101
|
Raval A, Howcroft TK, Weissman JD, Kirshner S, Zhu XS, Yokoyama K, Ting J, Singer DS. Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol Cell 2001; 7:105-15. [PMID: 11172716 DOI: 10.1016/s1097-2765(01)00159-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The CIITA coactivator is essential for transcriptional activation of MHC class II genes and mediates enhanced MHC class I transcription. We now report that CIITA contains an intrinsic acetyltransferase (AT) activity that maps to a region within the N-terminal segment of CIITA, between amino acids 94 and 132. The AT activity is regulated by the C-terminal GTP-binding domain and is stimulated by GTP. CIITA-mediated transactivation depends on the AT activity. Further, we report that, although constitutive MHC class I transcription depends on TAF(II)250, CIITA activates the promoter in the absence of functional TAF(II)250.
Collapse
Affiliation(s)
- A Raval
- Experimental Immunology Branch, National Cancer Institute, Building 10, Room 4B-36, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Okamoto H, Asamitsu K, Nishimura H, Kamatani N, Okamoto T. Reciprocal modulation of transcriptional activities between HIV-1 Tat and MHC class II transactivator CIITA. Biochem Biophys Res Commun 2000; 279:494-9. [PMID: 11118314 DOI: 10.1006/bbrc.2000.3972] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 is the etiologic agent of acquired immune deficiency syndrome (AIDS). Functional loss of antigen-presenting cells (APC) in HIV-1 infection is considered to be involved in AIDS pathogenesis. We found that actions of the viral transactivator Tat and the transactivator of MHC class II genes, CIITA, are mutually inhibitory. While Tat inhibited expression of MHC class II genes in APC, overexpression of CIITA inhibited Tat and subsequently HIV-1 replication. This action of Tat appears to be mediated by sequestering the common cofactor, cyclin T1, but not p300 and CBP. These reciprocal actions between Tat and CIITA not only explains the functional impairment of APC in HIV-1 infection but also rationalizes the suppression of HIV-1 virus load by induction of CIITA such as IFN-gamma.
Collapse
Affiliation(s)
- H Okamoto
- Department of Molecular Genetics, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | | | | | | | | |
Collapse
|
103
|
Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:7017-24. [PMID: 11120829 DOI: 10.4049/jimmunol.165.12.7017] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic mechanisms are involved in regulating chromatin structure and gene expression through repression. In this study, we show that histone deacetylase inhibitors (DAIs) that alter the acetylation of histones in chromatin enhance the expression of several genes on tumor cells including: MHC class I, II, and the costimulatory molecule CD40. Enhanced transcription results in a significant increase in protein expression on the tumor cell surface, and expression can be elicited on some tumors that are unresponsive to IFN-gamma. The magnitude of induction of these genes cannot be explained by the effect of DAIs on the cell cycle or enhanced apoptosis. Induction of class II genes by DAIs was accompanied by activation of a repressed class II transactivator gene in a plasma cell tumor but, in several other tumor cell lines, class II was induced in the apparent absence of class II transactivator transcripts. These findings also suggest that the abnormalities observed in some tumors in the expression of genes critical to tumor immunity may result from epigenetic alterations in chromatin and gene regulation in addition to well-established mutational mechanisms.
Collapse
Affiliation(s)
- W J Magner
- Departments of. Immunology, Biophysics, and Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Spilianakis C, Papamatheakis J, Kretsovali A. Acetylation by PCAF enhances CIITA nuclear accumulation and transactivation of major histocompatibility complex class II genes. Mol Cell Biol 2000; 20:8489-98. [PMID: 11046145 PMCID: PMC102155 DOI: 10.1128/mcb.20.22.8489-8498.2000] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2000] [Accepted: 08/21/2000] [Indexed: 11/20/2022] Open
Abstract
The class II transactivator (CIITA), the master regulator of the tissue-specific and interferon gamma-inducible expression of major histocompatibility complex class II genes, synergizes with the histone acetylase coactivator CBP to activate gene transcription. Here we demonstrate that in addition to CBP, PCAF binds to CIITA both in vivo and in vitro and enhances CIITA-dependent transcriptional activation of class II promoters. Accordingly, E1A mutants defective for PCAF or CBP interaction show reduced ability in suppressing CIITA activity. Interestingly, CBP and PCAF acetylate CIITA at lysine residues within a nuclear localization signal. We show that CIITA is shuttling between the nucleus and cytoplasm. The shuttling behavior and activity of the protein are regulated by acetylation: overexpression of PCAF or inhibition of cellular deacetylases by trichostatin A increases the nuclear accumulation of CIITA in a manner determined by the presence of the acetylation target lysines. Furthermore, mutagenesis of the acetylated residues reduces the transactivation ability of CIITA. These results support a novel function for acetylation, i.e., to regulate gene expression by stimulating the nuclear accumulation of an activator.
Collapse
Affiliation(s)
- C Spilianakis
- Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece
| | | | | |
Collapse
|
105
|
Hake SB, Masternak K, Kammerbauer C, Janzen C, Reith W, Steimle V. CIITA leucine-rich repeats control nuclear localization, in vivo recruitment to the major histocompatibility complex (MHC) class II enhanceosome, and MHC class II gene transactivation. Mol Cell Biol 2000; 20:7716-25. [PMID: 11003667 PMCID: PMC86349 DOI: 10.1128/mcb.20.20.7716-7725.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex (MHC) class II transactivator CIITA plays a pivotal role in the control of the cellular immune response through the quantitative regulation of MHC class II expression. We have analyzed a region of CIITA with similarity to leucine-rich repeats (LRRs). CIITA LRR alanine mutations abolish both the transactivation capacity of full-length CIITA and the dominant-negative phenotype of CIITA mutants with N-terminal deletions. We demonstrate direct interaction of CIITA with the MHC class II promoter binding protein RFX5 and could also detect novel interactions with RFXANK, NF-YB, and -YC. However, none of these interactions is influenced by CIITA LRR mutagenesis. On the other hand, chromatin immunoprecipitation shows that in vivo binding of CIITA to the MHC class II promoter is dependent on LRR integrity. LRR mutations lead to an impaired nuclear localization of CIITA, indicating that a major function of the CIITA LRRs is in nucleocytoplasmic translocation. There is, however, evidence that the CIITA LRRs are also involved more directly in MHC class II gene transactivation. CIITA interacts with a novel protein of 33 kDa in a manner sensitive to LRR mutagenesis. CIITA is therefore imported into the nucleus by an LRR-dependent mechanism, where it activates transcription through multiple protein-protein interactions with the MHC class II promoter binding complex.
Collapse
Affiliation(s)
- S B Hake
- Hans-Spemann-Laboratories, Max-Planck-Institute of Immunology, D79108 Freiburg, D79008 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
106
|
Caretti G, Cocchiarella F, Sidoli C, Villard J, Peretti M, Reith W, Mantovani R. Dissection of functional NF-Y-RFX cooperative interactions on the MHC class II Ea promoter. J Mol Biol 2000; 302:539-52. [PMID: 10986117 DOI: 10.1006/jmbi.2000.4028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription of major histocompatibility complex (MHC) class II genes depends upon the trimeric complexes RFX and NF-Y binding to the conserved X-Y promoter elements. We produced and purified the RFX subunits from Escherichia coli, reconstituted DNA-binding to the mouse Ea X box and dissected the interactions with NF-Y. RFX and NF-Y do not interact in solution, but make cooperative interactions in EMSA: a minimal NF-Y, composed of the evolutionary conserved domains, is sufficient and the RFXAP N-terminal half is expendable. Altering the X-Y distance abolishes cooperativity, indicating that DNA imposes severe spatial constraints. When tested on a highly positioned nucleosome, RFX binds DNA well and NF-Y does not increase its affinity further. Transfections of NF-Y subunits, but not RFX, in class II negative cells improves basal transcription and coexpression of the two activators has a synergistic effect, while modestly increasing CIITA-mediated activation. These results show that interactions between the two trimers on DNA are key to MHC class II expression.
Collapse
Affiliation(s)
- G Caretti
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Via Celoria 26, Milano, 20133, Italy
| | | | | | | | | | | | | |
Collapse
|
107
|
Harton JA, Ting JP. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol 2000; 20:6185-94. [PMID: 10938095 PMCID: PMC86093 DOI: 10.1128/mcb.20.17.6185-6194.2000] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2000] [Accepted: 05/18/2000] [Indexed: 11/20/2022] Open
Affiliation(s)
- J A Harton
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
108
|
Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 2000; 20:6891-903. [PMID: 10958685 PMCID: PMC88765 DOI: 10.1128/mcb.20.18.6891-6903.2000] [Citation(s) in RCA: 495] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the ability of dexamethasone to regulate interleukin-1beta (IL-1beta)-induced gene expression, histone acetyltransferase (HAT) and histone deacetylase (HDAC) activity. Low concentrations of dexamethasone (10(-10) M) repress IL-1beta-stimulated granulocyte-macrophage colony-stimulating factor (GM-CSF) expression and fail to stimulate secretory leukocyte proteinase inhibitor expression. Dexamethasone (10(-7) M) and IL-1beta (1 ng/ml) both stimulated HAT activity but showed a different pattern of histone H4 acetylation. Dexamethasone targeted lysines K5 and K16, whereas IL-1beta targeted K8 and K12. Low concentrations of dexamethasone (10(-10) M), which do not transactivate, repressed IL-1beta-stimulated K8 and K12 acetylation. Using chromatin immunoprecipitation assays, we show that dexamethasone inhibits IL-1beta-enhanced acetylated K8-associated GM-CSF promoter enrichment in a concentration-dependent manner. Neither IL-1beta nor dexamethasone elicited any GM-CSF promoter association at acetylated K5 residues. Furthermore, we show that GR acts both as a direct inhibitor of CREB binding protein (CBP)-associated HAT activity and also by recruiting HDAC2 to the p65-CBP HAT complex. This action does not involve de novo synthesis of HDAC protein or altered expression of CBP or p300/CBP-associated factor. This mechanism for glucocorticoid repression is novel and establishes that inhibition of histone acetylation is an additional level of control of inflammatory gene expression. This further suggests that pharmacological manipulation of of specific histone acetylation status is a potentially useful approach for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- K Ito
- Thoracic Medicine, Imperial College School of Medicine at the National Heart & Lung Institute, London, United Kingdom
| | | | | |
Collapse
|
109
|
Sisk TJ, Gourley T, Roys S, Chang CH. MHC class II transactivator inhibits IL-4 gene transcription by competing with NF-AT to bind the coactivator CREB binding protein (CBP)/p300. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2511-7. [PMID: 10946277 DOI: 10.4049/jimmunol.165.5.2511] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC class II transactivator (CIITA) activates the expression of multiple genes involved in Ag presentation, but inhibits Th2-type cytokine production, including IL-4, during Th1 cell differentiation. Th1 cells derived from CIITA-deficient mice produce both Th1- and Th2-type cytokines, and the introduction of CIITA to Th2 cells down-regulates Th2-type cytokine gene transcription. Here we show that the IL-4 promoter is regulated by multiple protein-protein interactions among CIITA, NF-AT, and coactivator CBP/p300. The introduction of CBP/p300 and NF-AT enhances the IL-4 promoter activity, and this activation was repressed by CIITA. Furthermore, our data show that CIITA competes with NF-AT to bind CBP/p300 and that this competition dramatically influences transcriptional activation of the IL-4 promoter. We identified two domains of CIITA that interact with two distinct domains of CBP/p300 that are also recognized by NF-AT. CIITA mutants that retain the ability to interact with CBP/p300 are sufficient to inhibit NF-AT-mediated IL-4 gene expression.
Collapse
Affiliation(s)
- T J Sisk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
110
|
Taxman DJ, Cressman DE, Ting JP. Identification of class II transcriptional activator-induced genes by representational difference analysis: discoordinate regulation of the DN alpha/DO beta heterodimer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1410-6. [PMID: 10903745 DOI: 10.4049/jimmunol.165.3.1410] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class II transcriptional activator (CIITA) is a master regulator of MHC class II genes, including DR, DP, and DQ, and MHC class II-associated genes DM and invariant chain. To determine the repertoire of genes that is regulated by CIITA and to identify uncharacterized CIITA-inducible genes, we used representational difference analysis. Representational difference analysis screens for differentially expressed transcripts. All CIITA-induced genes were MHC class II related. We have identified the alpha subunit, DN alpha, of the class II processing factor DO as an additional CIITA-inducible gene. Northern analysis confirmed that DN alpha is induced by IFN-gamma in 2fTGH fibrosarcoma cells, and CIITA is necessary for high-level expression in B cells. The beta subunit, DO beta, is not inducible in fibrosarcoma cells by IFN-gamma or exogenous CIITA expression. Moreover, in contrast to other class II genes, DO beta expression remains high in the absence of CIITA in B cells. The promoters for DN alpha and DO beta contain the highly conserved WXY motifs, and, like other class II genes, expression of both DN alpha and DO beta requires RFX. These findings demonstrate that both DN alpha and DO beta are regulated by RFX. However, DN alpha is defined for the first time as a CIITA-inducible gene, and DO beta as a MHC class II gene whose expression is independent of CIITA.
Collapse
Affiliation(s)
- D J Taxman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
111
|
Zhu XS, Linhoff MW, Li G, Chin KC, Maity SN, Ting JP. Transcriptional scaffold: CIITA interacts with NF-Y, RFX, and CREB to cause stereospecific regulation of the class II major histocompatibility complex promoter. Mol Cell Biol 2000; 20:6051-61. [PMID: 10913187 PMCID: PMC86081 DOI: 10.1128/mcb.20.16.6051-6061.2000] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scaffold molecules interact with multiple effectors to elicit specific signal transduction pathways. CIITA, a non-DNA-binding regulator of class II major histocompatibility complex (MHC) gene transcription, may serve as a transcriptional scaffold. Regulation of the class II MHC promoter by CIITA requires strict spatial-helical arrangements of the X and Y promoter elements. The X element binds RFX (RFX5/RFXANK-RFXB/RFXAP) and CREB, while Y binds NF-Y/CBF (NF-YA, NF-YB, and NF-YC). CIITA interacts with all three. In vivo analysis using both N-terminal and C-terminal deletion constructs identified critical domains of CIITA that are required for interaction with NF-YB, NF-YC, RFX5, RFXANK/RFXB, and CREB. We propose that binding of NF-Y/CBF, RFX, and CREB by CIITA results in a macromolecular complex which allows transcription factors to interact with the class II MHC promoter in a spatially and helically constrained fashion.
Collapse
Affiliation(s)
- X S Zhu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
112
|
Kadota Y, Okumura M, Miyoshi S, Kitagawa-Sakakida S, Inoue M, Shiono H, Maeda Y, Kinoshita T, Shirakura R, Matsuda H. Altered T cell development in human thymoma is related to impairment of MHC class II transactivator expression induced by interferon-gamma (IFN-gamma). Clin Exp Immunol 2000; 121:59-68. [PMID: 10886240 PMCID: PMC1905672 DOI: 10.1046/j.1365-2249.2000.01256.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thymoma is known to contain CD4+CD8+ T cells, indicating that neoplastic epithelial cells of thymoma have a function as thymic cortical epithelium. However, it has been shown that there is an impairment of CD4+ T cell development in thymoma and that IFN-gamma-induced HLA-DR expression on cultured thymic epithelial cells (TEC) derived from thymoma is decreased when compared with the normal thymus. MHC class II transactivator (CIITA) is known to play a critical role in IFN-gamma-induced MHC II expression. In this study, we attempted to elucidate whether CIITA is responsible for the impaired up-regulation of MHC II molecules in response to IFN-gamma in thymoma TEC. A quantitative reverse transriptase-polymerase chain reaction examination revealed that the induced level of CIITA was significantly lower in thymoma TEC than in normal TEC. The induced levels of invariant chain (Ii) and HLA-DR in thymoma TEC were correlated with CIITA expression. The proportion of CD3+ cells in the CD4+CD8- subset in thymoma was also correlated with CIITA expression. A gel mobility shift assay however, revealed translocation of STAT1 to the nucleus in thymoma as well as normal TEC. Intercellular adhesion molecule-1 was up-regulated in the thymoma TEC to a level similar to normal TEC in response to IFN-gamma. These results indicate that impaired up-regulation of HLA-DR in response to IFN-gamma results from insufficient induction of CIITA, but not from the signal from IFN-gamma receptor to the nucleus. The abnormal regulation of HLA-DR expression caused by impaired induction of CIITA may affect CD4+ T cell development in thymoma.
Collapse
Affiliation(s)
- Y Kadota
- Division of Organ Transplantation, Biomedical Research Center, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Aittomäki S, Pesu M, Groner B, Jänne OA, Palvimo JJ, Silvennoinen O. Cooperation among Stat1, glucocorticoid receptor, and PU.1 in transcriptional activation of the high-affinity Fc gamma receptor I in monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5689-97. [PMID: 10820245 DOI: 10.4049/jimmunol.164.11.5689] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-gamma and glucocorticoids regulate inflammatory and immune responses through Stat1 and glucocorticoid receptor (GR) transcription factors, respectively. The biological responses to these polypeptides are determined by integration of various signaling pathways in a cell-type and promoter-dependent manner. In this study we have characterized the molecular basis for the functional cooperation between IFN-gamma and dexamethasone (Dex) in the induction of the high-affinity Fc gamma receptor I (Fc gamma RI) in monocytes. Dex did not affect IFN-gamma-induced Stat1 DNA binding activity or induce novel DNA-binding complexes to the Fc gamma RI promoter. By using cell systems lacking functional GR or Stat1, we showed that GR stimulated Stat1-dependent transcription in a ligand-dependent manner, while Stat1 did not influence GR-dependent transcription. The cooperation required phosphorylation of Tyr701, DNA binding, and the trans-activation domain of Stat1, but did not involve Ser727 phosphorylation of Stat1 or physical interaction between GR and Stat1. The costimulatory effect of Dex was not dependent on a consensus glucocorticoid response element in the Stat1-responsive promoters, but required the DNA-binding and trans-activation functions of GR, and Dex-induced protein synthesis. GR activated the natural Fc gamma RI promoter construct, and this response required both Stat1 and the Ets family transcription factor PU.1. Previously, physical association between GR and Stat5 has been shown to enhance Stat5-dependent and suppress GR-dependent transcription. The results shown here demonstrate a distinct, indirect mechanism of cross-modulation between cytokine and steroid receptor signaling that integrates Stat1 and GR pathways with cell type-specific PU.1 transcription factor in the regulation of Fc gamma RI gene transcription.
Collapse
Affiliation(s)
- S Aittomäki
- Institute of Medical Technology, and Department of Medical Biochemistry, University of Tampere, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
114
|
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 2000; 14:1156-66. [PMID: 10809673 PMCID: PMC316580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
By virtue of its control over major histocompatibility complex class II (MHC-II) gene expression, CIITA represents a key molecule in the regulation of adaptive immune responses. It was first identified as a factor that is defective in MHC-II deficiency, a hereditary disease characterized by the absence of MHC-II expression. CIITA is a highly regulated transactivator that governs all spatial, temporal, and quantitative aspects of MHC-II expression. It has been proposed to act as a non-DNA-binding transcriptional coactivator, but evidence that it actually functions at the level of MHC-II promoters was lacking. By means of chromatin immunoprecipitation assays, we show here for the first time that CIITA is physically associated with MHC-II, as well as HLA-DM, Ii, MHC-I, and beta(2)m promoters in vivo. To dissect the mechanism by which CIITA is recruited to the promoter, we have developed a DNA-dependent coimmunoprecipitation assay and a pull-down assay using immobilized promoter templates. We demonstrate that CIITA recruitment depends on multiple, synergistic protein-protein interactions with DNA-bound factors constituting the MHC-II enhanceosome. CIITA therefore represents a paradigm for a novel type of regulatory and gene-specific transcriptional cofactor.
Collapse
Affiliation(s)
- K Masternak
- Department of Genetics and Microbiology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
115
|
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1156] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
By virtue of its control over major histocompatibility complex class II (MHC-II) gene expression, CIITA represents a key molecule in the regulation of adaptive immune responses. It was first identified as a factor that is defective in MHC-II deficiency, a hereditary disease characterized by the absence of MHC-II expression. CIITA is a highly regulated transactivator that governs all spatial, temporal, and quantitative aspects of MHC-II expression. It has been proposed to act as a non-DNA-binding transcriptional coactivator, but evidence that it actually functions at the level of MHC-II promoters was lacking. By means of chromatin immunoprecipitation assays, we show here for the first time that CIITA is physically associated with MHC-II, as well asHLA–DM, Ii, MHC-I, and β2mpromoters in vivo. To dissect the mechanism by which CIITA is recruited to the promoter, we have developed a DNA-dependent coimmunoprecipitation assay and a pull-down assay using immobilized promoter templates. We demonstrate that CIITA recruitment depends on multiple, synergistic protein–protein interactions with DNA-bound factors constituting the MHC-II enhanceosome. CIITA therefore represents a paradigm for a novel type of regulatory and gene-specific transcriptional cofactor.
Collapse
|
116
|
Saifuddin M, Roebuck KA, Chang C, Ting JP, Spear GT. Cutting edge: activation of HIV-1 transcription by the MHC class II transactivator. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3941-5. [PMID: 10754282 DOI: 10.4049/jimmunol.164.8.3941] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both macrophages and activated CD4+ T cells can be productively infected by HIV-1, and both cell types express MHC class II molecules. Expression of MHC class II proteins in these cells is regulated by a specific transcriptional coactivator, the class II transactivator (CIITA). In this study, we report for the first time that CIITA expression profoundly influences HIV-1 replication. Stable expression of CIITA in Jurkat cells markedly increased 1) HIV-1 replication as assessed by the p24 Ag production and 2) luciferase expression after transfection with full-length provirus or long terminal repeat constructs. Similarly, transient expression of CIITA increased provirus expression as well as long terminal repeat promoter activity in 293 and HeLa-T4 cells. In contrast, mutant forms of CIITA did not increase HIV-1 expression. This study shows that expression of CIITA increases HIV-1 replication through a transcriptional mechanism.
Collapse
Affiliation(s)
- M Saifuddin
- Department of Immunology/Microbiology, Rush University, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
117
|
Nagarajan UM, Peijnenburg A, Gobin SJ, Boss JM, van den elsen PJ. Novel mutations within the RFX-B gene and partial rescue of MHC and related genes through exogenous class II transactivator in RFX-B-deficient cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3666-74. [PMID: 10725724 DOI: 10.4049/jimmunol.164.7.3666] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II deficiency or bare lymphocyte syndrome is a severe combined immunodeficiency caused by defects in MHC-specific regulatory factors. Fibroblasts derived from two recently identified bare lymphocyte syndrome patients, EBA and FZA, were found to contain novel mutations in the RFX-B gene. RFX-B encodes a component of the RFX transcription factor that functions in the assembly of multiple transcription factors on MHC class II promoters. Unlike RFX5- and RFXAP-deficient cells, transfection of exogenous class II transactivator (CIITA) into these RFX-B-deficient fibroblasts resulted in the induction of HLA-DR and HLA-DP and, to a lesser extent, HLA-DQ. Similarly, CIITA-mediated induction of MHC class I, beta2-microglobulin, and invariant chain genes was also found in these RFX-B-deficient fibroblasts. Expression of wild-type RFX-B completely reverted the noted deficiencies in these cells. Transfection of CIITA into Ramia cells, a B cell line that does not produce a stable RFX-B mRNA, resulted in induction of an MHC class II reporter, suggesting that CIITA overexpression may partially override the RFX-B defect.
Collapse
Affiliation(s)
- U M Nagarajan
- Department of Microbiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
118
|
Boisvert FM, Hendzel MJ, Bazett-Jones DP. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 2000; 148:283-92. [PMID: 10648561 PMCID: PMC2174275 DOI: 10.1083/jcb.148.2.283] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The promyelocytic leukemia (PML) nuclear body (also referred to as ND10, POD, and Kr body) is involved in oncogenesis and viral infection. This subnuclear domain has been reported to be rich in RNA and a site of nascent RNA synthesis, implicating its direct involvement in the regulation of gene expression. We used an analytical transmission electron microscopic method to determine the structure and composition of PML nuclear bodies and the surrounding nucleoplasm. Electron spectroscopic imaging (ESI) demonstrates that the core of the PML nuclear body is a dense, protein-based structure, 250 nm in diameter, which does not contain detectable nucleic acid. Although PML nuclear bodies contain neither chromatin nor nascent RNA, newly synthesized RNA is associated with the periphery of the PML nuclear body, and is found within the chromatin-depleted region of the nucleoplasm immediately surrounding the core of the PML nuclear body. We further show that the RNA does not accumulate in the protein core of the structure. Our results dismiss the hypothesis that the PML nuclear body is a site of transcription, but support the model in which the PML nuclear body may contribute to the formation of a favorable nuclear environment for the expression of specific genes.
Collapse
Affiliation(s)
| | - Michael J. Hendzel
- Department of Cell Biology and Anatomy, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
119
|
Kanazawa S, Okamoto T, Peterlin BM. Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 2000; 12:61-70. [PMID: 10661406 DOI: 10.1016/s1074-7613(00)80159-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIDS and the bare lymphocyte syndrome (BLS) are severe combined immunodeficiencies. BLS results from mutations in genes that regulate the expression of class II major histocompatibility (MHC II) determinants. One of these is the class II transactivator (CIITA). HIV and its transcriptional transactivator (Tat) also block the expression of MHC II genes. By binding to the same surface in the cyclin T1, which together with CDK9 forms the positive transcription elongation factor b (P-TEFb) complex, Tat inhibits CIITA. CIITA can also activate transcription when tethered artificially to RNA. Moreover, a dominant-negative CDK9 protein inhibits the activity of MHC II promoters. Thus, CIITA is a novel cellular coactivator that binds to P-TEFb for the expression of its target genes.
Collapse
Affiliation(s)
- S Kanazawa
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
120
|
Webster JC, Cidlowski JA. Mechanisms of Glucocorticoid-receptor-mediated Repression of Gene Expression. Trends Endocrinol Metab 1999; 10:396-402. [PMID: 10542396 DOI: 10.1016/s1043-2760(99)00186-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is hoped that this review will give the reader a taste of some of the mechanisms used by the glucocorticoid receptor to repress gene function. These mechanisms include direct binding to DNA, antagonism of other transcription factor families and sequestration of necessary cofactors. Each of these mechanisms, and others, are discussed.
Collapse
Affiliation(s)
- JC Webster
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
121
|
Fontes JD, Kanazawa S, Nekrep N, Peterlin BM. The class II transactivator CIITA is a transcriptional integrator. Microbes Infect 1999; 1:863-9. [PMID: 10614003 DOI: 10.1016/s1286-4579(99)00232-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J D Fontes
- Department of Medicine, Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0703, USA
| | | | | | | |
Collapse
|
122
|
Pan-Yun Ting J, Zhu XS. Class II MHC genes: a model gene regulatory system with great biologic consequences. Microbes Infect 1999. [DOI: 10.1016/s1286-4579(99)00233-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
123
|
Reith W, Muhlethaler-Mottet A, Masternak K, Villard J, Mach B. The molecular basis of MHC class II deficiency and transcriptional control of MHC class II gene expression. Microbes Infect 1999; 1:839-46. [PMID: 10614000 DOI: 10.1016/s1286-4579(99)00235-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- W Reith
- Department of Genetics and Microbiology, University of Geneva Medical School, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
124
|
Harton JA, Cressman DE, Chin KC, Der CJ, Ting JP. GTP binding by class II transactivator: role in nuclear import. Science 1999; 285:1402-5. [PMID: 10464099 DOI: 10.1126/science.285.5432.1402] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Class II transactivator (CIITA) is a global transcriptional coactivator of human leukocyte antigen-D (HLA-D) genes. CIITA contains motifs similar to guanosine triphosphate (GTP)-binding proteins. This report shows that CIITA binds GTP, and mutations in these motifs decrease its GTP-binding and transactivation activity. Substitution of these motifs with analogous sequences from Ras restores CIITA function. CIITA exhibits little GTPase activity, yet mutations in CIITA that confer GTPase activity reduce transcriptional activity. GTP binding by CIITA correlates with nuclear import. Thus, unlike other GTP-binding proteins, CIITA is involved in transcriptional activation that uses GTP binding to facilitate its own nuclear import.
Collapse
Affiliation(s)
- J A Harton
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
125
|
DeSandro A, Nagarajan UM, Boss JM. The bare lymphocyte syndrome: molecular clues to the transcriptional regulation of major histocompatibility complex class II genes. Am J Hum Genet 1999; 65:279-86. [PMID: 10417269 PMCID: PMC1377925 DOI: 10.1086/302519] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- A DeSandro
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
126
|
Moreno CS, Beresford GW, Louis-Plence P, Morris AC, Boss JM. CREB regulates MHC class II expression in a CIITA-dependent manner. Immunity 1999; 10:143-51. [PMID: 10072067 DOI: 10.1016/s1074-7613(00)80015-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The X2 box of MHC class II promoters is homologous to TRE/CRE elements and is required for expression of MHC class II genes. The X2 box-specific DNA binding activity, X2BP, was purified to homogeneity, sequenced, and identified as CREB. Transient transactivation experiments showed that CREB can cooperate with CIITA to enhance activation of transcription from MHC class II promoters in a dose-dependent manner. Binding of CREB to the class II promoter in vivo was demonstrated by a chromatin immunoprecipitation assay. Additionally, ICER, a dominant inhibitor of CREB function, was found to repress class II expression. These results demonstrate that CREB binds to the X2 box in vivo and cooperates with CIITA to direct MHC class II expression.
Collapse
Affiliation(s)
- C S Moreno
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|