101
|
Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. The expanding RNA polymerase III transcriptome. Trends Genet 2007; 23:614-22. [PMID: 17977614 DOI: 10.1016/j.tig.2007.09.001] [Citation(s) in RCA: 391] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 11/19/2022]
Abstract
The role of RNA polymerase (Pol) III in eukaryotic transcription is commonly thought of as being restricted to a small set of highly expressed, housekeeping non-protein-coding (nc)RNA genes. Recent studies, however, have remarkably expanded the set of known Pol III-synthesized ncRNAs, suggesting that gene-specific Pol III regulation is more common than previously appreciated. Newly identified Pol III transcripts include small nucleolar RNAs, microRNAs, short interspersed nuclear element-encoded or tRNA-derived RNAs and novel classes of ncRNA that can display significant sequence complementarity to protein-coding genes and might thus regulate their expression. The extent of the Pol III transcriptome, the complexity of its regulation and its influence on cell physiology, development and disease are emerging as new areas for future research.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
102
|
Kassavetis GA, Geiduschek EP. Transcription factor TFIIIB and transcription by RNA polymerase III. Biochem Soc Trans 2007; 34:1082-7. [PMID: 17073756 DOI: 10.1042/bst0341082] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
pol (RNA polymerase) III is charged with the task of transcribing nuclear genes encoding diverse small structural and catalytic RNAs. We present a brief review of the current understanding of several aspects of the pol III transcription apparatus. The focus is on yeast and, more specifically, on Saccharomyces cerevisiae; preponderant attention is given to the TFs (transcription initiation factors) and especially to TFIIIB, which is the core pol III initiation factor by virtue of its role in recruiting pol III to the transcriptional start site and its essential roles in forming the transcription-ready open promoter complex. Certain relatively recent developments are also selected for brief comment: (i) the genome-wide analysis of occupancy of pol III-transcribed genes (and other loci) by the transcription apparatus and the location of pol III transcription in the cell; (ii) progress toward a mechanistic and molecular understanding of the regulation of transcription by pol III in yeast; and (iii) recent experiments identifying a high mobility group protein as a fidelity factor that assures selection of the precise transcriptional start site at certain pol III promoters.
Collapse
Affiliation(s)
- G A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
103
|
Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, Brow DA. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 2007; 24:735-746. [PMID: 17157256 DOI: 10.1016/j.molcel.2006.10.023] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/12/2006] [Accepted: 10/13/2006] [Indexed: 11/17/2022]
Abstract
Functional engagement of RNA polymerase II (Pol II) with eukaryotic chromosomes is a fundamental and highly regulated biological process. Here we present a high-resolution map of Pol II occupancy across the entire yeast genome. We compared a wild-type strain with a strain bearing a substitution in the Sen1 helicase, which is a Pol II termination factor for noncoding RNA genes. The wild-type pattern of Pol II distribution provides unexpected insights into the mechanisms by which genes are repressed or silenced. Remarkably, a single amino acid substitution that compromises Sen1 function causes profound changes in Pol II distribution over both noncoding and protein-coding genes, establishing an important function of Sen1 in the regulation of transcription. Given the strong similarity of the yeast and human Sen1 proteins, our results suggest that progressive neurological disorders caused by substitutions in the human Sen1 homolog Senataxin may be due to misregulation of transcription.
Collapse
Affiliation(s)
- Eric J Steinmetz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - Christopher L Warren
- Department of Biochemistry, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - Jason N Kuehner
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - Bahman Panbehi
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706; The Genome Center, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706.
| |
Collapse
|
104
|
Isogai Y, Takada S, Tjian R, Keleş S. Novel TRF1/BRF target genes revealed by genome-wide analysis of Drosophila Pol III transcription. EMBO J 2007; 26:79-89. [PMID: 17170711 PMCID: PMC1782360 DOI: 10.1038/sj.emboj.7601448] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 10/23/2006] [Indexed: 11/08/2022] Open
Abstract
Metazoans have evolved multiple paralogues of the TATA binding protein (TBP), adding another tunable level of gene control at core promoters. While TBP-related factor 1 (TRF1) shares extensive homology with TBP and can direct both Pol II and Pol III transcription in vitro, TRF1 target sites in vivo have remained elusive. Here, we report the genome-wide identification of TRF1-binding sites using high-resolution genome tiling microarrays. We found 354 TRF1-binding sites genome-wide with approximately 78% of these sites displaying colocalization with BRF. Strikingly, the majority of TRF1 target genes are Pol III-dependent small noncoding RNAs such as tRNAs and small nonmessenger RNAs. We provide direct evidence that the TRF1/BRF complex is functionally required for the activity of two novel TRF1 targets (7SL RNA and small nucleolar RNAs). Our studies suggest that unlike most other eukaryotic organisms that rely on TBP for Pol III transcription, in Drosophila and possibly other insects the alternative TRF1/BRF complex appears responsible for the initiation of all known classes of Pol III transcription.
Collapse
Affiliation(s)
- Yoh Isogai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Shinako Takada
- Department of Biochemistry and Molecular Biology, Gene and Development, Program of Graduate School of Biomedical Science, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, UC Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Sündüz Keleş
- Departments of Statistics and Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
105
|
Braglia P, Dugas SL, Donze D, Dieci G. Requirement of Nhp6 proteins for transcription of a subset of tRNA genes and heterochromatin barrier function in Saccharomyces cerevisiae. Mol Cell Biol 2006; 27:1545-57. [PMID: 17178828 PMCID: PMC1820459 DOI: 10.1128/mcb.00773-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A key event in tRNA gene (tDNA) transcription by RNA polymerase (Pol) III is the TFIIIC-dependent assembly of TFIIIB upstream of the transcription start site. Different tDNA upstream sequences bind TFIIIB with different affinities, thereby modulating tDNA transcription. We found that in the absence of Nhp6 proteins, the influence of the 5'-flanking region on tRNA gene transcription is dramatically enhanced in Saccharomyces cerevisiae. Expression of a tDNA bearing a suboptimal TFIIIB binding site, but not of a tDNA preceded by a strong TFIIIB binding region, was strongly dependent on Nhp6 in vivo. Upstream sequence-dependent stimulation of tRNA gene transcription by Nhp6 could be reproduced in vitro, and Nhp6 proteins were found associated with tRNA genes in yeast cells. We also show that both transcription and silencing barrier activity of a tDNA(Thr) at the HMR locus are compromised in the absence of Nhp6. Our data suggest that Nhp6 proteins are important components of Pol III chromatin templates that contribute both to the robustness of tRNA gene expression and to positional effects of Pol III transcription complexes.
Collapse
Affiliation(s)
- Priscilla Braglia
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23A, 43100 Parma, Italy
| | | | | | | |
Collapse
|
106
|
Tsankov AM, Brown CR, Yu MC, Win MZ, Silver PA, Casolari JM. Communication between levels of transcriptional control improves robustness and adaptivity. Mol Syst Biol 2006; 2:65. [PMID: 17130867 PMCID: PMC1682026 DOI: 10.1038/msb4100106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 09/18/2006] [Indexed: 12/19/2022] Open
Abstract
Regulation of eukaryotic gene expression depends on groups of related proteins acting at the levels of chromatin organization, transcriptional initiation, RNA processing, and nuclear transport. However, a unified understanding of how these different levels of transcriptional control interact has been lacking. Here, we combine genome-wide protein–DNA binding data from multiple sources to infer the connections between functional groups of regulators in Saccharomyces cerevisiae. Our resulting transcriptional network uncovers novel biological relationships; supporting experiments confirm new associations between actively transcribed genes and Sir2 and Esc1, two proteins normally linked to silencing chromatin. Analysis of the regulatory network also reveals an elegant architecture for transcriptional control. Using communication theory, we show that most protein regulators prefer to form modules within their functional class, whereas essential proteins maintain the sparse connections between different classes. Moreover, we provide evidence that communication between different regulatory groups improves the robustness and adaptivity of the cell.
Collapse
Affiliation(s)
- Alexander M Tsankov
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Michael C Yu
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Moe Z Win
- Laboratory of Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., WAB 536 Boston, MA 02115, USA. Tel: +1 617 432 6401; Fax: +1 617 432 5012; E-mail:
| | - Jason M Casolari
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
107
|
Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F. The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 2006; 23:241-50. [PMID: 16857590 DOI: 10.1016/j.molcel.2006.05.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 03/07/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
Regulation of gene expression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to high osmolarity results in activation of the SAPK Hog1, which associates with transcription factors bound at target promoters and stimulates transcriptional initiation. Unexpectedly, activated Hog1 also associates with elongating Pol II and components of the elongation complex. Hog1 is selectively recruited to the entire coding region of osmotic stress genes, but not to constitutively expressed genes. Selective association of Hog1 with the transcribed region of osmoresponsive genes is determined by the 3' untranslated region (3' UTR). Lastly, Hog1 is important for the amount of the RNA polymerase II (Pol II) elongation complex and of mRNA produced from genes containing osmoresponsive coding regions. Thus, in addition to its various functions during transcriptional initiation, Hog1 behaves as a transcriptional elongation factor that is selective for genes induced upon osmotic stress.
Collapse
Affiliation(s)
- Markus Proft
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Oficjalska-Pham D, Harismendy O, Smagowicz WJ, Gonzalez de Peredo A, Boguta M, Sentenac A, Lefebvre O. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol Cell 2006; 22:623-32. [PMID: 16762835 DOI: 10.1016/j.molcel.2006.04.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/30/2006] [Accepted: 04/03/2006] [Indexed: 01/04/2023]
Abstract
We report genome-wide analyses that establish Maf1 as a general and direct repressor of yeast RNA polymerase (Pol) III transcription. Chromatin immunoprecipitation (ChIP) coupled to microarray hybridization experiments showed an increased association of Maf1 to Pol III-transcribed genes under repressing condition (rapamycin treatment) correlated with a dissociation of Brf1 and Pol III. Maf1 can exist in various phosphorylation states and interacts with Pol III in a dephosphorylated state. The largest subunit of Pol III, C160, was identified as a target of Maf1. Under repressing conditions, Maf1 is dephosphorylated and accumulates in the nucleus, and Pol III-Maf1 interaction increases. Mutations in protein phosphatase type 2A (PP2A) catalytic subunit-encoding genes prevented rapamycin-induced Maf1 dephosphorylation, its nuclear accumulation, and repression of Pol III transcription. The results indicate that Pol III transcription can be globally and rapidly downregulated via dephosphorylation and relocation of a general negative cofactor.
Collapse
Affiliation(s)
- Danuta Oficjalska-Pham
- Laboratoire de Transcription des Gènes, Service de Biochimie et Génétique Moléculaire, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
109
|
Guffanti E, Ferrari R, Preti M, Forloni M, Harismendy O, Lefebvre O, Dieci G. A Minimal Promoter for TFIIIC-dependent in Vitro Transcription of snoRNA and tRNA Genes by RNA Polymerase III. J Biol Chem 2006; 281:23945-57. [PMID: 16787917 DOI: 10.1074/jbc.m513814200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae SNR52 gene is unique among the snoRNA coding genes in being transcribed by RNA polymerase III. The primary transcript of SNR52 is a 250-nucleotide precursor RNA from which a long leader sequence is cleaved to generate the mature snR52 RNA. We found that the box A and box B sequence elements in the leader region are both required for the in vivo accumulation of the snoRNA. As expected box B, but not box A, was absolutely required for stable TFIIIC, yet in vitro. Surprisingly, however, the box B was found to be largely dispensable for in vitro transcription of SNR52, whereas the box A-mutated template effectively recruited TFIIIB; yet it was transcriptionally inactive. Even in the complete absence of box B and both upstream TATA-like and T-rich elements, the box A still directed efficient, TFIIIC-dependent transcription. Box B-independent transcription was also observed for two members of the tRNA(Asn)(GTT) gene family, but not for two tRNA(Pro)(AGG) gene copies. Fully recombinant TFIIIC supported box B-independent transcription of both SNR52 and tRNA(Asn) genes, but only in the presence of TFIIIB reconstituted with a crude B'' fraction. Non-TFIIIB component(s) in this fraction were also required for transcription of wild-type SNR52. Transcription of the box B-less tRNA(Asn) genes was strongly influenced by their 5'-flanking regions, and it was stimulated by TBP and Brf1 proteins synergistically. The box A can thus be viewed as a core TFIIIC-interacting element that, assisted by upstream TFIIIB-DNA contacts, is sufficient to promote class III gene transcription.
Collapse
Affiliation(s)
- Elisa Guffanti
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
110
|
Bulyk ML. DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol 2006; 17:422-30. [PMID: 16839757 PMCID: PMC2727741 DOI: 10.1016/j.copbio.2006.06.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/02/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
DNA-binding proteins have key roles in many cellular processes, including transcriptional regulation and replication. Microarray-based technologies permit the high-throughput identification of binding sites and enable the functional roles of these binding proteins to be elucidated. In particular, microarray readout either of chromatin immunoprecipitated DNA-bound proteins (ChIP-chip) or of DNA adenine methyltransferase fusion proteins (DamID) enables the identification of in vivo genomic target sites of proteins. A complementary approach to analyse the in vitro binding of proteins directly to double-stranded DNA microarrays (protein binding microarrays; PBMs), permits rapid characterization of their DNA binding site sequence specificities. Recent advances in DNA microarray synthesis technologies have facilitated the definition of DNA-binding sites at much higher resolution and coverage, and advances in these and emerging technologies will further increase the efficiencies of these exciting new approaches.
Collapse
Affiliation(s)
- Martha L Bulyk
- Division of Genetics, Department of Medicine, Harvard/MIT Division of Health Sciences and Technology (HST), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Noma KI, Cam HP, Maraia RJ, Grewal SIS. A role for TFIIIC transcription factor complex in genome organization. Cell 2006; 125:859-72. [PMID: 16751097 DOI: 10.1016/j.cell.2006.04.028] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/27/2006] [Accepted: 04/03/2006] [Indexed: 02/06/2023]
Abstract
Eukaryotic genome complexity necessitates boundary and insulator elements to partition genomic content into distinct domains. We show that inverted repeat (IR) boundary elements flanking the fission yeast mating-type heterochromatin domain contain B-box sequences, which prevent heterochromatin from spreading into neighboring euchromatic regions by recruiting transcription factor TFIIIC complex without RNA polymerase III (Pol III). Genome-wide analysis reveals TFIIIC with Pol III at all tRNA genes, many of which cluster at pericentromeric heterochromatin domain boundaries. However, a single tRNA(phe) gene with modest TFIIIC enrichment is insufficient to serve as boundary and requires RNAi-associated element to restrain heterochromatin spreading. Remarkably, we found TFIIIC localization without Pol III at many sites located between divergent promoters. These sites appear to act as chromosome-organizing clamps by tethering distant loci to the nuclear periphery, at which TFIIIC is concentrated into several distinct bodies. Our analyses uncover a general genome organization mechanism involving conserved TFIIIC complex.
Collapse
Affiliation(s)
- Ken-ichi Noma
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
112
|
Abstract
In this issue of Cell, Noma et al. (2006) show that B-boxes and TFIIIC limit the spread of heterochromatin at the silent mat region in the fission yeast genome. Global analysis of TFIIIC distribution revealed dispersed sites of association that coalesce at the nuclear periphery, suggesting that TFIIIC may act as a barrier throughout the genome.
Collapse
Affiliation(s)
- Lori L Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
113
|
Guffanti E, Percudani R, Harismendy O, Soutourina J, Werner M, Iacovella MG, Negri R, Dieci G. Nucleosome depletion activates poised RNA polymerase III at unconventional transcription sites in Saccharomyces cerevisiae. J Biol Chem 2006; 281:29155-64. [PMID: 16816405 DOI: 10.1074/jbc.m600387200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase (pol) III, assisted by the transcription factors TFIIIC and TFIIIB, transcribes small untranslated RNAs, such as tRNAs. In addition to known pol III-transcribed genes, the Saccharomyces cerevisiae genome contains loci (ZOD1, ETC1-8) associated to incomplete pol III transcription complexes (Moqtaderi, Z., and Struhl, K. (2004) Mol. Cell. Biol. 24, 4118-4127). We show that a short segment of the ZOD1 locus, containing box A and box B promoter elements and a termination signal between them, directs the pol III-dependent production of a small RNA both in vitro and in vivo. In yeast cells, the levels of both ZOD1- and ETC5-specific transcripts were dramatically enhanced upon nucleosome depletion. Remarkably, transcription factor and pol III occupancy at the corresponding loci did not change significantly upon derepression, thus suggesting that chromatin opening activates poised pol III to transcription. Comparative genomic analysis revealed that the ZOD1 promoter is the only surviving portion of a tDNA(Ile) ancestor, whose transcription capacity has been preserved throughout evolution independently from the encoded RNA product. Similarly, another TFIIIC/TFIIIB-associated locus, close to the YGR033c open reading frame, was found to be the strictly conserved remnant of an ancient tDNA(Arg). The maintenance, by eukaryotic genomes, of chromatin-repressed, non-coding transcription units has implications for both genome expression and organization.
Collapse
Affiliation(s)
- Elisa Guffanti
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Roberts DN, Wilson B, Huff JT, Stewart AJ, Cairns BR. Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression. Mol Cell 2006; 22:633-44. [PMID: 16762836 PMCID: PMC2788557 DOI: 10.1016/j.molcel.2006.04.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/30/2006] [Accepted: 04/05/2006] [Indexed: 11/23/2022]
Abstract
Nutrient deprivation and various stress conditions repress RNA polymerase III (Pol III) transcription in S. cerevisiae. The signaling pathways that relay stress and nutrient conditions converge on the conserved protein Maf1, but how Maf1 integrates environmental conditions and couples them to transcriptional repression is largely unknown. Here, we demonstrate that Maf1 is phosphorylated in favorable conditions, whereas diverse unfavorable conditions lead to rapid Maf1 dephosphorylation, nuclear localization, physical association of dephosphorylated Maf1 with Pol III, and Maf1 targeting to Pol III-transcribed genes genome wide. Furthermore, Maf1 mutants defective in full dephosphorylation display maf1Delta phenotypes and are compromised for both nuclear localization and Pol III association. Repression conditions also promote TFIIIB-TFIIIC interactions in crosslinked chromatin. Taken together, Maf1 appears to integrate environmental conditions and signaling pathways through its phosphorylation state, with stress leading to dephosphorylation, association with Pol III at target loci, alterations in basal factor interactions, and transcriptional repression.
Collapse
Affiliation(s)
- Douglas N. Roberts
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Boris Wilson
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jason T. Huff
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Allen J. Stewart
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Bradley R. Cairns
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
115
|
Schwabish MA, Struhl K. Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 2006; 22:415-22. [PMID: 16678113 DOI: 10.1016/j.molcel.2006.03.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/23/2006] [Accepted: 03/08/2006] [Indexed: 11/29/2022]
Abstract
Histones are rapidly evicted and deposited during transcription by RNA polymerase (Pol) II, but a factor that mediates histone eviction in vivo has not yet been identified. Here, we show that the histone chaperone Asf1 associates with promoters and coding regions of transcriptionally active genes. Asf1 mediates histone H3, but not H2B, eviction and deposition during Pol II elongation, suggesting that nucleosome assembly and disassembly occur in a stepwise fashion. Lastly, Asf1 inhibits internal initiation from cryptic promoters within coding regions. These results strongly suggest that Asf1 functions as an elongation factor to disassemble and reassemble histones during Pol II elongation.
Collapse
Affiliation(s)
- Marc A Schwabish
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
116
|
Hall DB, Wade JT, Struhl K. An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:3672-9. [PMID: 16612005 PMCID: PMC1447432 DOI: 10.1128/mcb.26.9.3672-3679.2006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HMG proteins are architectural proteins that bind to DNA with low sequence specificity, but little is known about their genomic location and biological functions. Saccharomyces cerevisiae encodes 10 HMG proteins, including Hmo1, which is important for maximal transcription of rRNA. Here we use chromatin immunoprecipitation coupled with microarray analysis to determine the genome-wide association of Hmo1. Unexpectedly, Hmo1 binds strongly to the promoters of most ribosomal protein (RP) genes and to a number of other specific genomic locations. Hmo1 binding to RP promoters requires Rap1 and (to a lesser extent) Fhl1, proteins that also associate with RP promoters. Hmo1, like Fhl1 and Ifh1, typically associates with an IFHL motif in RP promoters, but deletion of the IFHL motif has a very modest effect on Hmo1 binding. Surprisingly, loss of Hmo1 abolishes binding of Fhl1 and Ifh1 to RP promoters but does not significantly affect the level of transcriptional activity. These results suggest that Hmo1 is required for the assembly of transcription factor complexes containing Fhl1 and Ifh1 at RP promoters and that proteins other than Fhl1 and Ifh1 also play an important role in RP transcription. Lastly, like mammalian UBF, Hmo1 associates at many locations throughout the rRNA gene locus, and it is important for processing of rRNA in addition to its role in rRNA transcription. We speculate that Hmo1 has a role in coordinating the transcription of rRNA and RP genes.
Collapse
Affiliation(s)
- Daniel B Hall
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
117
|
Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 2006; 34:1816-35. [PMID: 16600899 PMCID: PMC1447645 DOI: 10.1093/nar/gkl085] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/03/2006] [Accepted: 03/03/2006] [Indexed: 01/09/2023] Open
Abstract
We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering. Analysis of decoding strategies showed that yeasts close to S.cerevisiae use bacterial decoding rules to read the Leu CUN and Arg CGN codons, in contrast to all other known Eukaryotes. In D.hansenii and C.albicans, we identified a novel tDNA-Leu (AAG), reading the Leu CUU/CUC/CUA codons with an unusual G at position 32. A systematic 'p-distance tree' using the 60 variable positions of the tRNA molecule revealed that most tDNAs cluster into amino acid-specific sub-trees, suggesting that, within hemiascomycetes, orthologous tDNAs are more closely related than paralogs. We finally determined the bipartite A- and B-box sequences recognized by TFIIIC. These minimal sequences are nearly conserved throughout hemiascomycetes and were satisfactorily retrieved at appropriate locations in other Pol III genes.
Collapse
MESH Headings
- Ascomycota/enzymology
- Ascomycota/genetics
- Base Sequence
- Codon
- Conserved Sequence
- DNA, Fungal/chemistry
- Evolution, Molecular
- Genes, Fungal
- Genome, Fungal
- Genomics
- Introns
- Molecular Sequence Data
- Multigene Family
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA Polymerase III/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Christian Marck
- Service de Biochimie et de Génétique Moléculaire, Bât 144. CEA/Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
118
|
Ducrot C, Lefebvre O, Landrieux E, Guirouilh-Barbat J, Sentenac A, Acker J. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J Biol Chem 2006; 281:11685-92. [PMID: 16517597 DOI: 10.1074/jbc.m600101200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.
Collapse
Affiliation(s)
- Cécile Ducrot
- Service de Biochimie et de Génétique Moléculaire, Bâtiment 144, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
119
|
Fan X, Chou DM, Struhl K. Activator-specific recruitment of Mediator in vivo. Nat Struct Mol Biol 2006; 13:117-20. [PMID: 16429153 DOI: 10.1038/nsmb1049] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 12/08/2005] [Indexed: 11/09/2022]
Abstract
The Mediator complex associates with eukaryotic RNA polymerase (Pol) II and is recruited to transcriptional enhancers by activator proteins. It is believed that Mediator is a general component of the Pol II machinery that is crucial to connect enhancer-bound activators to basic transcription factors. However, we show that Mediator does not detectably associate with many highly active Pol II promoters in yeast cells. Furthermore, in response to stress conditions, Mediator association is not directly related to Pol II association and in some cases is not detectable at highly activated promoters. Thus, Mediator is recruited to enhancers in an activator-specific manner, and it does not seem to be a stoichiometric component of the basic Pol II machinery in vivo. Mediator is recruited by many activators involved in stress responses, but not by the major activators that function under optimal conditions.
Collapse
Affiliation(s)
- Xiaochun Fan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
120
|
Wade JT, Reppas NB, Church GM, Struhl K. Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 2005; 19:2619-30. [PMID: 16264194 PMCID: PMC1276735 DOI: 10.1101/gad.1355605] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/06/2005] [Indexed: 11/24/2022]
Abstract
Genomes of eukaryotic organisms are packaged into nucleosomes that restrict the binding of transcription factors to accessible regions. Bacteria do not contain histones, but they have nucleoid-associated proteins that have been proposed to function analogously. Here, we combine chromatin immunoprecipitation and high-density oligonucleotide microarrays to define the in vivo DNA targets of the LexA transcriptional repressor in Escherichia coli. We demonstrate a near-universal relationship between the presence of a LexA sequence motif, LexA binding in vitro, and LexA binding in vivo, suggesting that a suitable recognition site for LexA is sufficient for binding in vivo. Consistent with this observation, LexA binds comparably to ectopic target sites introduced at various positions in the genome. We also identify approximately 20 novel LexA targets that lack a canonical LexA sequence motif, are not bound by LexA in vitro, and presumably require an additional factor for binding in vivo. Our results indicate that, unlike eukaryotic genomes, the E. coli genome is permissive to transcription factor binding. The permissive nature of the E. coli genome has important consequences for the nature of transcriptional regulatory proteins, biological specificity, and evolution.
Collapse
Affiliation(s)
- Joseph T Wade
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
121
|
Conesa C, Ruotolo R, Soularue P, Simms TA, Donze D, Sentenac A, Dieci G. Modulation of yeast genome expression in response to defective RNA polymerase III-dependent transcription. Mol Cell Biol 2005; 25:8631-42. [PMID: 16166643 PMCID: PMC1265737 DOI: 10.1128/mcb.25.19.8631-8642.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/21/2005] [Accepted: 07/06/2005] [Indexed: 11/20/2022] Open
Abstract
We used genome-wide expression analysis in Saccharomyces cerevisiae to explore whether and how the expression of protein-coding, RNA polymerase (Pol) II-transcribed genes is influenced by a decrease in RNA Pol III-dependent transcription. The Pol II transcriptome was characterized in four thermosensitive, slow-growth mutants affected in different components of the RNA Pol III transcription machinery. Unexpectedly, we found only a modest correlation between altered expression of Pol II-transcribed genes and their proximity to class III genes, a result also confirmed by the analysis of single tRNA gene deletants. Instead, the transcriptome of all of the four mutants was characterized by increased expression of genes known to be under the control of the Gcn4p transcriptional activator. Indeed, GCN4 was found to be translationally induced in the mutants, and deleting the GCN4 gene eliminated the response. The Gcn4p-dependent expression changes did not require the Gcn2 protein kinase and could be specifically counteracted by an increased gene dosage of initiator tRNA(Met). Initiator tRNA(Met) depletion thus triggers a GCN4-dependent reprogramming of genome expression in response to decreased Pol III transcription. Such an effect might represent a key element in the coordinated transcriptional response of yeast cells to environmental changes.
Collapse
Affiliation(s)
- Christine Conesa
- Service de Biochimie et Génétique Moléculaire, Bâtiment 144, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
122
|
Sjölinder M, Björk P, Söderberg E, Sabri N, Farrants AKO, Visa N. The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev 2005; 19:1871-84. [PMID: 16103215 PMCID: PMC1186187 DOI: 10.1101/gad.339405] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the dipteran Chironomus tentans, actin binds to hrp65, a nuclear protein associated with mRNP complexes. Disruption of the actin-hrp65 interaction in vivo by the competing peptide 65-2CTS reduces transcription drastically, which suggests that the actin-hrp65 interaction is required for transcription. We show that the inhibitory effect of the 65-2CTS peptide on transcription is counteracted by trichostatin A, a drug that inhibits histone deacetylation. We also show that actin and hrp65 are associated in vivo with p2D10, an evolutionarily conserved protein with histone acetyltransferase activity that acts on histone H3. p2D10 is recruited to class II genes in a transcription-dependent manner. We show, using the Balbiani ring genes of C. tentans as a model system, that p2D10 is cotranscriptionally associated with the growing pre-mRNA. We also show that experimental disruption of the actin-hrp65 interaction by the 65-2CTS peptide in vivo results in the release of p2D10 from the transcribed genes, reduced histone H3 acetylation, and a lower level of transcription activity. Furthermore, antibodies against p2D10 inhibit run-on elongation. Our results suggest that actin, hrp65, and p2D10 are parts of a positive feedback mechanism that contributes to maintaining the active transcription state of a gene by recruiting HATs at the RNA level.
Collapse
Affiliation(s)
- Mikael Sjölinder
- Department of Molecular Biology and Functional Genomics, The Wenner-Gren Institute, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
123
|
Herring CD, Raffaelle M, Allen TE, Kanin EI, Landick R, Ansari AZ, Palsson BØ. Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J Bacteriol 2005; 187:6166-74. [PMID: 16109958 PMCID: PMC1196165 DOI: 10.1128/jb.187.17.6166-6174.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/14/2005] [Indexed: 11/20/2022] Open
Abstract
The genome-wide location of RNA polymerase binding sites was determined in Escherichia coli using chromatin immunoprecipitation and microarrays (chIP-chip). Cross-linked chromatin was isolated in triplicate from rifampin-treated cells, and DNA bound to RNA polymerase was precipitated with an antibody specific for the beta' subunit. The DNA was amplified and hybridized to "tiled" oligonucleotide microarrays representing the whole genome at 25-bp resolution. A total of 1,139 binding sites were detected and evaluated by comparison to gene expression data from identical conditions and to 961 promoters previously identified by established methods. Of the detected binding sites, 418 were located within 1,000 bp of a known promoter, leaving 721 previously unknown RNA polymerase binding sites. Within 200 bp, we were able to detect 51% (189/368) of the known sigma70-specific promoters occurring upstream of an expressed open reading frame and 74% (273/368) within 1,000 bp. Conversely, many known promoters were not detected by chIP-chip, leading to an estimated 26% negative-detection rate. Most of the detected binding sites could be associated with expressed transcription units, but 299 binding sites occurred near inactive transcription units. This map of RNA polymerase binding sites represents a foundation for studies of transcription factors in E. coli and an important evaluation of the chIP-chip technique.
Collapse
Affiliation(s)
- Christopher D Herring
- Department of Engineering, UC San Diego Bioengineering, 9500 Gilman Drive, Dept 0412, La Jolla, CA 92093-0412, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Proft M, Gibbons FD, Copeland M, Roth FP, Struhl K. Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:1343-52. [PMID: 16087739 PMCID: PMC1214534 DOI: 10.1128/ec.4.8.1343-1352.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 06/03/2005] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the ATF/CREB transcription factor Sko1 (Acr1) regulates the expression of genes induced by osmotic stress under the control of the high osmolarity glycerol (HOG) mitogen-activated protein kinase pathway. By combining chromatin immunoprecipitation and microarrays containing essentially all intergenic regions, we estimate that yeast cells contain approximately 40 Sko1 target promoters in vivo; 20 Sko1 target promoters were validated by direct analysis of individual loci. The ATF/CREB consensus sequence is not statistically overrepresented in confirmed Sko1 target promoters, although some sites are evolutionarily conserved among related yeast species, suggesting that they are functionally important in vivo. These observations suggest that Sko1 association in vivo is affected by factors beyond the protein-DNA interaction defined in vitro. Sko1 binds a number of promoters for genes directly involved in defense functions that relieve osmotic stress. In addition, Sko1 binds to the promoters of genes encoding transcription factors, including Msn2, Mot3, Rox1, Mga1, and Gat2. Stress-induced expression of MSN2, MOT3, and MGA1 is diminished in sko1 mutant cells, while transcriptional regulation of ROX1 seems to be unaffected. Lastly, Sko1 targets PTP3, which encodes a phosphatase that negatively regulates Hog1 kinase activity, and Sko1 is required for osmotic induction of PTP3 expression. Taken together our results suggest that Sko1 operates a transcriptional network upon osmotic stress, which involves other specific transcription factors and a phosphatase that regulates the key component of the signal transduction pathway.
Collapse
Affiliation(s)
- Markus Proft
- Department Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
125
|
Abstract
A central issue in the regulation of gene expression is the physical association of transcription factors with relevant promoter sequences. Recently, technological advances have allowed researchers to analyze these processes on a genomic scale. In particular, the combination of the chromatin immunoprecipitation (ChIP) technique with microarray analysis (the 'ChIP to chip' experiment) is providing a wealth of new and surprising data on transcription factor-chromatin interactions. These advances are reviewed here. We also discuss future challenges in the area.
Collapse
Affiliation(s)
- Devanjan Sikder
- Department of Internal Medicine, Center for Biomedical Inventions, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-8573, USA.
| | | |
Collapse
|
126
|
Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic Histone-DNA Interactions and Low Nucleosome Density Are Important for Preferential Accessibility of Promoter Regions in Yeast. Mol Cell 2005; 18:735-48. [PMID: 15949447 DOI: 10.1016/j.molcel.2005.05.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/27/2005] [Accepted: 05/05/2005] [Indexed: 01/16/2023]
Abstract
In yeast cells, preferential accessibility of the HIS3-PET56 promoter region is determined by a general property of the DNA sequence, not by defined sequence elements. In vivo, this region is largely devoid of nucleosomes, and accessibility is directly related to reduced histone density. The HIS3-PET56 and DED1 promoter regions associate poorly with histones in vitro, indicating that intrinsic nucleosome stability is a major determinant of preferential accessibility. Specific and genome-wide analyses indicate that low nucleosome density is a very common feature of yeast promoter regions that correlates poorly with transcriptional activation. Thus, the yeast genome is organized into structurally distinct promoter and nonpromoter regions whose DNA sequences inherently differ with respect to nucleosome formation. This organization ensures that transcription factors bind preferentially to appropriate sites in promoters, rather than to the excess of irrelevant sites in nonpromoter regions.
Collapse
Affiliation(s)
- Edward A Sekinger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
127
|
Hanlon SE, Lieb JD. Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr Opin Genet Dev 2005; 14:697-705. [PMID: 15531167 DOI: 10.1016/j.gde.2004.09.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ChIP-chip, or chromatin immunoprecipitation followed by DNA microarray analysis, has proven to be an efficient means of mapping protein-genome interactions. Recent experiments using this tool are beginning to reveal the complex dynamics of transcription factor binding and chromatin organization, and how these processes interact with each other to generate a cellular response to environmental and developmental cues. Data derived from this approach, particularly data involving chromatin components and histone modifications, might be affected by assumptions underlying the procedure, and the data might be made more useful by adoption of standardized whole-genome microarray platforms.
Collapse
Affiliation(s)
- Sean E Hanlon
- Department of Biology and Carolina Center for the Genome Sciences, CB #3280, 202 Fordham Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
128
|
Braglia P, Percudani R, Dieci G. Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 2005; 280:19551-62. [PMID: 15788403 DOI: 10.1074/jbc.m412238200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic RNA polymerase (Pol) III terminates transcription at short runs of T residues in the coding DNA strand. By genomic analysis, we found that T(5) and T(4) are the shortest Pol III termination signals in yeasts and mammals, respectively, and that, at variance with yeast, oligo(dT) terminators longer than T(5) are very rare in mammals. In Saccharomyces cerevisiae, the strength of T(5) as a terminator was found to be largely influenced by both the upstream and the downstream sequence context. In particular, the CT sequence, which is naturally present downstream of T(5) in the 3'-flank of some tDNAs, was found to act as a terminator-weakening element that facilitates translocation by reducing Pol III pausing at T(5). In contrast, tDNA transcription termination was highly efficient when T(5) was followed by an A or G residue. Surprisingly, however, when a termination-proficient T(5) signal was taken out from the tDNA context and placed downstream of a fragment of the SCR1 gene, its termination activity was compromised, both in vitro and in vivo. Even the T(6) sequence, acting as a strong terminator in tRNA gene contexts, was unexpectedly weak within the SNR52 transcription unit, where it naturally occurs. The observed sequence context effects reflect intrinsic recognition properties of Pol III, because they were still observed in a simplified in vitro transcription system only consisting of purified RNA polymerase and template DNA. Our findings strengthen the notion that termination signal recognition by Pol III is influenced in a complex way by the region surrounding the T cluster and suggest that read-through transcription beyond T clusters might play a significant role in the biogenesis of class III gene products.
Collapse
Affiliation(s)
- Priscilla Braglia
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Italy
| | | | | |
Collapse
|
129
|
Nikitina TV, Tishchenko LI. RNA polymerase III transcription machinery: Structure and transcription regulation. Mol Biol 2005. [DOI: 10.1007/s11008-005-0024-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
130
|
Wade JT, Struhl K. Association of RNA polymerase with transcribed regions in Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:17777-82. [PMID: 15596728 PMCID: PMC539717 DOI: 10.1073/pnas.0404305101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Indexed: 11/18/2022] Open
Abstract
We examine the association of the beta-, alpha-, and sigma(70)-subunits of Escherichia coli RNA polymerase (RNAP) and the NusA elongation factor with transcribed regions in vivo by using chromatin immunoprecipitation. RNAP preferentially associates with the promoter-proximal region of several operons, and this preference is particularly pronounced at the lexA-dinF promoter. When cells are grown in exponential phase, little or no sigma(70) is associated with RNAP during early elongation. However, during stationary phase, sigma(70) is retained in a fraction of elongating RNAP complexes throughout the melAB operon. In contrast, sigma(70) is not observed in elongating RNAP complexes at the lacZYA operon during stationary phase. At both operons, NusA associates with RNAP during early elongation, and this association is greatly reduced during stationary phase. These observations suggest that in vivo association of sigma(70) and NusA with elongating RNAP is regulated by growth conditions.
Collapse
Affiliation(s)
- Joseph T Wade
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
131
|
Wade JT, Hall DB, Struhl K. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 2004; 432:1054-8. [PMID: 15616568 DOI: 10.1038/nature03175] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 11/05/2004] [Indexed: 11/08/2022]
Abstract
Ribosomal protein (RP) genes in eukaryotes are coordinately regulated in response to growth stimuli and environmental stress, thereby permitting cells to adjust ribosome number and overall protein synthetic capacity to physiological conditions. Approximately 50% of RNA polymerase II transcription is devoted to RP genes. The transcriptional regulator Rap1 binds most yeast RP promoters, and Rap1 sites are important for coordinate regulation of RP genes. However, Rap1 is not the specific regulator that controls RP transcription because it also functions as a repressor, and many Rap1-activated promoters are not coordinately regulated with RP promoters. Here we show that the transcription factors Fhl1 and Ifh1 associate almost exclusively with RP promoters; association depends on Rap1 and (to a lesser extent) a DNA element at many RP promoters. Ifh1 is recruited to promoters via the forkhead-associated (FHA) domain of Fhl1; the level of Ifh1 associated with RP promoters determines the level of transcription; and environmental stress causes a marked reduction in the association of Ifh1, but not Fhl1 or Rap1. Thus, Ifh1 association with promoters is the key regulatory step for coordinate expression of RP genes.
Collapse
Affiliation(s)
- Joseph T Wade
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
132
|
Moqtaderi Z, Struhl K. Defining in vivo targets of nuclear proteins by chromatin immunoprecipitation and microarray analysis. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2004; Chapter 21:Unit 21.9. [PMID: 18265347 DOI: 10.1002/0471142727.mb2109s68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This unit describes the combination of chromatin immunoprecipitation (ChIP) with microarray hybridization to determine the genome-wide occupancy profile of a DNA-associated protein. After conventional ChIP, the immunoprecipitated material is amplified by a two-step process involving primer extension followed by PCR in the presence of a modified nucleotide. The amplified DNA is fluorescently labeled in a reaction that couples dye to the modified nucleotide, and the labeled sample is hybridized to a microarray representing a complete genome. This method allows the study of a protein's pattern of DNA association across an entire genome with no need for prior knowledge of potential DNA targets.
Collapse
|
133
|
Current awareness on yeast. Yeast 2004; 21:1233-40. [PMID: 15580707 DOI: 10.1002/yea.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
134
|
Simms TA, Miller EC, Buisson NP, Jambunathan N, Donze D. The Saccharomyces cerevisiae TRT2 tRNAThr gene upstream of STE6 is a barrier to repression in MATalpha cells and exerts a potential tRNA position effect in MATa cells. Nucleic Acids Res 2004; 32:5206-13. [PMID: 15459290 PMCID: PMC521669 DOI: 10.1093/nar/gkh858] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A growing body of evidence suggests that genes transcribed by RNA polymerase III exhibit multiple functions within a chromosome. While the predominant function of these genes is the synthesis of RNA molecules, certain RNA polymerase III genes also function as genomic landmarks. Transfer RNA genes are known to exhibit extra-transcriptional activities such as directing Ty element integration, pausing of replication forks, overriding nucleosome positioning sequences, repressing neighboring genes (tRNA position effect), and acting as a barrier to the spread of repressive chromatin. This study was designed to identify other tRNA loci that may act as barriers to chromatin-mediated repression, and focused on TRT2, a tRNA(Thr) adjacent to the STE6 alpha2 operator. We show that TRT2 acts as a barrier to repression, protecting the upstream CBT1 gene from the influence of the STE6 alpha2 operator in MATalpha cells. Interestingly, deletion of TRT2 results in an increase in CBT1 mRNA levels in MATa cells, indicating a potential tRNA position effect. The transcription of TRT2 itself is unaffected by the presence of the alpha2 operator, suggesting a hierarchy that favors assembly of the RNA polymerase III complex versus assembly of adjacent alpha2 operator-mediated repressed chromatin structures. This proposed hierarchy could explain how tRNA genes function as barriers to the propagation of repressive chromatin.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters
- Chromosomes, Fungal
- Fungal Proteins/genetics
- Gene Deletion
- Gene Expression Regulation, Fungal
- Gene Silencing
- Genes, Fungal
- Glycoproteins
- Histones/metabolism
- Homeodomain Proteins/genetics
- Operator Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Transfer, Thr/biosynthesis
- RNA, Transfer, Thr/genetics
- Repressor Proteins/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/biosynthesis
- Saccharomyces cerevisiae Proteins/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Tiffany A Simms
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
135
|
Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, Ferguson C, Haga K, Sato T, Liu JS, Losick R. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2004; 2:e328. [PMID: 15383836 PMCID: PMC517825 DOI: 10.1371/journal.pbio.0020328] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Accepted: 07/29/2004] [Indexed: 11/24/2022] Open
Abstract
Asymmetric division during sporulation by Bacillus subtilis generates a mother cell that undergoes a 5-h program of differentiation. The program is governed by a hierarchical cascade consisting of the transcription factors: σE, σK, GerE, GerR, and SpoIIID. The program consists of the activation and repression of 383 genes. The σE factor turns on 262 genes, including those for GerR and SpoIIID. These DNA-binding proteins downregulate almost half of the genes in the σE regulon. In addition, SpoIIID turns on ten genes, including genes involved in the appearance of σK. Next, σK activates 75 additional genes, including that for GerE. This DNA-binding protein, in turn, represses half of the genes that had been activated by σK while switching on a final set of 36 genes. Evidence is presented that repression and activation contribute to proper morphogenesis. The program of gene expression is driven forward by its hierarchical organization and by the repressive effects of the DNA-binding proteins. The logic of the program is that of a linked series of feed-forward loops, which generate successive pulses of gene transcription. Similar regulatory circuits could be a common feature of other systems of cellular differentiation. A comprehensive genomic analysis of sporulation in Bacillus subtilis reveals a coordinated program of gene activation and repression, which involves 383 genes
Collapse
Affiliation(s)
- Patrick Eichenberger
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Masaya Fujita
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Shane T Jensen
- 2Department of Statistics, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Erin M Conlon
- 2Department of Statistics, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - David Z Rudner
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Stephanie T Wang
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Caitlin Ferguson
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Koki Haga
- 3International Environmental and Agricultural Science, Tokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | - Tsutomu Sato
- 3International Environmental and Agricultural Science, Tokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | - Jun S Liu
- 2Department of Statistics, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Richard Losick
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| |
Collapse
|
136
|
Geisberg JV, Struhl K. Cellular Stress Alters the Transcriptional Properties of Promoter-Bound Mot1-TBP Complexes. Mol Cell 2004; 14:479-89. [PMID: 15149597 DOI: 10.1016/j.molcel.2004.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 03/16/2004] [Accepted: 03/30/2004] [Indexed: 11/28/2022]
Abstract
Mot1 associates with transcriptionally active promoters, and it directly affects transcriptional activity in a positive or negative manner, depending on the gene. As determined by sequential chromatin immunoprecipitation, Mot1 co-occupies promoters with TBP, but not with TFIIB, TFIIA, or Pol II when cells are grown in normal conditions. This strongly suggests that the Mot1-TBP complex is transcriptionally inactive, and hence is in dynamic equilibrium with transcriptionally active forms of TBP. Surprisingly, in response to heat shock and other forms of environmental stress, Mot1 co-occupies promoters with TFIIB and elongation-competent Pol II, but not with TFIIA. This suggests that functional preinitiation complexes can contain Mot1 instead of TFIIA in vivo. Thus, Mot1-TBP complexes can exist in active and inactive forms that are regulated by environmental stress.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|