101
|
Fernandez-Ruiz R, Niewold TB. Type I Interferons in Autoimmunity. J Invest Dermatol 2022; 142:793-803. [PMID: 35016780 PMCID: PMC8860872 DOI: 10.1016/j.jid.2021.11.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022]
Abstract
Dysregulated IFN-1 responses play crucial roles in the development of multiple forms of autoimmunity. Many patients with lupus, systemic sclerosis, Sjogren's syndrome, and dermatomyositis demonstrate enhanced IFN-1 signaling. IFN-1 excess is associated with disease severity and autoantibodies and could potentially predict response to newer therapies targeting IFN-1 pathways. In this review, we provide an overview of the signaling pathway and immune functions of IFN-1s in health and disease. We also review the systemic autoimmune diseases classically associated with IFN-1 upregulation and current therapeutic strategies targeting the IFN-1 system.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Timothy B Niewold
- Judith & Stewart Colton Center for Autoimmunity, Department of Medicine Research, NYU Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
102
|
Tsoi LC, Patrick MT, Shuai S, Sarkar MK, Chi S, Ruffino B, Billi AC, Xing X, Uppala R, Zang C, Fullmer J, He Z, Maverakis E, Mehta NN, White BEP, Getsios S, Helfrich Y, Voorhees JJ, Kahlenberg JM, Weidinger S, Gudjonsson JE. Cytokine responses in nonlesional psoriatic skin as clinical predictor to anti-TNF agents. J Allergy Clin Immunol 2022; 149:640-649.e5. [PMID: 34343561 PMCID: PMC9451046 DOI: 10.1016/j.jaci.2021.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND A major issue with the current management of psoriasis is our inability to predict treatment response. OBJECTIVE Our aim was to evaluate the ability to use baseline molecular expression profiling to assess treatment outcome for patients with psoriasis. METHODS We conducted a longitudinal study of 46 patients with chronic plaque psoriasis treated with anti-TNF agent etanercept, and molecular profiles were assessed in more than 200 RNA-seq samples. RESULTS We demonstrated correlation between clinical response and molecular changes during the course of the treatment, particularly for genes responding to IL-17A/TNF in keratinocytes. Intriguingly, baseline gene expressions in nonlesional, but not lesional, skin were the best marker of treatment response at week 12. We identified USP18, a known regulator of IFN responses, as positively correlated with Psoriasis Area and Severity Index (PASI) improvement (P = 9.8 × 10-4) and demonstrate its role in regulating IFN/TNF responses in keratinocytes. Consistently, cytokine gene signatures enriched in baseline nonlesional skin expression profiles had strong correlations with PASI improvement. Using this information, we developed a statistical model for predicting PASI75 (ie, 75% of PASI improvement) at week 12, achieving area under the receiver-operating characteristic curve value of 0.75 and up to 80% accurate PASI75 prediction among the top predicted responders. CONCLUSIONS Our results illustrate feasibility of assessing drug response in psoriasis using nonlesional skin and implicate involvement of IFN regulators in anti-TNF responses.
Collapse
Affiliation(s)
- Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor MI, USA,Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA,Correspondence should be addressed to: Lam C Tsoi () and Johann E Gudjonsson (), Med Sci I, 1301 E Catherine St, Ann Ann, MI, 48109, USA, Phone number: 734-764-7069
| | - Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shao Shuai
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi’an, Shannxi, China
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sunyi Chi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Bethany Ruffino
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allison C. Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Cheng Zang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joseph Fullmer
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhi He
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, UC-Davis Medical Center, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Spiro Getsios
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Yolanda Helfrich
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John J. Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J. Michelle Kahlenberg
- Divison of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA,Correspondence should be addressed to: Lam C Tsoi () and Johann E Gudjonsson (), Med Sci I, 1301 E Catherine St, Ann Ann, MI, 48109, USA, Phone number: 734-764-7069
| |
Collapse
|
103
|
Hu H, Yang H, Liu Y, Yan B. Pathogenesis of Anti-melanoma Differentiation-Associated Gene 5 Antibody-Positive Dermatomyositis: A Concise Review With an Emphasis on Type I Interferon System. Front Med (Lausanne) 2022; 8:833114. [PMID: 35141258 PMCID: PMC8818857 DOI: 10.3389/fmed.2021.833114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
Anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis (MDA5+ DM) is typically characterized by cutaneous manifestations, amyopathic or hypomyopathic muscle involvement, and a high incidence of rapid progressive interstitial lung disease (RP-ILD). However, the exact etiology and pathogenesis of this condition has yet to be fully elucidated. Melanoma differentiation-associated gene 5 (MDA5), as the autoantigen target, is a member of the retinoic acid-inducible gene-I (RIG-I) family. The MDA5 protein can function as a cytosolic sensor that recognizes viral double-strand RNA and then triggers the transcription of genes encoding type I interferon (IFN). Therefore, it was presumed that viruses might trigger the overproduction of type I IFN, thus contributing to the development of MDA5+ DM. Emerging evidence provides further support to this hypothesis: the increased serum IFNα level was detected in the patients with MDA5+ DM, and the type I IFN gene signature was upregulated in both the peripheral blood mononuclear cells (PBMCs) and the skin tissues from these patients. In particular, RNA sequencing revealed the over-expression of the type I IFN genes in blood vessels from MDA5+ DM patients. In addition, Janus kinase (JAK) inhibitors achieved the promising therapeutic effects in cases with interstitial lung disease (ILD) associated with MDA5+ DM. In this review, we discuss the role of the type I IFN system in the pathogenesis of MDA5+ DM.
Collapse
Affiliation(s)
| | | | | | - Bing Yan
- Department of Rheumatology and Immunology, Rare Diseases Center, Frontiers Science Center for Disease-Related Molecular Network, Institute of Immunology and Inflammation, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
104
|
Huang X, Zhang Q, Zhang H, Lu Q. A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2022; 63:311-329. [DOI: 10.1007/s12016-021-08917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
|
105
|
Dowling JW, Forero A. Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:247-256. [PMID: 35017214 DOI: 10.4049/jimmunol.2100707] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
IFNs are comprised of three families of cytokines that confer protection against pathogen infection and uncontrolled cellular proliferation. The broad role IFNs play in innate and adaptive immune regulation has placed them under heavy scrutiny to position them as "friend" or "foe" across pathologies. Genetic lesions in genes involving IFN synthesis and signaling underscore the disparate outcomes of aberrant IFN signaling. Abrogation of the response leads to susceptibility to microbial infections whereas unabated IFN induction underlies a variety of inflammatory diseases and tumor immune evasion. Type I and III IFNs have overlapping roles in antiviral protection, yet the mechanisms by which they are induced and promote the expression of IFN-stimulated genes and inflammation can distinguish their biological functions. In this review, we examine the molecular factors that shape the shared and distinct roles of type I and III IFNs in immunity.
Collapse
Affiliation(s)
- Jack W Dowling
- Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210; and.,Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
106
|
Athanassiou L, Kostoglou-Athanassiou I, Tsakiridis P, Devetzi E, Mavroudi M, Fytas P, Koutsilieris M, Athanassiou P. Vitamin D levels in Greek patients with systemic lupus erythematosus. Lupus 2022; 31:125-132. [PMID: 35006029 DOI: 10.1177/09612033211066462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Vitamin D deficiency has been observed in autoimmune rheumatic diseases, such as rheumatoid arthritis. The aim was to study vitamin D in patients with systemic lupus erythematosus (SLE) and its relationship with disease activity. METHODS In a cohort of 45 patients with SLE, 41 females and 4 males, aged 47.07 ± 2.17 years (mean ± SEM), and range = 21-79 years, 25(OH)D3 levels were determined by electrochemiluminescence. C3 and C4 levels were also analyzed. SLE disease activity was estimated by SLEDAI-2K. Observations were also performed in a control group matched for age and sex. RESULTS In this cohort of SLE patients, 25(OH)D3 levels were 40.36 ± 2.41 nmol/L (mean ± SEM) as opposed to 60.98 ± 4.28 nmol/L in the control group (p < 0.001, Student's t test). Vitamin D levels were related to C3 (p < 0.001, linear regression analysis), correlation coefficient 0.106, r2 = 0.011, and C4 (p < 0.001); correlation coefficient 0.316 and r2 = 0.100; and inversely related to disease activity (p < 0.001), correlation coefficient -0.572 and r2 = 0.327. 25(OH)D3 levels were 17.73 ± 1.20 nmol/L and 12.24 ± 0.93 nmol/L, in the groups without and with renal involvement, respectively (p = 0.001, Student's t test). CONCLUSIONS Vitamin D levels are low in SLE patients and are inversely related to disease activity. Routine screening for vitamin D levels should be performed in SLE patients.
Collapse
Affiliation(s)
| | | | - Pavlos Tsakiridis
- Department of Rheumatology, St Paul's Hospital, Thessaloniki, Greece
| | - Eirini Devetzi
- Department of Rheumatology, St Paul's Hospital, Thessaloniki, Greece
| | - Maria Mavroudi
- Department of Rheumatology, St Paul's Hospital, Thessaloniki, Greece
| | - Pantelis Fytas
- Department of Immunology, St Paul's Hospital, Thessaloniki, Greece
| | | | | |
Collapse
|
107
|
Koga T, Ichinose K, Tsokos GC. Tissue resident cell processes determine organ damage in systemic lupus erythematosus. Clin Immunol 2022; 234:108919. [PMID: 34974170 DOI: 10.1016/j.clim.2021.108919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects almost any organ. Multiple immunological abnormalities involving every domain of the immune system contribute to the expression of the disease. It is now recognized that elements of the immune system instigate processes in tissue resident cells which execute organ damage. Although correction of ongoing immune aberrations is important in the control of disease activity, targeting tissue specific injurious processes may prove desirable in limiting organ damage.
Collapse
Affiliation(s)
- Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
108
|
Gharaee-Kermani M, Estadt SN, Tsoi LC, Wolf-Fortune SJ, Liu J, Xing X, Theros J, Reed TJ, Lowe L, Gruszka D, Ward NL, Gudjonsson JE, Kahlenberg JM. IFN-κ Is a Rheostat for Development of Psoriasiform Inflammation. J Invest Dermatol 2022; 142:155-165.e3. [PMID: 34364883 PMCID: PMC8688309 DOI: 10.1016/j.jid.2021.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023]
Abstract
Psoriasis is a common, inflammatory autoimmune skin disease. Early detection of an IFN-1 signature occurs in many psoriasis lesions, but the source of IFN production remains debated. IFN-κ is an important source of IFN-1 production in the epidermis. We identified a correlation between IFN-regulated and psoriasis-associated genes in human lesional skin. We thus wanted to explore the effects of IFN-κ in psoriasis using the well-characterized imiquimod psoriasis model. Three mouse strains aged 10 weeks were used: wild-type C57Bl/6, C57Bl/6 that overexpress Ifnk in the epidermis (i.e., transgenic), and total body Ifnk-/- (i.e., knockout) strain. Psoriasis was induced by topical application of imiquimod on both ears for 8 consecutive days. Notably, the severity of skin lesions and inflammatory cell infiltration was more significantly increased in transgenic than in wild-type than in knockout mice. Gene expression analysis identified greater upregulation of Mxa, Il1b, Tnfa, Il6, Il12, Il23, Il17, and Ifng in transgenic compared to wild-type compared to knockout mice after imiquimod treatment. Furthermore, imiquimod increased CD8+ and CD4+ T-cell infiltration more in transgenic than in wild-type than in knockout mice. In summary, we identified IFN-κ as a rheostat for initiation of psoriasiform inflammation. This suggests that targeting IFN-1s early in the disease may be an effective way of controlling psoriatic inflammation.
Collapse
Affiliation(s)
- Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,These authors contributed equally to this work
| | - Shannon N. Estadt
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,These authors contributed equally to this work
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sonya J. Wolf-Fortune
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianhua Liu
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathon Theros
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tamra J. Reed
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lori Lowe
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dennis Gruszka
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA,Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole L. Ward
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA,Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
109
|
Abernathy-Close L, Lazar S, Stannard J, Tsoi LC, Eddy S, Rizvi SM, Yee CM, Myers EM, Namas R, Lowe L, Reed TJ, Wen F, Gudjonsson JE, Kahlenberg JM, Berthier CC. B Cell Signatures Distinguish Cutaneous Lupus Erythematosus Subtypes and the Presence of Systemic Disease Activity. Front Immunol 2021; 12:775353. [PMID: 34868043 PMCID: PMC8640489 DOI: 10.3389/fimmu.2021.775353] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is a chronic inflammatory skin disease characterized by a diverse cadre of clinical presentations. CLE commonly occurs in patients with systemic lupus erythematosus (SLE), and CLE can also develop in the absence of systemic disease. Although CLE is a complex and heterogeneous disease, several studies have identified common signaling pathways, including those of type I interferons (IFNs), that play a key role in driving cutaneous inflammation across all CLE subsets. However, discriminating factors that drive different phenotypes of skin lesions remain to be determined. Thus, we sought to understand the skin-associated cellular and transcriptional differences in CLE subsets and how the different types of cutaneous inflammation relate to the presence of systemic lupus disease. In this study, we utilized two distinct cohorts comprising a total of 150 CLE lesional biopsies to compare discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE), and acute cutaneous lupus erythematosus (ACLE) in patients with and without associated SLE. Using an unbiased approach, we demonstrated a CLE subtype-dependent gradient of B cell enrichment in the skin, with DLE lesions harboring a more dominant skin B cell transcriptional signature and enrichment of B cells on immunostaining compared to ACLE and SCLE. Additionally, we observed a significant increase in B cell signatures in the lesional skin from patients with isolated CLE compared with similar lesions from patients with systemic lupus. This trend was driven primarily by differences in the DLE subgroup. Our work thus shows that skin-associated B cell responses distinguish CLE subtypes in patients with and without associated SLE, suggesting that B cell function in skin may be an important link between cutaneous lupus and systemic disease activity.
Collapse
Affiliation(s)
- Lisa Abernathy-Close
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Stephanie Lazar
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jasmine Stannard
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, United States.,Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Syed M Rizvi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Christine M Yee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | | | - Rajaie Namas
- Division of Rheumatology, Department of Internal Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Lori Lowe
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States.,Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Tamra J Reed
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
110
|
Smits JP, Meesters LD, Maste BG, Zhou H, Zeeuwen PL, van den Bogaard EH. CRISPR-Cas9 based genomic engineering in keratinocytes: from technology to application. JID INNOVATIONS 2021; 2:100082. [PMID: 35146483 PMCID: PMC8819031 DOI: 10.1016/j.xjidi.2021.100082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jos P.H. Smits
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Luca D. Meesters
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Berber G.W. Maste
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Patrick L.J.M. Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Correspondence: Ellen H. van den Bogaard, Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Rene Descartesdreef 1, Nijmegen 6525 GL, The Netherlands.
| |
Collapse
|
111
|
Shao S, Chen J, Swindell WR, Tsoi LC, Xing X, Ma F, Uppala R, Sarkar MK, Plazyo O, Billi AC, Wasikowski R, Smith KM, Honore P, Scott VE, Maverakis E, Kahlenberg JM, Wang G, Ward NL, Harms PW, Gudjonsson JE. Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris. JCI Insight 2021; 6:e151911. [PMID: 34491907 PMCID: PMC8564909 DOI: 10.1172/jci.insight.151911] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023] Open
Abstract
Altered epidermal differentiation along with increased keratinocyte proliferation is a characteristic feature of psoriasis and pityriasis rubra pilaris (PRP). However, despite this large degree of overlapping clinical and histologic features, the molecular signatures these skin disorders share are unknown. Using global transcriptomic profiling, we demonstrate that plaque psoriasis and PRP skin lesions have high overlap, with all differentially expressed genes in PRP relative to normal skin having complete overlap with those in psoriasis. The major common pathway shared between psoriasis and PRP involves the phospholipases PLA2G2F, PLA2G4D, and PLA2G4E, which were found to be primarily expressed in the epidermis. Gene silencing each of the 3 PLA2s led to reduction in immune responses and epidermal thickness both in vitro and in vivo in a mouse model of psoriasis, establishing their proinflammatory roles. Lipidomic analyses demonstrated that PLA2s affect mobilization of a phospholipid-eicosanoid pool, which is altered in psoriatic lesions and functions to promote immune responses in keratinocytes. Taken together, our results highlight the important role of PLA2s as regulators of epidermal barrier homeostasis and inflammation, identify PLA2s as a shared pathogenic mechanism between PRP and psoriasis, and as potential therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China.,Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - William R Swindell
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, the Jewish Hospital, Cincinnati, Ohio, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Feiyang Ma
- Department of Dermatology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Prisca Honore
- AbbVie Dermatology Discovery, North Chicago, Illinois, USA
| | | | - Emanual Maverakis
- Department of Dermatology, UC Davis School of Medicine, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Nicole L Ward
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
112
|
Idborg H, Oke V. Cytokines as Biomarkers in Systemic Lupus Erythematosus: Value for Diagnosis and Drug Therapy. Int J Mol Sci 2021; 22:ijms222111327. [PMID: 34768756 PMCID: PMC8582965 DOI: 10.3390/ijms222111327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease. The disease is characterized by activation and dysregulation of both the innate and the adaptive immune systems. The autoimmune response targets self-molecules including cell nuclei, double stranded DNA and other intra and extracellular structures. Multiple susceptibility genes within the immune system have been identified, as well as disturbances in different immune pathways. SLE may affect different organs and organ systems, and organ involvement is diverse among individuals. A universal understanding of pathophysiological mechanism of the disease, as well as directed therapies, are still missing. Cytokines are immunomodulating molecules produced by cells of the immune system. Interferons (IFNs) are a broad group of cytokines, primarily produced by the innate immune system. The IFN system has been observed to be dysregulated in SLE, and therefore IFNs have been extensively studied with a hope to understand the disease mechanisms and identify novel targeted therapies. In several autoimmune diseases identification and subsequent blockade of specific cytokines has led to successful therapies, for example tumor necrosis factor-alpha (TNF-α) inhibition in rheumatoid arthritis. Authors of this review have sought corresponding developments in SLE. In the current review, we cover the actual knowledge on IFNs and other studied cytokines as biomarkers and treatment targets in SLE.
Collapse
Affiliation(s)
- Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden;
| | - Vilija Oke
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden;
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Care Services, 11365 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
113
|
Ramaswamy M, Tummala R, Streicher K, Nogueira da Costa A, Brohawn PZ. The Pathogenesis, Molecular Mechanisms, and Therapeutic Potential of the Interferon Pathway in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Int J Mol Sci 2021; 22:11286. [PMID: 34681945 PMCID: PMC8540355 DOI: 10.3390/ijms222011286] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic success in treating patients with systemic lupus erythematosus (SLE) is limited by the multivariate disease etiology, multi-organ presentation, systemic involvement, and complex immunopathogenesis. Agents targeting B-cell differentiation and survival are not efficacious for all patients, indicating a need to target other inflammatory mediators. One such target is the type I interferon pathway. Type I interferons upregulate interferon gene signatures and mediate critical antiviral responses. Dysregulated type I interferon signaling is detectable in many patients with SLE and other autoimmune diseases, and the extent of this dysregulation is associated with disease severity, making type I interferons therapeutically tangible targets. The recent approval of the type I interferon-blocking antibody, anifrolumab, by the US Food and Drug Administration for the treatment of patients with SLE demonstrates the value of targeting this pathway. Nevertheless, the interferon pathway has pleiotropic biology, with multiple cellular targets and signaling components that are incompletely understood. Deconvoluting the complexity of the type I interferon pathway and its intersection with lupus disease pathology will be valuable for further development of targeted SLE therapeutics. This review summarizes the immune mediators of the interferon pathway, its association with disease pathogenesis, and therapeutic modalities targeting the dysregulated interferon pathway.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Raj Tummala
- Respiratory, Inflammation & Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Katie Streicher
- Translational Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Andre Nogueira da Costa
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Philip Z. Brohawn
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| |
Collapse
|
114
|
Braegelmann C, Niebel D, Ferring-Schmitt S, Fetter T, Landsberg J, Hölzel M, Effern M, Glodde N, Steinbuch S, Bieber T, Wenzel J. Epigallocatechin-3-gallate exhibits anti-inflammatory effects in a human interface dermatitis model-implications for therapy. J Eur Acad Dermatol Venereol 2021; 36:144-153. [PMID: 34585800 DOI: 10.1111/jdv.17710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Epigallocatechin-3-gallate (EGCG) has been proven effective in treating viral warts. Since anticarcinogenic as well as anti-inflammatory properties are ascribed to the substance, its use has been evaluated in the context of different dermatoses. The effect of EGCG on interface dermatitis (ID), however, has not yet been explored. OBJECTIVES In this study, we investigated the effect of EGCG on an epidermal human in vitro model of ID. METHODS Via immunohistochemistry, lesional skin of lichen planus patients and healthy skin were analysed concerning the intensity of interferon-associated mediators, CXCL10 and MxA. Epidermal equivalents were stained analogously upon ID-like stimulation and EGCG treatment. Monolayer keratinocytes were treated likewise and supernatants were analysed via ELISA while cells were processed for vitality assay or transcriptomic analysis. RESULTS CXCL10 and MxA are strongly expressed in lichen planus lesions and induced in keratinocytes upon ID-like stimulation. EGCG reduces CXCL10 and MxA staining intensity in epidermis equivalents and CXCL10 secretion by keratinocytes upon stimulation. It furthermore minimizes the cytotoxic effect of the stimulus and downregulates a magnitude of typical pro-inflammatory cytokines that are crucial for the perpetuation of ID. CONCLUSIONS We provide evidence concerning anti-inflammatory effects of EGCG within a human in vitro model of ID. The capacity to suppress mediators that are centrally involved in disease perpetuation suggests EGCG as a potential topical therapeutic in lichen planus and other autoimmune skin diseases associated with ID.
Collapse
Affiliation(s)
- C Braegelmann
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - D Niebel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - S Ferring-Schmitt
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - T Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - J Landsberg
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - M Hölzel
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Bonn, Germany
| | - M Effern
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Bonn, Germany
| | - N Glodde
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Bonn, Germany
| | - S Steinbuch
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - T Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - J Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
115
|
Gao ZY, Su LC, Wu QC, Sheng JE, Wang YL, Dai YF, Chen AP, He SS, Huang X, Yan GQ. Bioinformatics analyses of gene expression profile identify key genes and functional pathways involved in cutaneous lupus erythematosus. Clin Rheumatol 2021; 41:437-452. [PMID: 34553293 DOI: 10.1007/s10067-021-05913-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/05/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lupus erythematosus is an autoimmune disease that causes damage to multiple organs ranging from skin lesions to systemic manifestations. Cutaneous lupus erythematosus (CLE) is a common type of lupus erythematosus (LE), but its molecular mechanisms are currently unknown. The study aimed to explore changes in the gene expression profiles and identify key genes involved in CLE, hoping to uncover its molecular mechanism and identify new targets for CLE. METHOD We analyzed the microarray dataset (GSE109248) derived from the Gene Expression Omnibus (GEO) database, which was a transcriptome profiling of CLE cutaneous lesions. The differentially expressed genes (DEGs) were identified, and the functional annotation of DEGs was performed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein-protein interaction (PPI) network was also constructed to identify hub genes involved in CLE. RESULT A total of 755 up-regulated DEGs and 405 down-regulated DEGs were identified. GO enrichment analysis showed that defense response to virus, immune response, and type I interferon signaling pathway were the most significant enrichment items in DEGs. The KEGG pathway analysis identified 51 significant enrichment pathways, which mainly included systemic lupus erythematosus, osteoclast differentiation, cytokine-cytokine receptor interaction, and primary immunodeficiency. Based on the PPI network, the study identified the top 10 hub genes involved in CLE, which were CXCL10, CCR7, FPR3, PPARGC1A, MMP9, IRF7, IL2RG, SOCS1, ISG15, and GSTM3. By comparison between subtypes, the results showed that ACLE had the least DEGs, while CCLE showed the most gene and functional changes. CONCLUSION The identified hub genes and functional pathways found in this study may expand our understanding on the underlying pathogenesis of CLE and provide new insights into potential biomarkers or targets for the diagnosis and treatment of CLE. Key Points • The bioinformatics analysis based on CLE patients and healthy controls was performed and 1160 DEGs were identified • The 1160 DEGs were mainly enriched in biological processes related to immune responses, including innate immune response, type I interferon signaling pathway, interferon-γ-mediated signaling pathway, positive regulation of T cell proliferation, regulation of immune response, antigen processing, and presentation via MHC class Ib and so on • KEGG pathway enrichment analysis indicated that DEGs were mainly enriched in several immune-related diseases and virus infection, including systemic lupus erythematosus, primary immunodeficiency, herpes simplex infection, measles, influenza A, and so on • The hub genes such as CXCL10, IRF7, MMP9, CCR7, and SOCS1 may become new markers or targets for the diagnosis and treatment of CLE.
Collapse
Affiliation(s)
- Zhen-Yu Gao
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China. .,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China
| | - Qing-Chao Wu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China
| | - Jiao-E Sheng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China
| | - Yun-Long Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China
| | - Yu-Fang Dai
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China
| | - An-Ping Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China
| | - San-Shan He
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China
| | - Xia Huang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China
| | - Guo-Qing Yan
- Department of Rheumatology and Immunology, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, The Affiliated Hospital of Hubei Minzu University, Enshi, Hubei Province, China
| |
Collapse
|
116
|
Garzorz-Stark N, Eyerich K. IFN-1s: Sentinels Shaping Distinct Immune Responses in Skin. J Invest Dermatol 2021; 142:14-15. [PMID: 34565563 DOI: 10.1016/j.jid.2021.07.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
IFN-1s are early sentinels of potential danger in skin. Two interconnected axes exist: plasmacytoid dendritic cells (DCs) secreting IFN-α in response to single strand RNA or DNA and keratinocytes secreting IFN-κ after stimulation with double strand RNA or other IFNs. Both IFN-α and IFN-κ induce macrophages and DC subpopulations to secrete master regulators of cytotoxicity or wound healing, the latter related to psoriasis pathogenesis.
Collapse
Affiliation(s)
- Natalie Garzorz-Stark
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
117
|
Papadopoulos VE, Skarlis C, Evangelopoulos ME, Mavragani CP. Type I interferon detection in autoimmune diseases: challenges and clinical applications. Expert Rev Clin Immunol 2021; 17:883-903. [PMID: 34096436 DOI: 10.1080/1744666x.2021.1939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Accumulating data highlights that the dysregulation of type I interferon (IFN) pathways plays a central role in the pathogenesis of several systemic and organ-specific autoimmune diseases. Advances in understanding the role of type I IFNs in these disorders can lead to targeted drug development as well as establishing potential disease biomarkers. AREAS COVERED Here, we summarize current knowledge regarding the role of type I IFNs in the major systemic, as well as organ-specific, autoimmune disorders, including prominent inflammatory CNS disorders like multiple sclerosis. EXPERT OPINION Type I IFN involvement and its clinical associations in a wide spectrum of autoimmune diseases represents a promising area for research aiming to unveil common pathogenetic pathways in systemic and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Vassilis E Papadopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
118
|
Abstract
Skewing of type I interferon (IFN) production and responses is a hallmark of systemic lupus erythematosus (SLE). Genetic and environmental contributions to IFN production lead to aberrant innate and adaptive immune activation even before clinical development of disease. Basic and translational research in this arena continues to identify contributions of IFNs to disease pathogenesis, and several promising therapeutic options for targeting of type I IFNs and their signaling pathways are in development for treatment of SLE patients.
Collapse
Affiliation(s)
- Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - Stephanie Lazar
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA; Department of Dermatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA.
| |
Collapse
|
119
|
Estadt SN, Maz MP, Musai J, Kahlenberg JM. Mechanisms of Photosensitivity in Autoimmunity. J Invest Dermatol 2021; 142:849-856. [PMID: 34167786 DOI: 10.1016/j.jid.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Aberrant responses to UV light frequently lead to the formation of skin lesions and the activation of systemic inflammation in some autoimmune diseases, especially systemic lupus erythematosus. Whereas the effects of UV light on the skin have been studied for decades, only recently have some of the mechanisms that contribute to abnormal responses to UV light in patients with autoimmune diseases been uncovered. This review will discuss the biology of UV in the epidermis and discuss the abnormal epidermal and inflammatory mechanisms that contribute to photosensitivity. Further research is required to fully understand how to normalize UV-mediated inflammation in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Shannon N Estadt
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jon Musai
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
120
|
Abstract
Type I interferons (IFN-Is) are a very important group of cytokines that are produced by innate immune cells but also act on adaptive immune cells. IFN-Is possess antiviral, antitumor, and anti-proliferative effects, as well are associated with the initiation and maintenance of autoimmune disorders. Studies have shown that aberrantly expressed IFN-Is and/or type I IFN-inducible gene signatures in the serum or tissues of patients with autoimmune disorders are linked to their pathogenesis, clinical manifestations, and disease activity. Type I interferonopathies with mutations in genes impacting the type I IFN signaling pathway have shown symptoms and characteristics similar to those of systemic lupus erythematosus (SLE). Furthermore, both interventions in animal models and clinical trials of therapies targeting the type I IFN signaling pathway have shown efficacy in the treatment of autoimmune diseases. Our review aims to summarize the functions and targeted therapies (as well as clinical trials) of IFN-Is in both adult and pediatric autoimmune diseases, such as SLE, pediatric SLE (pSLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), Sjögren syndrome (SjS), and systemic sclerosis (SSc), discussing the potential abnormal regulation of transcription factors and epigenetic modifications and providing a potential mechanism for pathogenesis and therapeutic strategies for future clinical use.
Collapse
|
121
|
Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc Natl Acad Sci U S A 2021; 118:2019097118. [PMID: 33397815 DOI: 10.1073/pnas.2019097118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Photosensitivity to ultraviolet (UV) light affects up to ∼80% of lupus patients. Sunlight exposure can exacerbate local as well as systemic manifestations of lupus, including nephritis, by mechanisms that are poorly understood. Here, we report that acute skin exposure to UV light triggers a neutrophil-dependent injury response in the kidney characterized by upregulated expression of endothelial adhesion molecules as well as inflammatory and injury markers associated with transient proteinuria. We showed that UV light stimulates neutrophil migration not only to the skin but also to the kidney in an IL-17A-dependent manner. Using a photoactivatable lineage tracing approach, we observed that a subset of neutrophils found in the kidney had transited through UV light-exposed skin, suggesting reverse transmigration. Besides being required for the renal induction of genes encoding mediators of inflammation (vcam-1, s100A9, and Il-1b) and injury (lipocalin-2 and kim-1), neutrophils significantly contributed to the kidney type I interferon signature triggered by UV light. Together, these findings demonstrate that neutrophils mediate subclinical renal inflammation and injury following skin exposure to UV light. Of interest, patients with lupus have subpopulations of blood neutrophils and low-density granulocytes with similar phenotypes to reverse transmigrating neutrophils observed in the mice post-UV exposure, suggesting that these cells could have transmigrated from inflamed tissue, such as the skin.
Collapse
|
122
|
Sim JH, Ambler WG, Sollohub IF, Howlader MJ, Li TM, Lee HJ, Lu TT. Immune Cell-Stromal Circuitry in Lupus Photosensitivity. THE JOURNAL OF IMMUNOLOGY 2021; 206:302-309. [PMID: 33397744 DOI: 10.4049/jimmunol.2000905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Photosensitivity is a sensitivity to UV radiation (UVR) commonly found in systemic lupus erythematosus (SLE) patients who have cutaneous disease. Upon even ambient UVR exposure, patients can develop inflammatory skin lesions that can reduce the quality of life. Additionally, UVR-exposed skin lesions can be associated with systemic disease flares marked by rising autoantibody titers and worsening kidney disease. Why SLE patients are photosensitive and how skin sensitivity leads to systemic disease flares are not well understood, and treatment options are limited. In recent years, the importance of immune cell-stromal interactions in tissue function and maintenance is being increasingly recognized. In this review, we discuss SLE as an anatomic circuit and review recent findings in the pathogenesis of photosensitivity with a focus on immune cell-stromal circuitry in tissue health and disease.
Collapse
Affiliation(s)
- Ji Hyun Sim
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - William G Ambler
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021
| | - Isabel F Sollohub
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021
| | - Mir J Howlader
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Biochemistry and Structural Biology, Cell Biology, Developmental Biology, and Molecular Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065; and
| | - Thomas M Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021
| | - Henry J Lee
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10065
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; .,Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065.,Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
123
|
Turnier JL, Pachman LM, Lowe L, Tsoi LC, Elhaj S, Menon R, Amoruso MC, Morgan GA, Gudjonsson JE, Berthier CC, Kahlenberg JM. Comparison of Lesional Juvenile Myositis and Lupus Skin Reveals Overlapping Yet Unique Disease Pathophysiology. Arthritis Rheumatol 2021; 73:1062-1072. [PMID: 33305541 DOI: 10.1002/art.41615] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Skin inflammation heralds systemic disease in juvenile myositis, yet we lack an understanding of pathogenic mechanisms driving skin inflammation in this disease. We undertook this study to define cutaneous gene expression signatures in juvenile myositis and identify key genes and pathways that differentiate skin disease in juvenile myositis from childhood-onset systemic lupus erythematosus (SLE). METHODS We used formalin-fixed paraffin-embedded skin biopsy samples from 15 patients with juvenile myositis (9 lesional, 6 nonlesional), 5 patients with childhood-onset SLE, and 8 controls to perform transcriptomic analysis and identify significantly differentially expressed genes (DEGs; q ≤ 5%) between patient groups. We used Ingenuity Pathway Analysis (IPA) to highlight enriched biologic pathways and validated DEGs by immunohistochemistry and quantitative real-time polymerase chain reaction. RESULTS Comparison of lesional juvenile myositis to control samples revealed 221 DEGs, with the majority of up-regulated genes representing interferon (IFN)-stimulated genes. CXCL10, CXCL9, and IFI44L represented the top 3 DEGs (fold change 23.2, 13.3, and 13.0, respectively; q < 0.0001). IPA revealed IFN signaling as the top canonical pathway. When compared to childhood-onset SLE, lesional juvenile myositis skin shared a similar gene expression pattern, with only 28 unique DEGs, including FBLN2, CHKA, and SLURP1. Notably, patients with juvenile myositis who were positive for nuclear matrix protein 2 (NXP-2) autoantibodies exhibited the strongest IFN signature and also demonstrated the most extensive Mx-1 immunostaining, both in keratinocytes and perivascular regions. CONCLUSION Lesional juvenile myositis skin demonstrates a striking IFN signature similar to that previously reported in juvenile myositis muscle and peripheral blood. Further investigation into the association of a higher IFN score with NXP-2 autoantibodies may provide insight into disease endotypes and pathogenesis.
Collapse
Affiliation(s)
| | - Lauren M Pachman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | - Maria C Amoruso
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | |
Collapse
|
124
|
Heil PM. Mehr als nur der Schmetterling – ein Leitfaden durch die Vielfalt des kutanen Lupus erythematodes. HAUTNAH 2021. [PMCID: PMC8033278 DOI: 10.1007/s12326-021-00439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Die vielen klinischen Varianten des kutanen Lupus erythematodes (CLE) können solitär oder im Rahmen eines systemischen Lupus erythematodes (SLE) auftreten, auf dessen Vorkommen regelmäßig gescreent werden muss. Neben dem weiblichen Geschlecht und genetischen Faktoren stellen Sonnenexposition, Rauchen und manche Medikamente Risikofaktoren dar. Die wichtigsten CLE-Formen sind der akut-kutane LE (z. B. Schmetterlingserythem, generalisiert makulopapulös, enoral), der subakut-kutane LE (z. B. anuläre Form) und der chronisch-kutane LE (z. B. vernarbend diskoide Läsionen, Pannikulitis, Chilblain-LE). Die Diagnose beruht vor allem auf der Klinik und der Histopathologie, hinzu kommen autoimmunserologische Befunde und die direkte Immunfluoreszenz. Milde CLE-Formen können lokal therapiert werden. Reicht dies nicht aus, ist neben einem Steroidstoß Hydroxychloroquin die Systemtherapie der Wahl. Erweiterte therapeutische Optionen stellen Methotrexat, Retinoide, Dapson, Mycophenolat Mofetil, Azathioprin, Thalidomid, Belimumab und Rituximab dar. Alle CLE-Therapien sind off-label. Eine Aktualisierung der Impfungen sollte nach Möglichkeit vor Beginn einer Immunsuppression stattfinden. Zur Objektivierung des therapeutischen Ansprechens eines CLE empfiehlt sich das regelmäßige Scoring mittels RCLASI (Revised CLE Disease Area and Severity Index). Präventiv ist Sonnenschutz (Cremen, Kleidung, Reiseziele) von höchster Wichtigkeit, da Sonnenexposition Schübe provozieren kann. Ein LE stellt keine Kontraindikation gegen eine Schwangerschaft (SS) dar, jedoch sollte diese nicht in einem Schub eintreten, da dies das Risiko für Fetus und Mutter erhöht. Therapeutisch kommen während einer SS v. a. Steroide, Hydroxychloroquin, Dapson und Azathioprin in Betracht.
Collapse
Affiliation(s)
- P. M. Heil
- Kollagenosen-Ambulanz, Universitätsklinik für Dermatologie, Medizinische Universität Wien, Währinger Gürtel 18–20, 1090 Wien, Österreich
| |
Collapse
|
125
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with multiple manifestations, with a majority of SLE patients having cutaneous involvement. Despite ongoing research, the relationship between SLE and cutaneous lupus erythematosus (CLE) pathogeneses remains unknown. This review will compare advances in understanding the cause and pathogenesis of SLE and CLE. RECENT FINDINGS Recently, mechanisms by which immune cell populations contribute to the pathogenesis of SLE and CLE have been queried. Studies have pointed to transitional B cells and B-cell activating factor (BAFF) signaling as potential drivers of SLE and CLE, with belimumab clinical data supporting these hypotheses. Ustekinumab trials and an exciting regulatory T cell (Treg) adoptive transfer in an SLE patient with cutaneous disease have suggested a role for T-cell-targeted therapies. The theory that neutrophil extracellular traps may be a source of autoantigens in SLE remains controversial, while neutrophils have been suggested as early drivers of cutaneous disease. Finally, plasmacytoid dendritic cells (pDCs) have been studied as a potential therapeutic target in SLE, and anti-blood DC antigen (anti-BDCA) antibody clinical trials have shown promise in treating cutaneous disease. SUMMARY Although recent findings have contributed to understanding SLE and CLE pathogenesis, the mechanistic link between these diseases remains an area requiring further research.
Collapse
|
126
|
Haque M, Siegel RJ, Fox DA, Ahmed S. Interferon-stimulated GTPases in autoimmune and inflammatory diseases: promising role for the guanylate-binding protein (GBP) family. Rheumatology (Oxford) 2021; 60:494-506. [PMID: 33159795 DOI: 10.1093/rheumatology/keaa609] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Human IFNs are secreted cytokines shown to stimulate the expression of over one thousand genes. These IFN-inducible genes primarily encode four major protein families, known as IFN-stimulated GTPases (ISGs), namely myxovirus-resistance proteins, guanylate-binding proteins (GBPs), p47 immunity-related GTPases and very large inducible guanosine triphosphate hydrolases (GTPases). These families respond specifically to type I or II IFNs and are well reported in coordinating immunity against some well known as well as newly discovered viral, bacterial and parasitic infections. A growing body of evidence highlights the potential contributory and regulatory roles of ISGs in dysregulated inflammation and autoimmune diseases. Our focus was to draw attention to studies that demonstrate increased expression of ISGs in the serum and affected tissues of patients with RA, SS, lupus, IBD and psoriasis. In this review, we analysed emerging literature describing the potential roles of ISGs, particularly the GBP family, in the context of autoimmunity. We also highlighted the promise and implications for therapeutically targeting IFNs and GBPs in the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- Mahamudul Haque
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Ruby J Siegel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - David A Fox
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
127
|
Chasset F, Dayer JM, Chizzolini C. Type I Interferons in Systemic Autoimmune Diseases: Distinguishing Between Afferent and Efferent Functions for Precision Medicine and Individualized Treatment. Front Pharmacol 2021; 12:633821. [PMID: 33986670 PMCID: PMC8112244 DOI: 10.3389/fphar.2021.633821] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
A sustained increase in type I interferon (IFN-I) may accompany clinical manifestations and disease activity in systemic autoimmune diseases (SADs). Despite the very frequent presence of IFN-I in SADs, clinical manifestations are extremely varied between and within SADs. The present short review will address the following key questions associated with high IFN-I in SADs in the perspective of precision medicine. 1) What are the mechanisms leading to high IFN-I? 2) What are the predisposing conditions favoring high IFN-I production? 3) What is the role of IFN-I in the development of distinct clinical manifestations within SADs? 4) Would therapeutic strategies targeting IFN-I be helpful in controlling or even preventing SADs? In answering these questions, we will underlie areas of incertitude and the intertwined role of autoantibodies, immune complexes, and neutrophils.
Collapse
Affiliation(s)
- François Chasset
- Department of Dermatology and Allergology, Faculty of Medicine, AP-HP, Tenon Hospital, Sorbonne University, Paris, France
| | - Jean-Michel Dayer
- Emeritus Professor of Medicine, School of Medicine, Geneva University, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, School of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
128
|
Type I Interferon as cardiovascular risk factor in systemic and cutaneous lupus erythematosus: A systematic review. Autoimmun Rev 2021; 20:102794. [PMID: 33722754 DOI: 10.1016/j.autrev.2021.102794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) have a high burden of cardiovascular disease (CVD) of multifactorial origin. The aim of this systematic review is to analyze the role of the interferon I (IFN-I) signature and fibroblast growth factor-23 (FGF-23) in patients with SLE or cutaneous lupus erythematosus (CLE) herein. MATERIALS AND METHODS We conducted a systematic literature search in PubMed and Scopus using keywords for major adverse cardiovascular events (MACE) and intermediate outcomes (endothelial dysfunction, subclinical atherosclerosis, platelet activation) associated with IFN-I or FGF-23 in patients with SLE and CLE. RESULTS 4745 citations were screened, of which 12 studies were included. IFN-I was associated with MACE in two third of the studies and the association was strongest for cardiac events. An association of IFN-I was found in all studies investigating impaired vascular function, but only in 50% (respectively 40%) of reports examining the relation of IFN-I and platelet activation (respectively subclinical atherosclerosis). Altogether the reports were of variable bias and quality due to high variability of examined IFN-I biomarkers and inconsistent results for different outcome measures. No studies investigating the cardiovascular risk of circulating IFN-I in CLE, nor FGF-23 in SLE or CLE were found. CONCLUSION Clinical studies measuring the association between IFN-I and direct / intermediate measures of CVD are rare and ambiguous in SLE and nonexistent in CLE, hampering a definite conclusion.
Collapse
|
129
|
Merola JF, Wang W, Wager CG, Hamann S, Zhang X, Thai A, Roberts C, Lam C, Musselli C, Marsh G, Rabah D, Barbey C, Franchimont N, Reynolds TL. RNA tape sampling in cutaneous lupus erythematosus discriminates affected from unaffected and healthy volunteer skin. Lupus Sci Med 2021; 8:8/1/e000428. [PMID: 33658303 PMCID: PMC7931768 DOI: 10.1136/lupus-2020-000428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/20/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Objective Punch biopsy, a standard diagnostic procedure for patients with cutaneous lupus erythematosus (CLE) carries an infection risk, is invasive, uncomfortable and potentially scarring, and impedes patient recruitment in clinical trials. Non-invasive tape sampling is an alternative that could enable serial evaluation of specific lesions. This cross-sectional pilot research study evaluated the use of a non-invasive adhesive tape device to collect messenger RNA (mRNA) from the skin surface of participants with CLE and healthy volunteers (HVs) and investigated its feasibility to detect biologically meaningful differences between samples collected from participants with CLE and samples from HVs. Methods Affected and unaffected skin tape samples and simultaneous punch biopsies were collected from 10 participants with CLE. Unaffected skin tape and punch biopsies were collected from 10 HVs. Paired samples were tested using quantitative PCR for a candidate immune gene panel and semi-quantitative immunohistochemistry for hallmark CLE proteins. Results mRNA collected using the tape device was of sufficient quality for amplification of 94 candidate immune genes. Among these, we found an interferon (IFN)-dominant gene cluster that differentiated CLE-affected from HV (23-fold change; p<0.001) and CLE-unaffected skin (sevenfold change; p=0.002), respectively. We found a CLE-associated gene cluster that differentiated CLE-affected from HV (fourfold change; p=0.005) and CLE-unaffected skin (fourfold change; p=0.012), respectively. Spearman’s correlation between per cent area myxovirus 1 protein immunoreactivity and IFN-dominant mRNA gene cluster expression was highly significant (dermis, rho=0.86, p<0.001). In total, skin tape-derived RNA expression comprising both IFN-dominant and CLE-associated gene clusters correlated with per cent area immunoreactivity of some hallmark CLE-associated proteins in punch biopsies from the same lesions. Conclusions A non-invasive tape RNA collection technique is a potential tool for repeated skin biomarker measures throughout a clinical trial.
Collapse
Affiliation(s)
- Joseph F Merola
- Department of Dermatology and Department of Medicine, Division of Rheumatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | - Alice Thai
- Biogen Inc, Cambridge, Massachusetts, USA
| | | | - Christina Lam
- Dermatology, Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Zhu JL, Black SM, Chong BF. Role of biomarkers in the diagnosis and prognosis of patients with cutaneous lupus erythematosus. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:429. [PMID: 33842650 PMCID: PMC8033322 DOI: 10.21037/atm-20-5232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a connective tissue disease with varying presentations, and clinical sequelae including itching, dyspigmentation, and scarring. CLE can occur as its own entity or in conjunction with systemic disease, known as systemic lupus erythematosus (SLE). Because CLE is clinically diverse, identification of a biomarker may help not only facilitate early diagnosis and management but also identify individuals at risk for poor prognosis and development of SLE. While potential biomarkers in SLE have been extensively studied, few biomarkers for CLE have been identified and incorporated into clinical practice. Anti-SS-A antibody is a commonly used biomarker for diagnosis of subacute CLE patients. Type I interferon-related proteins such as MxA and guanylate binding protein‐1 (GBP-1) and chemokines such as CXCR3, CXCL9, and CXCL10 have been identified as biomarkers that may support diagnosis and track disease activity. First-line oral treatment for CLE currently consists of anti-malarials such as hydroxychloroquine (HCQ), chloroquine (CQ), and quinacrine (QC). Studies have found that an increased myeloid dendritic cell population with higher TNF-α expression may be predictive of poor treatment response to HCQ in CLE patients. Autoantibodies against nuclear antigens (e.g., anti-double-stranded DNA and anti-Smith antibodies) and elevated erythrocyte sedimentation rate have been more commonly found in CLE patients progressing to SLE than those who have not. This review aims to summarize previous and emerging biomarkers for CLE patients.
Collapse
Affiliation(s)
- Jane L Zhu
- Department of Dermatology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| | - Samantha M Black
- Department of Dermatology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin F Chong
- Department of Dermatology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
131
|
Abstract
PURPOSE OF REVIEW Skin injury is the most common clinical manifestation of SLE and is disfiguring, difficult to treat, and incompletely understood. We provide an overview of recently published articles covering the immunopathogenesis of skin injury in SLE. RECENT FINDINGS Skin of SLE has an inherent susceptibility to apoptosis, the cause of which may be multifactorial. Chronic IFN overexpression leads to barrier disruption, infiltration of inflammatory cells, cytokine production, and release of autoantigens and autoantibody production that result in skin injury. Ultraviolet light is the most important CLE trigger and amplifies this process leading to skin inflammation and potentially systemic disease flares. SUMMARY The pathogenesis of skin injury in CLE is complex but recent studies highlight the importance of mechanisms driving dysregulated epidermal cell death likely influenced by genetic risk factors, environmental triggers (UV light), and cytotoxic cells and cellular signaling.
Collapse
Affiliation(s)
- Grace A. Hile
- Department of Dermatology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan, Ann Arbor, 48109, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
132
|
Xiang M, Chen Q, Feng Y, Wang Y, Wang J, Liang J, Xu J. Bioinformatic analysis of key biomarkers and immune filtration of skin biopsy in discoid lupus erythematosus. Lupus 2021; 30:807-817. [PMID: 33530816 DOI: 10.1177/0961203321992434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Discoid lupus erythematosus (DLE) is the most common category of chronic cutaneous lupus erythematosus, where the pathological process is proved to be closely associated with immunity. This bioinformatic analysis sought to identify key biomarkers and to perform immune infiltration analysis in the skin biopsy samples of DLE. METHODS GSE120809, GSE100093, GSE72535, GSE81071 were used as the data source of gene expression profiles, altogether containing 79 DLE samples and 47 normal controls (NC). Limma package was applied to identify differentially expressed genes (DEGs) and additional Gene Ontology (GO) together with The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were done. Protein-protein interaction network (PPI) was constructed using STRING and Cytoscape. Hub genes were selected by CytoHubba. Finally, immune filtration analysis was finished by the CIBERSORT algorithm, and comparisons between the two groups were accomplished. RESULTS A total of 391 DEGs were identified, which were composed of 57 up-regulated genes and 334 down-regulated genes. GO and KEGG enrichment analyses revealed that DEGs were closely related with different steps in the immune response. Top 10 hub genes included GBP2, HLA-F, IFIT2, RSAD2, ISG15, IFIT1, IFIT3, MX1, XAF1 and IFI6. Immune filtration analysis from CIBERSORT had found that compared with NC, DLE samples had higher percentages of CD8+ T cells, T cells CD4 memory activated, T cells gamma delta, macrophages M1 and lower percentages of T cells regulatory, macrophages M2, dendritic cells resting, mast cells resting, mast cells activated. CONCLUSION This bioinformatic study selected key biomarkers from the contrast between DLE and NC skin samples and is the first research to analyze immune cell filtration in DLE.
Collapse
Affiliation(s)
- Mengmeng Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Cutaneous Biology Research Center & Melanoma Program MGH Cancer Center, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA
| | - Yilun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|
133
|
Simpson CL, Tokito MK, Uppala R, Sarkar MK, Gudjonsson JE, Holzbaur ELF. NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. Cell Rep 2021; 34:108689. [PMID: 33535046 PMCID: PMC7888979 DOI: 10.1016/j.celrep.2021.108689] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
The epidermis regenerates continually to maintain a protective barrier at the body’s surface composed of differentiating keratinocytes. Maturation of this stratified tissue requires that keratinocytes undergo wholesale organelle degradation upon reaching the outermost tissue layers to form compacted, anucleate cells. Through live imaging of organotypic cultures of human epidermis, we find that regulated breakdown of mitochondria is critical for epidermal development. Keratinocytes in the upper layers initiate mitochondrial fragmentation, depolarization, and acidification upon upregulating the mitochondrion-tethered autophagy receptor NIX. Depleting NIX compromises epidermal maturation and impairs mitochondrial elimination, whereas ectopic NIX expression accelerates keratinocyte differentiation and induces premature mitochondrial fragmentation via the guanosine triphosphatase (GTPase) DRP1. We further demonstrate that inhibiting DRP1 blocks NIX-mediated mitochondrial breakdown and disrupts epidermal development. Our findings establish mitochondrial degradation as a key step in terminal keratinocyte differentiation and define a pathway operating via the mitophagy receptor NIX in concert with DRP1 to drive epidermal morphogenesis. Using live microscopy of human organotypic epidermis, Simpson et al. demonstrate how keratinocytes degrade their mitochondria in the upper tissue layers during their final stage of differentiation. By upregulating expression of the mitophagy receptor NIX, keratinocytes initiate DRP1- dependent mitochondrial fragmentation, a process critical for epidermal tissue maturation.
Collapse
Affiliation(s)
- Cory L Simpson
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariko K Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
134
|
Wittling MC, Cahalan SR, Levenson EA, Rabin RL. Shared and Unique Features of Human Interferon-Beta and Interferon-Alpha Subtypes. Front Immunol 2021; 11:605673. [PMID: 33542718 PMCID: PMC7850986 DOI: 10.3389/fimmu.2020.605673] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957, but they are now known to also modulate innate and adaptive immunity and suppress proliferation of cancer cells. While much has been revealed about IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including IFNβ, IFNω, and 12 subtypes of IFNα. Here, we discuss shared and unique aspects of these IFN-I in the context of their evolution, expression patterns, and signaling through their shared heterodimeric receptor. We propose that rather than investigating responses to individual IFN-I, these contexts can serve as an alternative approach toward investigating roles for IFNα subtypes. Finally, we review uses of IFNα and IFNβ as therapeutic agents to suppress chronic viral infections or to treat multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | - Ronald L. Rabin
- Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
135
|
Braegelmann C, Fetter T, Niebel D, Dietz L, Bieber T, Wenzel J. Immunostimulatory Endogenous Nucleic Acids Perpetuate Interface Dermatitis-Translation of Pathogenic Fundamentals Into an In Vitro Model. Front Immunol 2021; 11:622511. [PMID: 33505404 PMCID: PMC7831152 DOI: 10.3389/fimmu.2020.622511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Interface dermatitis is a histopathological pattern mirroring a distinct cytotoxic immune response shared by a number of clinically diverse inflammatory skin diseases amongst which lichen planus and cutaneous lupus erythematosus are considered prototypic. Interface dermatitis is characterized by pronounced cytotoxic immune cell infiltration and necroptotic keratinocytes at the dermoepidermal junction. The initial inflammatory reaction is established by cytotoxic immune cells that express CXC chemokine receptor 3 and lesional keratinocytes that produce corresponding ligands, CXC motif ligands 9/10/11, recruiting the effector cells to the site of inflammation. During the resulting anti-epithelial attack, endogenous immune complexes and nucleic acids are released from perishing keratinocytes, which are then perceived by the innate immune system as danger signals. Keratinocytes express a distinct signature of pattern recognition receptors and binding of endogenous nucleic acid motifs to these receptors results in interferon-mediated immune responses and further enhancement of CXC chemokine receptor 3 ligand production. In this perspective article, we will discuss the role of innate nucleic acid sensing as a common mechanism in the perpetuation of clinically heterogeneous diseases featuring interface dermatitis based on own data and a review of the literature. Furthermore, we will introduce a keratinocyte-specific in vitro model of interface dermatitis as follows: Stimulation of human keratinocytes with endogenous nucleic acids alone and in combination with interferon gamma leads to pronounced production of distinct cytokines, which are essential in the pathogenesis of interface dermatitis. This experimental approach bears the capability to investigate potential therapeutics in this group of diseases with unmet medical need.
Collapse
Affiliation(s)
| | - Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Dennis Niebel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Lara Dietz
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
136
|
Psarras A, Alase A, Antanaviciute A, Carr IM, Md Yusof MY, Wittmann M, Emery P, Tsokos GC, Vital EM. Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity. Nat Commun 2020; 11:6149. [PMID: 33262343 PMCID: PMC7708979 DOI: 10.1038/s41467-020-19918-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Autoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons have a crucial role in the progression to established autoimmune diseases. The cellular source and regulation in disease initiation of these cytokines is not clear, but plasmacytoid dendritic cells have been thought to contribute to excessive type I interferon production. Here, we show that in preclinical autoimmunity and established systemic lupus erythematosus, plasmacytoid dendritic cells are not effector cells, have lost capacity for Toll-like-receptor-mediated cytokine production and do not induce T cell activation, independent of disease activity and the blood interferon signature. In addition, plasmacytoid dendritic cells have a transcriptional signature indicative of cellular stress and senescence accompanied by increased telomere erosion. In preclinical autoimmunity, we show a marked enrichment of an interferon signature in the skin without infiltrating immune cells, but with interferon-κ production by keratinocytes. In conclusion, non-hematopoietic cellular sources, rather than plasmacytoid dendritic cells, are responsible for interferon production prior to clinical autoimmunity.
Collapse
Affiliation(s)
- Antonios Psarras
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adewonuola Alase
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Ian M Carr
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Md Yuzaiful Md Yusof
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
137
|
Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol 2020; 67:87-94. [PMID: 33246136 PMCID: PMC8054829 DOI: 10.1016/j.coi.2020.10.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023]
Abstract
Type I interferon (IFN) is a primary pathogenic factor in systemic lupus erythematosus (SLE). Gain-of-function genetic variants in the type I IFN pathway have been associated with risk of disease. Common polygenic as well as rare monogenic influences on type I IFN have been demonstrated, supporting a complex genetic basis for high IFN in many SLE patients. Both SLE-associated autoantibodies and high type I IFN can be observed in the pre-disease state. Patients with SLE and evidence of high type I IFN have more active disease and a greater propensity to nephritis and other severe manifestations. Despite the well-established association between type I IFN and SLE, the specific triggers of type I IFN production, the mechanisms by which IFNs help perpetuate the cycle of autoreactive cells and autoantibody production are not completely clear. This review provides an updated overview of type I IFN in SLE pathogenesis, clinical manifestations, and current therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Mariana Postal
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Jessica F Vivaldo
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil; Graduate Program of Child and Adolescent Health, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Ruth Fernandez-Ruiz
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Jacqueline L Paredes
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Simone Appenzeller
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil; Rheumatology Unit, Department of Medicine, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
138
|
Turnier JL, Kahlenberg JM. The Role of Cutaneous Type I IFNs in Autoimmune and Autoinflammatory Diseases. THE JOURNAL OF IMMUNOLOGY 2020; 205:2941-2950. [PMID: 33229366 DOI: 10.4049/jimmunol.2000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
IFNs are well known as mediators of the antimicrobial response but also serve as important immunomodulatory cytokines in autoimmune and autoinflammatory diseases. An increasingly critical role for IFNs in evolution of skin inflammation in these patients has been recognized. IFNs are produced not only by infiltrating immune but also resident skin cells, with increased baseline IFN production priming for inflammatory cell activation, immune response amplification, and development of skin lesions. The IFN response differs by cell type and host factors and may be modified by other inflammatory pathway activation specific to individual diseases, leading to differing clinical phenotypes. Understanding the contribution of IFNs to skin and systemic disease pathogenesis is key to development of new therapeutics and improved patient outcomes. In this review, we summarize the immunomodulatory role of IFNs in skin, with a focus on type I, and provide insight into IFN dysregulation in autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Turnier
- Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109; and
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
139
|
Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 2020; 11:1013. [PMID: 33243969 PMCID: PMC7691519 DOI: 10.1038/s41419-020-03221-2] [Citation(s) in RCA: 604] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1 (HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor 2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer.
Collapse
|
140
|
Gudjonsson JE, Elder JT. Meeting Report: 68 th Montagna Symposium on the Biology of Skin "Decoding Complex Skin Diseases: Integrating Genetics, Genomics, and Disease Biology". J Invest Dermatol 2020; 140:2105-2110. [PMID: 32603751 PMCID: PMC7606754 DOI: 10.1016/j.jid.2020.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
The 68th Montagna Symposium on the Biology of the Skin was held from 10 to 14 October 2019 at Salishan Lodge in Gleneden Beach, Oregon. The theme of the meeting was "Decoding Complex Skin Diseases: Integrating Genetics, Genomics, and Disease Biology." The meeting emphasized the integration of multiple themes and disciplines to better understand some of the most common skin diseases, ranging from psoriasis to alopecia areata to vitiligo to lupus erythematosus to atopic dermatitis and food allergy. Promising therapeutic strategies are emerging for all of these diseases, providing clues for ways to connect the bench to the bedside. A common thread was the success of GWASs, which have highlighted the importance of regulatory signals versus coding variation. These diseases also share an environmental component linked to immune system function. Hence, beyond GWASs, this meeting focused on gene regulatory mechanisms, the single-cell revolution, in vivo systems for dissection of disease pathogenesis, and the relationship between genetics and environment in the context of host defense. We concluded with a translational roundtable designed to explore how these interrelated fields can best be directed toward long-term disease control and, ultimately, a cure.
Collapse
Affiliation(s)
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA.
| |
Collapse
|
141
|
Goulden B, Isenberg D. Anti-IFNαR Mabs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther 2020; 21:519-528. [PMID: 33085537 DOI: 10.1080/14712598.2021.1841164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The type 1 interferon pathway is known to play a role in the immunopathology of systemic lupus erythematosus (SLE). As a result, biologic agents targeting this pathway have been developed and are currently being investigated in clinical trials. AREAS COVERED We review the biologic agents which have been developed to antagonize type I interferons in SLE. We focus on anifrolumab, a type I interferon receptor antagonist, and consider the complexities of defining efficacy in SLE clinical trials. EXPERT OPINION Anifrolumab shows promise as an addition to the SLE therapeutic armamentarium. Despite discordant results between its two phase III studies, there is a convincing suggestion of benefit in both trials to encourage the view that this approach might be effective. Data acquired thus far look particularly useful for cutaneous disease. We await data on its effect on renal, pulmonary, cardiac, and central nervous system involvement, on patient reported outcomes, and its safety and efficacy with long-term use.
Collapse
Affiliation(s)
- Bethan Goulden
- Rheumatology Department, University College London, London, UK
| | - David Isenberg
- Rheumatology Department, University College London, London, UK
| |
Collapse
|
142
|
Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020; 5:142067. [PMID: 33055429 PMCID: PMC7605526 DOI: 10.1172/jci.insight.142067] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin serves as the primary interface between our body and the external environment and acts as a barrier against entry of physical agents, chemicals, and microbes. Keratinocytes make up the main cellular constitute of the outermost layer of the skin, contributing to the formation of the epidermis, and they are crucial for maintaining the integrity of this barrier. Beyond serving as a physical barrier component, keratinocytes actively participate in maintaining tissue homeostasis, shaping, amplifying, and regulating immune responses in skin. Keratinocytes act as sentinels, continuously monitoring changes in the environment, and, through microbial sensing, stretch, or other physical stimuli, can initiate a broad range of inflammatory responses via secretion of various cytokines, chemokines, and growth factors. This diverse function of keratinocytes contributes to the highly variable clinical manifestation of skin immune responses. In this Review, we highlight the highly diverse functions of epidermal keratinocytes and their contribution to various immune-mediated skin diseases.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Department of Nutrition and Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| |
Collapse
|
143
|
Tay SH, Celhar T, Fairhurst A. Low-Density Neutrophils in Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 72:1587-1595. [PMID: 32524751 PMCID: PMC7590095 DOI: 10.1002/art.41395] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) display increased numbers of immature neutrophils in the blood, but the exact role of these immature neutrophils is unclear. Neutrophils that sediment within the peripheral blood mononuclear cell fraction after density centrifugation of blood are generally defined as low-density neutrophils (LDNs). Far beyond antimicrobial functions, LDNs are emerging as decision-shapers during innate and adaptive immune responses. Traditionally, neutrophils have been viewed as a homogeneous population. However, the various LDN populations identified in SLE to date are heterogeneously composed of mixed populations of activated mature neutrophils and immature neutrophils at various stages of differentiation. Controversy also surrounds the role of LDNs in SLE in terms of whether they are proinflammatory or polymorphonuclear myeloid-derived suppressor cells. It is clear that LDNs in SLE can secrete increased levels of type I interferon (IFN) and that they contribute to the cycle of inflammation and tissue damage. They readily form neutrophil extracellular traps, exposing modified autoantigens and oxidized mitochondrial DNA, which contribute to autoantibody production and type I IFN signaling, respectively. Importantly, the ability of LDNs in SLE to perform canonical neutrophil functions is polarized, based on mature CD10+ and immature CD10- neutrophils. Although this field is still relatively new, multiomic approaches have advanced our understanding of the diverse origins, phenotype, and function of LDNs in SLE. This review updates the literature on the origin and nature of LDNs, their distinctive features, and their biologic roles in the immunopathogenesis and end-organ damage in SLE.
Collapse
Affiliation(s)
- Sen Hee Tay
- National University Hospital Yong Loo Lin School of MedicineInstitute for Molecular and Cellular Biology, Agency for Science, Technology and ResearchSingapore
| | - Teja Celhar
- Singapore Immunology NetworkAgency for Science, Technology and ResearchSingapore
| | - Anna‐Marie Fairhurst
- Institute for Molecular and Cellular BiologyAgency for Science, Technology and ResearchUniversity of Singapore Yong Loo Lin School of MedicineSingapore
| |
Collapse
|
144
|
Zhou X, Yan J, Lu Q, Zhou H, Fan L. The pathogenesis of cutaneous lupus erythematosus: The aberrant distribution and function of different cell types in skin lesions. Scand J Immunol 2020; 93:e12933. [PMID: 32654170 DOI: 10.1111/sji.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease with a broad range of cutaneous manifestations. In skin lesions of CLE, keratinocytes primarily undergo apoptosis. Interferon-κ(IFN-κ) is belonged to type I interferons (type I IFNs) and is selectively produced by keratinocytes. Recently, keratinocytes selectively produced IFN-κ is identified to be a key to trigger type I interferon responses in CLE. Other immune cells such as plasmacytoid dendritic cells (pDCs) are identified to be relevant origin of type I interferons (type I IFNs) which are central to the development of CLE lesions and responsible for mediating Th1 cell activity. Other types of cells such as neutrophils, B cells and Th17 cells also are involved in the development of this disease. The close interaction of those cells composes a comprehensive and complicated network in CLE. In this review, we discussed the aberrant distribution and function of different cells types involved in this disease and will offer a new direction for research and therapy in the near future.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jinli Yan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Lan Fan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
145
|
Patel J, Borucki R, Werth VP. An Update on the Pathogenesis of Cutaneous Lupus Erythematosus and Its Role in Clinical Practice. Curr Rheumatol Rep 2020; 22:69. [PMID: 32845411 DOI: 10.1007/s11926-020-00946-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Understanding the pathogenesis of cutaneous lupus erythematosus (CLE) is an important step in developing new medications and providing effective treatment to patients. This review focuses on novel research within CLE pathogenesis, as well as some of the medications being developed based on this knowledge. RECENT FINDINGS The subtle differences between systemic lupus erythematosus (SLE) and CLE pathogenesis are highlighted by differences in the circulating immune cells found in each disease, as well as the specific pathways activated by ultraviolet light. Plasmacytoid dendritic cells and the related type I interferon pathway are major components of CLE pathogenesis, and as such, therapies targeting components of this pathway have been successful in recent clinical trials. B cell-depleting therapies have shown success in SLE; however, their role in CLE is less clear. Understanding the differences between these manifestations of lupus allows for the development of therapies that are more effective in skin-specific disease. Discovering key pathways in CLE pathogenesis is critical for understanding the clinical features of the disease and ultimately developing new and effective therapies.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Borucki
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA. .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, Suite 1-330A, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
146
|
Shao S, Tsoi LC, Sarkar MK, Xing X, Xue K, Uppala R, Berthier CC, Zeng C, Patrick M, Billi AC, Fullmer J, Beamer MA, Perez-White B, Getsios S, Schuler A, Voorhees JJ, Choi S, Harms P, Kahlenberg JM, Gudjonsson JE. IFN-γ enhances cell-mediated cytotoxicity against keratinocytes via JAK2/STAT1 in lichen planus. Sci Transl Med 2020; 11:11/511/eaav7561. [PMID: 31554739 DOI: 10.1126/scitranslmed.aav7561] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/31/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
Lichen planus (LP) is a chronic debilitating inflammatory disease of unknown etiology affecting the skin, nails, and mucosa with no current FDA-approved treatments. It is histologically characterized by dense infiltration of T cells and epidermal keratinocyte apoptosis. Using global transcriptomic profiling of patient skin samples, we demonstrate that LP is characterized by a type II interferon (IFN) inflammatory response. The type II IFN, IFN-γ, is demonstrated to prime keratinocytes and increase their susceptibility to CD8+ T cell-mediated cytotoxic responses through MHC class I induction in a coculture model. We show that this process is dependent on Janus kinase 2 (JAK2) and signal transducer and activator of transcription 1 (STAT1), but not JAK1 or STAT2 signaling. Last, using drug prediction algorithms, we identify JAK inhibitors as promising therapeutic agents in LP and demonstrate that the JAK1/2 inhibitor baricitinib fully protects keratinocytes against cell-mediated cytotoxic responses in vitro. In summary, this work elucidates the role and mechanisms of IFN-γ in LP pathogenesis and provides evidence for the therapeutic use of JAK inhibitors to limit cell-mediated cytotoxicity in patients with LP.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.,Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ke Xue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew Patrick
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Fullmer
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria A Beamer
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Spiro Getsios
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Andrew Schuler
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung Choi
- Pediatric Hematology/Oncology, Mott Children's Hospital, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
147
|
Tsoi LC, Gharaee-Kermani M, Berthier CC, Nault T, Hile GA, Estadt SN, Patrick MT, Wasikowski R, Billi AC, Lowe L, Reed TJ, Gudjonsson JE, Kahlenberg JM. IL18-containing 5-gene signature distinguishes histologically identical dermatomyositis and lupus erythematosus skin lesions. JCI Insight 2020; 5:139558. [PMID: 32644977 PMCID: PMC7455118 DOI: 10.1172/jci.insight.139558] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Skin lesions in dermatomyositis (DM) are common, are frequently refractory, and have prognostic significance. Histologically, DM lesions appear similar to cutaneous lupus erythematosus (CLE) lesions and frequently cannot be differentiated. We thus compared the transcriptional profile of DM biopsies with CLE lesions to identify unique features. Type I IFN signaling, including IFN-κ upregulation, was a common pathway in both DM and CLE; however, CLE also exhibited other inflammatory pathways. Notably, DM lesions could be distinguished from CLE by a 5-gene biomarker panel that included IL18 upregulation. Using single-cell RNA-sequencing, we further identified keratinocytes as the main source of increased IL-18 in DM skin. This study identifies a potentially novel molecular signature, with significant clinical implications for differentiating DM from CLE lesions, and highlights the potential role for IL-18 in the pathophysiology of DM skin disease. IL-18 distinguishes dermatomyositis skin inflammation from cutaneous lupus erythematosus lesions.
Collapse
Affiliation(s)
- Lam C Tsoi
- Department of Dermatology and.,Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Tori Nault
- Division of General Medicine, Department of Internal Medicine
| | | | - Shannon N Estadt
- Division of Rheumatology, Department of Internal Medicine.,Program in Immunology, and
| | | | | | | | - Lori Lowe
- Department of Dermatology and.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tamra J Reed
- Division of Rheumatology, Department of Internal Medicine
| | | | | |
Collapse
|
148
|
Hiepe F. Neue Erkenntnisse zur Pathogenese des SLE und ihre Auswirkungen auf
die Entwicklung neuer Therapie-Konzepte. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1210-2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungAutoantikörper sind essentiell in der Pathogenese des SLE. Sie sind das
Ergebnis einer Störung des erworbenen (adaptiven) Immunsystems mit
fehlender Toleranz gegen Selbst. Eine Typ-I Interferon-Signatur, die im
angeborenen (innaten) Immunsystem ihren Ursprung hat, ist ein wesentlicher
Treiber dieser Störung. Autoantikörper können sowohl von
kurzlebigen, proliferierenden Plasmablasten, die B-Zell-Hyperaktivität
widerspiegeln, als auch von langlebigen, nicht-proliferierenden
Gedächtnis-Plasmazellen sezerniert werden.
Gedächtnis-Plasmazellen, die in Nischen im Knochenmark und im
entzündeten Gewebe lokalisiert sind, lassen sich nicht durch
konventionelle Immunsuppressiva und Therapien mit B-Zellen als Target
eliminieren. Konzepte, die auf die Depletion von Gedächtnis-Plasmazellen
abzielen, können im Zusammenspiel mit Targets, die eine Aktivierung von
autoreaktiven B-Zellen verhindern, ein kuratives Potenzial haben.
Collapse
Affiliation(s)
- Falk Hiepe
- Medizinische Klinik mit Schwerpunkt Rheumatologie und klin.
Immunologie, Charité – Universitätsmedizin Berlin;
Deutsches Rheumaforschungszentrum – ein Institut der
Leibniz-Gemeinschaft, Berlin
| |
Collapse
|
149
|
Hile GA, Gudjonsson JE, Kahlenberg JM. The influence of interferon on healthy and diseased skin. Cytokine 2020; 132:154605. [PMID: 30527631 PMCID: PMC6551332 DOI: 10.1016/j.cyto.2018.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023]
Abstract
Type I interferons (IFNs) are an immunomodulatory class of cytokines that serve to protect against viral and bacterial infection. In addition, mounting evidence suggests IFNs, particularly type I but also IFNγ, are important to the pathogenesis of autoimmune and inflammatory skin diseases, such as cutaneous lupus erythematosus (CLE). Understanding the role of IFNs is relevant to anti-viral responses in the skin, skin biology, and therapeutics for these IFN-related conditions. Type I IFNs (α and β) are produced by recruited inflammatory cells and by the epidermis itself (IFNκ) and have important roles in autoimmune and inflammatory skin disease. Here, we review the current literature utilizing a PubMed database search using terms [interferon/IFN/type I IFN AND lupus/ cutaneous lupus/CLE/dermatomyositis/Sjogrens/psoriasis/lichen planus/morphea/alopecia areata/vitiligo] with a focus on the role of IFNs in basic keratinocyte biology and their implications in the cutaneous autoimmune and inflammatory diseases: cutaneous lupus erythematosus, dermatomyositis, Sjogren's syndrome, psoriasis, lichen planus, alopecia areata and vitiligo. We provide information about genes and proteins induced by IFNs and how downstream mechanisms relate to clinical disease.
Collapse
Affiliation(s)
- Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
150
|
Garelli CJ, Refat MA, Nanaware PP, Ramirez-Ortiz ZG, Rashighi M, Richmond JM. Current Insights in Cutaneous Lupus Erythematosus Immunopathogenesis. Front Immunol 2020; 11:1353. [PMID: 32714331 PMCID: PMC7343764 DOI: 10.3389/fimmu.2020.01353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
Cutaneous Lupus Erythematosus (CLE) is a clinically diverse group of autoimmune skin diseases with shared histological features of interface dermatitis and autoantibodies deposited at the dermal-epidermal junction. Various genetic and environmental triggers of CLE promote infiltration of T cells, B cells, neutrophils, antigen presenting cells, and NK cells into lesional skin. In this mini-review, we will discuss the clinical features of CLE, insights into CLE immunopathogenesis, and novel treatment approaches.
Collapse
Affiliation(s)
- Colton J. Garelli
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Maggi Ahmed Refat
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Padma P. Nanaware
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Zaida G. Ramirez-Ortiz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|