101
|
Holland AM, Bon-Frauches AC, Keszthelyi D, Melotte V, Boesmans W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci 2021; 78:4713-4733. [PMID: 33770200 PMCID: PMC8195951 DOI: 10.1007/s00018-021-03812-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut-brain interaction, inflammatory bowel diseases, and colorectal cancer.
Collapse
Affiliation(s)
- Amy Marie Holland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Ana Carina Bon-Frauches
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Keszthelyi
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Werend Boesmans
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
102
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021; 139:111619. [PMID: 33906079 DOI: 10.1016/j.biopha.2021.111619] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Azam Afaghi
- Department of Biology, Sofian Branch, Islamic Azad University, Sofian, Iran
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiandokht Babolhavaeji
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Khani Ali Akbari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
103
|
Chidrawar V, Alsuwayt B. Defining the role of CFTR channel blocker and ClC-2 activator in DNBS induced gastrointestinal inflammation. Saudi Pharm J 2021; 29:291-304. [PMID: 33994824 PMCID: PMC8093574 DOI: 10.1016/j.jsps.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/22/2021] [Indexed: 11/27/2022] Open
Abstract
In the present study, we have investigated and/or compared the role of glibenclamide, G as cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor, and lubiprostone, L as chloride channel-2 (ClC-2) activator in the 2,4-dinitrobenzene sulfonic acid (DNBS)-induced gastrointestinal inflammation. GI inflammation was induced by intrarectal administration of DNBS. Rats were randomly allocated in 5 groups as sham control, distilled water + DNBS, sulfasalazine (S) + DNBS, G + DNBS, and L + DNBS. All the groups were pre-treated successively for five days before the induction of colitis. One day before and the first four days after DNBS administration various parameters were studied. Later, blood chemistry, colon’s gross structure, histology, and the antioxidant load was examined. Pre-treatment with G significantly protected the change induced by DNBS concerning the change in body weight, food intake, diarrhea, occult blood in the feces, wet weight of the colon, and spleen. G because of its anti-inflammatory property down-regulated the neutrophil and WBC count and up-regulated the lymphocyte number. Moreover, G efficiently ameliorates the oxidative stress in the colon and declines the level of myeloperoxidase and malondialdehyde and up-regulated the level of superoxide dismutase and glutathione. Lubiprostone has not shown any promising effects, in fact, it causes an increase in diarrheal frequency. Our findings from this study represent that G has good potential to ameliorate GI inflammation induced by DNBS by its multiple actions including CFTR blockage and reducing the release of inflammatory markers from the MCs, anti-inflammatory and free radical scavenging property.
Collapse
Key Words
- CD, Crohn’s disease
- CFTR
- CFTR, Cystic fibrosis transmembrane conductance regulator
- CLC, Chloride Channel
- ClC-2
- DAI, Disease Activity Index
- DC, Disease Control
- DM, Diabetes Mellitus
- DNBS, 2,4-Dinitrobenzene sulfonic acid
- EtOH, Ethanol
- G, Glibenclamide
- GI, Gastrointestinal
- GSH, Reduced Glutathione
- Glibenclamide
- H & E, Hematoxylin and eosin
- IAEC, Institutional Animal Ethical Committee
- IBD
- IBD, Inflammatory Bowel Disease
- L, Lubiprostone
- Lubiprostone
- MC, Mast cell
- MDA, Malonaldehyde
- MPO, Myeloperoxidase
- NCEB, National Committee of Bio Ethics
- PMS, Post-Mitochondrial Supernatant
- RBC, Red blood cells
- S, Sulfasalazine
- SOD, Superoxide dismutase levels.
- UC, Ulcerative colitis
- WBC, White blood cells
- i.p., Intraperitoneal Injection
- p.o., Per Orally
- s.c., Subcutaneous
Collapse
Affiliation(s)
- Vijay Chidrawar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| |
Collapse
|
104
|
Cheng L, Luo QQ, Chen SL. The role of intestinal mast cell infiltration in irritable bowel syndrome. J Dig Dis 2021; 22:143-151. [PMID: 33511763 DOI: 10.1111/1751-2980.12971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
As an essential part of the immune system, mast cells (MCs) play an important role in the pathogenesis of irritable bowel syndrome (IBS). Accumulating evidence has identified altered MC count and density in intestinal mucosa of patients with IBS; however, conflicting findings yield inconsistent conclusions. Currently, most studies have suggested intestinal MC infiltration in IBS patients. Considering the pivotal role of MCs in IBS, it is necessary to achieve a better understanding about the pathological changes in the intestine. The risk factors for IBS, including dietary habits, psychological factors, infection, and dysbiosis, are implicated to induce intestinal MC infiltration. Mechanistically, food may trigger immune-related allergic reactions and affect the intestinal microbiota activity. Some exogenous pathogens and altered profile of commensal bacteria promote intestinal MC recruitment through promoted release of chemokines from epithelial cells or direct activation of the immune system. In addition, psychological factors may affect the microenvironment where MCs live. MCs have been proven to interact with the enteric neurons and other immunocytes, evidenced by the close proximity of MCs to neurons and regional altered immune system components. A variety of mediators released by the enteric neurons, immunocytes, and MCs per se, such as neurotrophins, neuropeptides, cytokines, and chemokines, may have stimulant effects on MCs by modulating the survival, proliferation, and recruitment process of MCs in the intestine. In this review, the associations between IBS and intestinal MC density and the underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Li Cheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qing Qing Luo
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Sheng Liang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
105
|
Ciriza de Los Ríos C, Castel de Lucas I, Canga Rodríguez-Valcárcel F, Diéguez Pastor MDC, de Las Cuevas Moreno N, Rey Díaz-Rubio E. IRRITABLE BOWEL SYNDROME AND BASAL SERUM TRYPTASE: THE CORRELATION BETWEEN SUBTYPE, SEVERITY AND COMORBIDITIES. A PILOT STUDY. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 114:22-27. [PMID: 33562988 DOI: 10.17235/reed.2021.7697/2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Activation of mast cells causes alteration in epithelial and neuromuscular function, and is involved in visceral hypersensitivity and dysmotility in gastrointestinal functional disorders. OBJECTIVES Primary: Evaluate differences in basal serum tryptase (BST) between patients with irritable bowel syndrome (IBS) and healthy controls. Secondary: BST depending on IBS subtype (diarrhea: IBS-D; constipation: IBS-C), comorbidities and correlations with IBS severity and quality of life. MATERIAL AND METHODS Prospective control-case study in IBS patients (Rome IV criteria). BST was determined (ImmunoCAP-Phadia, Sweden®) IBS Severity Score (IBSSS), pain, bloating and flatulence analogue scales, IBS quality of life (IBSQOL) and patient health status (PHQ-9) were performed. BST is the primary variable in achieving the primary end-point. RESULTS Thirty-two patients, 21 (65.6%) IBS-D, 11 (34.4%) IBS-C and 32 controls were included. Mean IBSSSS: 326.6 (± 71.4), IBSQOL: 76 (± 20.3) and PHQ9: 10.2 (± 5.9). BST was 4.8 ± 2.6 in IBS and 4.7± 2.6 in controls (p=0.875). There was no difference in BST between IBS subtypes (4.7 ± 2.9 in IBS-D and 5± 1.8 in IBS-C; p =0.315) or IBS severity (p=0.662). However, BST was higher in patients with IBS and extraintestinal comorbidities compared to other patients and controls (p=0.029). This subgroup also has more severe bloating (p=0.021). There was no correlation between BST, quality of life (p=0.9260) and health status (p=0.3985). CONCLUSION BST does not discriminate between IBS patients and controls. However, BST was higher in patients with IBS with extraintestinal comorbidities which have more severe bloating. This finding is worthy of investigation.
Collapse
Affiliation(s)
- Constanza Ciriza de Los Ríos
- Aparato Digestivo, Hospital Clínico San Carlos. Instituto de Investigacion Sanitaria San Carlos (IdISSC). , España
| | | | | | | | | | - Enrique Rey Díaz-Rubio
- Aparato Digestivo, Hospital Clínico San Carlos. Instituto de Investigacion Sanitaria San Carlos (IdISSC), España
| |
Collapse
|
106
|
Chen Y, Cheng J, Zhang Y, Chen JDZ, Seralu FM. Electroacupuncture at ST36 Relieves Visceral Hypersensitivity via the NGF/TrkA/TRPV1 Peripheral Afferent Pathway in a Rodent Model of Post-Inflammation Rectal Hypersensitivity. J Inflamm Res 2021; 14:325-339. [PMID: 33584100 PMCID: PMC7875081 DOI: 10.2147/jir.s285146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of the study was to investigate the effects of electroacupuncture (EA) at ST36 on rectal hypersensitivity and compliance in DSS-treated post-inflammation rats. In addition, we explored the involvement of mast cells-triggered NGF/TrkA/TRPV1 peripheral afferent pathway. Methods Rats were provided water with 5% dextran sulphate sodium (DSS) for 7 days. Two weeks after the DSS treatment they were subjected to initial and repetitive EA. Different sets of parameters were compared in the initial test and then EA with the selected parameters were performed for 2 weeks. Rectal compliance was assessed by colorectal distension while visceral sensitivity was evaluated by abdominal withdraw reflexes (AWR) and electromyogram (EMG). Masson's trichrome staining was performed to stain collagen and toluidine blue staining was applied to assess the degranulation of mast cells. Nerve growth factor (NGF), tryptase, TrkA and TRPV1 were measured by Western blot or immunofluorescence staining. Results EA at 100 Hz was more effective in improving rectal compliance and visceral hypersensitivity. Daily EA improved visceral hypersensitivity but not rectal compliance. Five weeks after DSS treatment, fibrosis was noted in both sham-EA and EA groups. The expression and activation of mast cells were significantly reduced after the 2-week EA treatment with a concurrent decrease in the expression of colonic NGF/TrkA and TRPV1 in both colon and dorsal root ganglions. Conclusion EA at ST36 with a special set of parameters has no effect on reduced rectal compliance but relieves visceral hypersensitivity via the mast cells-triggered NGF/TrkA/TRPV1 peripheral afferent pathway in DSS-treated post-inflammation rats.
Collapse
Affiliation(s)
- Yan Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Jiafei Cheng
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiling Zhang
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Florin M Seralu
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
107
|
Kulkarni S, Kurapati S, Bogunovic M. Neuro-innate immune interactions in gut mucosal immunity. Curr Opin Immunol 2021; 68:64-71. [PMID: 33130386 PMCID: PMC11095515 DOI: 10.1016/j.coi.2020.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
The gastrointestinal (GI) tract performs a set of vital physiological functions related to food and water consumption. To help regulate these complex physiological processes, the GI tract is innervated by extensive neural networks. The GI tract also serves as the largest immune organ aimed to protect hosts from harmful microbes and toxins ingested with food. It emerges that the enteric nervous and immune systems are highly integrated to optimize digestion while reinforcing immune protection. In this review, we will discuss key cellular players involved in the neuro-immune interactions within the GI mucosa with the focus on the recently uncovered neural pathways that regulate mucosal immunity in a context relevant to GI health and disease.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Department of Medicine, Center for Neurogastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Sravya Kurapati
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States; Penn State Biomedical Sciences Ph.D. Program, Penn State University College of Medicine, Hershey, PA, United States
| | - Milena Bogunovic
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
108
|
Losso JN. Food Processing, Dysbiosis, Gastrointestinal Inflammatory Diseases, and Antiangiogenic Functional Foods or Beverages. Annu Rev Food Sci Technol 2021; 12:235-258. [PMID: 33467906 DOI: 10.1146/annurev-food-062520-090235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Foods and beverages provide nutrients and alter the gut microbiota, resulting in eubiosis or dysbiosis. Chronic consumption of a diet that is high in saturated or trans fats, meat proteins, reducing sugars, and salt and low in fiber induces dysbiosis. Dysbiosis, loss of redox homeostasis, mast cells, hypoxia, angiogenesis, the kynurenine pathway, transglutaminase 2, and/or the Janus kinase pathway are implicated in the pathogenesis and development of inflammatory bowel disease, celiac disease, and gastrointestinal malignancy. This review discusses the effects of oxidative, carbonyl, or glycative stress-inducing dietary ingredients or food processing-derived compounds on gut microbiota and gastrointestinal epithelial and mast cells as well as on the development of associated angiogenic diseases, including key signaling pathways. The preventive or therapeutic potential and the biochemical pathways of antiangiogenic or proangiogenic foods or beverages are also described. The outcomes of the interactions between disease pathways and components of food are critical for the design of foods and beverages for healthy lives.
Collapse
Affiliation(s)
- Jack N Losso
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
109
|
Kumari MV, Amarasiri L, Rajindrajith S, Devanarayana NM. Functional abdominal pain disorders and asthma: two disorders, but similar pathophysiology? Expert Rev Gastroenterol Hepatol 2021; 15:9-24. [PMID: 32909837 DOI: 10.1080/17474124.2020.1821652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Functional abdominal pain disorders (FAPDs) and asthma are common ailments affecting both children and adults worldwide. Multiple studies have demonstrated an association between these two disorders. However, the exact reason for this observed association is not apparent. AREAS COVERED The current review has explored available literature and outlined multiple underlying pathophysiological mechanisms, common to both asthma and FAPDs, as possible reasons for this association. EXPERT OPINION Smooth muscle dysfunction, hypersensitivity and hyper-responsiveness, mucosal inflammation, and barrier dysfunction involving gastrointestinal and respiratory tracts are the main underlying pathophysiological mechanisms described for the generation of symptoms in FAPDs and asthma. In addition, alterations in neuroendocrine regulatory functions, immunological dysfunction, and microbial dysbiosis have been described in both disorders. We believe that the pathophysiological processes that were explored in this article would be able to expand the mechanisms of the association. The in-depth knowledge is needed to be converted to therapeutic and preventive strategies to improve the quality of care of children suffering from FAPDs and asthma.
Collapse
Affiliation(s)
- Manori Vijaya Kumari
- Department of Physiology, Faculty of Medicine & Allied Sciences, Rajarata University of Sri Lanka , Anuradhapura, Sri Lanka
| | - Lakmali Amarasiri
- Department of Physiology, Faculty of Medicine, University of Colombo , Colombo, Sri Lanka
| | | | | |
Collapse
|
110
|
Peripheral Corticotropin-Releasing Factor Triggers Jejunal Mast Cell Activation and Abdominal Pain in Patients With Diarrhea-Predominant Irritable Bowel Syndrome. Am J Gastroenterol 2020; 115:2047-2059. [PMID: 32740086 DOI: 10.14309/ajg.0000000000000789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION To determine the effect of peripheral CRF on intestinal barrier function in diarrhea-predominant IBS (IBS-D). Irritable bowel syndrome (IBS) pathophysiology has been linked to life stress, epithelial barrier dysfunction, and mast cell activation. Corticotropin-releasing factor (CRF) is a major mediator of stress responses in the gastrointestinal tract, yet its role on IBS mucosal function remains largely unknown. METHODS Intestinal response to sequential i.v. 5-mL saline solution (placebo) and CRF (100 μg) was evaluated in 21 IBS-D and 17 healthy subjects (HSs). A 20-cm jejunal segment was perfused with an isosmotic solution and effluents collected at baseline, 30 minutes after placebo, and 60 minutes after CRF. We measured water flux, albumin output, tryptase release, stress hormones, cardiovascular and psychological responses, and abdominal pain. A jejunal biopsy was obtained for CRF receptor expression assessment. RESULTS Water flux did not change after placebo in IBS-D and HS but significantly increased after CRF in IBS-D (P = 0.007). Basal luminal output of albumin was higher in IBS-D and increased further after CRF in IBS-D (P = 0.042). Basal jejunal tryptase release was higher in IBS-D, and CRF significantly increased it in both groups (P = 0.004), the response being higher in IBS-D than in HS (P = 0.0023). Abdominal pain worsened only in IBS-D after CRF and correlated with jejunal tryptase release, water flux, and albumin output. IBS-D displayed jejunal up-regulation of CRF2 and down-regulation of CRF1 compared with HS. DISCUSSION Stress via CRF-driven mast cell activation seems to be relevant in the pathophysiology of IBS-D.
Collapse
|
111
|
Abstract
The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.
Collapse
Affiliation(s)
- Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
112
|
McClain JL, Mazzotta EA, Maradiaga N, Duque-Wilckens N, Grants I, Robison AJ, Christofi FL, Moeser AJ, Gulbransen BD. Histamine-dependent interactions between mast cells, glia, and neurons are altered following early-life adversity in mice and humans. Am J Physiol Gastrointest Liver Physiol 2020; 319:G655-G668. [PMID: 32996781 PMCID: PMC7792668 DOI: 10.1152/ajpgi.00041.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Early-life adversity contributes to the development of functional bowel disorders later in life through unresolved mechanisms. Here, we tested the hypothesis that early-life adversity alters anatomical and functional interactions between mast cells and enteric glia. The effects of early-life stress were studied using the neonatal maternal separation (NMS) stress mouse model. Anatomical relationships between mast cells and enteric glia were assessed using immunohistochemistry and mast cell reporter mice (Mcpt5Cre;GCaMP5g-tdT). Immunohistochemistry was used to assess the expression of histamine, histamine 1 (H1) receptors, and glial fibrillary acidic protein. Functional responses of glia to mast cell mediators were assessed in calcium imaging experiments using Sox10CreERT2;GCaMP5g-tdT mice and cultured human enteric glial cells. NMS increases mast cell numbers at the level of the myenteric plexus and their proximity to myenteric ganglia. Myenteric glia respond to mediators released by activated mast cells that are blocked by H1 receptor antagonists in mice and humans and by blocking neuronal activity with tetrodotoxin in mouse tissue. Histamine replicates the effects of mast cell supernatants on enteric glia, and NMS increases histamine production by mast cells. NMS reduces glial responses to mast cell mediators in mouse tissue, while potentiating responses in cultured human enteric glia. NMS increases myenteric glial fibrillary acidic protein expression and reduces glial process length but does not cause neurodegeneration. Histamine receptor expression is not altered by NMS and is localized to neurons in mice, but glia in humans. Early-life stress increases the potential for interactions between enteric glia and mast cells, and histamine is a potential mediator of mast cell-glial interactions through H1 receptors. We propose that glial-mast cell signaling is a mechanism that contributes to enteric neuroplasticity driven by early-life adversity.NEW & NOTEWORTHY Early-life adversity places an individual at risk for developing functional gastrointestinal disorders later in life through unknown mechanisms. Here, we show that interactions between mast cells and glia are disrupted by early-life stress in mice and that histamine is a potential mediator of mast cell-glial interactions.
Collapse
Affiliation(s)
- Jonathon L. McClain
- 1Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Elvio A. Mazzotta
- 2Department of Anesthesiology, The Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Nidia Maradiaga
- 3Gastrointestinal Stress Biology Laboratory, Department Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Natalia Duque-Wilckens
- 1Department of Physiology, Michigan State University, East Lansing, Michigan,3Gastrointestinal Stress Biology Laboratory, Department Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Iveta Grants
- 2Department of Anesthesiology, The Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alfred J. Robison
- 1Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Fievos L. Christofi
- 2Department of Anesthesiology, The Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Adam J. Moeser
- 1Department of Physiology, Michigan State University, East Lansing, Michigan,3Gastrointestinal Stress Biology Laboratory, Department Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- 1Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
113
|
Salvo-Romero E, Martínez C, Lobo B, Rodiño-Janeiro BK, Pigrau M, Sánchez-Chardi AD, González-Castro AM, Fortea M, Pardo-Camacho C, Nieto A, Expósito E, Guagnozzi D, Rodríguez-Urrutia A, de Torres I, Farré R, Azpiroz F, Alonso-Cotoner C, Santos J, Vicario M. Overexpression of corticotropin-releasing factor in intestinal mucosal eosinophils is associated with clinical severity in Diarrhea-Predominant Irritable Bowel Syndrome. Sci Rep 2020; 10:20706. [PMID: 33244004 PMCID: PMC7692489 DOI: 10.1038/s41598-020-77176-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Corticotropin-releasing factor (CRF) has been identified in intestinal mucosal eosinophils and associated with psychological stress and gut dysfunction. Irritable bowel syndrome (IBS) is commonly characterized by altered intestinal motility, immune activation, and increased gut barrier permeability along with heightened susceptibility to psychosocial stress. Despite intensive research, the role of mucosal eosinophils in stress-associated gut dysfunction remains uncertain. In this study, we evaluated eosinophil activation profile and CRF content in the jejunal mucosa of diarrhea-predominant IBS (IBS-D) and healthy controls (HC) by gene/protein expression and transmission electron microscopy. We also explored the association between intestinal eosinophil CRF and chronic stress, and the potential mechanisms underlying the stress response by assessing eosinophil response to neuropeptides. We found that mucosal eosinophils displayed higher degranulation profile in IBS-D as compared to HC, with increased content of CRF in the cytoplasmic granules, which significantly correlated with IBS clinical severity, life stress background and depression. Eosinophils responded to substance P and carbachol by increasing secretory activity and CRF synthesis and release, without promoting pro-inflammatory activity, a profile similar to that found in mucosal eosinophils from IBS-D. Collectively, our results suggest that intestinal mucosal eosinophils are potential contributors to stress-mediated gut dysfunction through CRF production and release.
Collapse
Affiliation(s)
- Eloísa Salvo-Romero
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain.
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Lleida Institute for Biomedical Research, Lleida, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bruno K Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Pigrau
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ana M González-Castro
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Marina Fortea
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Cristina Pardo-Camacho
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Adoración Nieto
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Amanda Rodríguez-Urrutia
- Department of Psychiatry, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Inés de Torres
- Department of Pathology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID) KU, Leuven, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Fernando Azpiroz
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Vicario
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
- Department of Gastrointestinal Health, Société Des Produits Nestlé S.A, Nestlé Research, Vers-chez-les-Blanc, 1000, Lausanne 26, Switzerland.
| |
Collapse
|
114
|
Parisio C, Lucarini E, Micheli L, Toti A, Bellumori M, Cecchi L, Calosi L, Bani D, Di Cesare Mannelli L, Mulinacci N, Ghelardini C. Extra virgin olive oil and related by-products (Olea europaea L.) as natural sources of phenolic compounds for abdominal pain relief in gastrointestinal disorders in rats. Food Funct 2020; 11:10423-10435. [PMID: 33237043 DOI: 10.1039/d0fo02293d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Management of abdominal pain, a common symptom of IBDs and IBS, is still a clinical problem. Extra virgin olive oil (EVOO), a main component of the Mediterranean diet, shows positive effects on chronic inflammation in IBDs. In this study, the effect of the oral administration of EVOO (3 mL) and two olive milling by-products, DPA (300 mg kg-1) and DRF (300 mg kg-1), on preventing the development of abdominal pain in a DNBS-induced colitis model in rats was evaluated. The doses were chosen with the aim of simulating a plausible daily intake in humans. DPA and EVOO treatments significantly reduced the abdominal viscero-motor response to colon-rectal distension at 2 and 3 mL of balloon distension volume, both 7 and 14 days after the DNBS-injection. DRF showed efficacy in the reduction of visceral hypersensitivity only with 3 mL balloon inflation. In awake animals, DPA and DRF reduced pain perception (evaluated as abdominal withdrawal reflex) with all balloon distension volumes, while EVOO was effective only with higher distension volumes. Fourteen days after the DNBS-injection, all samples reduced the macroscopic intestinal damage (quantified as the macroscopic damage score) also showing, at the microscopic level, a reduction of the inflammatory infiltrate (quantified by hematoxylin and eosin analysis), fibrosis (highlighted by picrosirius red staining), the increase in mast cells and their degranulation (analyzed by triptase immunohistochemistry). This is the first report on the promotion of abdominal pain relief in a rat model obtained administering EVOO and two derived by-products. Our results suggest a protective role of phenol-rich EVOO and milling by-products, which may be proposed as food ingredients for novel functional foods.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J, Harzman A, Christofi FL. Postoperative Ileus and Postoperative Gastrointestinal Tract Dysfunction: Pathogenic Mechanisms and Novel Treatment Strategies Beyond Colorectal Enhanced Recovery After Surgery Protocols. Front Pharmacol 2020; 11:583422. [PMID: 33390950 PMCID: PMC7774512 DOI: 10.3389/fphar.2020.583422] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Postoperative ileus (POI) and postoperative gastrointestinal tract dysfunction (POGD) are well-known complications affecting patients undergoing intestinal surgery. GI symptoms include nausea, vomiting, pain, abdominal distention, bloating, and constipation. These iatrogenic disorders are associated with extended hospitalizations, increased morbidity, and health care costs into the billions and current therapeutic strategies are limited. This is a narrative review focused on recent concepts in the pathogenesis of POI and POGD, pipeline drugs or approaches to treatment. Mechanisms, cellular targets and pathways implicated in the pathogenesis include gut surgical manipulation and surgical trauma, neuroinflammation, reactive enteric glia, macrophages, mast cells, monocytes, neutrophils and ICC's. The precise interactions between immune, inflammatory, neural and glial cells are not well understood. Reactive enteric glial cells are an emerging therapeutic target that is under intense investigation for enteric neuropathies, GI dysmotility and POI. Our review emphasizes current therapeutic strategies, starting with the implementation of colorectal enhanced recovery after surgery protocols to protect against POI and POGD. However, despite colorectal enhanced recovery after surgery, it remains a significant medical problem and burden on the healthcare system. Over 100 pipeline drugs or treatments are listed in Clin.Trials.gov. These include 5HT4R agonists (Prucalopride and TAK 954), vagus nerve stimulation of the ENS-macrophage nAChR cholinergic pathway, acupuncture, herbal medications, peripheral acting opioid antagonists (Alvimopen, Methlnaltexone, Naldemedine), anti-bloating/flatulence drugs (Simethiocone), a ghreline prokinetic agonist (Ulimovelin), drinking coffee, and nicotine chewing gum. A better understanding of the pathogenic mechanisms for short and long-term outcomes is necessary before we can develop better prophylactic and treatment strategies.
Collapse
Affiliation(s)
- Elvio Mazzotta
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Juan Fiorda-Diaz
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Alan Harzman
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Fievos L. Christofi
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
116
|
|
117
|
Nightingale S, Sharma A. Functional gastrointestinal disorders in children: What is new? J Paediatr Child Health 2020; 56:1724-1730. [PMID: 32468619 DOI: 10.1111/jpc.14857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Abdominal pain-predominant functional gastrointestinal disorders encompass a group of chronic conditions featuring abdominal pain where no serious gastrointestinal or intra-abdominal pathology is present. The Rome IV classification system defines and categorises this group based on symptomatology as: functional dyspepsia, irritable bowel syndrome, functional abdominal pain - not otherwise specified and abdominal migraine. These conditions can impact the functioning of the child and family significantly and are challenging to manage. Although the causes of these conditions are not clear, recent years have seen an improved understanding of underlying pathophysiology and identification of effective management options for these conditions.
Collapse
Affiliation(s)
- Scott Nightingale
- Department of Gastroenterology, John Hunter Children's Hospital, Newcastle, New South Wales, Australia.,Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ajay Sharma
- Department of Gastroenterology, Joondalup Health Campus, Perth, Western Australia, Australia.,Perth Paediatrics, Perth, Western Australia, Australia
| |
Collapse
|
118
|
Duodenal acidification induces gastric relaxation and alters epithelial barrier function by a mast cell independent mechanism. Sci Rep 2020; 10:17448. [PMID: 33060783 PMCID: PMC7562901 DOI: 10.1038/s41598-020-74491-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 01/19/2023] Open
Abstract
Duodenal hyperpermeability and low-grade inflammation in functional dyspepsia is potentially related to duodenal acid exposure. We aimed to evaluate in healthy volunteers the involvement of mast cell activation on the duodenogastric reflex and epithelial integrity during duodenal acidification. This study consisted of 2 parts: (1) Duodenal infusion of acid or saline during thirty minutes in a randomized, double-blind cross-over manner with measurement of intragastric pressure (IGP) using high resolution manometry and collection of duodenal biopsies to measure epithelial barrier function and the expression of cell-to-cell adhesion proteins. Mast cells and eosinophils were counted and activation and degranulation status were assessed. (2) Oral treatment with placebo or mast cell stabilizer disodiumcromoglycate (DSCG) prior to duodenal perfusion with acid, followed by the procedures described above. Compared with saline, acidification resulted in lower IGP (P < 0.01), increased duodenal permeability (P < 0.01) and lower protein expression of claudin-3 (P < 0.001). Protein expression of tryptase (P < 0.001) was increased after acid perfusion. Nevertheless, an ultrastructural examination did not reveal degranulation of mast cells. DSCG did not modify the drop in IGP and barrier dysfunction induced by acid. Duodenal acidification activates an inhibitory duodenogastric motor reflex and, impairs epithelial integrity in healthy volunteers. However, these acid mediated effects occur independently from mast cell activation.
Collapse
|
119
|
Wilder-Smith CH, Drewes AM, Materna A, Olesen SS. Extragastrointestinal Symptoms and Sensory Responses During Breath Tests Distinguish Patients With Functional Gastrointestinal Disorders. Clin Transl Gastroenterol 2020; 11:e00192. [PMID: 32955198 PMCID: PMC7431249 DOI: 10.14309/ctg.0000000000000192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Patients with functional gastrointestinal disorders (FGIDs) are classified based on their gastrointestinal (GI) symptoms, without considering their frequent extra-GI symptoms. This study defined subgroups of patients using both GI and extra-GI symptoms and examined underlying mechanisms with fructose and lactose breath tests. METHODS Latent class analysis defined distinct clusters of patients with FGID based on their long-term GI and extra-GI symptoms. Sensory and breath gas responses after fructose and lactose ingestion were compared across symptom clusters to investigate differences in sensory function and fermentation by intestinal microbiota. RESULTS Six symptom clusters were identified in 2,083 patients with FGID. Clusters were characterized mainly by GI fermentation-type (cluster 1), allergy-like (cluster 2), intense pain-accentuated GI symptoms (cluster 3), central nervous system (cluster 4), musculoskeletal (cluster 5), and generalized extra-GI (cluster 6) symptoms. In the 68% of patients with complete breath tests, the areas under the curve of GI and central nervous system symptoms after fructose and lactose ingestion differed across the clusters (P < 0.001). The clusters with extensive long-term extra-GI symptoms had greater symptoms after the sugars and were predominantly women, with family or childhood allergy histories. Importantly, the areas under the curves of hydrogen and methane breath concentrations were similar (P > 0.05) across all symptom clusters. Rome III criteria did not distinguish between the symptom clusters. DISCUSSION Patients with FGID fall into clusters defined extensively by extra-GI symptoms. Greater extra-GI symptoms are associated with evidence of generalized sensory hypersensitivity to sugar ingestion, unrelated to intestinal gas production. Possible underlying mechanisms include metabolites originating from the intestinal microbiota and somatization.
Collapse
Affiliation(s)
| | - Asbjørn M. Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Andrea Materna
- Brain-Gut Research Group, Gastroenterology Group Practice, Bern, Switzerland
| | - Søren S. Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
120
|
Lucarini E, Parisio C, Branca JJV, Segnani C, Ippolito C, Pellegrini C, Antonioli L, Fornai M, Micheli L, Pacini A, Bernardini N, Blandizzi C, Ghelardini C, Di Cesare Mannelli L. Deepening the Mechanisms of Visceral Pain Persistence: An Evaluation of the Gut-Spinal Cord Relationship. Cells 2020; 9:cells9081772. [PMID: 32722246 PMCID: PMC7464824 DOI: 10.3390/cells9081772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The management of visceral pain is a major clinical problem in patients affected by gastrointestinal disorders. The poor knowledge about pain chronicization mechanisms prompted us to study the functional and morphological alterations of the gut and nervous system in the animal model of persistent visceral pain caused by 2,4-dinitrobenzenesulfonic acid (DNBS). This agent, injected intrarectally, induced a colonic inflammation peaking on day 3 and remitting progressively from day 7. In concomitance with bowel inflammation, the animals developed visceral hypersensitivity, which persisted after colitis remission for up to three months. On day 14, the administration of pain-relieving drugs (injected intraperitoneally and intrathecally) revealed a mixed nociceptive, inflammatory and neuropathic pain originating from both the peripheral and central nervous system. At this time point, the colonic histological analysis highlighted a partial restitution of the tunica mucosa, transmural collagen deposition, infiltration of mast cells and eosinophils, and upregulation of substance P (SP)-positive nerve fibers, which were surrounded by eosinophils and MHC-II-positive macrophages. A significant activation of microglia and astrocytes was observed in the dorsal and ventral horns of spinal cord. These results suggest that the persistence of visceral pain induced by colitis results from maladaptive plasticity of the enteric, peripheral and central nervous systems.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Jacopo J. V. Branca
- Department of Experimental and Clinical Medicine—DMSC, Anatomy and Histology Section, University of Florence, L. go Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Cristina Segnani
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, 56126 Pisa, Italy; (C.S.); (C.I.); (N.B.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, 56126 Pisa, Italy; (C.S.); (C.I.); (N.B.)
| | - Carolina Pellegrini
- Department of Pharmacy, Unit of Pharmacology, University of Pisa, 56126 Pisa, Italy;
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (C.B.)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (C.B.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine—DMSC, Anatomy and Histology Section, University of Florence, L. go Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, 56126 Pisa, Italy; (C.S.); (C.I.); (N.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (C.B.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
- Correspondence:
| |
Collapse
|
121
|
Giancola F, Volta U, Repossi R, Latorre R, Beeckmans D, Carbone F, Van den Houte K, Bianco F, Bonora E, Gori A, Costanzini A, Boschetti E, Caio G, Vanuytsel T, Stanghellini V, Tack J, De Giorgio R. Mast cell-nerve interactions correlate with bloating and abdominal pain severity in patients with non-celiac gluten / wheat sensitivity. Neurogastroenterol Motil 2020; 32:e13814. [PMID: 32022388 DOI: 10.1111/nmo.13814] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastrointestinal (GI) and extra-GI symptoms/manifestations represent key clinical features of patients with non-celiac gluten/wheat sensitivity (NCG/WS). This study aimed to investigate neuro-immune (focusing on mast cells, MCs) interactions in the duodenal submucosa of patients with NCG/WS. METHODS Submucosal whole mounts from duodenal biopsies of 34 patients with self-reported NCG/WS, 28 with celiac disease (CD), 13 with functional dyspepsia (FD), and 24 healthy controls (HC) were analyzed by immunohistochemistry. Quantitative data on neuronal and MCs density and the percentage of MCs in close vicinity to nerves were obtained, and correlations among neurons, MC density and MC-nerve distance (D), and symptoms were assessed in the three groups. KEY RESULTS The number of submucosal neurons was not different among groups. In NCG/WS, MC density was not different from HC, while it was slightly increased vs. CD (P = .07) and significantly decreased vs. FD (P < .05). The percentage of MCs close to nerves (D < 15 µm) was similarly increased in all three pathological groups vs. HC (P < .001). In NCG/WS, MC infiltration correlated with bloating (P = .001) and abdominal pain severity (P = .03) and the percentage of MCs in proximity to neurons correlated with the number of GI symptoms (D < 5 µm; P = .05), bloating and abdominal pain severity (D < 15um; P = .01). CONCLUSIONS AND INFERENCES Submucosal MC infiltration and the close (within 15 µm) MC-to-nerve proximity in the duodenum of NCG/WS patients are features providing a histopathological basis to better understand GI symptoms in this condition.
Collapse
Affiliation(s)
- Fiorella Giancola
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Umberto Volta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Roberta Repossi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rocco Latorre
- Department Basic Science & Craniofacial Biology, New York University, New York City, New York
| | - Dorien Beeckmans
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Florencia Carbone
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Karen Van den Houte
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Francesca Bianco
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Gori
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Anna Costanzini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisa Boschetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Caio
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | | | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | | |
Collapse
|
122
|
Clinical efficacy and safety of ketotifen in treating irritable bowel syndrome with diarrhea. Eur J Gastroenterol Hepatol 2020; 32:706-712. [PMID: 32317585 DOI: 10.1097/meg.0000000000001737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the clinical efficacy and safety of ketotifen for the treatment of irritable bowel syndrome with diarrhea (IBS-D). METHODS A total of 108 enrolled IBS-D patients were randomly divided into a ketotifen group (n = 55) and a control (placebo) group (n = 53). The patients in the ketotifen group received ketotifen tablets (1 mg, oral) two times daily; patients in the control group received oral placebo for 8 weeks. Before and after 8 weeks of treatment, gastrointestinal symptoms, anorectal sensory function and the number and activity status of mast cells were assessed for both groups. RESULTS (1) The overall effective rate of gastrointestinal symptom improvement in the ketotifen group was significantly higher than that in the control group (76.4 vs. 37.7%, P < 0.001). (2) First sensation, defecation urgency and discomfort/pain threshold in the ketotifen group improved significantly after treatment (P < 0.05); no significant changes were observed in the control group (P > 0.05). (3) In the ketotifen group, the number of mast cells in the terminal ileum decreased, and the percentages of degranulated mast cells in the sigmoid colon, ascending colon and terminal ileum decreased significantly after treatment compared with before treatment; these differences were statistically significant (P < 0.01). In the control group, the number of mast cells and the percentages of degranulated mast cells in various sites did not change significantly before and after treatment (P > 0.05). (4) Six patients (10.9%) in the ketotifen group experienced drowsiness and fatigue, but the symptoms disappeared after 1 week of treatment. CONCLUSION Ketotifen significantly alleviated gastrointestinal symptoms and improved visceral hypersensitivity in patients with IBS-D. The therapeutic effect of ketotifen is related to a reduced number and decreased activity of mast cells in the intestinal mucosa, especially in the terminal ileum.
Collapse
|
123
|
Mayorga EJ, Ross JW, Keating AF, Rhoads RP, Baumgard LH. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction. Theriogenology 2020; 154:73-83. [PMID: 32531658 DOI: 10.1016/j.theriogenology.2020.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Unfavorable weather conditions are one of the largest constraints to maximizing farm animal productivity. Heat stress (HS), in particular, compromises almost every metric of profitability and this is especially apparent in the grow-finish and reproductive aspects of the swine industry. Suboptimal production during HS was traditionally thought to result from hypophagia. However, independent of inadequate nutrient consumption, HS affects a plethora of endocrine, physiological, metabolic, circulatory, and immunological variables. Whether these changes are homeorhetic strategies to survive the heat load or are pathological remains unclear, nor is it understood if they temporally occur by coincidence or if they are chronologically causal. However, mounting evidence suggest that the origin of the aforementioned changes lie at the gastrointestinal tract. Heat stress compromises intestinal barrier integrity, and increased appearance of luminal contents in circulation causes local and systemic inflammatory responses. The resulting immune activation is seemingly the epicenter to many, if not most of the negative consequences HS has on reproduction, growth, and lactation. Interestingly, thermoregulatory and production responses to HS are only marginally related. In other words, increased body temperature indices poorly predict decreases in productivity. Further, HS induced malnutrition is also a surprisingly inaccurate predictor of productivity. Thus, selecting animals with a "heat tolerant" phenotype based solely or separately on thermoregulatory capacity or production may not ultimately increase resilience. Describing the physiology and mechanisms that underpin how HS jeopardizes animal performance is critical for developing approaches to ameliorate current production issues and requisite for generating future strategies (genetic, managerial, nutritional, and pharmaceutical) aimed at optimizing animal well-being, and improving the sustainable production of high-quality protein for human consumption.
Collapse
Affiliation(s)
- E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
124
|
Potter MDE, Goodsall TM, Walker MM, Talley NJ. Dual histamine blockade for the treatment of adult functional dyspepsia: a single centre experience. Gut 2020; 69:966. [PMID: 31040169 DOI: 10.1136/gutjnl-2019-318412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/08/2022]
Affiliation(s)
- Michael D E Potter
- Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, New South Wales, Australia.,Department of Gastroenterology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Thomas M Goodsall
- Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, New South Wales, Australia.,Department of Gastroenterology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Marjorie M Walker
- Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, New South Wales, Australia.,Anatomical Pathology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, New South Wales, Australia.,Department of Gastroenterology, John Hunter Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
125
|
Theodorou V, Beaufrand C, Yvon S, Laforge G, Burmeister Y, Müller A, Seilheimer B, Bueno L, Eutamene H. The multicomponent medication Spascupreel attenuates stress-induced gut dysfunction in rats. Neurogastroenterol Motil 2020; 32:e13798. [PMID: 32059072 PMCID: PMC7217055 DOI: 10.1111/nmo.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common disorder worldwide. It is characterized by abdominal pain/discomfort and changes in bowel habits. Due to the multifactorial pathophysiology and the heterogeneity of IBS patients, appropriate treatment of IBS is still a challenge. Spascupreel (SP-11), as a multicomponent medication, has the potential to modulate multiple pathophysiological pathways simultaneously. Therefore, the objective of the current study was to investigate the effects of oral SP-11 treatment on stress-induced changes of peripheral and central functions in a rat model mimicking human IBS. METHODS Naïve Wistar rats were treated with SP-11 (0.9 tab/kg) or NaCl 0.9% by oral gavage for 4 days before 2-hour partial restraint stress (PRS) procedure. Twenty minutes after PRS, central and peripheral stress-induced changes affecting IBS were assessed. These include the hypothalamic-pituitary-adrenal (HPA) axis response through plasma ACTH and corticosterone measurements, visceral pain in response to colorectal distension, gut permeability, colonic mast cell number, and sensitization as well as gut transit time. RESULTS Treatment with SP-11 reduced the HPA axis activation in response to PRS. At the gut level, a reduction in colonic hypersensitivity to colorectal distension, a normalization of gut transit time acceleration, a reduced mast cell sensitization, and a trend toward reduced gut hyperpermeability were observed. CONCLUSIONS These data suggest that stress-induced IBS signs can be reduced using SP-11 in rats. The observed effects and the good tolerability of the drug make SP-11 an innovative candidate in the management of IBS.
Collapse
Affiliation(s)
- Vassilia Theodorou
- INRAToxAlimUMR 1331Neuro‐Gastroenterology and Nutrition GroupENVTINP‐PurpanUPSUniversité de ToulouseToulouseFrance
| | - Catherine Beaufrand
- INRAToxAlimUMR 1331Neuro‐Gastroenterology and Nutrition GroupENVTINP‐PurpanUPSUniversité de ToulouseToulouseFrance
| | - Sophie Yvon
- INRAToxAlimUMR 1331Neuro‐Gastroenterology and Nutrition GroupENVTINP‐PurpanUPSUniversité de ToulouseToulouseFrance
| | - Guylaine Laforge
- INRAToxAlimUMR 1331Neuro‐Gastroenterology and Nutrition GroupENVTINP‐PurpanUPSUniversité de ToulouseToulouseFrance
| | | | | | | | | | - Helene Eutamene
- INRAToxAlimUMR 1331Neuro‐Gastroenterology and Nutrition GroupENVTINP‐PurpanUPSUniversité de ToulouseToulouseFrance
| |
Collapse
|
126
|
Berg LK, Goll R, Fagerli E, Ludviksen JK, Fure H, Moen OS, Sørbye SW, Mollnes TE, Florholmen J. Intestinal inflammatory profile shows increase in a diversity of biomarkers in irritable bowel syndrome. Scand J Gastroenterol 2020; 55:537-542. [PMID: 32329383 DOI: 10.1080/00365521.2020.1754455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: It has been proposed that irritable bowel syndrome (IBS) is a low-grade mucosal inflammatory disease.Objective: To characterize the intestinal inflammatory profile in IBS patients with or without fructose intolerance.Design: Patients referred to colonoscopy with IBS complaints were screened for participation. IBS patients diagnosed according to the Rome II criteria and with no organic gastrointestinal disease were included in the study. One subgroup was patients included in a fructose-reduced diet study for 2 months with effects based on VAS symptom scores. Healthy controls were subjects under investigation of colorectal cancer screening with no IBS or other gastrointestinal diseases. All patients included had normal histology from rectum. Mucosal cytokines, chemokines and growth factors were measured by multiplex technology.Results: Of 27 inflammatory markers tested in the mucosal tissue, 13 were significantly increased and none was significantly decreased in IBS as compared to controls. Significantly increased were the proinflammatory cytokines tumor necrosis factor, the typical TH1 markers IFNγ, IL-1β, IL-2 and RANTES, the typical TH2 markers IL-5 and IL-9, the TH17 marker IL-17, TNF, the pleiotropic IL-15, and the growth factors bFGF and GM-CSF. In IBS patients with fructose intolerance only IL-5 was significantly increased compared to patients without fructose intolerance.Conclusions: A dysregulated mucosal inflammatory profile with an increased level of TH1, TH2 and TH17 markers, and growth factors were observed in bowel mucosa in of IBS patients when compared to healthy controls.
Collapse
Affiliation(s)
- Leif Kyrre Berg
- Department of Medicine, Hospital of Helgeland, Mo i Rana, Norway.,Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Norwegian Arctic University, Tromsø, Norway
| | - Rasmus Goll
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Norwegian Arctic University, Tromsø, Norway
| | - Erik Fagerli
- Department of Medicine, Hospital of Helgeland, Mo i Rana, Norway
| | - Judith Krey Ludviksen
- Research Laboratory, Nordland Hospital, Bodø, Norway.,K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Hilde Fure
- Research Laboratory, Nordland Hospital, Bodø, Norway.,K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Odd Sverre Moen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Norwegian Arctic University, Tromsø, Norway
| | - Sveinung W Sørbye
- Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway.,K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen JIRC, University of Oslo, Oslo, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Norwegian Arctic University, Tromsø, Norway
| |
Collapse
|
127
|
Chandrasekaran B, Samarneh S, Jaber AMY, Kassab G, Agrawal N. Therapeutic Potentials of A2B Adenosine Receptor Ligands: Current Status and Perspectives. Curr Pharm Des 2020; 25:2741-2771. [PMID: 31333084 DOI: 10.2174/1381612825666190717105834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Adenosine receptors (ARs) are classified as A1, A2A, A2B, and A3 subtypes belong to the superfamily of G-protein coupled receptors (GPCRs). More than 40% of modern medicines act through either activation or inhibition of signaling processes associated with GPCRs. In particular, A2B AR signaling pathways are implicated in asthma, inflammation, cancer, ischemic hyperfusion, diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, and kidney disease. METHODS This article reviews different disease segments wherein A2B AR is implicated and discusses the potential role of subtype-selective A2B AR ligands in the management of such diseases or disorders. All the relevant publications on this topic are reviewed and presented scientifically. RESULTS This review provides an up-to-date highlight of the recent advances in the development of novel and selective A2B AR ligands and their therapeutic role in treating various disease conditions. A special focus has been given to the therapeutic potentials of selective A2B AR ligands in the management of airway inflammatory conditions and cancer. CONCLUSIONS This systematic review demonstrates the current status and perspectives of A2B AR ligands as therapeutically useful agents that would assist medicinal chemists and pharmacologists in discovering novel and subtype-selective A2B AR ligands as potential drug candidates.
Collapse
Affiliation(s)
- Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University-Jordan, P. O. Box: 1, Philadelphia University-19392, Amman, Jordan
| | - Sara Samarneh
- Faculty of Pharmacy, Philadelphia University-Jordan, P. O. Box: 1, Philadelphia University-19392, Amman, Jordan
| | - Abdul Muttaleb Yousef Jaber
- Faculty of Pharmacy, Philadelphia University-Jordan, P. O. Box: 1, Philadelphia University-19392, Amman, Jordan
| | - Ghadir Kassab
- Faculty of Pharmacy, Philadelphia University-Jordan, P. O. Box: 1, Philadelphia University-19392, Amman, Jordan
| | - Nikhil Agrawal
- College of Health Sciences, University of KwaZulu-Natal, P. O. Box: 4000, Westville, Durban, South Africa
| |
Collapse
|
128
|
Balmus IM, Ciobica A, Cojocariu R, Luca AC, Gorgan L. Irritable Bowel Syndrome and Neurological Deficiencies: Is There A Relationship? The Possible Relevance of the Oxidative Stress Status. ACTA ACUST UNITED AC 2020; 56:medicina56040175. [PMID: 32295083 PMCID: PMC7230401 DOI: 10.3390/medicina56040175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Background: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, exhibiting complex and controversial pathological features. Both oxidative stress and inflammation-related reactive oxygen species production may be involved in IBS pathological development. Thus, we focused on several aspects regarding the causes of oxidative stress occurrence in IBS. Additionally, in the molecular context of oxidative changes, we tried to discuss these possible neurological implications in IBS. Methods: The literature search included the main available databases (e.g., ScienceDirect, Pubmed/Medline, Embase, and Google Scholar). Articles in the English language were taken into consideration. Our screening was conducted based on several words such as “irritable bowel syndrome”, “gut brain axis”, “oxidative stress”, “neuroendocrine”, and combinations. Results: While no consistent evidence suggests clear pathway mechanisms, it seems that the inflammatory response may also be relevant in IBS. The mild implication of oxidative stress in IBS has been described through clinical studies and some animal models, revealing changes in the main markers such as antioxidant status and peroxidation markers. Moreover, it seems that the neurological structures involved in the brain-gut axis may be affected in IBS rather than the local gut tissue and functionality. Due to a gut-brain axis bidirectional communication error, a correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress can be suggested. Conclusions: Therefore, there is a possible correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress that are not followed by tissue destruction in IBS patients. Moreover, it is not yet clear whether oxidative stress, inflammation, or neurological impairments are key determinants or in which way these three interact in IBS pathology. However, the conditions in which oxidative imbalances occur may be an interesting research lead in order to find possible explanations for IBS development.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, No. 11, 700506 Iași, Romania;
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Roxana Cojocariu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| | - Alina-Costina Luca
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| |
Collapse
|
129
|
Jakob MO, Murugan S, Klose CSN. Neuro-Immune Circuits Regulate Immune Responses in Tissues and Organ Homeostasis. Front Immunol 2020; 11:308. [PMID: 32265899 PMCID: PMC7099652 DOI: 10.3389/fimmu.2020.00308] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The dense innervation of the gastro-intestinal tract with neuronal networks, which are in close proximity to immune cells, implies a pivotal role of neurons in modulating immune functions. Neurons have the ability to directly sense danger signals, adapt immune effector functions and integrate these signals to maintain tissue integrity and host defense strategies. The expression pattern of a large set of immune cells in the intestine characterized by receptors for neurotransmitters and neuropeptides suggest a tight neuronal hierarchical control of immune functions in order to systemically control immune reactions. Compelling evidence implies that targeting neuro-immune interactions is a promising strategy to dampen immune responses in autoimmune diseases such as inflammatory bowel diseases or rheumatoid arthritis. In fact, electric stimulation of vagal fibers has been shown to be an extremely effective treatment strategy against overwhelming immune reactions, even after exhausted conventional treatment strategies. Such findings argue that the nervous system is underestimated coordinator of immune reactions and underline the importance of neuro-immune crosstalk for body homeostasis. Herein, we review neuro-immune interactions with a special focus on disease pathogenesis throughout the gastro-intestinal tract.
Collapse
Affiliation(s)
- Manuel O. Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Group of Visceral Surgery and Medicine, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Shaira Murugan
- Group of Visceral Surgery and Medicine, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Christoph S. N. Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
130
|
Abstract
Many studies highlighted that a bidirectional communication between the gut and the central nervous system (CNS) exists. A vigorous immune response to antigens must be avoided, and pathogenic organisms crossing the gut barrier must be detected and killed. For this reason, the immune system developed fine mechanisms able to maintain this delicate balance. The microbiota is beneficial to its host, providing protection against pathogenic bacteria. It is intimately involved in numerous aspects of host physiology, from nutritional status to behavior and stress response. In the last few years, the implication of the gut microbiota and its bioactive microbiota-derived molecules in the progression of multiple diseases, as well as in the development of neurodegenerative disorders, gained increasing attention. The purpose of this review is to provide an overview of the gut microbiota with particular attention toward neurological disorders and mast cells. Relevant roles are played by the mast cells in neuroimmune communication, such as sensors and effectors of cytokines and neurotransmitters. In this context, the intake of beneficial bacterial strains as probiotics could represent a valuable therapeutic approach to adopt in combination with classical therapies. Further studies need to be performed to understand if the gut bacteria are responsible for neurological disorders or if neurological disorders influence the bacterial profile.
Collapse
|
131
|
Abstract
Irritable bowel syndrome (IBS) is an extremely common and often very debilitating chronic functional gastrointestinal disorder. Despite its prevalence, significant associated healthcare costs, and quality-of-life issues for affected individuals, our understanding of its etiology remained limited. However, it is now evident that microbial factors play key roles in IBS pathophysiology. Acute gastroenteritis following exposure to pathogens can precipitate the development of IBS, and studies have demonstrated changes in the gut microbiome in IBS patients. These changes may explain some of the symptoms of IBS, including visceral hypersensitivity, as gut microbes exert effects on the host immune system and gut barrier function, as well as the brain-gut axis. Microbial differences also appear to underlie the two main functional categories of IBS: diarrhea-predominant IBS (IBS-D) is associated with small intestinal bacterial overgrowth, which can be diagnosed by a positive hydrogen breath test, and constipation-predominant IBS (IBS-C) is associated with increased levels of methanogenic archaea, which can be diagnosed by a positive methane breath test. Mechanistically, the pathogens that cause gastroenteritis and trigger subsequent IBS development produce a common toxin, cytolethal distending toxin B (CdtB), and antibodies raised against CdtB cross-react with the cytoskeletal protein vinculin and impair gut motility, facilitating bacterial overgrowth. In contrast, methane gas slows intestinal contractility, which may facilitate the development of constipation. While antibiotics and dietary manipulations have been used to relieve IBS symptoms, with varying success, elucidating the specific mechanisms by which gut microbes exert their effects on the host may allow the development of targeted treatments that may successfully treat the underlying causes of IBS.
Collapse
Affiliation(s)
- Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Anthony Lembo
- Division of Gastroenterology, Beth Israel Deaconess Hospital, Boston, MA, USA
| |
Collapse
|
132
|
Xu C, Yan S, Guo Y, Qiao L, Ma L, Dou X, Zhang B. Lactobacillus casei ATCC 393 alleviates Enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway. Life Sci 2020; 244:117281. [DOI: 10.1016/j.lfs.2020.117281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/16/2022]
|
133
|
Gastrointestinal Manifestations of Hypereosinophilic Syndromes and Mast Cell Disorders: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 57:194-212. [PMID: 30003499 DOI: 10.1007/s12016-018-8695-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypereosinophilic syndrome and mastocytosis are relatively rare proliferative diseases encountered in the general population. However, allergists frequently consider these disorders in the differential of patients presenting with gastrointestinal, pulmonary, cutaneous, and allergic symptoms. Gastrointestinal symptoms are some of the most frequent and/or debilitating aspects of both disease states and in many cases lead to poor quality of life and functional limitation for the patient. They are the third most common clinical manifestation in hypereosinophilic syndrome and have been found to be the most distressful aspect of the disorder in those with systemic mastocytosis. Both eosinophils and mast cells play integral parts in normal gut physiology, but when and how exactly their effector functionality translates into clinically significant disease remains unclear, and the available literature regarding their pathophysiology remains sparse. Eosinophils and mast cells even, in fact, may not necessarily function in isolation from each other but can participate in bidirectional crosstalk. Both are affected by similar mediators and can also influence one another in a paracrine fashion. Their interactions include both production of soluble mediators for specific eosinophil and mast cell receptors (for example, eosinophil recruitment and activation by mast cells releasing histamine and eotaxin) as well as direct physical contact. The mechanistic relationship between clonal forms of hypereosinophilia and systemic mastocytosis has also been explored. The nature of gastrointestinal symptomatology in the setting of both hypereosinophilic syndrome and mast cell disease is frequently manifold, heterogeneous, and the lack of better targeted therapy makes diagnosis and management challenging, especially when faced with a substantial differential. Currently, the management of these gastrointestinal symptoms relies on the treatment of the overall disease process. In hypereosinophilia patients, systemic corticosteroids are mainstay, although steroid-sparing agents such as hydroxyurea, IFN-α, methotrexate, cyclosporine, imatinib, and mepolizumab have been utilized with varying success. In mastocytosis patients, anti-mediator therapy with antihistamines and mast cell stabilization with cromolyn sodium can be considered treatments of choice, followed by other therapies yet to be thoroughly studied, including the role of the low-histamine diet, corticosteroids, and treatment of associated IBS symptoms. Given that both eosinophils and mast cells may have joint pathophysiologic roles, they have the potential to be a combined target for therapeutic intervention in disease states exhibiting eosinophil or mast cell involvement.
Collapse
|
134
|
Localization of cannabinoid and cannabinoid related receptors in the cat gastrointestinal tract. Histochem Cell Biol 2020; 153:339-356. [PMID: 32095931 DOI: 10.1007/s00418-020-01854-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
A growing body of literature indicates that activation of cannabinoid receptors may exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity. The present study aimed to immunohistochemically investigate the distribution of the canonical cannabinoid receptors CB1 (CB1R) and CB2 (CB2R) and the putative cannabinoid receptors G protein-coupled receptor 55 (GPR55), nuclear peroxisome proliferator-activated receptor alpha (PPARα), transient receptor potential ankyrin 1 (TRPA1), and serotonin receptor 5-HT1a 5-HT1aR) in tissue samples of the gastrointestinal tract of the cat. CB1R-immunoreactivity (CB1R-IR) was observed in gastric epithelial cells, intestinal enteroendocrine cells (EECs) and goblet cells, lamina propria mast cells (MCs), and enteric neurons. CB2R-IR was expressed by EECs, enterocytes, and macrophages. GPR55-IR was expressed by EECs, macrophages, immunocytes, and MP neurons. PPARα-IR was expressed by immunocytes, smooth muscle cells, and enteroglial cells. TRPA1-IR was expressed by enteric neurons and intestinal goblet cells. 5-HT1a receptor-IR was expressed by gastrointestinal epithelial cells and gastric smooth muscle cells. Cannabinoid receptors showed a wide distribution in the feline gastrointestinal tract layers. Although not yet confirmed/supported by functional evidences, the present research might represent an anatomical substrate potentially useful to support, in feline species, the therapeutic use of cannabinoids during gastrointestinal inflammatory diseases.
Collapse
|
135
|
Gao J, Azad MAK, Han H, Wan D, Li T. Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Curr Pharm Des 2020; 26:2630-2641. [PMID: 32066357 DOI: 10.2174/1381612826666200211121916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
In animals, the gastrointestinal microbiota are reported to play a major role in digestion, nutrient absorption and the release of energy through metabolism of food. Therefore, microbiota may be a factor for association between diet and enteric diseases and oxidative stress. The gut microbial composition and concentration are affected by diet throughout the life of an animal, and respond rapidly and efficiently to dietary alterations, in particular to the use of prebiotics. Prebiotics, which play an important role in mammalian nutrition, are defined as dietary ingredients that lead to specific changes in both the composition and activity of the gastrointestinal microbiota through suppressing the proliferation of pathogens and by modifying the growth of beneficial microorganisms in the host intestine. A review of the evidence suggests possible beneficial effects of prebiotics on host intestinal health, including immune stimulation, gut barrier enhancement and the alteration of the gastrointestinal microbiota, and these effects appear to be dependent on alteration of the bacterial composition and short-chain fatty acid (SCFA) production. The production of SCFAs depends on the microbes available in the gut and the type of prebiotics available. The SCFAs most abundantly generated by gastrointestinal microbiota are acetate, butyrate and propionate, which are reported to have physiological effects on the health of the host. Nowadays, prebiotics are widely used in a range of food products to improve the intestinal microbiome and stimulate significant changes to the immune system. Thus, a diet with prebiotic supplements may help prevent enteric disease and oxidative stress by promoting a microbiome associated with better growth performance. This paper provides an overview of the hypothesis that a combination of ingestible prebiotics, chitosan, fructooligosaccharides and inulin will help relieve the dysbiosis of the gut and the oxidative stress of the host.
Collapse
Affiliation(s)
- Jing Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Md A K Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Han
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - TieJun Li
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
136
|
Kamphuis JBJ, Guiard B, Leveque M, Olier M, Jouanin I, Yvon S, Tondereau V, Rivière P, Guéraud F, Chevolleau S, Noguer-Meireles MH, Martin JF, Debrauwer L, Eutamène H, Theodorou V. Lactose and Fructo-oligosaccharides Increase Visceral Sensitivity in Mice via Glycation Processes, Increasing Mast Cell Density in Colonic Mucosa. Gastroenterology 2020; 158:652-663.e6. [PMID: 31711923 DOI: 10.1053/j.gastro.2019.10.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Irritable bowel syndrome (IBS) is characterized by abdominal pain, bloating, and erratic bowel habits. A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) can reduce symptoms of IBS, possibly by reducing microbial fermentation products. We investigated whether ingestion of FODMAPs can induce IBS-like visceral hypersensitivity mediated by fermentation products of intestinal microbes in mice. METHODS C57Bl/6 mice were gavaged with lactose, with or without the antiglycation agent pyridoxamine, or saline (controls) daily for 3 weeks. A separate group of mice were fed a diet containing fructo-oligosaccharides, with or without pyridoxamine in drinking water, or a normal chow diet (controls) for 6 weeks. Feces were collected and analyzed by 16S ribosomal RNA gene sequencing and bacterial community analyses. Abdominal sensitivity was measured by electromyography and mechanical von Frey filament assays. Colon tissues were collected from some mice and analyzed by histology and immunofluorescence to quantify mast cells and expression of advanced glycosylation end-product specific receptor (AGER). RESULTS Mice gavaged with lactose or fed fructo-oligosaccharides had increased abdominal sensitivity compared with controls, associated with increased numbers of mast cells in colon and expression of the receptor for AGER in proximal colon epithelium. These effects were prevented by administration of pyridoxamine. Lactose and/or pyridoxamine did not induce significant alterations in the composition of the fecal microbiota. Mass spectrometric analysis of carbonyl compounds in fecal samples identified signatures associated with mice given lactose or fructo-oligosaccharides vs controls. CONCLUSIONS We found that oral administration of lactose or fructo-oligosaccharides to mice increases abdominal sensitivity, associated with increased numbers of mast cells in colon and expression of AGER; these can be prevented with an antiglycation agent. Lactose and/or pyridoxamine did not produce alterations in fecal microbiota of mice. Our findings indicate that preventing glycation reactions might reduce abdominal pain in patients with IBS with sensitivity to FODMAPs.
Collapse
Affiliation(s)
- Jasper B J Kamphuis
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mathilde Leveque
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Maiwenn Olier
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Isabelle Jouanin
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Sophie Yvon
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Valerie Tondereau
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Pauline Rivière
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Françoise Guéraud
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Prevention and Promotion of Carcinogenesis by Food team, Toxalim, Toulouse, France
| | - Sylvie Chevolleau
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Maria-Helena Noguer-Meireles
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Jean-François Martin
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Laurent Debrauwer
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Helene Eutamène
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse.
| | - Vassilia Theodorou
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| |
Collapse
|
137
|
Park EJ, Han JS, Park EJ, Seong E, Lee GH, Kim DW, Son HY, Han HY, Lee BS. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicol Lett 2020; 324:75-85. [PMID: 31954868 DOI: 10.1016/j.toxlet.2020.01.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/26/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
With the increased distribution of microplastics in the environment, the potential for harmful effects on human health and ecosystems have become a global concern. Considering that polyethylene microplastics (PE-MPs) are among the most produced plastics worldwide, we administered PE-MPs (0.125, 0.5, 2 mg/day/mouse) by gavage to mice (10 mice/sex/dose) for 90 days. Compared to control, the body weight gain was significantly reduced in the male mice, and the proportion of neutrophils in the blood stream clearly increased in both sexes of mice. Persistence of a PE-MPs-like material and migration of granules to the mast cell membrane and accumulation of damaged organelles were observed in the stomachs and the spleens from the treated dams, respectively. Additionally, the IgA level in the blood stream was significantly elevated in the dams administered with PE-MPs compared to control, and the subpopulation of lymphocytes within the spleen was altered. Following, we performed an additional study to screen the effects of PE-MPs on reproduction and development (5 mice/sex/dose). Importantly, number of live births per dam, the sex ratio of pups, and body weight of pups was notably altered in groups treated with PE-MPs compared to the control group. Additionally, PE-MPs affected the subpopulation of lymphocytes within the spleen of the offspring, as did in the dams. Therefore, we propose that reproductive and developmental toxicity testing is warranted to evaluate the safety of microplastics. Additionally, we suggest that the IgA level may be used as a biomarker for harmful effects following exposure on microplastics.
Collapse
Affiliation(s)
- Eun-Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea; Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Ji-Seok Han
- Toxicopathological Center, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Department of Veterinary Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jun Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eunsol Seong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hwa-Young Son
- Department of Veterinary Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Yun Han
- Department of Predictive Toxicology Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Byoung-Seok Lee
- Toxicopathological Center, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
138
|
Zhou S, Huang G. Synthesis of anti-allergic drugs. RSC Adv 2020; 10:5874-5885. [PMID: 35497436 PMCID: PMC9049304 DOI: 10.1039/c9ra10659f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/20/2020] [Indexed: 01/01/2023] Open
Abstract
Histamine is formed by the decarboxylation of histidine catalyzed by enzymes. It is an endogenous biologically active substance involved in multiple complex physiological processes as an important chemical transmitter. Histamine receptors have four subtypes, H1, H2, H3 and H4, all of which are G protein coupling receptors (GPCRs) with different physiological functions. Histamine plays an important role in the pathophysiological mechanism of allergic diseases, and the antagonistic effect of histamine has become an important way to study anti-allergic drugs, wherein the anti-allergic drugs used in clinical practice are mainly H1 receptor antagonists. Currently, there are many varieties of H1 receptor antagonists in clinical applications, which can be divided into ethylenediamine antagonists, amino ether antagonists, propylamine antagonists, tricyclic antagonists, piperazine antagonists and piperidine antagonists depending on their chemical structures. This article mainly reviews the research progress of allergic reactions with histamine H1 receptor antagonists and expounds the important aspects of the design and synthesis of various new compounds. Histamine is formed by the decarboxylation of histidine catalyzed by enzymes. It is an endogenous biologically active substance involved in multiple complex physiological processes as an important chemical transmitter.![]()
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application
- Active Carbohydrate Research Institute
- Chongqing Normal University
- Chongqing
- China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application
- Active Carbohydrate Research Institute
- Chongqing Normal University
- Chongqing
- China
| |
Collapse
|
139
|
Daddam JR, Sreenivasulu B, Peddanna K, Umamahesh K. Designing, docking and molecular dynamics simulation studies of novel cloperastine analogues as anti-allergic agents: homology modeling and active site prediction for the human histamine H1 receptor. RSC Adv 2020; 10:4745-4754. [PMID: 35495246 PMCID: PMC9049021 DOI: 10.1039/c9ra09245e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
The present study predicts a three-dimensional model for the histamine H1 receptor and the design of antihistamine inhibitors using cloperastine as the core molecule by docking studies. In this work, we predicted a three-dimensional structure of the histamine H1 receptor using the MODELLER9V7 software. The protein structure was developed based on the crystal structure of the histamine H1 receptor, the lysozyme chimera of Escherichia virus T4 (PDB ID: 3RZE_A) target collected from the PDB data bank. Using molecular dynamics simulation methods, the final predicted structure is obtained and further analyzed by VERIFY3D and PROCHECK programs, confirming that the final model is reliable. The drug derivatives of cloperastine were designed and docking was performed with the designed ligands along with the drug. The predicted model of the histamine H1 receptor structure is stable and confirms that it is a reliable structure for docking studies. The results indicate that MET 183, THR 184 and ILE 187 in the histamine H1 receptor are important determinant residues for binding as they have strong hydrogen bonding with cloperastine derivatives. The drug derivatives were docked to the histamine H1 receptor protein by hydrogen bonding interactions and these interactions played an important role in the binding studies. The molecule 1-{2-[(4-chlorophenyl) (phenyl) methoxy] ethyl}-4-methylenepiperidine showed the best docking results with the histamine H1 receptor. The docking results predicted the best compounds, which may act as better drugs than cloperastine and in the future, these may be developed for anti-allergy therapy. The present study predicts a three-dimensional model for the histamine H1 receptor and the design of antihistamine inhibitors using cloperastine as the core molecule by docking studies.![]()
Collapse
Affiliation(s)
| | - Basha Sreenivasulu
- Department of Microbiology
- Sri Venkateswara University
- Tirupati
- India-517502
- Department of Biological Sciences
| | - Kotha Peddanna
- Department of Biochemistry
- Sri Venkateswara University
- Tirupati
- India-517502
- School of Chinese Medicine
| | - Katike Umamahesh
- Department of Biochemistry
- Sri Venkateswara University
- Tirupati
- India-517502
| |
Collapse
|
140
|
Chi Z, Xu J, Saxena R. Increased Mast Cell Counts and Degranulation in Microscopic Colitis. Gastroenterol Res Pract 2020; 2020:9089027. [PMID: 32148478 PMCID: PMC7057011 DOI: 10.1155/2020/9089027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Microscopic colitis (MC) is characterized by chronic diarrhea, normal colonoscopy findings, and mucosal inflammation in colonic biopsies and can be classified as collagenous colitis (CC) or lymphocytic colitis (LC). However, the pathogenesis of MC is largely unknown. In this study, we aimed to study mast cell counts and activation in MC. METHODS We investigated 64 biopsy samples from the surgical pathology database of Indiana University Health, which met the diagnostic criteria for CC or LC along with 20 control samples collected from 2014 to 2015. The specimens were used for the quantification of mast cells by examining the presence of intracellular and extracellular tryptase by immunohistochemistry. RESULTS In the lamina propria, the mast cell count was higher in both CC and LC groups than the control (mean highest count, 39/high-power field (HPF) vs. 30/HPF vs. 23/HPF; P < 0.01). Extracellular tryptase was present in 10% of control subjects as compared to 41% of CC (P < 0.01). Extracellular tryptase was present in 10% of control subjects as compared to 41% of CC (P < 0.01). Extracellular tryptase was present in 10% of control subjects as compared to 41% of CC (. CONCLUSIONS The increased mast cell count and degranulation are identified in MC, suggesting that mast cell activation might be involved in the pathogenesis of MC.
Collapse
Affiliation(s)
- Zhikai Chi
- 1Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jing Xu
- 1Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Romil Saxena
- 2Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
141
|
Kakinoki A, Kameo T, Yamashita S, Furuta K, Tanaka S. Establishment and Characterization of a Murine Mucosal Mast Cell Culture Model. Int J Mol Sci 2019; 21:ijms21010236. [PMID: 31905768 PMCID: PMC6982154 DOI: 10.3390/ijms21010236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence suggests that mast cells play critical roles in disruption and maintenance of intestinal homeostasis, although it remains unknown how they affect the local microenvironment. Interleukin-9 (IL-9) was found to play critical roles in intestinal mast cell accumulation induced in various pathological conditions, such as parasite infection and oral allergen-induced anaphylaxis. Newly recruited intestinal mast cells trigger inflammatory responses and damage epithelial integrity through release of a wide variety of mediators including mast cell proteases. We established a novel culture model (IL-9-modified mast cells, MCs/IL-9), in which murine IL-3-dependent bone-marrow-derived cultured mast cells (BMMCs) were further cultured in the presence of stem cell factor and IL-9. In MCs/IL-9, drastic upregulation of Mcpt1 and Mcpt2 was found. Although histamine storage and tryptase activity were significantly downregulated in the presence of SCF and IL-9, this was entirely reversed when mast cells were cocultured with a murine fibroblastic cell line, Swiss 3T3. MCs/IL-9 underwent degranulation upon IgE-mediated antigen stimulation, which was found to less sensitive to lower concentrations of IgE in comparison with BMMCs. This model might be useful for investigation of the spatiotemporal changes of newly recruited intestinal mast cells.
Collapse
Affiliation(s)
- Aya Kakinoki
- Department of Immunobiology, Faculty of Pharmacy and Pharmaceutical Sciences, Okayama University, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Tsuyoshi Kameo
- Department of Immunobiology, Faculty of Pharmacy and Pharmaceutical Sciences, Okayama University, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Shoko Yamashita
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan (K.F.)
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan (K.F.)
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4667
| |
Collapse
|
142
|
Fan H, Wang A, Wang Y, Sun Y, Han J, Chen W, Wang S, Wu Y, Lu Y. Innate Lymphoid Cells: Regulators of Gut Barrier Function and Immune Homeostasis. J Immunol Res 2019; 2019:2525984. [PMID: 31930146 PMCID: PMC6942837 DOI: 10.1155/2019/2525984] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023] Open
Abstract
Innate lymphoid cells (ILCs), identified in the early years of this century as a new class of leukocyte family unlike the B or T lymphocytes, play a unique role bridging the innate and adaptive immune responses in mucosal immunity. Their origin, differentiation, and activation process and functions have caught global interest. Recently, accumulating evidence supports that ILCs are vital regulators for gastrointestinal mucosal homeostasis through interactions with other structural and stromal cells in gut epithelial barriers. This review will explore the functions of ILCs and other cells in maintaining gut homeostasis and feature the crosstalk between ILCs with other cells and potential pharmacotherapy targeting ILCs applicable in intestinal innate immunity.
Collapse
Affiliation(s)
- Hui Fan
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan Wang
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Sun
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Han
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijun Wang
- Shandong Co-Innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong 250035, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
143
|
Stakenborg N, Viola MF, Boeckxstaens GE. Intestinal neuro-immune interactions: focus on macrophages, mast cells and innate lymphoid cells. Curr Opin Neurobiol 2019; 62:68-75. [PMID: 31862627 PMCID: PMC7294228 DOI: 10.1016/j.conb.2019.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022]
Abstract
Neuro-immune crosstalk occurs in distinct anatomical niches in the intestine. Neuro-immune cell niches maintain gut homeostasis and modulate inflammation. Neuron-macrophage crosstalk in the muscularis is crucial for neuronal survival and peristalsis. Mast cell mediators activate and sensitize nerve terminals, leading to aberrant pain perception. Neurons modulate ILC function during infection and inflammation.
Intestinal homeostasis relies on the reciprocal crosstalk between enteric neurons and immune cells, which together form neuro-immune units that occupy distinct anatomical niches within the gut. Here we will review the recent advances in our understanding of neuro-immune crosstalk within the gut, with focus on macrophages, mast cells and innate lymphoid cells. In particular, we will discuss the role of neuron-immune cell crosstalk in homeostasis, and how aberrant communication may underlie disease in the gastro-intestinal tract.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Maria F Viola
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium.
| |
Collapse
|
144
|
Santucci NR, Saps M, van Tilburg MA. New advances in the treatment of paediatric functional abdominal pain disorders. Lancet Gastroenterol Hepatol 2019; 5:316-328. [PMID: 31859185 DOI: 10.1016/s2468-1253(19)30256-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
This Review summarises recent pharmacological and upcoming alternative interventions for children with functional abdominal pain disorders (FAPDs). Pharmacological targets include prokinetics and drugs affecting gastric accommodation to treat postprandial distress and nausea. Similarly, anti-inflammatory agents, junctional protein regulators, analgesics, secretagogues, and serotonin antagonists have a therapeutic role for irritable bowel syndrome. Non-pharmacological treatments include peripheral electrical nerve field stimulation to the external ear, gastric electrical stimulation, dietary interventions such as low fructose and fibre based diets, and nutraceuticals, which include probiotics, prebiotics, and synbiotics. Newer psychological advances such as exposure-based cognitive behavioural therapy, acceptance and commitment therapy, and mindfulness meditation are being investigated for paediatric functional pain. Lastly, alternative therapies such as acupuncture, moxibustion, yoga, and spinal manipulation are also gaining popularity in the treatment of FAPDs.
Collapse
Affiliation(s)
- Neha R Santucci
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Miguel Saps
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Milner School of Medicine, University of Miami, Miami, FL, USA
| | - Miranda A van Tilburg
- Department of Clinical Research, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, USA; Department of Medicine, University of North Carolina, Chapel Hill, NC, USA; School of Social Work, University of Washington, Seattle, WA, USA
| |
Collapse
|
145
|
Zhou S, Huang G, Chen G. Design, synthesis and biological activity of a novel ethylenediamine derivatives as H 1 receptor antagonists. Bioorg Med Chem 2019; 27:115127. [PMID: 31703894 DOI: 10.1016/j.bmc.2019.115127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 11/28/2022]
Abstract
In this study, a series of novel ethylenediamine compounds were obtained by structural modification of the lead compounds with thonzylamine, and using the principle of modifying by bioisostere formation and modification with alkyl groups. In vitro assay, the biological activities showed that the target compounds have good properties in inhibiting mast cell degranulation and releasing histamine and β-aminohexidase, such as the compounds 5c, 5g, 5k, 5l and 5o, especially of compound 5k to mast cell degranulation is IC50 = 0.0106 ± 0.001 μmol⋅L-1, histamine release was IC50 = 0.0192 ± 0.005 μmol⋅L-1 and β-hexosaminidase release was IC50 = 0.0455 ± 0.002 μmol⋅L-1in vitro. At the same time, in vivo biological activities assay results showed that have a good Histamie induce bronchospasm effect with relatively long duration and good protective effect in vivo, among which the protective effect of compound 5k was 79.74 ± 0.30%, compounds 5c, 5g, 5k, 5l and 5o could inhibit the capillary permeability of increasing which were caused by histamine.
Collapse
Affiliation(s)
- Shiyang Zhou
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
146
|
Loo EXL, Wang DY, Siah KTH. Association between Irritable Bowel Syndrome and Allergic Diseases: To Make a Case for Aeroallergen. Int Arch Allergy Immunol 2019; 181:31-42. [PMID: 31694023 DOI: 10.1159/000503629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/21/2019] [Indexed: 11/19/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disease and the most common cause of prolonged abdominal pain and bowel disturbances in the developed world. While initially thought to be functional or psychosomatic in nature, IBS is now recognized as a heterogeneous group of conditions. A subset of IBS patients and patients with allergic diseases share some characteristic inflammatory features. In fact, atopic children show an increased likelihood of developing IBS as adults. Given these findings, a subset of IBS may be suffering from allergy-related gut diseases. In this review, we present the allergy-related comorbidities of IBS, including genetic, environmental, and immunologic factors. We discuss studies demonstrating an increased sensitization of IBS patients to aeroallergens compared to food allergens. We then postulate potential pathophysiological mechanisms underlying both IBS and aeroallergens in the gut, followed by potential implications in the screening and treatment of allergies in IBS patients.
Collapse
Affiliation(s)
- Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Pediatrics, Yong Loo School of Medicine, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kewin Tien Ho Siah
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore, Singapore, .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,
| |
Collapse
|
147
|
Zhu C, Zhao L, Zhao J, Zhang S. Sini San ameliorates duodenal mucosal barrier injury and low‑grade inflammation via the CRF pathway in a rat model of functional dyspepsia. Int J Mol Med 2019; 45:53-60. [PMID: 31746413 PMCID: PMC6889936 DOI: 10.3892/ijmm.2019.4394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
The gut-brain interaction is associated with impaired duodenal mucosal integrity and low-grade inflammation, which have been proven to be important pathological mechanisms of functional dyspepsia (FD). Sini San (SNS) is a classical Chinese medicine used to treat FD, but its underlying mechanisms are poorly understood. The aim of the present study was to evaluate the effects of SNS on duodenal mucosal barrier injury and low-grade inflammation with FD, and to assess its potential molecular mechanisms on the brain-gut axis. FD rats were established using the iodoacetamide and tail-squeezed methods. The expression of corticotropin-releasing factor (CRF), CRF receptor 1 (CRF-R1) and CRF-R2, were determined by western blot analysis and/or immunohistochemistry (IHC). In addition, mast cell (MC) migration was assessed by IHC with an anti-tryptase antibody, and histamine concentration was quantified using ELISA. The mRNA expression levels of tryptase and protease-activated receptor 2 (PAR-2) were quantified using reverse transcription-quantitative PCR, and the protein expression levels of zona occludens protein 1 (ZO-1), junctional adhesion molecule 1 (JAM-1), β-catenin and E-cadherin were determined via western blot analysis. It was demonstrated that the expression level of CRF was downregulated in the central nervous system and duodenum following SNS treatment, and that SNS modulated the expression of both CRF-R1 and CRF-R2. In addition, SNS suppressed MC infiltration and the activity of the tryptase/PAR-2 pathway in the duodenum. Furthermore, treatment with SNS restored the normal expression levels of ZO-1, JAM-1 and β-catenin in FD rats. These findings suggested that the therapeutic effects of SNS on FD were achieved by restoring mucosal barrier integrity and suppressing low-grade inflammation in the duodenum, which was at least partially mediated via the CRF signaling pathway.
Collapse
Affiliation(s)
- Chunyang Zhu
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Jingyi Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
148
|
Hadjivasilis A, Tsioutis C, Michalinos A, Ntourakis D, Christodoulou DK, Agouridis AP. New insights into irritable bowel syndrome: from pathophysiology to treatment. Ann Gastroenterol 2019; 32:554-564. [PMID: 31700231 PMCID: PMC6826071 DOI: 10.20524/aog.2019.0428] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is the most common reason to visit a gastroenterologist. IBS was believed to be a functional disease, but many possible pathophysiologic mechanisms can now explain the symptoms. IBS patients are classified into subtypes according to their predominant bowel habit, based on the Rome IV criteria. These include diarrhea-predominant and constipation-predominant IBS, as well as the mixed type, a combination of the two. Usually, IBS treatment is based on the predominant symptoms, with many options for each subtype. A new promising treatment option, fecal microbiota transplantation, seems to have beneficial effects on IBS. However, treating the pathophysiological causative agent responsible for the symptoms is an emerging approach. Therefore, before the appropriate therapeutic option is chosen for treating IBS, a clinical evaluation of its pathophysiology should be performed.
Collapse
Affiliation(s)
- Alexandros Hadjivasilis
- School of Medicine, European University Cyprus, Nicosia, Cyprus (Alexandros Hadjivasilis, Constantinos Tsioutis, Adamantios Michalinos, Dimitrios Ntourakis, Aris P. Agouridis)
| | - Constantinos Tsioutis
- School of Medicine, European University Cyprus, Nicosia, Cyprus (Alexandros Hadjivasilis, Constantinos Tsioutis, Adamantios Michalinos, Dimitrios Ntourakis, Aris P. Agouridis)
| | - Adamantios Michalinos
- School of Medicine, European University Cyprus, Nicosia, Cyprus (Alexandros Hadjivasilis, Constantinos Tsioutis, Adamantios Michalinos, Dimitrios Ntourakis, Aris P. Agouridis)
| | - Dimitrios Ntourakis
- School of Medicine, European University Cyprus, Nicosia, Cyprus (Alexandros Hadjivasilis, Constantinos Tsioutis, Adamantios Michalinos, Dimitrios Ntourakis, Aris P. Agouridis)
| | - Dimitrios K. Christodoulou
- Department of Gastroenterology, University Hospital of Ioannina, School of Health Sciences, University of Ioannina, Greece (Dimitrios K. Christodoulou)
| | - Aris P. Agouridis
- School of Medicine, European University Cyprus, Nicosia, Cyprus (Alexandros Hadjivasilis, Constantinos Tsioutis, Adamantios Michalinos, Dimitrios Ntourakis, Aris P. Agouridis)
| |
Collapse
|
149
|
Tangible pathologies in functional dyspepsia. Best Pract Res Clin Gastroenterol 2019; 40-41:101650. [PMID: 31594648 DOI: 10.1016/j.bpg.2019.101650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023]
Abstract
Functional dyspepsia (FD) is a common, costly and complex disease, currently defined by symptoms, directed by the Rome consensus on functional bowel disorders, which has evolved over the past two decades. Symptoms include abdominal pain, are often meal related and there are two major subtypes, postprandial distress syndrome and epigastric pain syndrome, not attributed to pathology. Increasingly it is recognised that tangible pathologies occur in FD, for example Helicobacter pylori and other pathophysiological changes, most notably duodenal pathology, namely duodenal eosinophilia, permeability alterations, structural neuronal changes and microbial duodenal dysbiosis. This has led to the idea that FD is a true disease entity and triggers of this condition based on epidemiology studies point towards allergy, immune disorders and infection. Anxiety and depression may precede or follow FD, (brain-gut/gut-brain disorders). Currently most therapies for FD are inadequate but underlying pathology may lead to targeted treatment success as an attainable goal.
Collapse
|
150
|
Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci 2019; 13:345. [PMID: 31417365 PMCID: PMC6682652 DOI: 10.3389/fncel.2019.00345] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The mast cells (MCs) are the leader cells of inflammation. They are well known for their involvement on allergic reactions through degranulation and release of vasoactive, inflammatory, and nociceptive mediators. Upon encountering potential danger signal, MCs are true sensors of the environment, the first to respond in rapid and selective manner. The MC activates the algic response and modulates the evolution of nociceptive pain, typical of acute inflammation, to neuropathic pain, typical not only of chronic inflammation but also of the dysregulation of the pain system. Yet, MC may contribute to modulate intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front. Chronic inflammation is a common mediator of these co-morbidities. In parallel to the removal of the etiological factors of tissue damage, the modulation of MC hyperactivity and the reduction of the release of inflammatory factors may constitute a new frontier of pharmacological intervention aimed at preventing the chronicity of inflammation, the evolution of pain, and also the worsening of the depression and anxiogenic state associated with it. So, identifying specific molecules able to modify MC activity may be an important therapeutic tool. Various preclinical evidences suggest that the intestinal microbiota contributes substantially to mood and behavioral disorders. In humans, conditions of the microbiota have been linked to stress, anxiety, depression, and pain. MC is likely the crucial neuroimmune connecting between these components. In this review, the involvement of MCs in pain, stress, and depression is reviewed. We focus on the MC as target that may be mediating stress and mood disorders via microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|