mRNA levels additively in 20% of gastric cancer cells, but synergistically in 40% of gastric and 11% of colon cancer cells. Conclusion These results indicate that the MDR1 mRNA levels in gastric cancer cells are significantly lower than those in colon cancer cells, which is at least in part due to different epigenetic regulations such as DNA methylation and/or histone deacetylation. These results can provide a better understanding of the efficacy of combined chemotherapy as well as their oral bioavailability.
Collapse
Affiliation(s)
- Tae-Bum Lee
- Research Center for Resistant Cells, Chosun University, Gwangju 501-759, Korea.
| | | | | | | | | |
Collapse
|
107
|
Masuoka Y, Shindoh N, Inamura N. Histone deacetylase inhibitors from microorganisms: the Astellas experience. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 66:335, 337-59. [PMID: 18416310 DOI: 10.1007/978-3-7643-8595-8_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histone deacetylase (HDAC) inhibitors, such as trichostatin A and trapoxin, which were first found in microorganisms, potently and selectively inhibit HDAC enzymes. They have made a strong contribution to research on HDACs, chromatin control, abnormal epigenetic control in various diseases and the significance of acetylation in posttranslational modification. Recently, HDAC inhibitors have been focused on as potential drugs for the treatment of several diseases, including cancer, although trichostatin A and trapoxin show no effects in animal models because of their metabolic instability in vivo. Chemical modification has been conducted in order to overcome this drawback. We discovered the microbial metabolites FK228 (also known as FR901228, romidepsin, depsipeptide, NSC-630176 and NSC-630176D) and YM753 (spiruchostatin A). Both compounds have bicyclic structures and represent a novel structural class of HDAC inhibitor. The enzyme and tumor cell growth inhibitory activities of FK228 were found to be very potent. It also showed potent HDAC inhibitory activity in vivo. FK228 is the first potent HDAC inhibitor to undergo clinical development as a potential treatment for solid and hematological cancers. Due to its dramatic effect in patients with refractory cutaneous T-cell lymphoma (CTCL), in October 2004 the US Food & Drug Administration (FDA) granted fast-track status to FK228 as monotherapy for the treatment of CTCL in patients who have relapsed following, or become refractory to, another systemic therapy. Thus HDAC inhibitors such as FK228 and YM753 have potential as tools for life science studies and also as therapeutic agents for various intractable diseases.
Collapse
Affiliation(s)
- Yuhta Masuoka
- Fermentation Research Labs, Drug Discovery Research, Astellas Pharma Inc., 2-3, Tokodai 5-chome, Tsukuba-shi, Ibaraki 300-2698, Japan.
| | | | | |
Collapse
|
108
|
Characterisation of the in vitro activity of the depsipeptide histone deacetylase inhibitor spiruchostatin A. Biochem Pharmacol 2008; 76:463-75. [PMID: 18611394 DOI: 10.1016/j.bcp.2008.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/02/2008] [Accepted: 06/02/2008] [Indexed: 12/13/2022]
Abstract
We recently completed the total synthesis of spiruchostatin A, a depsipeptide natural product with close structural similarities to FK228, a histone deacetylase (HDAC) inhibitor (HDI) currently being evaluated in clinical trials for cancer. Here we report a detailed characterisation of the in vitro activity of spiruchostatin A. Spiruchostatin A was a potent (sub-nM) inhibitor of class I HDAC activity in vitro and acted as a prodrug, requiring reduction for activity. Spiruchostatin A was a potent (low nM) inhibitor of the growth of various cancer cell lines. Spiruchostatin A-induced acetylation of specific lysine residues within histones H3 and H4, and increased the expression of p21(cip1/waf1), but did not induce acetylation of alpha-tubulin. Spiruchostatin A also induced cell cycle arrest, differentiation and cell death in MCF7 breast cancer cells. Like FK228, spiruchostatin A was both an inducer and substrate of the ABCB1 drug efflux pump. Whereas spiruchostatin A and FK228-induced protracted histone acetylation, hydroxamate HDI-induced short-lived histone acetylation. Using a subset of HDI-target genes identified by microarray analysis, we demonstrated that these differences in kinetics of histone acetylation between HDI correlated with differences in the kinetics of induction or repression of specific target genes. Our results demonstrate that spiruchostatin A is a potent inhibitor of class I HDACs and anti-cancer agent. Differences in the kinetics of action of HDI may be important for the clinical application of these compounds.
Collapse
|
109
|
Hui RCY, Francis RE, Guest SK, Costa JR, Gomes AR, Myatt SS, Brosens JJ, Lam EWF. Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Mol Cancer Ther 2008; 7:670-8. [PMID: 18347152 DOI: 10.1158/1535-7163.mct-07-0397] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using the doxorubicin-sensitive K562 cell line and the resistant derivative lines KD30 and KD225 as models, we found that acquisition of multidrug resistance (MDR) is associated with enhanced FOXO3a activity and expression of ABCB1 (MDR1), a plasma membrane P-glycoprotein that functions as an efflux pump for various anticancer agents. Furthermore, induction of ABCB1 mRNA expression on doxorubicin treatment of naive K562 cells was also accompanied by increased FOXO3a activity. Analysis of transfected K562, KD30, and KD225 cells in which FOXO3a activity can be induced by 4-hydroxytamoxifen showed that FOXO3a up-regulates ABCB1 expression at protein, mRNA, and gene promoter levels. Conversely, silencing of endogenous FOXO3a expression in KD225 cells inhibited the expression of this transport protein. Promoter analysis and chromatin immunoprecipitation assays showed that FOXO3a regulation of ABCB1 expression involves binding of this transcription factor to the proximal promoter region. Moreover, activation of FOXO3a increased ABCB1 drug efflux potential in KD30 cells, whereas silencing of FOXO3a by siRNA significantly reduced ABCB1 drug efflux ability. Together, these findings suggest a novel mechanism that can contribute towards MDR, involving FOXO3a as sensor for the cytotoxic stress induced by anticancer drugs. Although FOXO3a may initially trigger a program of cell cycle arrest and cell death in response to doxorubicin, sustained FOXO3a activation promotes drug resistance and survival of cells by activating ABCB1 expression.
Collapse
Affiliation(s)
- Rosaline C-Y Hui
- Department of Oncology, Cancer Research UK Labs, MRC Cyclotron Building, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Upregulation of annexin A1 expression by butyrate in human colon adenocarcinoma cells: role of p53, NF-Y, and p38 mitogen-activated protein kinase. Mol Cell Biol 2008; 28:4665-74. [PMID: 18541673 DOI: 10.1128/mcb.00650-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Annexin A1 is a member of a phospholipid and calcium binding family of proteins; it is involved in anti-inflammation and in the regulation of differentiation, proliferation, and apoptosis. Here, we show the existence of a functional binding site for the tumor suppressor p53 near the proximal CCAAT box and the fact that the basal expression of annexin A1 in human colon adenocarcinoma cells is driven by p53 at the transcriptional level. Posttranscriptional mechanisms may also play an important role in maintaining constitutive annexin A1 expression. In addition, a p53/NF-Y complex is detected bound to the p53 binding site on its promoter. Butyrate is a natural product of fiber degradation in the colon and a key regulator of colonic epithelium homeostasis. We show that butyrate, a class I and II histone deacetylase inhibitor, induces transcriptional activation of annexin A1 expression correlated with differentiation. The effect of butyrate is mediated through a release of NF-Y from the proximal CCAAT box and an enhancement of p53 binding. The interaction of p53 with the promoter is dependent on p38 MAPK activity either in the absence or in the presence of butyrate. Further, activation of p38 MAPK by this agent is required to increase annexin A1 promoter activity and to increase protein expression.
Collapse
|
111
|
Gurtner A, Fuschi P, Magi F, Colussi C, Gaetano C, Dobbelstein M, Sacchi A, Piaggio G. NF-Y dependent epigenetic modifications discriminate between proliferating and postmitotic tissue. PLoS One 2008; 3:e2047. [PMID: 18431504 PMCID: PMC2295263 DOI: 10.1371/journal.pone.0002047] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 03/13/2008] [Indexed: 02/03/2023] Open
Abstract
The regulation of gene transcription requires posttranslational modifications of histones that, in concert with chromatin remodeling factors, shape the structure of chromatin. It is currently under intense investigation how this structure is modulated, in particular in the context of proliferation and differentiation. Compelling evidence suggests that the transcription factor NF-Y acts as a master regulator of cell cycle progression, activating the transcription of many cell cycle regulatory genes. However, the underlying molecular mechanisms are not yet completely understood. Here we show that NF-Y exerts its effect on transcription through the modulation of the histone "code". NF-Y colocalizes with nascent RNA, while RNA polymerase II is I phosphorylated on serine 2 of the YSPTSPS repeats within its carboxyterminal domain and histones are carrying modifications that represent activation signals of gene expression (H3K9ac and PAN-H4ac). Comparing postmitotic muscle tissue from normal mice and proliferating muscles from mdx mice, we demonstrate by chromatin immunoprecipitation (ChIP) that NF-Y DNA binding activity correlates with the accumulation of acetylated histones H3 and H4 on promoters of key cell cycle regulatory genes, and with their active transcription. Accordingly, p300 is recruited onto the chromatin of NF-Y target genes in a NF-Y-dependent manner, as demonstrated by Re-ChIP. Conversely, the loss of NF-Y binding correlates with a decrease of acetylated histones, the recruitment of HDAC1, and a repressed heterochromatic state with enrichment of histones carrying modifications known to mediate silencing of gene expression (H3K9me3, H3K27me2 and H4K20me3). As a consequence, NF-Y target genes are downregulated in this context. In conclusion, our data indicate a role of NF-Y in modulating the structure and transcriptional competence of chromatin in vivo and support a model in which NF-Y-dependent histone "code" changes contribute to the proper discrimination between proliferating and postmitotic cells in vivo and in vitro.
Collapse
Affiliation(s)
- Aymone Gurtner
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | - Paola Fuschi
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | - Fiorenza Magi
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | - Claudia Colussi
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carlo Gaetano
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), Göttingen, Germany
| | - Ada Sacchi
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
- Rome Oncogenomic Center, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
- * E-mail:
| |
Collapse
|
112
|
The potential role of histone deacetylase inhibitors in the treatment of non-small-cell lung cancer. Crit Rev Oncol Hematol 2008; 68:29-36. [PMID: 18424067 DOI: 10.1016/j.critrevonc.2008.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/29/2008] [Accepted: 03/05/2008] [Indexed: 12/31/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) arises from a complex series of genetic and epigenetic changes leading to uncontrolled cell growth and metastases. The exponential growth in the level of research about the histone deacetylase (HDAC) enzymes, responsible for deacetylating core nucleosomal histones and other proteins, has been driven by the ability of HDAC inhibitors to modulate transcriptional activity. As a result, this therapeutic class is able to block angiogenesis and cell cycling, and promote apoptosis and differentiation. The mechanisms resulting in the antiproliferative biologic effects of these agents are not yet known. Clinical experience indicates these agents generally well tolerated, and active in several haematological and solid tumours. HDAC inhibitors, under clinical evaluation in the treatment of NSCLC patients, are pivanex, CI-994, vorinostat, and LBH589. Here, we discuss about the potential role of HDAC inhibitors focusing on their activity, tolerability, efficacy and future development, in the treatment of NSCLC.
Collapse
|
113
|
Kim YK, Kim NH, Hwang JW, Song YJ, Park YS, Seo DW, Lee HY, Choi WS, Han JW, Kim SN. Histone deacetylase inhibitor apicidin-mediated drug resistance: Involvement of P-glycoprotein. Biochem Biophys Res Commun 2008; 368:959-64. [DOI: 10.1016/j.bbrc.2008.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/06/2008] [Indexed: 11/24/2022]
|
114
|
Chia MC, Leung A, Krushel T, Alajez NM, Lo KW, Busson P, Klamut HJ, Bastianutto C, Liu FF. Nuclear Factor-Y and Epstein Barr Virus in Nasopharyngeal Cancer. Clin Cancer Res 2008; 14:984-94. [DOI: 10.1158/1078-0432.ccr-07-0828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
115
|
Liu YY, Yu JY, Yin D, Patwardhan GA, Gupta V, Hirabayashi Y, Holleran WM, Giuliano AE, Jazwinski SM, Gouaze-Andersson V, Consoli DP, Cabot MC. A role for ceramide in driving cancer cell resistance to doxorubicin. FASEB J 2008; 22:2541-51. [PMID: 18245173 DOI: 10.1096/fj.07-092981] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Advanced cancers acquire resistance to chemotherapy, and this results in treatment failure. The cellular mechanisms of chemotherapy resistance are not well understood. Here, for the first time, we show that ceramide contributes to cellular resistance to doxorubicin through up-regulating the gene expression of glucosylceramide synthase (GCS). Ceramide, a cellular lipid messenger, modulates doxorubicin-induced cell death. GCS catalyzes ceramide glycosylation, converting ceramide to glucosylceramide; this process hastens ceramide clearance and limits ceramide-induced apoptosis. In the present study, we evaluated the role of the GCS gene in doxorubicin resistance using several paired wild-type and drug-resistant (doxorubicin-selected) cancer cell lines, including breast, ovary, cervical, and colon. GCS was overexpressed in all drug-resistant counterparts, and suppressing GCS overexpression using antisense oligonucleotide restored doxorubicin sensitivity. Characterizing the effect mechanism showed that doxorubicin exposure increased ceramide levels, enhanced GCS expression, and imparted cellular resistance. Exogenous C(6)-ceramide and sphingomyelinase treatments mimicked the influence of doxorubicin on GCS, activating the GCS promoter and up-regulating GCS gene expression. Fumonisin B(1), an inhibitor of ceramide synthesis, significantly suppressed doxorubicin-up-regulated GCS expression. Promoter truncation, point mutation, gel-shift, and protein-DNA ELISA analysis showed that transcription factor Sp1 was essential for ceramide-induced GCS up-regulation. These data indicate that ceramide-governed GCS gene expression drives cellular resistance to doxorubicin.
Collapse
Affiliation(s)
- Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 700 University Ave., Monroe, LA 71209, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Raguz S, Randle RA, Sharpe ER, Foekens JA, Sieuwerts AM, Meijer-van Gelder ME, Melo JV, Higgins CF, Yagüe E. Production of P-glycoprotein from the MDR1 upstream promoter is insufficient to affect the response to first-line chemotherapy in advanced breast cancer. Int J Cancer 2008; 122:1058-67. [PMID: 17955490 DOI: 10.1002/ijc.23149] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Multidrug resistance, the phenomenon by which cells treated with a drug become resistant to the cytotoxic effect of a variety of other structurally and functionally unrelated drugs, is often associated with the expression of P-glycoprotein, an efflux membrane pump coded by the MDR1 (ABCB1) gene. Transcription from MDR1 can start at 2 promoters: a well-characterized downstream promoter and an as yet uncharacterized upstream promoter (USP). We have previously determined that the USP is activated in some drug-resistant cell lines, in primary breast tumors and in metastatic epithelial cells isolated from the lymph nodes of breast cancer patients. In this study, we report the cloning and characterization of the MDR1 USP and studied its association with chemotherapy response in breast cancer patients. Deletion analysis indicated that a nearby endogenous retroviral long terminal repeat is not responsible for promoter activation, and that the region within the first 400 nucleotides upstream from the transcription start point contained all the elements necessary for promoter activity in drug-resistant cells. We identified an element recognized by the transcription factor NF-IL6 (activated upon interleukin-6 exposure) which is necessary for promoter activity in drug-resistant cells and plays a role in the activation of the promoter in response to interleukin-6 in breast cancer MCF-7 cells. Although transcripts from this promoter are associated with translating polyribosomes, their low abundance makes the amount of synthesized P-glycoprotein insufficient to affect the response to first-line chemotherapy in patients with advanced breast cancer.
Collapse
Affiliation(s)
- Selina Raguz
- Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Shareef MM, Brown B, Shajahan S, Sathishkumar S, Arnold SM, Mohiuddin M, Ahmed MM, Spring PM. Lack of P-Glycoprotein Expression by Low-Dose Fractionated Radiation Results from Loss of Nuclear Factor-κB and NF-Y Activation in Oral Carcinoma Cells. Mol Cancer Res 2008; 6:89-98. [DOI: 10.1158/1541-7786.mcr-07-0221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
118
|
Tomita T, Kimura S. Regulation of mouse Scgb3a1 gene expression by NF-Y and association of CpG methylation with its tissue-specific expression. BMC Mol Biol 2008; 9:5. [PMID: 18194566 PMCID: PMC2266941 DOI: 10.1186/1471-2199-9-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 01/14/2008] [Indexed: 11/10/2022] Open
Abstract
Background Secretoglobin (SCGB) 3A1 is a secretory protein of small molecular weight with tumor suppressor function. It is highly expressed in lung and trachea in both human and mouse, with additional tissues expressing the protein that differ depending on the species. However, little is known about the function and transcriptional regulation of this gene in normal mouse tissues. Results By reporter gene transfection and gel mobility shift analyses, we demonstrated that expression of the mouse Scgb3a1 gene is regulated by a PU-box binding protein and a ubiquitous transcription factor NF-Y that respectively binds to the PU-boxes located at -99 to -105 bp and -158 to -164 bp, and the "CCAAT" binding sites located at -425 to -429 bp and -498 to -502 bp from the transcription start site of the gene. However, the effect of PU-box binding protein on transcriptional activation is minimal as compared to NF-Y, suggesting that NF-Y is a more critical transcription factor for mouse Scgb3a1 gene transcription. Despite that NF-Y is a ubiquitous factor, Scgb3a1 is highly expressed only in mouse lung and mtCC cells that are derived from SV40 transformed mouse Clara cells, but not in ten other mouse tissues/cells examined. Gene methylation analysis revealed that within 600 bp of the Scgb3a1 gene promoter region, there are nine CpG methylation sites present, of which two CpGs closest to the transcription start site of the gene are unmethylated in the tissues/cells expressing SCGB3A1. Conclusion A ubiquitous transcription factor NF-Y binds to and activates expression of the mouse Scgb3a1 gene and tissue-specific expression of the gene is associated with CpG methylation of the promoter.
Collapse
Affiliation(s)
- Takeshi Tomita
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
119
|
Caffeine regulates alternative splicing in a subset of cancer-associated genes: a role for SC35. Mol Cell Biol 2007; 28:883-95. [PMID: 18025108 DOI: 10.1128/mcb.01345-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing of pre-mRNA contributes significantly to human proteomic complexity, playing a key role in development, gene expression and, when aberrant, human disease onset. Many of the factors involved in alternative splicing have been identified, but little is known about their regulation. Here we report that caffeine regulates alternative splicing of a subset of cancer-associated genes, including the tumor suppressor KLF6. This regulation is at the level of splice site selection, occurs rapidly and reversibly, and is concentration dependent. We have recapitulated caffeine-induced alternative splicing of KLF6 using a cell-based minigene assay and identified a "caffeine response element" within the KLF6 intronic sequence. Significantly, a chimeric minigene splicing assay demonstrated that this caffeine response element is functional in a heterologous context; similar elements exist within close proximity to caffeine-regulated exons of other genes in the subset. Furthermore, the SR splicing factor, SC35, was shown to be required for induction of the alternatively spliced KLF6 transcript. Importantly, SC35 is markedly induced by caffeine, and overexpression of SC35 is sufficient to mimic the effect of caffeine on KLF6 alternative splicing. Taken together, our data implicate SC35 as a key player in caffeine-mediated splicing regulation. This novel effect of caffeine provides a valuable tool for dissecting the regulation of alternative splicing of a large gene subset and may have implications with respect to splice variants associated with disease states.
Collapse
|
120
|
Randle R, Raguz S, Higgins C, Yagüe E. Role of the highly structured 5'-end region of MDR1 mRNA in P-glycoprotein expression. Biochem J 2007; 406:445-55. [PMID: 17573715 PMCID: PMC2049040 DOI: 10.1042/bj20070235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Overexpression of P-glycoprotein, encoded by the MDR1 (multidrug resistance 1) gene, is often responsible for multidrug resistance in acute myeloid leukaemia. We have shown previously that MDR1 (P-glycoprotein) mRNA levels in K562 leukaemic cells exposed to cytotoxic drugs are up-regulated but P-glycoprotein expression is translationally blocked. In the present study we show that cytotoxic drugs down-regulate the Akt signalling pathway, leading to hypophosphorylation of the translational repressor 4E-BP [eIF (eukaryotic initiation factor) 4E-binding protein] and decreased eIF4E availability. The 5'-end of MDR1 mRNA adopts a highly-structured fold. Fusion of this structured 5'-region upstream of a reporter gene impeded its efficient translation, specifically under cytotoxic stress, by reducing its competitive ability for the translational machinery. The effect of cytotoxic stress could be mimicked in vivo by blocking the phosphorylation of 4E-BP by mTOR (mammalian target of rapamycin) using rapamycin or eIF4E siRNA (small interfering RNA), and relieved by overexpression of either eIF4E or constitutively-active Akt. Upon drug exposure MDR1 mRNA was up-regulated, apparently stochastically, in a small proportion of cells. Only in these cells could MDR1 mRNA compete successfully for the reduced amounts of eIF4E and translate P-glycoprotein. Consequent drug efflux and restoration of eIF4E availability results in a feed-forward relief from stress-induced translational repression and to the acquisition of drug resistance.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Blotting, Southern
- Drug Resistance/genetics
- Enzyme Inhibitors/pharmacology
- Eukaryotic Initiation Factor-4E/genetics
- Eukaryotic Initiation Factor-4E/metabolism
- Flow Cytometry
- Gene Expression Regulation/drug effects
- Humans
- K562 Cells
- Luciferases/metabolism
- Phosphorylation
- Polymerase Chain Reaction
- Protein Biosynthesis
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Rebecca A. Randle
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
| | - Selina Raguz
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
| | - Christopher F. Higgins
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
| | - Ernesto Yagüe
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
121
|
Lee JS. Activation of ATM-dependent DNA damage signal pathway by a histone deacetylase inhibitor, trichostatin A. Cancer Res Treat 2007; 39:125-30. [PMID: 19746219 DOI: 10.4143/crt.2007.39.3.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 09/08/2007] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Ataxia-telangiectasia mutated (ATM) kinase regulates diverse cellular DNA damage responses, including genome surveillance, cell growth, and gene expression. While the role of histone acetylation/deacetylation in gene expression is well established, little is known as to whether this modification can activate an ATM-dependent signal pathway, and whether this modification can thereby be implicated in an ATM-mediated DNA damage response. MATERIALS AND METHODS Formation of H2AXgamma foci was examined in HeLa and U(2)OS cells following treatment with a histone deacetylase inhibitor, Trichostatin A (TSA). We determine an ATM-dependency of the TSA-induced DNA damage signal pathway using isogenic A-T (ATM(-)) and control (ATM(+)) cells. We monitored the phosphorylation of ATM, an ATM-downstream effector kinase, Chk2, and H2AXgamma to detect the activation of the ATM-dependent DNA damage signal pathway. RESULTS Exposure of cells to TSA results in the formation of H2AXgamma foci in HeLa and U(2)OS cells. The TSA-induced formation of H2AXgamma foci occurs in an ATM-dependent manner. TSA induces phosphorylation of serine 1981 of ATM, accumulation of phosphorylated H2AX and Chk2, and formation of H2AX foci, in a manner analogous to genotoxic DNA damage. CONCLUSION In this work, we show that TSA induces a DNA damage signaling pathway in an ATM-dependent manner. These results suggest that ATM can respond to altered histone acetylation induced by the histone deacetylase inhibitor, TSA.
Collapse
Affiliation(s)
- Jong-Soo Lee
- Department of Biological Sciences, College of Natural Sciences and Department of Molecular Science and Technology, Ajou University, Suwon, Korea.
| |
Collapse
|
122
|
El-Khoury V, Breuzard G, Fourré N, Dufer J. The histone deacetylase inhibitor trichostatin A downregulates human MDR1 (ABCB1) gene expression by a transcription-dependent mechanism in a drug-resistant small cell lung carcinoma cell line model. Br J Cancer 2007; 97:562-73. [PMID: 17667922 PMCID: PMC2360351 DOI: 10.1038/sj.bjc.6603914] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tumour drug-resistant ABCB1 gene expression is regulated at the chromatin level through epigenetic mechanisms. We examined the effects of the histone deacetylase inhibitor trichostatin A (TSA) on ABCB1 gene expression in small cell lung carcinoma (SCLC) drug-sensitive (H69WT) or etoposide-resistant (H69VP) cells. We found that TSA induced an increase in ABCB1 expression in drug-sensitive cells, but strongly decreased it in drug-resistant cells. These up- and downregulations occurred at the transcriptional level. Protein synthesis inhibition reduced these modulations, but did not completely suppress them. Differential temporal patterns of histone acetylation were observed at the ABCB1 promoter: increase in H4 acetylation in both cell lines, but different H3 acetylation with a progressive increase in H69WT cells but a transient one in H69VP cells. ABCB1 regulations were not related with the methylation status of the promoter -50GC, -110GC, and Inr sites, and did not result in further changes to these methylation profiles. Trichostatin A treatment did not modify MBD1 binding to the ABCB1 promoter and similarly increased PCAF binding in both H69 cell lines. Our results suggest that in H69 drug-resistant SCLC cell line TSA induces downregulation of ABCB1 expression through a transcriptional mechanism, independently of promoter methylation, and MBD1 or PCAF recruitment.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Butyrates/pharmacology
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/pathology
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- DNA Methylation
- Down-Regulation
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Histone Acetyltransferases/metabolism
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Models, Biological
- Promoter Regions, Genetic/drug effects
- Response Elements/drug effects
- Transcription Factors/metabolism
- Transcription, Genetic
- p300-CBP Transcription Factors
Collapse
Affiliation(s)
- V El-Khoury
- Unité MéDIAN-CNRS UMR 6142, IFR 53, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, F-51096 Reims, France
| | - G Breuzard
- Unité MéDIAN-CNRS UMR 6142, IFR 53, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, F-51096 Reims, France
| | - N Fourré
- Unité MéDIAN-CNRS UMR 6142, IFR 53, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, F-51096 Reims, France
| | - J Dufer
- Unité MéDIAN-CNRS UMR 6142, IFR 53, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, F-51096 Reims, France
- E-mail:
| |
Collapse
|
123
|
Ishiguro K, Sartorelli AC. Relationship between the induction of leukemia cell differentiation and the enhancement of reporter gene expression in 3T3 Swiss cells. Leuk Res 2007; 32:89-96. [PMID: 17617452 PMCID: PMC2778346 DOI: 10.1016/j.leukres.2007.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/10/2007] [Accepted: 05/17/2007] [Indexed: 11/18/2022]
Abstract
The histone deacetylase (HDAC) inhibitor trichostatin A (TSA) and hexamethylene bisacetamide (HMBA), which lacks HDAC inhibitory activity, both possess the capacity to induce leukemia cell differentiation and to enhance the expression of a wide range of transiently transfected reporter genes in 3T3 Swiss cells. In addition, known inducers of leukemia cell differentiation, including hypoxanthine, diazepam, 6-thioguanine and phorbol 12-myristate 13-acetate, also exhibited the ability to enhance reporter gene expression, while randomly chosen compounds that did not induce leukemia cell differentiation did not enhance reporter gene expression. The activity of TSA in the transfection system was modified by co-expression of histone acetyltransferase p300 and HDAC1; whereas, that of HMBA was enhanced by co-expression of the TATA-binding protein TBP. The stimulatory effects of diverse chemical inducers on transiently transfected genes suggest the existence of multiple exploitable targets for the selection of novel inducers of differentiation that function as modulators of gene activity.
Collapse
Affiliation(s)
| | - Alan C. Sartorelli
- Corresponding author. Tel.: +1 203 785 4533; fax: +1 203 737 2045. (A.C. Sartorelli)
| |
Collapse
|
124
|
Cerveny L, Svecova L, Anzenbacherova E, Vrzal R, Staud F, Dvorak Z, Ulrichova J, Anzenbacher P, Pavek P. Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos 2007; 35:1032-41. [PMID: 17392393 DOI: 10.1124/dmd.106.014456] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In our study, we tested the hypothesis whether valproic acid (VPA) in therapeutic concentrations has potential to affect expression of CYP3A4 and MDR1 via constitutive androstane receptor (CAR) and pregnane X receptor (PXR) pathways. Interaction of VPA with CAR and PXR nuclear receptors was studied using luciferase reporter assays, real-time reverse transcriptase polymerase chain reaction (RT-PCR), electrophoretic mobility shift assay (EMSA), and analysis of CYP3A4 catalytic activity. Using transient transfection reporter assays in HepG2 cells, VPA was recognized to activate CYP3A4 promoter via CAR and PXR pathways. By contrast, a significant effect of VPA on MDR1 promoter activation was observed only in CAR-cotransfected HepG2 cells. These data well correlated with up-regulation of CYP3A4 and MDR1 mRNAs analyzed by real-time RT-PCR in cells transfected with expression vectors encoding CAR or PXR and treated with VPA. In addition, VPA significantly up-regulated CYP3A4 mRNA in primary hepatocytes and augmented the effect of rifampicin. EMSA experiments showed VPA-mediated augmentation of CAR/retinoid X receptor alpha heterodimer binding to direct repeat 3 (DR3) and DR4 responsive elements of CYP3A4 and MDR1 genes, respectively. Finally, analysis of specific CYP3A4 catalytic activity revealed its significant increase in VPA-treated LS174T cells transfected with PXR. In conclusion, we provide novel insight into the mechanism by which VPA affects gene expression of CYP3A4 and MDR1 genes. Our results demonstrate that VPA has potential to up-regulate CYP3A4 and MDR1 through direct activation of CAR and/or PXR pathways. Furthermore, we suggest that VPA synergistically augments the effect of rifampicin in transactivation of CYP3A4 in primary human hepatocytes.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Anticonvulsants/pharmacology
- Aryl Hydrocarbon Hydroxylases/genetics
- Cell Line, Tumor
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2B6
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/genetics
- Drug Synergism
- Electrophoretic Mobility Shift Assay
- Enzyme Induction
- Genes, Reporter
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Hepatocytes/metabolism
- Humans
- Hydroxylation
- Luciferases
- Oxidoreductases, N-Demethylating/genetics
- Oximes/pharmacology
- Pregnane X Receptor
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/drug effects
- Receptors, Steroid/metabolism
- Retinoid X Receptor alpha/drug effects
- Retinoid X Receptor alpha/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rifampin/pharmacology
- Testosterone/metabolism
- Thiazoles/pharmacology
- Transcription Factors/drug effects
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- Transfection
- Up-Regulation
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Gómez-Martínez A, García-Morales P, Carrato A, Castro-Galache MD, Soto JL, Carrasco-García E, García-Bautista M, Guaraz P, Ferragut JA, Saceda M. Post-transcriptional Regulation of P-Glycoprotein Expression in Cancer Cell Lines. Mol Cancer Res 2007; 5:641-53. [PMID: 17579122 DOI: 10.1158/1541-7786.mcr-06-0177] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study of inhibitors shows that the histone deacetylase-induced increase in P-glycoprotein (Pgp) mRNA (MDR1 mRNA) does not parallel either an increase in Pgp protein or an increase in Pgp activity in several colon carcinoma cell lines. Furthermore, studying the polysome profile distribution, we show a translational control of Pgp in these cell lines. In addition, we show that the MDR1 mRNA produced in these cell lines is shorter in its 5' end that the MDR1 mRNA produced in the MCF-7/Adr (human breast carcinoma) and K562/Adr (human erythroleukemia) cell lines, both of them expressing Pgp. The different size of the MDR1 mRNA is due to the use of alternative promoters. Our data suggest that the translational blockade of MDR1 mRNA in the colon carcinoma cell lines and in wild-type K562 cells could be overcome by alterations in the 5' end of the MDR1 mRNA in the resistant variant of these cell lines, as in the case of the K562/Adr cell line. This is, to our knowledge, the first report demonstrating that the presence of an additional 5' untranslated fragment in the MDR1 mRNA improves the translational efficiency of this mRNA.
Collapse
MESH Headings
- 5' Untranslated Regions
- ATP Binding Cassette Transporter, Subfamily B/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Neoplastic
- Histone Deacetylase Inhibitors
- Humans
- K562 Cells
- Models, Genetic
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Angeles Gómez-Martínez
- Instituto de Biología Molecular y Celular, Ed. Torregaitan, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Peng Y, Stewart D, Li W, Hawkins M, Kulak S, Ballermann B, Jahroudi N. Irradiation modulates association of NF-Y with histone-modifying cofactors PCAF and HDAC. Oncogene 2007; 26:7576-83. [PMID: 17599060 DOI: 10.1038/sj.onc.1210565] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Post-irradiation complications including thrombus formation result from increased procoagulant activity of vascular endothelial cells and elevated levels of von Willebrand factor (VWF) contribute to this process. We have previously demonstrated that irradiation induction of the VWF is mediated through interaction of NF-Y transcription factor with its cognate binding site in the VWF promoter. We have also demonstrated that irradiation increases the association of NF-Y with histone acetyltransferase p300/CBP-associated factor (PCAF). We now report that irradiation decreases the association of NF-Y with histone deacetylase 1 (HDAC1). We demonstrate that irradiation-induced changes in association of NF-Y with HDAC1 and PCAF lead to increased PCAF recruitment to the VWF promoter, increased association of acetylated histone H4 with the VWF promoter and subsequently increased transcription. We also demonstrate that this process is correlated to dephosphorylation of HDAC1 and is inhibited by calyculin A, an inhibitor of protein phosphatase1.
Collapse
Affiliation(s)
- Y Peng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Jin W, Scotto KW, Hait WN, Yang JM. Involvement of CtBP1 in the transcriptional activation of the MDR1 gene in human multidrug resistant cancer cells. Biochem Pharmacol 2007; 74:851-9. [PMID: 17662696 PMCID: PMC1987360 DOI: 10.1016/j.bcp.2007.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/21/2022]
Abstract
Drug resistance caused by overexpression of P-glycoprotein (P-gp), the MDR1 (ABCB1) gene product, limits the therapeutic outcome. Expression of MDR1 can be induced by divergent stimuli, and involves a number of transcriptional factors. We found that the expression of CtBP1 (C-terminal-binding protein 1), a transcriptional co-regulator, was increased (approximately 4-fold) in human multidrug resistant (MDR) cancer cell lines, NCI/ADR-RES and A2780/DX, as compared to their sensitive counterparts. Silencing of CtBP1 expression by RNAi decreased the MDR1 mRNA and P-gp. Knockdown of CtBP1 also enhanced the sensitivity of MDR cells to chemotherapeutic drugs that are transported by P-gp and increased intracellular drug accumulation. In a reporter gene assay, co-transfection of MDR1 promoter constructs with a CtBP1 expression vector resulted in a approximately 2-4-fold induction of MDR1 promoter activity. CtBP1 appeared to contribute to the activation of MDR1 transcription through directly interacting with the MDR1 promoter, as evidenced by its physical binding to the promoter region of the MDR1 gene in chromatin immunoprecipitation and electromobility shift assays. Histone modifications at the MDR1 promoter, such as mono-methylation, di-methylation, and acetylation of histone H3, were not found to be affected by silencing of CtBP1 expression. Our results reveal a novel role for CtBP1 as an activator of MDR1 gene transcription, and suggest that CtBP1 might be one of the key transcription factors involved in the induction of MDR1 gene. Therefore, CtBP1 may represent a potentially new target for inhibiting drug resistance mediated by overexpression of the MDR1 gene.
Collapse
Affiliation(s)
- Wei Jin
- Departments of Pharmacology, The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey 08903
| | - Kathleen W. Scotto
- Departments of Pharmacology, The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey 08903
| | - William N. Hait
- Johnson and Johnson/Centocor, 920 Route 202, Raritan, New Jersey 08869
| | - Jin-Ming Yang
- Departments of Pharmacology, The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey 08903
- Address correspondence to: Jin-Ming Yang, The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey 08901, Tel.: 732-235-8075; FAX: 732-235-8094, E-mail address:
| |
Collapse
|
128
|
Liu M, Li D, Aneja R, Joshi HC, Xie S, Zhang C, Zhou J. PO2-dependent Differential Regulation of Multidrug Resistance 1 Gene Expression by the c-Jun NH2-terminal Kinase Pathway. J Biol Chem 2007; 282:17581-6. [PMID: 17452336 DOI: 10.1074/jbc.m702206200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-induced multidrug resistance 1 (MDR1) gene expression is known to be mediated by c-Jun NH(2)-terminal kinase (JNK) activation. However, the molecular mechanisms underlying this action of JNK remain elusive. On the contrary, there has been increasing evidence for a negative correlation of JNK activity with MDR1 expression under normoxic conditions. Here, we present evidence that the JNK pathway represses MDR1 expression in normoxia and activates MDR1 expression in hypoxia. Our data show that JNK pathway-induced MDR1 repression in normoxia is mediated by increased c-Jun binding to activator protein 1 site, located in the MDR1 promoter, and requires the activity of histone deacetylase 5. In contrast, JNK pathway-induced MDR1 activation in hypoxia is independent of the activator protein 1 site. Rather, this action is dependent on increased hypoxia-inducible factor 1 (HIF1) binding to the hypoxia response element in the MDR1 promoter, which is promoted by the interaction of HIF1alpha with c-Jun in the nucleus and requires the activity of the p300/CBP (CREB-binding protein) coactivator.
Collapse
Affiliation(s)
- Min Liu
- Department of Genetics and Cell Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
129
|
Buchmueller KL, Taherbhai Z, Howard CM, Bailey SL, Nguyen B, O'Hare C, Hochhauser D, Hartley JA, Wilson WD, Lee M. Design of a hairpin polyamide, ZT65B, for targeting the inverted CCAAT box (ICB) site in the multidrug resistant (MDR1) gene. Chembiochem 2006; 6:2305-11. [PMID: 16254941 DOI: 10.1002/cbic.200500179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel hairpin polyamide, ZT65B, containing a 3-methylpicolinate moiety was designed to target the inverted CCAAT box (ICB) of the human multidrug resistance 1 gene (MDR1) promoter. Binding of nuclear factor-Y (NF-Y) to the ICB site upregulates MDR1 gene expression and is, therefore, a good target for anticancer therapeutic agents. However, it is important to distinguish amongst different promoter ICB sites so that only specific genes will be affected. All ICB sites have the same sequence but they differ in the sequence of the flanking base pairs, which can be exploited in the design of sequence-specific polyamides. To test this hypothesis, ten ICB-containing DNA hairpins were designed with different flanking base pairs; the sequences ICBa and ICBb were similar to the 3'-ICB site of MDR1 (TGGCT). Thermal-denaturation studies showed that ZT65B effectively targeted ICBa and ICBb (DeltaTM=6.5 and 7.0 degrees C) in preference to the other DNA hairpins (<3.5 degrees C), with the exception of ICBc (5.0 degrees C). DNase I-footprinting assays were carried out with the topoisomerase IIalpha-promoter sequence, which contains five ICB sites; of these, ICB1 and ICB5 are similar to the ICB site of MDR1. ZT65B was found to selectively bind ICB1 and ICB5; footprints were not observed with ICB2, ICB3, or ICB4. A strong, positive induced ligand band at 325 nm in CD studies confirmed that ZT65B binds in the DNA minor groove. The selectivity of ZT65B binding to hairpins that contained the MDR1 ICB site compared to one that did not (ICBd) was confirmed by surface-plasmon studies, and equilibrium constants of 5x10(6)-1x10(7) and 4.6x10(5) M-1 were obtained with ICB1, ICB5,and ICB2 respectively. ZT65B and the previously published JH37 (J. A. Henry, et al. Biochemistry 2004, 43, 12 249-12 257) serve as prototypes for the design of novel polyamides. These can be used to specifically target the subset of ubiquitous gene elements known as ICBs, and thereby affect the expression of one or a few proteins.
Collapse
|
130
|
Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006; 86:1179-236. [PMID: 17015488 DOI: 10.1152/physrev.00037.2005] [Citation(s) in RCA: 555] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.
Collapse
Affiliation(s)
- Balázs Sarkadi
- National Medical Center, Institute of Hematology and Immunology, Membrane Research Group, Budapest, Hungary.
| | | | | | | |
Collapse
|
131
|
Eyal S, Lamb JG, Smith-Yockman M, Yagen B, Fibach E, Altschuler Y, White HS, Bialer M. The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver. Br J Pharmacol 2006; 149:250-60. [PMID: 16894351 PMCID: PMC2014277 DOI: 10.1038/sj.bjp.0706830] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The antiepileptic drug valproic acid, a histone deacetylase (HDAC) inhibitor, is currently being tested as an anticancer agent. However, HDAC inhibitors may interact with anticancer drugs through induction of P-glycoprotein (P-gp, MDR1) expression. In this study we assessed whether valproic acid induces P-gp function in tumour cells. We also investigated effects of valproic acid on the mRNA for P-gp and the cytochrome P450, CYP3A, in rat livers. EXPERIMENTAL APPROACH Effects of valproic acid on P-gp were assessed in three tumour cell lines, SW620, KG1a and H4IIE. Accumulation of acetylated histone H3 in rats' livers treated for two or seven days with valproic acid was evaluated using a specific antibody. Hepatic expression of the P-gp genes, mdr1a, mdr1b and mdr2, was determined by real-time polymerase chain reaction. The effects of valproic acid on CYP3A were assessed by Northern blot analysis and CYP3A activity assays. KEY RESULTS Valproic acid (0.5-2.0 mM) induced P-gp expression and function up to 4-fold in vitro. The effect of a series of valproic acid derivatives on P-gp expression in SW620 and KG1a cells correlated with their HDAC inhibition potencies. Treatment of rats with 1 mmol kg(-1) valproic acid for two and seven days increased hepatic histone acetylation (1.3- and 3.5-fold, respectively) and the expression of mdr1a and mdr2 (2.2-4.1-fold). Valpromide (0.5-2.0 mM) did not increase histone acetylation or P-gp expression in rat livers, but induced CYP3A expression. CONCLUSIONS Valproic acid increased P-gp expression and function in human tumour cell lines and in rat liver. The clinical significance of this increase merits further investigation.
Collapse
Affiliation(s)
- S Eyal
- Department of Pharmaceutics, Faculty of Medicine, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| | - J G Lamb
- Department of Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA
| | - M Smith-Yockman
- Department of Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA
| | - B Yagen
- Department of Medicinal Chemistry and Natural Products, Faculty of Medicine, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
- David R Bloom Center for Pharmacy, Faculty of Medicine, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| | - E Fibach
- Department of Hematology, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - Y Altschuler
- David R Bloom Center for Pharmacy, Faculty of Medicine, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
- Department of Pharmacology, Faculty of Medicine, School of Pharmacy, The Hebrew University of JerusalemIsrael
| | - H S White
- Department of Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA
| | - M Bialer
- Department of Pharmaceutics, Faculty of Medicine, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
- David R Bloom Center for Pharmacy, Faculty of Medicine, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
- Author for correspondence:
| |
Collapse
|
132
|
Hernandez M, Shao Q, Yang XJ, Luh SP, Kandouz M, Batist G, Laird DW, Alaoui-Jamali MA. A histone deacetylation-dependent mechanism for transcriptional repression of the gap junction gene cx43 in prostate cancer cells. Prostate 2006; 66:1151-61. [PMID: 16652385 DOI: 10.1002/pros.20451] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The connexin 43 gene (cx43, GJA1) mediates gap junctional intercellular communication (GJIC), which regulates tissue homeostasis. cx43 is frequently downregulated in prostate cancer. We investigated the role of a histone deacetylase (HDAC)-dependent mechanism in the transcriptional repression of cx43 in a panel of prostate cancer cells. METHODS The impact of Trichostatin A (TSA), an inhibitor of HDAC, on exogenous and endogenous cx43 gene transcription was examined by the luciferase assay, Northern blot, nuclear run-on, Western blot, and chromatin immunoprecipitation assays. RESULTS Trichostatin A induces transcription of cx43 gene and GJIC. The co-activator p300/CBP synergizes with TSA for cx43 promoter activation. We identified a promoter region where cooperation between Ap1 and Sp1 elements was essential for TSA-induced cx43 transcription. TSA increased the level of hyperacetylated histones bound to cx43 promoter. CONCLUSION Our results highlight the potential utility of inhibitors of HDAC to restore cx43 gene expression in prostate cancer.
Collapse
Affiliation(s)
- Maite Hernandez
- Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, 3755 Chemin de la Cote Ste-Catherine, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Donati G, Imbriano C, Mantovani R. Dynamic recruitment of transcription factors and epigenetic changes on the ER stress response gene promoters. Nucleic Acids Res 2006; 34:3116-27. [PMID: 16757577 PMCID: PMC1475745 DOI: 10.1093/nar/gkl304] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Response to stresses that alter the function of the endoplasmic reticulum is an important cellular function, which relies on the activation of specific genes. Several transcription factors (TFs) are known to affect this pathway. Using RT-PCR and ChIP assays, we studied the recruitment of promoter-specific TFs, general TFs and epigenetic marks in activated promoters. H3-K4 di- and tri-methylation and H3-K79 di-methylation are present before induction. H3 acetylation is generally high before induction, and H4 acetylation shows a promoter-specific increase. Interestingly, there is a depletion of histone H3 under maximal induction, explaining an apparent decrease of H3-K4 tri-methylation and H3-K79 di-methylation. Pol II is found enriched on some promoters under basal conditions, unlike TBP and p300, which are recruited selectively. Most genes are bound by XBP-1 after induction, some before induction, presumably by the inactive isoform. ATF6 and CHOP associate to largely different set of genes. C/EBPbeta is selective and binding to the CHOP promoter precedes that of XBP-1, ATF6 and CHOP. Finally, one of the ER-stress inducible genes analyzed, HRD1, is not bound by any of these factors. Among the constitutive TFs, NF-Y, but not Sp1, is found on all genes before induction. Intriguingly, siRNA interference of the NF-YB subunit indicates transcriptional impairment of some, but not all genes. These data highlight a previously unappreciated complexity of TFs binding and epigenetic changes, pointing to different TFs-specific pathways within this broad response.
Collapse
Affiliation(s)
| | - Carol Imbriano
- Dipartimento di Biologia Animale, Università di Modena e ReggioVia Campi 287/d, 41100 Modena, Italy
| | - Roberto Mantovani
- To whom correspondence should be addressed. Tel: +39 02 50315005; Fax: +39 02 50315044;
| |
Collapse
|
134
|
Robey RW, Zhan Z, Piekarz RL, Kayastha GL, Fojo T, Bates SE. Increased MDR1 expression in normal and malignant peripheral blood mononuclear cells obtained from patients receiving depsipeptide (FR901228, FK228, NSC630176). Clin Cancer Res 2006; 12:1547-55. [PMID: 16533780 DOI: 10.1158/1078-0432.ccr-05-1423] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increased expression of markers associated with a differentiated phenotype, such as P-glycoprotein (Pgp), follows treatment with histone deacetylase inhibitors. Because depsipeptide (FR901228, FK228, NSC630176) is a substrate for Pgp, up-regulation of the gene that encodes it, MDR1, would mean that depsipeptide induces its own mechanism of resistance. To examine the effect of depsipeptide on expression of ATP-binding cassette transporters associated with multidrug resistance, the kidney cancer cell lines 108, 121, 127, and 143 were treated with depsipeptide and evaluated by quantitative reverse transcription-PCR. Increased levels of MDR1 (1.3- to 6.3-fold) and ABCG2 (3.2- to 11.1-fold) but not MRP1 (0.9- to 1.3-fold) were observed. The induced Pgp transported the fluorescent substrates rhodamine 123, bisantrene, calcein-AM, BODIPY-vinblastine, and BODIPY-paclitaxel. In normal peripheral blood mononuclear cells (PBMC) and circulating tumor cells obtained from patients receiving depsipeptide, increased levels of histone H3 acetylation were found. We next examined MDR1 levels in normal and malignant PBMCs obtained from 15 patients enrolled in clinical trials with depsipeptide and detected up to a 6-fold increase in normal PBMCs and up to an 8-fold increase in circulating tumor cells after depsipeptide administration. In one patient with Sézary syndrome, increased MDR1 gene expression was accompanied by increased cell surface Pgp expression in circulating Sézary cells as determined by measurement of MRK-16 staining by flow cytometry. These studies suggest that depsipeptide induces its own mechanism of resistance and thus provide a basis for clinical trials evaluating depsipeptide in combination with a Pgp inhibitor.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Acetylation
- Antibiotics, Antineoplastic/pharmacology
- Antimetabolites/pharmacology
- Antineoplastic Agents/pharmacology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/metabolism
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/metabolism
- Depsipeptides/pharmacology
- Didanosine/pharmacology
- Doxorubicin/pharmacology
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Flow Cytometry
- Hippocalcin/pharmacology
- Histones/metabolism
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/metabolism
- Leukocytes, Mononuclear/metabolism
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Cells, Circulating/metabolism
- Paclitaxel/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sezary Syndrome/drug therapy
- Sezary Syndrome/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Robert W Robey
- Cancer Therapeutics Branch, Center for Cancer Research, NIH, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
135
|
Kwon HS, Huang B, Ho Jeoung N, Wu P, Steussy CN, Harris RA. Retinoic acids and trichostatin A (TSA), a histone deacetylase inhibitor, induce human pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ACTA ACUST UNITED AC 2006; 1759:141-51. [PMID: 16757381 DOI: 10.1016/j.bbaexp.2006.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 03/28/2006] [Accepted: 04/13/2006] [Indexed: 11/21/2022]
Abstract
Induction of pyruvate dehydrogenase kinase 4 (PDK4) conserves glucose and substrates for gluconeogenesis and thereby helps regulate blood glucose levels during starvation. We report here that retinoic acids (RA) as well as Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC), regulate PDK4 gene expression. Two retinoic acid response elements (RAREs) to which retinoid X receptor alpha (RXRalpha) and retinoic acid receptor alpha (RARalpha) bind and activate transcription are present in the human PDK4 (hPDK4) proximal promoter. Sp1 and CCAAT box binding factor (CBF) bind to the region between two RAREs. Mutation of either the Sp1 or the CBF site significantly decreases basal expression, transactivation by RXRalpha/RARalpha/RA, and the ability of TSA to stimulate hPDK4 gene transcription. By the chromatin immunoprecipitation assay, RA and TSA increase acetylation of histones bound to the proximal promoter as well as occupancy of CBP and Sp1. Interaction of p300/CBP with E1A completely prevented hPDK4 gene activation by RXRalpha/RARalpha/RA and TSA. The p300/CBP may enhance acetylation of histones bound to the hPDK4 promoter and cooperate with Sp1 and CBF to stimulate transcription of the hPDK4 gene in response to RA and TSA.
Collapse
Affiliation(s)
- Hye-Sook Kwon
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive MS 4053, Indianapolis, IN 46202-5122, USA
| | | | | | | | | | | |
Collapse
|
136
|
Zhou J, Liu M, Aneja R, Chandra R, Lage H, Joshi HC. Reversal of P-glycoprotein-mediated multidrug resistance in cancer cells by the c-Jun NH2-terminal kinase. Cancer Res 2006; 66:445-52. [PMID: 16397260 DOI: 10.1158/0008-5472.can-05-1779] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A significant impediment to the success of cancer chemotherapy is multidrug resistance (MDR). A typical form of MDR is attributable to the overexpression of membrane transport proteins, such as P-glycoprotein, resulting in an increased drug efflux. In this study, we show that adenovirus-mediated enhancement of the c-Jun NH2-terminal kinase (JNK) reduces the level of P-glycoprotein in a dose- and time-dependent manner. Protein turnover assay shows that the decrease of P-glycoprotein is independent of its protein stability. Instead, this occurs primarily at the mRNA level, as revealed by reverse transcription-PCR analysis. We find that P-glycoprotein down-regulation requires the catalytic activity of JNK and is mediated by the c-Jun transcription factor, as either pharmacologic inhibition of JNK activity or dominant-negative suppression of c-Jun remarkably abolishes the ability of JNK to down-regulate P-glycoprotein. In addition, electrophoretic mobility shift assay reveals that adenoviral JNK increases the activator protein binding activity of the mdr1 gene in the MDR cells. We further show that the decrease of P-glycoprotein level is associated with a significant increase in intracellular drug accumulation and dramatically enhances the sensitivity of MDR cancer cells to chemotherapeutic agents. Our study provides the first direct evidence that enhancement of the JNK pathway down-regulates P-glycoprotein and reverses P-glycoprotein-mediated MDR in cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adenoviridae/enzymology
- Adenoviridae/genetics
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Cell Line, Tumor
- Daunorubicin/pharmacokinetics
- Daunorubicin/pharmacology
- Down-Regulation
- Drug Resistance, Multiple/physiology
- Drug Resistance, Neoplasm
- Humans
- JNK Mitogen-Activated Protein Kinases/biosynthesis
- JNK Mitogen-Activated Protein Kinases/genetics
- JNK Mitogen-Activated Protein Kinases/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/metabolism
Collapse
Affiliation(s)
- Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China.
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Multidrug resistant transporter MDR1/P-glycoprotein, the gene product of MDR1, is a glycosylated membrane protein of 170 kDa, belonging to the ATP-binding cassette superfamily of membrane transporters. A number of various types of structurally unrelated drugs are substrates for MDR1, and MDR1 and other transporters are recognized as an important class of proteins for regulating pharmacokinetics. The first investigation of the effects of MDR1 genotypes on pharmacotherapy was reported in 2000; a silent single nucleotide polymorphism (SNP), C3435T in exon 26, was found to be associated with the duodenal expression of MDR1, and thereby the plasma concentration of digoxin after oral administration. In the last 5 years, clinical studies have been conducted around the world on the association of MDR1 genotype with MDR1 expression and function in tissues, and with the pharmacokinetics and pharmacodynamics of drugs; however, there are still discrepancies in the results on C3435T. In 1995, a novel concept to predict in vivo oral pharmacokinetic performance from data on in vivo permeability and in vitro solubility has been proposed, and this Biopharmaceutical Classification System strongly suggested that the effects of intestinal MDR1 on the intestinal absorption of substrates is minimal in the case of commercially available oral drugs, and therefore MDR1 genotypes are little associated with the pharmacokinetics after oral administration. This review summarizes the latest reports for the future individualization of pharmacotherapy based on MDR1 genotyping, and attempts to explain discrepancies.
Collapse
Affiliation(s)
- Toshiyuki Sakaeda
- Department of Hospital Pharmacy, School of Medicine, Kobe University, Japan.
| |
Collapse
|
138
|
Tchénio T, Havard M, Martinez LA, Dautry F. Heat shock-independent induction of multidrug resistance by heat shock factor 1. Mol Cell Biol 2006; 26:580-91. [PMID: 16382149 PMCID: PMC1346900 DOI: 10.1128/mcb.26.2.580-591.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The screening of two different retroviral cDNA expression libraries to select genes that confer constitutive doxorubicin resistance has in both cases resulted in the isolation of the heat shock factor 1 (HSF1) transcription factor. We show that HSF1 induces a multidrug resistance phenotype that occurs in the absence of heat shock or cellular stress and is mediated at least in part through the constitutive activation of the multidrug resistance gene 1 (MDR-1). This drug resistance phenotype does not correlate with an increased expression of heat shock-responsive genes (heat shock protein genes, or HSPs). In addition, HSF1 mutants lacking HSP gene activation are also capable of conferring multidrug resistance, and only hypophosphorylated HSF1 complexes accumulate in transduced cells. Our results indicate that HSF1 can activate MDR-1 expression in a stress-independent manner that differs from the canonical heat shock-activated mechanism involved in HSP induction. We further provide evidence that the induction of MDR-1 expression occurs at a posttranscriptional level, revealing a novel undocumented role for hypophosphorylated HSF1 in posttranscriptional gene regulation.
Collapse
Affiliation(s)
- Thierry Tchénio
- Unité de Génétique Moléculaire et Intégrations des Fonctions Cellulaires, CNRS-UPR1983, 7 rue Guy Moquet, BP8, 94801 Villejuif Cedex, France.
| | | | | | | |
Collapse
|
139
|
Chen KG, Wang YC, Schaner ME, Francisco B, Durán GE, Juric D, Huff LM, Padilla-Nash H, Ried T, Fojo T, Sikic BI. Genetic and epigenetic modeling of the origins of multidrug-resistant cells in a human sarcoma cell line. Cancer Res 2005; 65:9388-97. [PMID: 16230402 DOI: 10.1158/0008-5472.can-04-4133] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The origin of drug-resistant cells in human cancers has been a fundamental problem of cancer pharmacology. Two major contrasting hypotheses (genetics versus epigenetics) have been proposed to elucidate the mechanisms of acquired drug resistance. In this study, we answer these fundamental questions through investigation of the genetic and epigenetic pathways that control the origin of ABCB1 (MDR1) gene activation with acquired multidrug resistance in drug-sensitive human sarcoma (MES-SA cells). The genetic and epigenetic bases of this selected activation involve the initiation of transcription at a site 112 kb upstream of the ABCB1 proximal promoter (P1) in the drug-resistant cells. This activation was associated with a chromatin-remodeling process characterized by an increase in acetylated histone H3 within a 968-bp region 5' of the ABCB1 upstream promoter. These alterations provide both genetic and epigenetic susceptibility for ABCB1 expression in drug-resistant cells. Complete activation of the ABCB1 gene through the coding region was proposed by interactions of selected trans-alterations or epigenetic changes on the ABCB1 proximal promoter, which occurred during initial drug exposure. Thus, our data provide evidence for a major genomic alteration that changes the chromatin structure of the ABCB1 upstream promoter via acetylation of histone H3 initiating ABCB1 activation, further elucidating the genetic and epigenetic bases that determine chemotherapeutic response in drug-resistant derivatives of MES-SA cells.
Collapse
Affiliation(s)
- Kevin G Chen
- Division of Oncology, Department of Medicine and Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Tabe Y, Konopleva M, Contractor R, Munsell M, Schober WD, Jin L, Tsutsumi-Ishii Y, Nagaoka I, Igari J, Andreeff M. Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 2005; 107:1546-54. [PMID: 16223781 PMCID: PMC1895410 DOI: 10.1182/blood-2004-10-4126] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multidrug resistance 1 (MDR1) gene product P-glycoprotein (P-gp) is frequently implicated in cross-resistance of tumors to chemotherapeutic drugs. In contrast, acute promyelocytic leukemia (APL) cells do not express MDR1 and are highly sensitive to anthracyclines. The combination of ATRA and the novel histone deacetylase inhibitor (HDACI) depsipeptide (FK228) induced P-gp expression and prevented growth inhibition and apoptosis in NB4 APL cells subsequently exposed to doxorubicin (DOX). ATRA/FK228 treatment after exposure to DOX, however, enhanced apoptosis. Both agents, ATRA or FK228, induced MDR1 mRNA. This effect was significantly enhanced by ATRA/FK228 administered in combination, due in part to increased H4 and H3-Lys9 acetylation of the MDR1 promoter and recruitment of the nuclear transcription factor Y alpha (NFYA) transcription activator to the CCAAT box. Cotreatment with specific P-gp inhibitor PSC833 reversed cytoprotective effects of ATRA/FK228. G1 cell-cycle arrest and p21 mRNA induction were also observed in response to ATRA/FK228, which may restrict DOX-induced apoptosis of cells in G2 phase. These results indicate that epigenetic mechanisms involving NF-YA transcription factor recruitment and histone acetylation are activated by ATRA and HDACI, induce MDR1 in APL cells, and point to the critical importance of mechanism-based sequential therapy in future clinical trials that combine HDAC inhibitors, ATRA, and anthracyclines.
Collapse
Affiliation(s)
- Yoko Tabe
- Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, Unit 448, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Zhou D, Masri S, Ye JJ, Chen S. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1. Gene 2005; 361:89-100. [PMID: 16181749 DOI: 10.1016/j.gene.2005.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/30/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
PNRC2 (Proline-rich Nuclear Receptor Coactivator 2) was previously identified through its interaction with SF1 (steroidogenic factor 1) and has been demonstrated to be a novel coactivator for multiple nuclear receptors. In this study, PNRC2 was found to be widely expressed in mouse tissues with a strong expression in lung, spleen, ovary, thymus, and colon. Alignment of mouse genomic sequence with mouse cDNA sequence (BC006598), using mouse genome browser, defines that PNRC2 gene, located on chromosome 4, contains 3 exons: 166 bp-exon I, 205 bp-exon II, and 1526 bp-exon III. The translational start site is located in exon III. The first two exons are not translated. The 420 bp coding sequence in exon III encodes a 140 amino acid protein. To understand the molecular mechanisms that regulate the expression of PNRC2 gene, we have cloned and characterized the 5'-flanking region of the gene. Potential transcriptional start sites were determined by 5' RACE analysis. Functional analysis of the 5' flanking region of the mPNRC2 gene by deletion mutagenesis, transient transfection and luciferase assays revealed that the -67/+53 region is the minimal promoter of the mouse PNRC2 gene in HeLa cells. Within this sequence we identified two putative binding sites (inverted CCAAT box) for the transcription factor NFY (nuclear factor Y), a factor mediating cell type-specific and cell-cycle regulated expression of genes, and one binding site for E2F1, a founding member of the E2F family that displays the properties of both an oncogene and a tumor suppressor gene. Mutating each individual CCAAT site or changing the orientation of the CAATT box led to a 5-fold decrease in PNRC2 promoter activity in transient transfection experiments. Gel shift, supershift assay, and ChIP analysis demonstrated the specific binding of NFY and E2F1 proteins to the mouse PNRC2 promoter. Transient transfections and luciferase assays further revealed that overexpression of NFY enhanced-promoter activity of PNRC2 gene in a dose-dependent manner while overexpression of E2F1 strongly repressed the activity of the PNRC2 promoter. Since most genes regulated by E2F1 or NFY play a regulatory role in the cell cycle, the finding that the PNRC2 promoter is activated by NFY and repressed by E2F1 indicates that in addition to functioning as nuclear receptor coactivator, PNRC2 may also play a role in the cell cycle.
Collapse
Affiliation(s)
- Dujin Zhou
- Department of Surgical Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
142
|
Tapias A, Monasterio P, Ciudad CJ, Noé V. Characterization of the 5'-flanking region of the human transcription factor Sp3 gene. ACTA ACUST UNITED AC 2005; 1730:126-36. [PMID: 16024108 DOI: 10.1016/j.bbaexp.2005.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 05/23/2005] [Accepted: 06/06/2005] [Indexed: 12/11/2022]
Abstract
A fragment of 1079 bp from the 5'-flanking region of the human Sp3 gene was isolated and characterized. The Sp3 promoter is a GC-rich region that contains putative binding sites for Elk-1, c-Myb, NF-1, Ap1, Sp1, NF-Y, Ap2 and USF. Several transcriptional start sites located between 70 and 132 bp upstream of the translational start site were identified. The proximal promoter was contained in the first 281 bp 5' of the translational start, whereas the region including up to -225 relative to the translational start was referred as the minimal promoter. Transient transfections and luciferase assays revealed activation of the Sp3 proximal promoter upon overexpression of either Sp1 or Sp3, alone or in combination. Gel-shift and supershift assays demonstrated specific binding of Sp1 and Sp3 proteins to the GC box located in the proximal promoter of Sp3. Overexpression of NF-YA had a synergistic effect on Sp1 overexpression and an additive effect on Sp3 overexpression. Additionally, overexpression of NF-YA, Sp1 and Sp3 altogether had a synergistic effect on Sp3 promoter activity. Furthermore, binding of the NF-Y complex to the CCAAT box located in the proximal promoter of Sp3 was observed in gel-shift assays.
Collapse
Affiliation(s)
- Alicia Tapias
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Avenue Diagonal 643, Barcelona E-08028, Spain
| | | | | | | |
Collapse
|
143
|
Papeleu P, Vanhaecke T, Elaut G, Vinken M, Henkens T, Snykers S, Rogiers V. Differential effects of histone deacetylase inhibitors in tumor and normal cells-what is the toxicological relevance? Crit Rev Toxicol 2005; 35:363-78. [PMID: 15989141 DOI: 10.1080/10408440590935639] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone deacetylase (HDAC) inhibitors target key steps of tumor development: They inhibit proliferation, induce differentiation and/or apoptosis, and exhibit potent antimetastatic and antiangiogenic properties in transformed cells in vitro and in vivo. Preliminary studies in animal models have revealed a relatively high tumor selectivity of HDAC inhibitors, strenghtening their promising potential in cancer chemotherapy. Until now, preclinical in vitro research has almost exclusively been performed in cancer cell lines and oncogene-transformed cells. However, as cell proliferation and apoptosis are essential for normal tissue and organ homeostasis, it is important to investigate how HDAC inhibitors influence the regulation of and interplay between proliferation, differentiation, and apoptosis in primary cells as well. This review highlights the discrepancies in molecular events triggered by trichostatin A, the reference compound of hydroxamic acid-containing HDAC inhibitors, in hepatoma cells and primary hepatocytes (which are key targets for drug-induced toxicity). The implications of these differential outcomes in both cell types are discussed with respect to both toxicology and drug development. In view of the future use of HDAC inhibitors as cytostatic drugs, it is highly recommended to include both tumor cells and their healthy counterparts in preclinical developmental studies. Screening the toxicological properties of compounds early in their development process, using a battery of different cell types, will enable researchers to discard those compounds bearing undesirable adverse activity before entering into expensive clinical trials. This will not only reduce the risk for harmful exposure of patients but also save time and money.
Collapse
Affiliation(s)
- Peggy Papeleu
- Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
144
|
Baker EK, Johnstone RW, Zalcberg JR, El-Osta A. Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene 2005; 24:8061-75. [PMID: 16091741 DOI: 10.1038/sj.onc.1208955] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanism of action of chemotherapeutic drugs and their ability to induce multidrug resistance (MDR) are of relevance to cancer treatment. Overexpression of P-glycoprotein (Pgp) encoded by the MDR1 gene following chemotherapy can severely limit the efficacy of anticancer agents; however, the manner by which cells acquire high levels of Pgp has not been defined. Herein, we demonstrate that chemotherapeutic drugs induce specific epigenetic modifications at the MDR1 locus, concomitant with MDR1 upregulation mediated by transcriptional activation, and a potential post-transcriptional component. We have established that the mechanisms are not mutually exclusive and are dependent on the methylation state of the MDR1 promoter. MDR1 upregulation did not result in further changes to the CpG methylation profile. However, dramatic changes in the temporal and spatial patterning of histone modifications occurred within the 5' hypomethylated region of MDR1, directly correlating with MDR1 upregulation. Specifically, drug-induced upregulation of MDR1 was associated with increases in H3 acetylation and induction of methylated H3K4 within discrete regions of the MDR1 locus. Our results demonstrate that chemotherapeutic drugs can actively induce epigenetic changes within the MDR1 promoter, and enhance the MDR phenotype.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Acetylation
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Chromatin/metabolism
- Chromatin Immunoprecipitation
- CpG Islands/drug effects
- DNA Methylation/drug effects
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Silencing
- Genes, MDR/drug effects
- Histones/metabolism
- Humans
- Neoplasms/drug therapy
- Neoplasms/physiopathology
- Promoter Regions, Genetic/drug effects
- Protein Processing, Post-Translational
- Transcriptional Activation/drug effects
- Up-Regulation
Collapse
Affiliation(s)
- Emma K Baker
- Epigenetics in Human Health and Disease Laboratory, The Alfred Medical Research and Education Precinct, Baker Medical Research Institute, Commercial Road, Prahran, Victoria 3181, Australia
| | | | | | | |
Collapse
|
145
|
Su M, Bansal AK, Mantovani R, Sodek J. Recruitment of nuclear factor Y to the inverted CCAAT element (ICE) by c-Jun and E1A stimulates basal transcription of the bone sialoprotein gene in osteosarcoma cells. J Biol Chem 2005; 280:38365-75. [PMID: 16087680 DOI: 10.1074/jbc.m501609200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone sialoprotein (BSP), a major protein in the extracellular matrix of bone, is expressed almost exclusively by bone cells and by cancer cells that have a propensity to metastasize to bone. Previous studies have shown that v-src stimulates basal transcription of bsp in osteosarcoma (ROS 17/2.8) cells by targeting the inverted CCAAT element (ICE) in the proximal promoter. To identify possible downstream effectors of Src we studied the effects of the proto-oncogene c-jun, which functions downstream of Src, on basal transcription of bsp using transient transfection assays. Increased expression of endogenous c-Jun induced by the tumor promoter 12-O-tetradecanoyl-phorbol 13-acetate and ectopic expression of c-Jun increased basal transcription of chimeric reporter constructs encompassing the proximal promoter by 1.5-3-fold in ROS 17/2.8 osteosarcoma cells, with more modest effects in a normal bone cell line, RBMC-D8. The effects of c-Jun were abrogated by mutations in the ICE box and by co-expression of dominant negative nuclear factor Y, subunit A (NF-YA). The increase in bsp transcription did not require phosphorylation of c-Jun and was not altered by trichostatin treatment or by ectopic expression of p300/CREB-binding protein (CBP) or mutated forms lacking histone acetyltransferase (HAT) activity. Similarly, ectopic expression of p300/CBP-associated factor (P/CAF), which transduces p300/CBP effects, or of HAT-defective P/CAF did not influence the c-jun effects. Surprisingly, E1A, which competes with P/CAF binding to p300/CBP, also stimulated BSP transcription through NF-Y independently of c-jun, p300/CBP, and P/CAF. Collectively, these studies show that c-Jun and E1A regulate basal transcription of bsp in osteosarcoma cells by recruiting the NF-Y transcriptional complex to the ICE box in a mechanism that is independent of p300/CBP and P/CAF HAT activities.
Collapse
Affiliation(s)
- Ming Su
- Canadian Institutes of Health Research Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, ON.
| | | | | | | |
Collapse
|
146
|
Zhu J, Zhang Y, Joe GJ, Pompetti R, Emerson SG. NF-Ya activates multiple hematopoietic stem cell (HSC) regulatory genes and promotes HSC self-renewal. Proc Natl Acad Sci U S A 2005; 102:11728-33. [PMID: 16081537 PMCID: PMC1187979 DOI: 10.1073/pnas.0503405102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hematopoietic stem cell (HSC) self-renewal and differentiation are influenced through multiple pathways, including homeobox transcription factors, signaling through beta-catenin and Notch-1, telomerase, and p27. How these multiple pathways interact and are orchestrated is currently unknown. We now report that NF-Ya, the regulatory and DNA-binding subunit of the trimeric transcription factor NF-Y, plays a central, integrating role in several of these HSC pathways. NF-Ya is preferentially expressed in HSC-enriched bone marrow subpopulations, and NF-Ya mRNA rapidly declines with HSC differentiation. Overexpression of NF-Ya in primitive hematopoietic cells activates the transcription of multiple HOX4 paralogs, as well as Notch-1, LEF-1, and telomerase RNA. HSCs overexpressing NF-Ya are biased toward primitive hematopoiesis in vitro and show strikingly increased in vivo repopulating abilities after single or sequential bone marrow transplantation. Thus, NF-Ya is a potent cellular regulator of HSC self-renewal.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Medicine, and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
147
|
Xiao JJ, Huang Y, Dai Z, Sadée W, Chen J, Liu S, Marcucci G, Byrd J, Covey JM, Wright J, Grever M, Chan KK. Chemoresistance to depsipeptide FK228 [(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo[8,7,6]-tricos-16-ene-3,6,9,22-pentanone] is mediated by reversible MDR1 induction in human cancer cell lines. J Pharmacol Exp Ther 2005; 314:467-75. [PMID: 15833893 DOI: 10.1124/jpet.105.083956] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histone acetylation status, an epigenetic determinant of gene transcription, is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The potent HDAC inhibitor FK228 [(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo[8,7,6]-tricos-16-ene-3,6,9,22-pentanone] is a substrate for multidrug resistance protein (MDR1) and multidrug resistance-associated protein 1 (MRP1), both of which mediate FK228 resistance. To determine the mechanisms underlying acquired FK228 resistance, we developed four FK228-resistant cell lines from HCT-15, IGROV1, MCF7, and K562 cells by stepwise increases in FK228 exposure. Parent and resistant cells were characterized using a 70-oligomer cDNA microarray, real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and cytotoxicity assays. At both mRNA and protein levels, MDR1, but not MRP1 or other potential resistance genes, was strongly up-regulated in all resistant cell lines. HAT or HDAC activities were unaffected in resistant cells, consistent with a lack of cross-resistance to HDAC inhibitors that are not MDR1 substrates. FK228 was found to reversibly induce MDR1 expression by HDAC inhibition and subsequent histone hyperacetylation at the MDR1 promoter, as shown by real-time RT-PCR, Western blot, and chromatin immunoprecipitation. This study reveals a significant role of histone acetylation in MDR1 transcription, which seems to mediate FK228 resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Acetyltransferases/metabolism
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Chromatin/genetics
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Depsipeptides/pharmacology
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Histone Acetyltransferases
- Histone Deacetylases/biosynthesis
- Histone Deacetylases/metabolism
- Humans
- Immunoprecipitation
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Jim J Xiao
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M, Dobbelstein M, Del Sal G, Piaggio G, Mantovani R. Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 2005; 25:3737-51. [PMID: 15831478 PMCID: PMC1084283 DOI: 10.1128/mcb.25.9.3737-3751.2005] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 10/14/2004] [Accepted: 01/20/2005] [Indexed: 01/17/2023] Open
Abstract
In response to DNA damage, p53 activates G(1)/S blocking and apoptotic genes through sequence-specific binding. p53 also represses genes with no target site, such as those for Cdc2 and cyclin B, key regulators of the G(2)/M transition. Like most G(2)/M promoters, they rely on multiple CCAAT boxes activated by NF-Y, whose binding to DNA is temporally regulated during the cell cycle. NF-Y associates with p53 in vitro and in vivo through the alphaC helix of NF-YC (a subunit of NF-Y) and a region close to the tetramerization domain of p53. Chromatin immunoprecipitation experiments indicated that p53 is associated with cyclin B2, CDC25C, and Cdc2 promoters in vivo before and after DNA damage, requiring DNA-bound NF-Y. Following DNA damage, p53 is rapidly acetylated at K320 and K373 to K382, histones are deacetylated, and the release of PCAF and p300 correlates with the recruitment of histone deacetylases (HDACs)-HDAC1 before HDAC4 and HDAC5-and promoter repression. HDAC recruitment requires intact NF-Y binding sites. In transfection assays, PCAF represses cyclin B2, and a nonacetylated p53 mutant shows a complete loss of repression potential, despite its abilities to bind NF-Y and to be recruited on G(2)/M promoters. These data (i) detail a strategy of direct p53 repression through associations with multiple NF-Y trimers that is independent of sequence-specific binding of p53 and that requires C-terminal acetylation, (ii) suggest that p53 is a DNA damage sentinel of the G(2)/M transition, and (iii) delineate a new role for PCAF in cell cycle control.
Collapse
Affiliation(s)
- Carol Imbriano
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
El-Khoury V, Gomez D, Liautaud-Roger F, Trussardi-Régnier A, Dufer J. Effects of the histone deacetylase inhibitor trichostatin A on nuclear texture and c-jun gene expression in drug-sensitive and drug-resistant human H69 lung carcinoma cells. Cytometry A 2005; 62:109-17. [PMID: 15517561 DOI: 10.1002/cyto.a.20088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Texture analysis of chromatin patterns by image cytometry can be used in the development and refinement of diagnosis and prognosis of cancers and in the follow-up of therapies. However, little is known about the biological mechanisms underlying these patterns. Epigenetic mechanisms as histone posttranslational modifications and particularly histone acetylation could play a major role in the determination of these chromatin patterns and then influence nuclear texture measurements. METHODS This study examined the consequences of treatment by the histone deacetylase inhibitor trichostatin A (TSA) on the nuclear texture in human cell lines sensitive and resistant to chemotherapy. Small cell lung carcinoma H69 cells and their variant H69-VP, which is resistant to etoposide, were incubated with 100 ng/ml of TSA for 0 to 24 h. Nuclear texture was evaluated by image cytometry and compared with the histone H4 acetylation level measured by western blotting and expression of c-jun gene evaluated by reverse transcription and real-time polymerase chain reaction. RESULTS TSA treatment induced an increase in histone H4 acetylation level in both cell lines. However, at the level of chromatin texture, sensitive H69 cells displayed a progressive chromatin decondensation up to 24 h, whereas resistant H69-VP showed rapid (8 h) but transient changes. Similarly, expression of c-jun increased regularly in TSA-treated H69 cells. In H69-VP cells, an increase was also observed up to 12 h followed by a decrease after 24 h of treatment. CONCLUSIONS Analysis of nuclear texture appeared to be a sensitive technique to detect chromatin pattern alterations induced by the histone deacetylase inhibitor TSA in the H69 cell line and enabled the observation of chromatin pattern discrepancies between chemotherapeutic drug-sensitive and drug-resistant cells during this treatment. When c-jun gene expression was analyzed as gene sensitive to epigenetic control, these textural differences seemed to be correlated to gene expression.
Collapse
|
150
|
Gondcaille C, Depreter M, Fourcade S, Lecca MR, Leclercq S, Martin PGP, Pineau T, Cadepond F, ElEtr M, Bertrand N, Beley A, Duclos S, De Craemer D, Roels F, Savary S, Bugaut M. Phenylbutyrate up-regulates the adrenoleukodystrophy-related gene as a nonclassical peroxisome proliferator. ACTA ACUST UNITED AC 2005; 169:93-104. [PMID: 15809314 PMCID: PMC2171887 DOI: 10.1083/jcb.200501036] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a demyelinating disease due to mutations in the ABCD1 (ALD) gene, encoding a peroxisomal ATP-binding cassette transporter (ALDP). Overexpression of adrenoleukodystrophy-related protein, an ALDP homologue encoded by the ABCD2 (adrenoleukodystrophy-related) gene, can compensate for ALDP deficiency. 4-Phenylbutyrate (PBA) has been shown to induce both ABCD2 expression and peroxisome proliferation in human fibroblasts. We show that peroxisome proliferation with unusual shapes and clusters occurred in liver of PBA-treated rodents in a PPARα-independent way. PBA activated Abcd2 in cultured glial cells, making PBA a candidate drug for therapy of X-ALD. The Abcd2 induction observed was partially PPARα independent in hepatocytes and totally independent in fibroblasts. We demonstrate that a GC box and a CCAAT box of the Abcd2 promoter are the key elements of the PBA-dependent Abcd2 induction, histone deacetylase (HDAC)1 being recruited by the GC box. Thus, PBA is a nonclassical peroxisome proliferator inducing pleiotropic effects, including effects at the peroxisomal level mainly through HDAC inhibition.
Collapse
Affiliation(s)
- Catherine Gondcaille
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté des Sciences Gabriel, 21000 Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|