101
|
Wei Y, Song D, Wang R, Li T, Wang H, Li X. Dietary fungi in cancer immunotherapy: From the perspective of gut microbiota. Front Oncol 2023; 13:1038710. [PMID: 36969071 PMCID: PMC10032459 DOI: 10.3389/fonc.2023.1038710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Immunotherapies are recently emerged as a new strategy in treating various kinds of cancers which are insensitive to standard therapies, while the clinical application of immunotherapy is largely compromised by the low efficiency and serious side effects. Gut microbiota has been shown critical for the development of different cancer types, and the potential of gut microbiota manipulation through direct implantation or antibiotic-based depletion in regulating the overall efficacy of cancer immunotherapies has also been evaluated. However, the role of dietary supplementations, especially fungal products, in gut microbiota regulation and the enhancement of cancer immunotherapy remains elusive. In the present review, we comprehensively illustrated the limitations of current cancer immunotherapies, the biological functions as well as underlying mechanisms of gut microbiota manipulation in regulating cancer immunotherapies, and the benefits of dietary fungal supplementation in promoting cancer immunotherapies through gut microbiota modulation.
Collapse
Affiliation(s)
- Yibing Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| |
Collapse
|
102
|
Di Tucci C, De Vito I, Muzii L. Immune-Onco-Microbiome: A New Revolution for Gynecological Cancers. Biomedicines 2023; 11:biomedicines11030782. [PMID: 36979761 PMCID: PMC10045465 DOI: 10.3390/biomedicines11030782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Despite significant advances in understanding the pathogenetic mechanisms underlying gynaecological cancers, these cancers still remain widespread. Recent research points to a possible link between microbiota and cancer, and the most recent attention is focusing on the relationship between the microbiome, the immune system, and cancer. The microbiome diversity can affect carcinogenesis and the patient’s immune response, modulating the inflammatory cascade and the severity of adverse events. In this review, we presented the recent evidence regarding microbiome alterations in patients with gynaecological tumours to understand if the link that exists between microbiome, immunity, and cancer can guide the prophylactic, diagnostic, and therapeutic management of gynaecological cancers.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
- Correspondence:
| | | | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
103
|
Chen J, Niu C, Yang N, Liu C, Zou SS, Zhu S. Biomarker discovery and application-An opportunity to resolve the challenge of liver cancer diagnosis and treatment. Pharmacol Res 2023; 189:106674. [PMID: 36702425 DOI: 10.1016/j.phrs.2023.106674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Liver cancer is one of the most common malignancies, with severe morbidity and mortality. While considerable progress has been made in liver cancer treatment, the 5-year overall survival (OS) of patients has not improved significantly. Reasons include the inadequate capability of early screening and diagnosis, a high incidence of recurrence and metastasis, a high degree of tumor heterogeneity, and an immunosuppressive tumor microenvironment. Therefore, the identification and validation of specific and robust liver cancer biomarkers are of major importance for early screening, timely diagnosis, accurate prognosis, and the prevention of tumor progression. In this review, we highlight some of the latest research progress and potential applications of liver cancer biomarkers, describing hotspots and prospective directions in biomarker discovery.
Collapse
Affiliation(s)
- Jingtao Chen
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China; Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ning Yang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunyan Liu
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan-Shan Zou
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan Zhu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China; Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
104
|
Immune checkpoint inhibitor resistance in hepatocellular carcinoma. Cancer Lett 2023; 555:216038. [PMID: 36529238 DOI: 10.1016/j.canlet.2022.216038] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The application of immune checkpoint inhibitors (ICIs) has markedly enhanced the treatment of hepatocellular carcinoma (HCC), and HCC patients who respond to ICIs have shown prolonged survival. However, only a subset of HCC patients benefit from ICIs, and those who initially respond to ICIs may develop resistance. ICI resistance is likely related to various factors, including the immunosuppressive tumor microenvironment (TME), the absence of antigen expression and impaired antigen presentation, tumor heterogeneity, and gut microbiota. Therefore, exploring the possible mechanisms of ICI resistance is crucial to improve the clinical benefit of ICIs further. Various combination therapies for HCC immunotherapy have prevented and reversed ICI resistance to a certain extent. In addition, many new combination therapies that can overcome resistance are being explored. This review seeks to characterize the complex TME in HCC, explore the possible mechanisms of immune resistance to ICIs in different resistance categories, and review the combination therapies currently being applied and those under investigation for immunotherapy.
Collapse
|
105
|
Jakubauskas M, Jakubauskiene L, Leber B, Horvath A, Strupas K, Stiegler P, Schemmer P. Probiotic Supplementation Attenuates Chemotherapy-Induced Intestinal Mucositis in an Experimental Colorectal Cancer Liver Metastasis Rat Model. Nutrients 2023; 15:nu15051117. [PMID: 36904117 PMCID: PMC10005486 DOI: 10.3390/nu15051117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The use of chemotherapeutic agents is of paramount importance when treating colorectal cancer (CRC). Unfortunately, one of the most frequent chemotherapy (CTx) side effects is intestinal mucositis (IM), which may present with several clinical symptoms such as nausea, bloating, vomiting, pain, and diarrhea and even can result in life-threatening complications. There is a focused scientific effort towards developing new therapies to prevent and treat IM. The aim of this study was to assess the outcomes of probiotic supplementation on CTx-induced IM in a CRC liver metastasis rat model. Six-week-old male Wistar rats received either a multispecies probiotic or placebo mixture. On the 28th experiment day, rats received FOLFOX CTx, and afterwards, the severity of diarrhea was evaluated twice daily. Stool samples were collected for further microbiome analysis. Additionally, immunohistochemical stainings of ileum and colon samples with were performed with MPO, Ki67, and Caspase-3 antibodies. Probiotic supplementation alleviates the severity and length of CTx-induced diarrhea. Additionally, probiotics significantly reduced FOLFOX-induced weight and blood albumin loss. Furthermore, probiotic supplementation mitigated CTx-induced histological changes in the gut and promoted intestinal cell regeneration. This study shows that multispecies probiotic supplementation attenuates FOLFOX-induced IM symptoms by inhibiting apoptosis and promoting intestinal cell proliferation.
Collapse
Affiliation(s)
- Matas Jakubauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania
| | - Lina Jakubauskiene
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-84094
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| |
Collapse
|
106
|
Domingues C, Cabral C, Jarak I, Veiga F, Dourado M, Figueiras A. The Debate between the Human Microbiota and Immune System in Treating Aerodigestive and Digestive Tract Cancers: A Review. Vaccines (Basel) 2023; 11:vaccines11030492. [PMID: 36992076 DOI: 10.3390/vaccines11030492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The human microbiota comprises a group of microorganisms co-existing in the human body. Unbalanced microbiota homeostasis may impact metabolic and immune system regulation, shrinking the edge between health and disease. Recently, the microbiota has been considered a prominent extrinsic/intrinsic element of cancer development and a promising milestone in the modulation of conventional cancer treatments. Particularly, the oral cavity represents a yin-and-yang target site for microorganisms that can promote human health or contribute to oral cancer development, such as Fusobacterium nucleatum. Moreover, Helicobacter pylori has also been implicated in esophageal and stomach cancers, and decreased butyrate-producing bacteria, such as Lachnospiraceae spp. and Ruminococcaceae, have demonstrated a protective role in the development of colorectal cancer. Interestingly, prebiotics, e.g., polyphenols, probiotics (Faecalibacterium, Bifidobacterium, Lactobacillus, and Burkholderia), postbiotics (inosine, butyrate, and propionate), and innovative nanomedicines can modulate antitumor immunity, circumventing resistance to conventional treatments and could complement existing therapies. Therefore, this manuscript delivers a holistic perspective on the interaction between human microbiota and cancer development and treatment, particularly in aerodigestive and digestive cancers, focusing on applying prebiotics, probiotics, and nanomedicines to overcome some challenges in treating cancer.
Collapse
Affiliation(s)
- Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cristiana Cabral
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
107
|
Liao Y, Zhang JB, Lu LX, Jia YJ, Zheng MQ, Debelius JW, He YQ, Wang TM, Deng CM, Tong XT, Xue WQ, Cao LJ, Wu ZY, Yang DW, Zheng XH, Li XZ, Wu YX, Feng L, Ye W, Mu J, Jia WH. Oral Microbiota Alteration and Roles in Epstein-Barr Virus Reactivation in Nasopharyngeal Carcinoma. Microbiol Spectr 2023; 11:e0344822. [PMID: 36645283 PMCID: PMC9927204 DOI: 10.1128/spectrum.03448-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/16/2022] [Indexed: 01/17/2023] Open
Abstract
Microbiota has recently emerged as a critical factor associated with multiple malignancies. Nasopharyngeal carcinoma (NPC) is highly associated with Epstein-Barr virus (EBV); the oncovirus resides and is transmitted in the oral cavity. However, the alternation of oral microbiota in NPC patients and its potential link to EBV reactivation and host cell response under the simultaneous existence of EBV and specific bacteria is largely unknown. Here, oral microbiota profiles of 303 NPC patients and controls with detailed clinical information, including serum EBV anti-virus capsid antigen (VCA) IgA level, were conducted. A distinct microbial community with lower diversity and imbalanced composition in NPC patients was observed. Notably, among enriched bacteria in patients, Streptococcus sanguinis was associated with anti-VCA IgA, an indicator of NPC risk and EBV reactivation. By measuring the concentration of its metabolite, hydrogen peroxide (H2O2), in the saliva of clinical patients, we found the detection rate of H2O2 was 2-fold increased compared to healthy controls. Further coculture assay of EBV-positive Akata cells with bacteria in vitro showed that S. sanguinis induced EBV lytic activation by its metabolite, H2O2. Host and EBV whole genome-wide transcriptome sequencing and EBV methylation assays showed that H2O2 triggered the host cell signaling pathways, notably tumor necrosis factor alpha (TNF-α) via NF-κB, and induced the demethylation of the global EBV genome and the expression of EBV lytic-associated genes, which could result in an increase of virus particle release and potential favorable events toward tumorigenesis. In brief, our study identified a characterized oral microbial profile in NPC patients and established a robust link between specific oral microbial alteration and switch of latency to lytic EBV infection status in the oral cavity, which provides novel insights into EBV's productive cycle and might help to further clarify the etiology of NPC. IMPORTANCE EBV is classified as the group I human carcinogen and is associated with multiple cancers, including NPC. The interplays between the microbiota and oncovirus in cancer development remain largely unknown. In this study, we investigate the interactions between resident microbes and EBV coexistence in the oral cavity of NPC patients. We identify a distinct oral microbial feature for NPC patients. Among NPC-enriched bacteria, we illustrated that a specific species, S. sanguinis, associated with elevated anti-IgA VCA in patients, induced EBV lytic activation by its by-product, H2O2, and activated the TNF-α/NF-κB pathway of EBV-positive B cells in vitro, together with increased detection rate of H2O2 in patients' oral cavities, which strengthened the evidence of bacteria-virus-host interaction in physiological circumstances. The effects of imbalanced microbiota on the EBV latent-to-lytic switch in the oral cavity might create the likelihood of EBV infection in epithelial cells at the nasopharynx and help malignant transition and cancer development.
Collapse
Affiliation(s)
- Ying Liao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jiang-Bo Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Li-Xia Lu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi-Jing Jia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Mei-Qi Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Justine W. Debelius
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yong-Qiao He
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Tong-Min Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Chang-Mi Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xia-Ting Tong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Qiong Xue
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lian-Jing Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zi-Yi Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Da-Wei Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Hui Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xi-Zhao Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan-Xia Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lin Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Wei-Hua Jia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
108
|
Liu Y, Lu J. A bibliometric analysis of Mediterranean diet on cancer from 2012 to 2021. Front Nutr 2023; 10:1128432. [PMID: 36845049 PMCID: PMC9944434 DOI: 10.3389/fnut.2023.1128432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Background Numerous studies have demonstrated the value of the Mediterranean diet (MD) as a nutritious eating regimen for lowering the risk of cancer. This study aims to discuss the research patterns, existing state, and possible hotspots in implementing the MD for the prevention and treatment of cancer using bibliometrics. Methods The Web of Science Core Collection (WoSCC) was searched for articles on cancer that were related to the MD. CiteSpace, VOSviewer, Microsoft Excel 2019, and R software were utilized for bibliometric analysis and data visualization. Results There were 1,415 articles and reviews published from 2012 to 2021. Annual publication volume showed a continuous upward trend. Italy and Harvard University were the country and institution, respectively, with the highest number of publications on this topic. Nutrients ranked first in the number of documents, number of citations, and the H-index. James R. Hebert was the most productive writer, and Antonia Trichopoulou was the most co-cited author. "Alcohol consumption," "oleic acid," and "low density lipoprotein" were keywords used in earlier publications, while more recent hotspots focused on "gut microbiota," "older adult," and "polyphenol." Conclusion Over the past decade, research on the MD in the field of cancer has received increasing attention. To improve the level of evidence for the beneficial effects of the MD on a range of cancers, more research on molecular mechanisms and better clinical studies are required.
Collapse
Affiliation(s)
| | - Jibin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
109
|
Zhou Y, Medik YB, Patel B, Zamler DB, Chen S, Chapman T, Schneider S, Park EM, Babcock RL, Chrisikos TT, Kahn LM, Dyevoich AM, Pineda JE, Wong MC, Mishra AK, Cass SH, Cogdill AP, Johnson DH, Johnson SB, Wani K, Ledesma DA, Hudgens CW, Wang J, Wadud Khan MA, Peterson CB, Joon AY, Peng W, Li HS, Arora R, Tang X, Raso MG, Zhang X, Foo WC, Tetzlaff MT, Diehl GE, Clise-Dwyer K, Whitley EM, Gubin MM, Allison JP, Hwu P, Ajami NJ, Diab A, Wargo JA, Watowich SS. Intestinal toxicity to CTLA-4 blockade driven by IL-6 and myeloid infiltration. J Exp Med 2023; 220:e20221333. [PMID: 36367776 PMCID: PMC9664499 DOI: 10.1084/jem.20221333] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yusra B. Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bhakti Patel
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel B. Zamler
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Sijie Chen
- Ministry of Education Key Lab of Bioinformatics and Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, China
| | - Thomas Chapman
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah Schneider
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth M. Park
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rachel L. Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Taylor T. Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Laura M. Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Allison M. Dyevoich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Josue E. Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Matthew C. Wong
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Aditya K. Mishra
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Samuel H. Cass
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexandria P. Cogdill
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Daniel H. Johnson
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah B. Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Debora A. Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney W. Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jingjing Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Md Abdul Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christine B. Peterson
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aron Y. Joon
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xuegong Zhang
- Ministry of Education Key Lab of Bioinformatics and Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, China
| | - Wai Chin Foo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael T. Tetzlaff
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gretchen E. Diehl
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth M. Whitley
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew M. Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Patrick Hwu
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nadim J. Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
110
|
Raskov H, Gaggar S, Tajik A, Orhan A, Gögenur I. Metabolic switch in cancer - Survival of the fittest. Eur J Cancer 2023; 180:30-51. [PMID: 36527974 DOI: 10.1016/j.ejca.2022.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Cell metabolism is characterised by the highly coordinated conversion of nutrients into energy and biomass. In solid cancers, hypoxia, nutrient deficiencies, and tumour vasculature are incompatible with accelerated anabolic growth and require a rewiring of cancer cell metabolism. Driver gene mutations direct malignant cells away from oxidation to maximise energy production and biosynthesis while tumour-secreted factors degrade peripheral tissues to fuel disease progression and initiate metastasis. As it is vital to understand cancer cell metabolism and survival mechanisms, this review discusses the metabolic switch and current drug targets and clinical trials. In the future, metabolic markers may be included when phenotyping individual tumours to improve the therapeutic opportunities for personalised therapy.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, 4600, Denmark.
| | - Shruti Gaggar
- Center for Surgical Science, Zealand University Hospital, Køge, 4600, Denmark
| | - Asma Tajik
- Center for Surgical Science, Zealand University Hospital, Køge, 4600, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, 4600, Denmark; Department of Clinical Oncology, Zealand University Hospital, Roskilde, 4000, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, 4600, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
111
|
Esposito S, Bonaccio M, Ruggiero E, Costanzo S, Di Castelnuovo A, Gialluisi A, Esposito V, Innocenzi G, Paolini S, Cerletti C, Donati MB, de Gaetano G, Iacoviello L. Food processing and risk of central nervous system tumours: A preliminary case-control analysis from the MEditerranean DIet in relation to CancEr of brAin (MEDICEA) study. Clin Nutr 2023; 42:93-101. [PMID: 36521255 DOI: 10.1016/j.clnu.2022.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The relationship between diet and central nervous system (CNS) tumours was almost exclusively focused on food composition. We evaluated the relationship of different degrees of food processing with risk of CNS tumours. METHODS The study sample included 44 CNS tumours cases (20 non-malignant and 24 malignant) recruited from the Neurosurgery Department at the IRCCS Neuromed (Italy), and 88 controls matched 1:2 for sex and age± 10 years, identified from the Moli-sani Study. Dietary intake was assessed using a 188-item FFQ. Food items were grouped according to the NOVA classification on the basis of processing as: (1) unprocessed/minimally processed foods; (2) processed culinary ingredients; (3) processed foods; and (4) ultra-processed food (UPF). Conditional logistic regression models were used to estimate odds ratio (OR) and 95% confidence intervals (95%CI) of dietary contributions from each NOVA group (as weight ratio on the total food eaten) and adjusting for potential confounders. RESULTS In a multivariable conditional to match logistic regression analysis also controlled for overall diet quality, 1% increment in UPF intake was associated with higher odds of all CNS tumours (OR = 1.06; 1.01-1.13), particularly of malignant CNS tumours (OR = 1.11; 1.02-1.22), while no association with non-malignant CNS tumours was found (OR = 1.06; 0.99-1.15). In contrast, only processed food was inversely associated with risk of both CNS tumours overall (OR = 0.94; 0.90-0.98) and of malignant CNS tumours (OR = 0.90; 0.83-0.96). CONCLUSION Increasing UPF intake was associated with higher risk of CNS tumours, especially malignant ones, independently of the overall diet quality, while only processed food (but not UPF) was inversely related to the risk of this disease.
Collapse
Affiliation(s)
- Simona Esposito
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli (IS), Italy.
| | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli (IS), Italy; Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese-Como, Italy
| | | | | | - Sergio Paolini
- Department of Neurosurgery, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli (IS), Italy; Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese-Como, Italy
| |
Collapse
|
112
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
113
|
Teng H, Wang Y, Sui X, Fan J, Li S, Lei X, Shi C, Sun W, Song M, Wang H, Dong D, Geng J, Zhang Y, Zhu X, Cai Y, Li Y, Li B, Min Q, Wang W, Zhan Q. Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer. Cancer Cell 2023; 41:124-138.e6. [PMID: 36563680 DOI: 10.1016/j.ccell.2022.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Preoperative neoadjuvant chemoradiotherapy (nCRT) is a standard treatment for locally advanced rectal cancer (LARC) patients, yet little is known about the mediators underlying the heterogeneous patient response. In this longitudinal study, we performed 16S rRNA sequencing on 353 fecal specimens and find reduced microbial diversity after nCRT. Multi-omics data integration reveals that Bacteroides vulgatus-mediated nucleotide biosynthesis associates with nCRT resistance in LARC patients, and nonresponsive tumors are characterized by the upregulation of genes related to DNA repair and nucleoside transport. Nucleosides supplementation or B. vulgatus gavage protects cancer cells from the 5-fluorouracil or irradiation treatment. An analysis of 2,205 serum samples from 735 patients suggests that uric acid is a potential prognosis marker for LARC patients receiving nCRT. Our data unravel the role of intestinal microbiota-mediated nucleotide biosynthesis in the response of rectal tumors to nCRT, and highlight the importance of deciphering the cross-talk between cancer cells and gut microorganisms during cancer therapies.
Collapse
Affiliation(s)
- Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yan Wang
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xin Sui
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jiawen Fan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shuai Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiao Lei
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chen Shi
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Maxiaowei Song
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongzhi Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dezuo Dong
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianhao Geng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yangzi Zhang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xianggao Zhu
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yong Cai
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yongheng Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bo Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingjie Min
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Weihu Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Qimin Zhan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
114
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
115
|
Stachulski AV, Knausenberger TBA, Shah SN, Hoyles L, McArthur S. A host-gut microbial amino acid co-metabolite, p-cresol glucuronide, promotes blood-brain barrier integrity in vivo. Tissue Barriers 2023; 11:2073175. [PMID: 35596559 PMCID: PMC9870004 DOI: 10.1080/21688370.2022.2073175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The sequential activity of gut microbial and host processes can exert a powerful modulatory influence on dietary components, as exemplified by the metabolism of the amino acids tyrosine and phenylalanine to p-cresol by gut microbes, and then to p-cresol glucuronide (pCG) by host enzymes. Although such glucuronide conjugates are classically thought to be biologically inert, there is accumulating evidence that this may not always be the case. We investigated the activity of pCG, studying its interactions with the cerebral vasculature and the brain in vitro and in vivo. Male C57Bl/6 J mice were used to assess blood-brain barrier (BBB) permeability and whole-brain transcriptomic changes in response to pCG treatment. Effects were then further explored using the human cerebromicrovascular endothelial cell line hCMEC/D3, assessing paracellular permeability, transendothelial electrical resistance and barrier protein expression. Mice exposed to pCG showed reduced BBB permeability and significant changes in whole-brain transcriptome expression. Surprisingly, treatment of hCMEC/D3 cells with pCG had no notable effects until co-administered with bacterial lipopolysaccharide, at which point it was able to prevent the permeabilizing effects of endotoxin. Further analysis suggested that pCG acts as an antagonist at the principal lipopolysaccharide receptor TLR4. The amino acid phase II metabolic product pCG is biologically active at the BBB, antagonizing the effects of constitutively circulating lipopolysaccharide. These data add to the growing literature showing glucuronide conjugates to be more than merely metabolic waste products and highlight the complexity of gut microbe to host communication pathways underlying the gut-brain axis.
Collapse
Affiliation(s)
- Andrew V. Stachulski
- Department of Chemistry, Robert Robinson Laboratories, University of Liverpool, Liverpool, UK,contact Lesley Hoyles Department of Bioscience, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Tobias B-A Knausenberger
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London, UK
| | - Sita N. Shah
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London, UK
| | - Lesley Hoyles
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK,CONTACT Simon McArthur Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, 4, Newark Street, LondonE1 2AT, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London, UK,Andrew V. Stachulski Department of Chemistry, Robert Robinson Laboratories, University of Liverpool, LiverpoolL69 7ZD, UK
| |
Collapse
|
116
|
Chang L, Qiu L, Lei N, Zhou J, Guo R, Gao F, Dong S, Chen M, Wu F, Qin B. Characterization of fecal microbiota in cervical cancer patients associated with tumor stage and prognosis. Front Cell Infect Microbiol 2023; 13:1145950. [PMID: 36909733 PMCID: PMC9995373 DOI: 10.3389/fcimb.2023.1145950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cervical cancer (CC) is the fourth most frequent malignancy among women worldwide, and its prevention and treatment are evolving rapidly. The gut microbiota has been reported to play a crucial role both in the preservation of homeostasis and the development of cervical cancer. In this study, we collected fecal samples to investigate the microbial signatures in cervical cancer patients compared with healthy controls using 16S rRNA sequencing analysis and metagenomic next-generation sequencing (mNGS) testing. Our findings demonstrated a substantial difference in the gut microbiota composition of cervical cancer patients and healthy controls. The disease and stage were most significantly negatively correlated with Ruminococcus 2, which might be considered a potential clinically relevant biomarker. Functions of differential microbiomes were also analyzed, indicating significant differences in metabolisms and biosynthesis between the two groups. These findings demonstrate that patients with cervical cancer have certain species of gut microbiota that are exclusive to them and particular species have the potential to be used in the prognosis of cervical cancer.
Collapse
Affiliation(s)
- Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Lei Chang,
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Junying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center for Accurate Diagnosis Neuroimmunity, Zhengzhou, Henan, China
| | - Shiliang Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengling Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Qin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
117
|
Chang Y, Ou Q, Zhou X, Liu J, Zhang S. Global research trends and focus on the link between colorectal cancer and gut flora: a bibliometric analysis from 2001 to 2021. Front Microbiol 2023; 14:1182006. [PMID: 37213508 PMCID: PMC10196369 DOI: 10.3389/fmicb.2023.1182006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Background Colorectal cancer (CRC) is a highly prevalent cancer, and the global healthcare system bears a significant burden due to its incidence. Modulating the gut microbiota is a promising approach to enhance the efficacy of CRC treatment and reduce its adverse effects. The causal relationship between specific microorganisms' presence and CRC development has been widely validated. However, few studies have investigated this relationship using bibliometric methods. Therefore, this study analyzed the research hotspots and trends in human gut microbiology and CRC over the last two decades from a bibliometric perspective. The study aims to provide novel insights into basic and clinical research in this field. Methods The articles and reviews on gut microbiota in CRC were obtained from the Web of Science Core Collection (WOSCC) on November 2, 2022. CiteSpace and VOSviewer were used to conduct the bibliometric and knowledge-map analysis. Results A total of 2,707 publications were obtained, with a rapid increase in the number of publications since 2015. The United States and China are the main contributors in this field and have established a network of partnerships in several countries. 414 academic journals have published articles on this topic. The author with the highest number of publications is Jun Yu from the Chinese University of Hong Kong. In addition to "intestinal flora" and "colorectal cancer," high frequency terms in the keyword co-occurrence network analysis included inflammatory bowel disease, Fusobacterium nucleatum, inflammation, long-chain fatty acids, ulcerative colitis, bile acids, and resistant starch. Analysis of keyword trends using burst testing revealed that biomarkers, abnormal crypt foci, bifidobacteria, β-glucuronidase, short-chain fatty acids, bile acids, and DNA methylation are at the forefront of research in this area. Conclusion The findings of this study provide a bibliometric analysis and visualization of the key research areas in gut microbiota and CRC over the past 20 years. The results suggest that the role of gut microbiota in CRC and its underlying mechanisms should be closely monitored, particularly in the areas of biomarkers, metabolic pathways, and DNA methylation, which may emerge as hot topics in this field.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
- *Correspondence: Sifang Zhang,
| |
Collapse
|
118
|
Chuanbing Z, Zhengle Z, Ruili D, Kongfan Z, Jing T. Genes Modulating Butyrate Metabolism for Assessing Clinical Prognosis and Responses to Systematic Therapies in Hepatocellular Carcinoma. Biomolecules 2022; 13:52. [PMID: 36671437 PMCID: PMC9856074 DOI: 10.3390/biom13010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Butyrate, one of the major products of the gut microbiota, has played notable roles in diverse therapies for multiple tumors. Our study aimed to determine the roles of genes that modulate butyrate metabolism (BM) in predicting the clinical prognosis and responses to systemic therapies in hepatocellular carcinoma (HCC). The genes modulating BM were available from the GeneCard database, and gene expression and clinical information were obtained from TCGA-LIHC, GEO, ICGC-JP, and CCLE databases. Candidate genes from these genes that regulate BM were then identified by univariate Cox analysis. According to candidate genes, the patients in TCGA were grouped into distinct subtypes. Moreover, BM- related gene signature (BMGs) was created via the LASSO Cox algorithm. The roles of BMGs in identifying high-risk patients of HCC, assessing the prognoses, and predicting systematic therapies were determined in various datasets. The statistical analyses were fulfilled with R 4.1.3, GraphPad Prism 8.0 and Perl 5.30.0.1 software. In the TCGA cohort, most butyrate-related genes were over-expressed in the B cluster, and patients in the B cluster showed worse prognoses. BMGs constructed by LASSO were composed of eight genes. BMGs exhibited a strong performance in evaluating the prognoses of HCC patients in various datasets, which may be superior to 33 published biomarkers. Furthermore, BMGs may contribute to the early surveillance of HCC, and BMGs could play active roles in assessing the effectiveness of immunotherapy, TACE, ablation therapy, and chemotherapeutic drugs for HCC. BMGs may be served as novel promising biomarkers for early identifying high-risk groups of HCC, as well as assessing prognoses, drug sensitivity, and the responses to immunotherapy, TACE, and ablation therapy in patients with HCC.
Collapse
Affiliation(s)
- Zhao Chuanbing
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Zhang Zhengle
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Ding Ruili
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Zhu Kongfan
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Tao Jing
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| |
Collapse
|
119
|
Ren Y, Nie L, Luo C, Zhu S, Zhang X. Advancement in Therapeutic Intervention of Prebiotic-Based Nanoparticles for Colonic Diseases. Int J Nanomedicine 2022; 17:6639-6654. [PMID: 36582460 PMCID: PMC9793785 DOI: 10.2147/ijn.s390102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Intestinal flora has become a therapeutic target for the intervention of colonic diseases (CDs) with better understanding of the interplay between microbiota and CDs. Depending on unique properties and prominent ability of regulating the intestinal flora, prebiotics can not only achieve a colon-specific drug delivery but also maintain the intestinal homeostasis, thus playing a positive role in the intervention of CDs. Currently, different studies on prebiotic-based nanoparticles have been contrived for colonic drug delivery and have shown great potential in curing various CDs, such as colitis and colorectal cancer. Nevertheless, there is a lack of systematic survey on the use of prebiotic nanoparticles for the treatment of CDs. This review aims to generalize the state-of-the-art of prebiotic nanomedicines specific for CDs. The species and function of intestinal flora and various kinds of prebiotics available as well as their regulating effects on intestinal flora were expounded. A variety of prebiotic nanoparticles pertinent to colon-targeted drug delivery systems were illustrated with particular emphasis on their curative activities on CDs. The efficacy and safety of prebiotic-based colonic drug delivery systems (p-CDDs) were also analyzed. In conclusion, the synergy between prebiotic nanoparticles and their cargos may hold promise for the treatment and intervention of CDs.
Collapse
Affiliation(s)
- Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Linghui Nie
- ASD Medical Rehabilitation Center, the Second People’s Hospital of Guangdong Province, Guangzhou, People’s Republic of China
| | - Chunhua Luo
- Newborn Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China,Shiping Zhu, Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 513630, People’s Republic of China, Email
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China,Correspondence: Xingwang Zhang, Department of Pharmaceutics, College of Pharmacy, Jinan University, No. 855 East Xingye Avenue, Guangzhou, 511443, People’s Republic of China, Email
| |
Collapse
|
120
|
Li Z, Ke X, Zuo D, Wang Z, Fang F, Li B. New Insights into the Relationship between Gut Microbiota and Radiotherapy for Cancer. Nutrients 2022; 15:nu15010048. [PMID: 36615706 PMCID: PMC9824372 DOI: 10.3390/nu15010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second most common cause of death among humans in the world, and the threat that it presents to human health is becoming more and more serious. The mechanisms of cancer development have not yet been fully elucidated, and new therapies are changing with each passing day. Evidence from the literature has validated the finding that the composition and modification of gut microbiota play an important role in the development of many different types of cancer. The results also demonstrate that there is a bidirectional interaction between the gut microbiota and radiotherapy treatments for cancer. In a nutshell, the modifications of the gut microbiota caused by radiotherapy have an effect on tumor radiosensitivity and, as a result, affect the efficacy of radiotherapy and show a certain radiation toxicity, which leads to numerous side effects. What is of new research significance is that the "gut-organ axis" formed by the gut microbiota may be one of the most interesting potential mechanisms, although the relevant research is still very limited. In this review, we combine new insights into the relationship between the gut microbiota, cancer, and radiotherapy. Based on our current comprehensive understanding of this relationship, we give an overview of the new cancer treatments based on the gut microbiota.
Collapse
Affiliation(s)
- Zhipeng Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiyang Ke
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Ministry of Education, Beijing 100142, China
| | - Dan Zuo
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Fang Fang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-431-85619455
| | - Bo Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
121
|
Flavonoids' Dual Benefits in Gastrointestinal Cancer and Diabetes: A Potential Treatment on the Horizon? Cancers (Basel) 2022; 14:cancers14246073. [PMID: 36551558 PMCID: PMC9776408 DOI: 10.3390/cancers14246073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes and gastrointestinal cancers (GI) are global health conditions with a massive burden on patients' lives worldwide. The development of both conditions is influenced by several factors, such as diet, genetics, environment, and infection, which shows a potential link between them. Flavonoids are naturally occurring phenolic compounds present in fruits and vegetables. Once ingested, unabsorbed flavonoids reaching the colon undergo enzymatic modification by the gut microbiome to facilitate absorption and produce ring fission products. The metabolized flavonoids exert antidiabetic and anti-GI cancer properties, targeting major impaired pathways such as apoptosis and cellular proliferation in both conditions, suggesting the potentially dual effects of flavonoids on diabetes and GI cancers. This review summarizes the current knowledge on the impact of flavonoids on diabetes and GI cancers in four significant pathways. It also addresses the synergistic effects of selected flavonoids on both conditions. While this is an intriguing approach, more studies are required to better understand the mechanism of how flavonoids can influence the same impaired pathways with different outcomes depending on the disease.
Collapse
|
122
|
Tumor Colonization and Therapy by Escherichia coli Nissle 1917 Strain in Syngeneic Tumor-Bearing Mice Is Strongly Affected by the Gut Microbiome. Cancers (Basel) 2022; 14:cancers14246033. [PMID: 36551519 PMCID: PMC9776137 DOI: 10.3390/cancers14246033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
In the past, different bacterial species have been tested for cancer therapy in preclinical and clinical studies. The success of bacterial cancer therapy is mainly dependent on the ability of the utilized bacteria to overcome the host immune defense system to colonize the tumors and to initiate tumor-specific immunity. In recent years, several groups have demonstrated that the gut microbiome plays an important role of modulation of the host immune response and has an impact on therapeutic responses in murine models and in cohorts of human cancer patients. Here we analyzed the impact of the gut microbiome on tumor colonization and tumor therapy by the Escherichia coli Nissle 1917 (EcN) strain. This EcN strain is a promising cancer therapy candidate with probiotic properties. In our study, we observed significantly better tumor colonization by EcN after antibiotic-induced temporal depletion of the gut microbiome and after two intranasal applications of the EcN derivate (EcN/pMUT-gfp Knr) in 4T1 tumor-bearing syngeneic BALB/c mice. In addition, we demonstrated significant reduction in tumor growth and extended survival of the EcN-treated mice in contrast to phosphate-buffered saline (PBS)-treated tumor-bearing control animals. Multispectral imaging of immune cells revealed that depletion of the gut microbiome led to significantly lower infiltration of cytotoxic and helper T cells (CD4 and CD8 cells) in PBS tumors of mice pretreated with antibiotics in comparison with antibiotic untreated PBS-or EcN treated mice. These findings may help in the future advancement of cancer treatment strategies using E. coli Nissle 1917.
Collapse
|
123
|
Zhou Y, Zhou C, Zhang A. Gut microbiota in acute leukemia: Current evidence and future directions. Front Microbiol 2022; 13:1045497. [PMID: 36532458 PMCID: PMC9751036 DOI: 10.3389/fmicb.2022.1045497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 08/18/2023] Open
Abstract
Gut microbiota includes a large number of microorganisms inhabiting the human gastrointestinal tract, which show a wide range of physiological functions, including digestion, metabolism, immunity, neural development, etc., and are considered to play an increasingly important role in health and disease. A large number of studies have shown that gut microbiota are closely associated with the onset and development of several diseases. In particular, the interaction between gut microbiota and cancer has recently attracted scholars' attention. Acute leukemia (AL) is a common hematologic malignancy, especially in children. Microbiota can affect hematopoietic function, and the effects of chemotherapy and immunotherapy on AL are noteworthy. The composition and diversity of gut microbiota are important factors that influence and predict the complications and prognosis of AL after chemotherapy or hematopoietic stem cell transplantation. Probiotics, prebiotics, fecal microbiota transplantation, and dietary regulation may reduce side effects of leukemia therapy, improve response to treatment, and improve prognosis. This review concentrated on the role of the gut microbiota in the onset and development of AL, the response and side effects of chemotherapy drugs, infection during treatment, and therapeutic efficacy. According to the characteristics of gut microbes, the applications and prospects of microbial preparations were discussed.
Collapse
Affiliation(s)
| | | | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
124
|
Zhao C, Hu X, Bao L, Wu K, Zhao Y, Xiang K, Li S, Wang Y, Qiu M, Feng L, Meng X, Zhang N, Fu Y. Gut dysbiosis induces the development of mastitis through a reduction in host anti-inflammatory enzyme activity by endotoxemia. MICROBIOME 2022; 10:205. [PMID: 36451232 PMCID: PMC9714159 DOI: 10.1186/s40168-022-01402-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/24/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Mounting experimental evidence has shown that the gut microbiota plays a significant role in the pathogenesis of mastitis, and clinical investigations have found that the occurrence of mastitis is correlated with ruminal dysbiosis. However, the underlying mechanism by which the ruminal microbiota participates in the development of mastitis remains unknown. RESULTS In the present study, we found that cows with clinical mastitis had marked systemic inflammation, which was associated with significant ruminal dysbiosis, especially enriched Proteobacteria in the rumen. Ruminal microbiota transplantation from mastitis cows (M-RMT) to mice induced mastitis symptoms in recipient mice along with increased mammary proinflammatory signature activation of the TLR4-cGAS-STING-NF-κB/NLRP3 pathways. M-RMT also induced mucosal inflammation and impaired intestinal barrier integrity, leading to increased endotoxemia and systemic inflammation. Moreover, we showed that M-RMT mirrored ruminal microbiota disruption in the gut of recipient mice, as evidenced by enriched Proteobacteria and similar bacterial functions, which were correlated with most proinflammatory parameters and serum lipopolysaccharide (LPS) levels in mice. Recurrent low-grade LPS treatment mirrored gut dysbiosis-induced endotoxemia and caused severe mastitis in mice. Furthermore, we found that gut dysbiosis-derived LPS reduced host alkaline phosphatase activity by activating neuraminidase (Neu), which facilitates low-grade LPS exposure and E. coli-induced mastitis in mice. Conversely, treatment with calf intestinal alkaline phosphatase or the Neu inhibitor zanamivir alleviated low-grade LPS exposure and E. coli-induced mastitis in mice. CONCLUSIONS Our results suggest that ruminal dysbiosis-derived low-grade endotoxemia can cause mastitis and aggravate pathogen-induced mastitis by impairing host anti-inflammatory enzymes, which implies that regulating the ruminal or gut microbiota to prevent low-grade systemic inflammation is a potential strategy for mastitis intervention. Video Abstract.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Shuang Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiangyue Meng
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| |
Collapse
|
125
|
The Species of Gut Bacteria Associated with Antitumor Immunity in Cancer Therapy. Cells 2022; 11:cells11223684. [PMID: 36429112 PMCID: PMC9688644 DOI: 10.3390/cells11223684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Both preclinical and clinical studies have demonstrated that the modulation of gut microbiota could be a promising strategy for enhancing antitumor immune responses and reducing resistance to immunotherapy in cancer. Various mechanisms, including activation of pattern recognition receptors, gut commensals-produced metabolites and antigen mimicry, have been revealed. Different gut microbiota modulation strategies have been raised, such as fecal microbiota transplantation, probiotics, and dietary selection. However, the identification of gut bacteria species that are either favorable or unfavorable for cancer therapy remains a major challenge. Herein, we summarized the findings related to gut microbiota species observed in the modulation of antitumor immunity. We also discussed the different mechanisms underlying different gut bacteria's functions and the potential applications of these bacteria to cancer immunotherapy in the future.
Collapse
|
126
|
Dacrema M, Ali A, Ullah H, Khan A, Di Minno A, Xiao J, Martins AMC, Daglia M. Spice-Derived Bioactive Compounds Confer Colorectal Cancer Prevention via Modulation of Gut Microbiota. Cancers (Basel) 2022; 14:5682. [PMID: 36428774 PMCID: PMC9688386 DOI: 10.3390/cancers14225682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is the second most frequent cause of cancer-related mortality among all types of malignancies. Sedentary lifestyles, obesity, smoking, red and processed meat, low-fiber diets, inflammatory bowel disease, and gut dysbiosis are the most important risk factors associated with CRC pathogenesis. Alterations in gut microbiota are positively correlated with colorectal carcinogenesis, as these can dysregulate the immune response, alter the gut's metabolic profile, modify the molecular processes in colonocytes, and initiate mutagenesis. Changes in the daily diet, and the addition of plant-based nutraceuticals, have the ability to modulate the composition and functionality of the gut microbiota, maintaining gut homeostasis and regulating host immune and inflammatory responses. Spices are one of the fundamental components of the human diet that are used for their bioactive properties (i.e., antimicrobial, antioxidant, and anti-inflammatory effects) and these exert beneficial effects on health, improving digestion and showing anti-inflammatory, immunomodulatory, and glucose- and cholesterol-lowering activities, as well as possessing properties that affect cognition and mood. The anti-inflammatory and immunomodulatory properties of spices could be useful in the prevention of various types of cancers that affect the digestive system. This review is designed to summarize the reciprocal interactions between dietary spices and the gut microbiota, and highlight the impact of dietary spices and their bioactive compounds on colorectal carcinogenesis by targeting the gut microbiota.
Collapse
Affiliation(s)
- Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Arif Ali
- Postgraduate Program in Pharmacology, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ayesha Khan
- Department of Medicine, Combined Military Hospital Nowshera, Nowshera 24110, Pakistan
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
127
|
Microbiota and prostate cancer. Semin Cancer Biol 2022; 86:1058-1065. [PMID: 34536504 DOI: 10.1016/j.semcancer.2021.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 01/27/2023]
Abstract
Prostate cancer remains the most frequently diagnosed non-skin malignancy in male patients, still representing one of the main causes of cancer-related death worldwide. Evidence is mounting that suggests the putative role of microbiota in the carcinogenesis as well as in modulating the efficacy and activity of anticancer treatments (e.g., chemotherapy, immune checkpoint inhibitors, targeted therapies) in a large number of hematological and solid tumors. However, few data are available regarding the interactions between prostate cancer and microbiome so far, in particular in terms of the impact of microbiota on disease development, pathogenesis, and response to medical treatments in this genitourinary malignancy. Herein, we provide an overview of current knowledge, novel insights and emerging therapeutic approaches related to gastrointestinal and genitourinary microbiome in prostate cancer patients, especially focusing on available evidence and published trials on this topic.
Collapse
|
128
|
Gut Microbiota, the Potential Biological Medicine for Prevention, Intervention and Drug Sensitization to Fight Diseases. Nutrients 2022; 14:nu14204220. [PMID: 36296908 PMCID: PMC9610464 DOI: 10.3390/nu14204220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
As the largest “immune organ” of human beings, the gut microbiota is symbiotic and mutually beneficial with the human host, playing multiple physiological functions. Studies have long shown that dysbiosis of gut microbiota is associated with almost all human diseases, mainly including type II diabetes, cancers, neurodegenerative diseases, autism spectrum disorder, and kidney diseases. As a novel and potential biological medicine for disease prevention, intervention and drug sensitization, the gut microbiota has attracted more and more attention recently. Although the gut microbiota is a comprehensive microbial community, several star bacteria have emerged as possible tools to fight against various diseases. This review aims to elucidate the relevance of gut microbiota dysbiosis with disease occurrence and progression, and mainly summarizes four well-known genera with therapeutic and sensitizing potential, Akkermansia, Bifidobacterium, Lactobacillus and Parabacteroides, thoroughly elucidate their potential value as biological drugs to treat diverse disease.
Collapse
|
129
|
Borelli B, Antoniotti C, Carullo M, Germani MM, Conca V, Masi G. Immune-Checkpoint Inhibitors (ICIs) in Metastatic Colorectal Cancer (mCRC) Patients beyond Microsatellite Instability. Cancers (Basel) 2022; 14:4974. [PMID: 36291761 PMCID: PMC9599678 DOI: 10.3390/cancers14204974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 09/06/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) showed impressive results in terms of activity and efficacy in metastatic colorectal cancer (mCRC) patients bearing tumors with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H). Despite that microsatellite status is the major predictive biomarker for the efficacy of ICIs, a proportion of dMMR/MSI-H mCRC tumors do not achieve benefit from immunotherapy due to the primary resistance. Deeper knowledge of biological mechanisms regulating dMMR/MSI-H CRC tumors and immune response may be useful to find new predictive biomarkers of ICIs benefit and tailor the use of immunotherapy even in dMMR/MSI-H mCRC patients. Moreover, several issues are still open, such as the secondary resection of metastases and the optimal duration of ICIs therapy in dMMR/MSI-H mCRC patients. Looking beyond microsatellite status, in a future perspective, several tools (i.e., Tumor Mutational Burden and PD-L1 expression) have been investigated to clarify their possible role as predictive biomarkers. Furthermore, a small subgroup of pMMR/MSS CRC tumors with a POLE mutation of the proofreading domain is characterized by hypermutated phenotype and might derive benefit from immune checkpoint inhibition. In the present work, we aim to review the most recent literature regarding treatment with ICIs in mCRC, focusing on dMMR/MSI-H and special subgroups of CRC patients. Hence, we summarize possible future targets and the most promising predictive biomarkers.
Collapse
Affiliation(s)
- Beatrice Borelli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Martina Carullo
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
130
|
Gao J, Sadiq FA, Zheng Y, Zhao J, He G, Sang Y. Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes 2022; 14:2126274. [PMID: 36175161 PMCID: PMC9542427 DOI: 10.1080/19490976.2022.2126274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The use of probiotics has been one of the effective strategies to restructure perturbed human gut microbiota following a disease or metabolic disorder. One of the biggest challenges associated with the use of probiotic-based gut modulation strategies is to keep the probiotic cells viable and stable during the gastrointestinal transit. Biofilm-based probiotics delivery approaches have emerged as fascinating modes of probiotic delivery in which probiotics show significantly greater tolerance and biotherapeutic potential, and interestingly probiotic biofilms can be developed on food-grade surfaces too, which is ideal for the growth and proliferation of bacterial cells for incorporation into food matrices. In addition, biofilms can be further encapsulated with food-grade materials or with bacterial self-produced biofilms. This review presents a newly emerging and unprecedently discussed techniques for the safe delivery of probiotics based on biofilms and further discusses newly emerging prebiotic materials which target specific gut microbiota groups for growth and proliferation.
Collapse
Affiliation(s)
- Jie Gao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Yixin Zheng
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinrong Zhao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China,CONTACT Guoqing He College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yaxin Sang
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China,Yaxin Sang Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
131
|
Ivleva EA, Grivennikov SI. Microbiota-driven mechanisms at different stages of cancer development. Neoplasia 2022; 32:100829. [PMID: 35933824 PMCID: PMC9364013 DOI: 10.1016/j.neo.2022.100829] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
A myriad of microbes living together with the host constitutes the microbiota, and the microbiota exerts very diverse functions in the regulation of host physiology. Microbiota regulates cancer initiation, progression, metastasis, and responses to therapy. Here we review known pro-tumorigenic and anti-tumorigenic functions of microbiota, and mechanisms of how microbes can shape tumor microenvironment and affect cancer cells as well as activation and functionality of immune and stromal cells within the tumor. While some of these mechanisms are distal, often distinct members of microbiota travel with and establish colonization with the tumors in the distant organs. We further briefly describe recent findings regarding microbiota composition in metastasis and highlight important future directions and considerations for the manipulation of microbiota for cancer treatment.
Collapse
Affiliation(s)
- Elena A Ivleva
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sergei I Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
132
|
Marzo-Castillejo M, Bartolomé-Moreno C, Bellas-Beceiro B, Melús-Palazón E, Vela-Vallespín C. [PAPPS Expert Groups. Cancer prevention recommendations: Update 2022]. Aten Primaria 2022; 54 Suppl 1:102440. [PMID: 36435580 PMCID: PMC9705215 DOI: 10.1016/j.aprim.2022.102440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a major cause of morbidity and mortality. Tobacco use, unhealthy diet, and physical inactivity are some of the lifestyle risk factors that have led to an increase in cancer. This article updates the evidence and includes recommendations for prevention strategies for each of the cancers with the highest incidence. These are based on the reduction of risk factors (primary prevention) and early diagnosis of cancer through screening and early detection of signs and symptoms, in medium-risk and high-risk populations. This update of the 2022 PAPPS has taken into account the vision of the National Health System Cancer Strategy, an update approved by the Interterritorial Council of the National Health System on January 2021 and the European Strategy (Europe's Beating Cancer Plan) presented on 4 February 2021.
Collapse
Affiliation(s)
- Mercè Marzo-Castillejo
- Unitat de Suport a la Recerca Metropolitana Sud, IDIAP Jordi Gol, Direcció d'Atenció Primària Costa de Ponent, Institut Català de la Salut, Barcelona, España.
| | - Cruz Bartolomé-Moreno
- Centro de Salud Parque Goya de Zaragoza y Unidad Docente de Atención Familiar y Comunitaria Sector Zaragoza I, Servicio Aragonés de Salud, Zaragoza, España
| | - Begoña Bellas-Beceiro
- Unidad Docente de Atención Familiar y Comunitaria La Laguna-Tenerife Norte, Complejo Hospitalario Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, España
| | - Elena Melús-Palazón
- Centro de Salud Actur Oeste de Zaragoza y Unidad Docente de Atención Familiar y Comunitaria Sector Zaragoza I, Servicio Aragonés de Salud, Zaragoza, España
| | - Carmen Vela-Vallespín
- ABS del Riu Nord i Riu Sud, Institut Català de la Salut, Santa Coloma de Gramenet, Barcelona, España
| |
Collapse
|
133
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
134
|
Chen YC, Chuang CH, Miao ZF, Yip KL, Liu CJ, Li LH, Wu DC, Cheng T, Lin CY, Wang JY. Gut microbiota composition in chemotherapy and targeted therapy of patients with metastatic colorectal cancer. Front Oncol 2022; 12:955313. [PMID: 36212420 PMCID: PMC9539537 DOI: 10.3389/fonc.2022.955313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Studies have reported the effects of the gut microbiota on colorectal cancer (CRC) chemotherapy, but few studies have investigated the association between gut microbiota and targeted therapy. This study investigated the role of the gut microbiota in the treatment outcomes of patients with metastatic CRC (mCRC). We enrolled 110 patients with mCRC and treated them with standard cancer therapy. Stool samples were collected before administering a combination of chemotherapy and targeted therapy. Patients who had a progressive disease (PD) or partial response (PR) for at least 12 cycles of therapy were included in the study. We further divided these patients into anti-epidermal growth factor receptor (cetuximab) and anti-vascular endothelial growth factor (bevacizumab) subgroups. The gut microbiota of the PR group and bevacizumab-PR subgroup exhibited significantly higher α-diversity. The β-diversity of bacterial species significantly differed between the bevacizumab-PR and bevacizumab-PD groups (P = 0.029). Klebsiella quasipneumoniae exhibited the greatest fold change in abundance in the PD group than in the PR group. Lactobacillus and Bifidobacterium species exhibited higher abundance in the PD group. The abundance of Fusobacterium nucleatum was approximately 32 times higher in the PD group than in the PR group. A higher gut microbiota diversity was associated with more favorable treatment outcomes in the patients with mCRC. Bacterial species analysis of stool samples yielded heterogenous results. K. quasipneumoniae exhibited the greatest fold change in abundance among all bacterial species in the PD group. This result warrants further investigation especially in a Taiwanese population.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kwan-Ling Yip
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Deng-Chyang Wu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian−Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
- *Correspondence: Jaw-Yuan Wang, ; ; Chung-Yen Lin,
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
- *Correspondence: Jaw-Yuan Wang, ; ; Chung-Yen Lin,
| |
Collapse
|
135
|
Effects of microbiota on anticancer drugs: Current knowledge and potential applications. EBioMedicine 2022; 83:104197. [PMID: 35933808 PMCID: PMC9358415 DOI: 10.1016/j.ebiom.2022.104197] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last decade, mounting evidence has revealed the key roles of gut microbiota in modulating the efficacy and toxicity of anticancer drugs, via mechanisms such as immunomodulation and microbial enzymatic degradation. As such, human microbiota presents as an exciting prospect for developing biomarkers for predicting treatment outcomes and interventional approaches for improving therapeutic effects. In this review, we analyze the current knowledge of the interplays among gut microorganisms, host responses and anticancer therapies (including cytotoxic chemotherapy and targeted therapy), with an emphasis on the immunomodulation function of microbiota which facilitates the efficacy of immune checkpoint inhibitors. Moreover, we propose several microbiota-modulating strategies including fecal microbiota transplantation and probiotics, which can be pursued to optimize the use and development of anticancer treatments. We anticipate that future clinical and preclinical studies will highlight the significance of human microbiome as a promising target towards precision medicine in cancer therapies. Funding National Key Research and Development Program of China (2020YFA0907800), Shenzhen Science and Technology Innovation Program (KQTD20200820145822023) and National Natural Science Foundation of China (31900056 and 32000096).
Collapse
|
136
|
Zhao C, Bao L, Qiu M, Feng L, Chen L, Liu Z, Duan S, Zhao Y, Wu K, Zhang N, Hu X, Fu Y. Dietary Tryptophan-Mediated Aryl Hydrocarbon Receptor Activation by the Gut Microbiota Alleviates Escherichia coli-Induced Endometritis in Mice. Microbiol Spectr 2022; 10:e0081122. [PMID: 35727038 PMCID: PMC9430277 DOI: 10.1128/spectrum.00811-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Intestinal microbiota-mediated aryl hydrocarbon receptor (AhR) activation plays an important role in host-microbiota interactions and disease development. However, whether AhR activation mediates infection-induced inflammation in remote organs is not clear. The purpose of this study is to assess the effects and underlying mechanism of AhR activation and gut microbiota-mediated dietary tryptophan (Trp) metabolism on infection-induced inflammation using an Escherichia coli (E. coli)-induced endometritis model in mice. We found that AhR activation by 6-formylindolo (3,2-b) carbazole (Ficz), which is an AhR agonist derived from the photooxidation of Trp, alleviated E. coli-induced endometritis by repairing barrier function and inhibiting inflammatory responses, while inhibition of AhR by CH223191, which is a synthetic AhR antagonist, aggravated E. coli-induced endometritis. Gut dysbiosis damaged AhR activation and exacerbated E. coli-induced endometritis in mice, which responded to the reduced abundance of AhR ligand producers, such as Lactobacillus spp. Supplementation with dietary Trp ameliorated E. coli-induced endometritis in a microbiota-dependent manner, which was associated with the production of AhR ligands. Administration of AhR ligands, including indole and indole aldehyde, but not indole-3-propionic acid, rescued the protective effect of Trp on E. coli-induced endometritis in dysbiotic mice. Moreover, consumption of Lactobacillus reuteri (L. reuteri) containing AhR ligand-producing capability also alleviated E. coli-induced endometritis in mice in an AhR-dependent manner. Our results demonstrate that microbiota-mediated AhR activation is a key factor in fighting pathogen-caused inflammation, which leads to a potential strategy to regulate the gut microbiota and metabolism by dietary Trp or probiotics for the intervention of infectious diseases and reproductive health. IMPORTANCE Infection-induced endometritis is a common and frequently occurring disease in humans and animals. Accumulating evidence suggests an important role of the gut microbiota in the development of infection-induced inflammation. Whether and how gut microbiota-mediated AhR activation regulates the pathogenesis of pathogen-induced endometritis remains unknown. The current study found that AhR activation ameliorated E. coli-induced endometritis, and inhibition of AhR produced negative results. Gut dysbiosis reduced the abundance of AhR ligand producers including Lactobacillus spp., damaged AhR activation, and exacerbated E. coli-induced endometritis. Supplementation with dietary Trp, AhR ligands, and L. reuteri containing AhR ligand-producing capability alleviated E. coli-induced endometritis in mice. Our results suggest an important role of microbiota-mediated AhR activation in the pathogenesis of endometritis and provide potential strategies for the intervention of infectious diseases and reproductive health by regulating the gut microbiota and metabolism.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Luotong Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shiyu Duan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
137
|
Hasavci D, Blank T. Age-dependent effects of gut microbiota metabolites on brain resident macrophages. Front Cell Neurosci 2022; 16:944526. [PMID: 36072564 PMCID: PMC9441744 DOI: 10.3389/fncel.2022.944526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, development of age-related diseases, such as Alzheimer's and Parkinson's disease, as well as other brain disorders, including anxiety, depression, and schizophrenia have been shown to be associated with changes in the gut microbiome. Several factors can induce an alteration in the bacterial composition of the host's gastrointestinal tract. Besides dietary changes and frequent use of antibiotics, the microbiome is also profoundly affected by aging. Levels of microbiota-derived metabolites are elevated in older individuals with age-associated diseases and cognitive defects compared to younger, healthy age groups. The identified metabolites with higher concentration in aged hosts, which include choline and trimethylamine, are known risk factors for age-related diseases. While the underlying mechanisms and pathways remain elusive for the most part, it has been shown, that these metabolites are able to trigger the innate immunity in the central nervous system by influencing development and activation status of brain-resident macrophages. The macrophages residing in the brain comprise parenchymal microglia and non-parenchymal macrophages located in the perivascular spaces, meninges, and the choroid plexus. In this review, we highlight the impact of age on the composition of the microbiome and microbiota-derived metabolites and their influence on age-associated diseases caused by dysfunctional brain-resident macrophages.
Collapse
Affiliation(s)
| | - Thomas Blank
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
138
|
van der Woude H, Hally KE, Currie MJ, Gasser O, Henry CE. Importance of the endometrial immune environment in endometrial cancer and associated therapies. Front Oncol 2022; 12:975201. [PMID: 36072799 PMCID: PMC9441707 DOI: 10.3389/fonc.2022.975201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer is rising in prevalence. The standard treatment modality of hysterectomy is becoming increasingly inadequate due primarily to the direct link between endometrial cancer and high BMI which increases surgical risks. This is an immunogenic cancer, with unique molecular subtypes associated with differential immune infiltration. Despite the immunogenicity of endometrial cancer, there is limited pre-clinical and clinical evidence of the function of immune cells in both the normal and cancerous endometrium. Immune checkpoint inhibitors for endometrial cancer are the most well studied type of immune therapy but these are not currently used as standard-of-care and importantly, they represent only one method of immune manipulation. There is limited evidence regarding the use of other immunotherapies as surgical adjuvants or alternatives. Levonorgestrel-loaded intra-uterine systems can also be effective for early-stage disease, but with varying success. There is currently no known reason as to what predisposes some patients to respond while others do not. As hormones can directly influence immune cell function, it is worth investigating the immune compartment in this context. This review assesses the immunological components of the endometrium and describes how the immune microenvironment changes with hormones, obesity, and in progression to malignancy. It also describes the importance of investigating novel pathways for immunotherapy.
Collapse
Affiliation(s)
- Hannah van der Woude
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
| | | | - Margaret Jane Currie
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Claire Elizabeth Henry
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
- *Correspondence: Claire Elizabeth Henry,
| |
Collapse
|
139
|
Che H, Xiong Q, Ma J, Chen S, Wu H, Xu H, Hou B. Association of Helicobacter pylori infection with survival outcomes in advanced gastric cancer patients treated with immune checkpoint inhibitors. BMC Cancer 2022; 22:904. [PMID: 35986342 PMCID: PMC9389789 DOI: 10.1186/s12885-022-10004-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Accumulating evidence has revealed that the gut microbiota influences the effectiveness of immune checkpoint inhibitors (ICIs) in cancer patients. As a part of the human microbiome, Helicobacter pylori (H. pylori) was reported to be associated with reduced effectiveness of anti-PD1 immunotherapy in patients with non-small-cell lung cancer (NSCLC). Gastric cancer is more closely related to H. pylori, so we conducted a retrospective analysis to verify whether the association of H. pylori and effectiveness is applicable to advanced gastric cancer (AGC) patients.
Material and methods
AGC patients who had evidence of H. pylori and received anti-PD-1 antibodies were enrolled in the study. The differences in the disease control rate (DCR), overall survival (OS) and progression-free survival (PFS) between the H. pylori-positive group and the negative group were compared.
Results
A total of 77 patients were included in this study; 34 patients were H. pylori positive, and the prevalence of H. pylori infection was 44.2%. Compared with the H. pylori-negative group, patients in the H. pylori-positive group had a higher risk of nonclinical response to anti-PD-1 antibody, with an OR of 2.91 (95% CI: 1.13–7.50). Patients in the H. pylori-negative group had a longer OS and PFS than those in the positive group, with an estimated median OS of 17.5 months vs. 6.2 months (HR = 2.85, 95% CI: 1.70–4.78; P = 0.021) and a median PFS of 8.4 months vs. 2.7 months (HR = 3.11, 95% CI: 1.96–5.07, P = 0.008). Multivariate analysis indicated that H. pylori infection was independently associated with PFS (HR = 1.90, 95% CI: 1.10–3.30; P = 0.022).
Conclusion
Our study unveils for the first time that H. pylori infection is associated with the outcome of immunotherapy for AGC patients. Multicenter, large sample and prospective clinical studies are needed to verify the association.
Collapse
|
140
|
Kumar NB, Hogue S, Pow-Sang J, Poch M, Manley BJ, Li R, Dhillon J, Yu A, Byrd DA. Effects of Green Tea Catechins on Prostate Cancer Chemoprevention: The Role of the Gut Microbiome. Cancers (Basel) 2022; 14:3988. [PMID: 36010981 PMCID: PMC9406482 DOI: 10.3390/cancers14163988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/22/2023] Open
Abstract
Accumulating evidence supports green tea catechins (GTCs) in chemoprevention for prostate cancer (PCa), a leading cause of cancer morbidity and mortality among men. GTCs include (-)-epigallocatechin-3-gallate, which may modulate the molecular pathways implicated in prostate carcinogenesis. Prior studies of GTCs suggested that they are bioavailable, safe, and effective for modulating clinical and biological markers implicated in prostate carcinogenesis. GTCs may be of particular benefit to those with low-grade PCas typically managed with careful monitoring via active surveillance (AS). Though AS is recommended, it has limitations including potential under-grading, variations in eligibility, and anxiety reported by men while on AS. Secondary chemoprevention of low-grade PCas using GTCs may help address these limitations. When administrated orally, the gut microbiome enzymatically transforms GTC structure, altering its bioavailability, bioactivity, and toxicity. In addition to xenobiotic metabolism, the gut microbiome has multiple other physiological effects potentially involved in PCa progression, including regulating inflammation, hormones, and other known/unknown pathways. Therefore, it is important to consider not only the independent roles of GTCs and the gut microbiome in the context of PCa chemoprevention, but how gut microbes may relate to individual responses to GTCs, which, in turn, can enhance clinical decision-making.
Collapse
Affiliation(s)
- Nagi B. Kumar
- Cancer Epidemiology Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Stephanie Hogue
- Cancer Epidemiology Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Julio Pow-Sang
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Michael Poch
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brandon J. Manley
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Roger Li
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jasreman Dhillon
- Anatomic Pathology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alice Yu
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Doratha A. Byrd
- Cancer Epidemiology Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
141
|
Controlling the uncontrolled variation in the diet induced obese mouse by microbiomic characterization. Sci Rep 2022; 12:13767. [PMID: 35962158 PMCID: PMC9374709 DOI: 10.1038/s41598-022-17242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Group sizes in an animal study are calculated from estimates on variation, effect, power and significance level. Much of the variation in glucose related parameters of the diet-induced obese (DIO) mouse model is due to inter-individual variation in gut microbiota composition. In addition, standard tandem repeats (STRs) in the non-coding DNA shows that inbred mice are not always homogenic. C57BL/6NTac (B6NTac) mice from Taconic and C57BL/6NRj (B6NRj) mice from Janvier Labs were fed a high calorie diet and treated with liraglutide. The fecal microbiota was sequenced before high-calorie feeding (time 1) and after diet-induced obesity instantly before liraglutide treatment (time 2) and mice were divided into clusters on the basis of their microbiota. Although liraglutide in both sub-strains alleviated glucose intolerance and reduced body weight, in a one-way ANOVA a borderline reduction in glycosylated hemoglobin (HbA1c) could only be shown in B6NTac mice. However, if the microbiota clusters from time 1 or time 2 were incorporated in a two-way ANOVA, the HbA1c effect was significant in B6NTac mice in both analyses, while this did not change anything in B6NRj mice. In a one-way ANOVA the estimated group size needed for a significant HbA1c effect in B6NTac mice was 42, but in two-way ANOVAs based upon microbiota clusters of time 1 or time 2 it was reduced to 21 or 12, respectively. The lowering impact on glucose tolerance was also powered by incorporation of microbiota clusters of both times in both sub-strains. B6NRj had up to six, while B6NTac had maximum three alleles in some of their STRs. In B6NRj mice in 28.8% of the STRs the most prevalent allele had a gene frequency less than 90%, while this was only 6.6% in the B6NTac mice. However, incorporation of the STRs with the highest number of alleles or the most even distribution of frequencies in two-way ANOVAs only had little impact on the outcome of data evaluation. It is concluded that the inclusion of microbiota clusters in a two-way ANOVA in the evaluation of the glucose related effects of an intervention in the DIO mouse model might be an efficient tool for increasing power and reducing group sizes in mouse sub-strains, if these have a microbiota, which influences these parameters.
Collapse
|
142
|
Chifiriuc MC, Filip R, Constantin M, Pircalabioru GG, Bleotu C, Burlibasa L, Ionica E, Corcionivoschi N, Mihaescu G. Common themes in antimicrobial and anticancer drug resistance. Front Microbiol 2022; 13:960693. [PMID: 36003940 PMCID: PMC9393787 DOI: 10.3389/fmicb.2022.960693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial and anticancer drug resistance represent two of the main global challenges for the public health, requiring immediate practical solutions. In line with this, we need a better understanding of the origins of drug resistance in prokaryotic and eukaryotic cells and the evolutionary processes leading to the occurrence of adaptive phenotypes in response to the selective pressure of therapeutic agents. The purpose of this paper is to present some of the analogies between the antimicrobial and anticancer drug resistance. Antimicrobial and anticancer drugs share common targets and mechanisms of action as well as similar mechanisms of resistance (e.g., increased drug efflux, drug inactivation, target alteration, persister cells’ selection, protection of bacterial communities/malignant tissue by an extracellular matrix, etc.). Both individual and collective stress responses triggered by the chemotherapeutic agent involving complex intercellular communication processes, as well as with the surrounding microenvironment, will be considered. The common themes in antimicrobial and anticancer drug resistance recommend the utility of bacterial experimental models for unraveling the mechanisms that facilitate the evolution and adaptation of malignant cells to antineoplastic drugs.
Collapse
Affiliation(s)
- Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Suceava Emergency County Hospital, Suceava, Romania
| | | | - Gratiela Gradisteanu Pircalabioru
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- *Correspondence: Gratiela Gradisteanu Pircalabioru,
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
- Romanian Academy of Scientists, Bucharest, Romania
- Coralia Bleotu, ;
| | | | - Elena Ionica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine—King Michael I of Romania, Timisoara, Romania
| | | |
Collapse
|
143
|
Zhou X, Kandalai S, Hossain F, Zheng Q. Tumor microbiome metabolism: A game changer in cancer development and therapy. Front Oncol 2022; 12:933407. [PMID: 35936744 PMCID: PMC9351545 DOI: 10.3389/fonc.2022.933407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating recent evidence indicates that the human microbiome plays essential roles in pathophysiological states, including cancer. The tumor microbiome, an emerging concept that has not yet been clearly defined, has been proven to influence both cancer development and therapy through complex mechanisms. Small molecule metabolites produced by the tumor microbiome through unique biosynthetic pathways can easily diffuse into tissues and penetrate cell membranes through transporters or free diffusion, thus remodeling the signaling pathways of cancer and immune cells by interacting with biomacromolecules. Targeting tumor microbiome metabolism could offer a novel perspective for not only understanding cancer progression but also developing new strategies for the treatment of multiple cancer types. Here, we summarize recent advances regarding the role the tumor microbiome plays as a game changer in cancer biology. Specifically, the metabolites produced by the tumor microbiome and their potential effects on the cancer development therapy are discussed to understand the importance of the microbial metabolism in the tumor microenvironment. Finally, new anticancer therapeutic strategies that target tumor microbiome metabolism are reviewed and proposed to provide new insights in clinical applications.
Collapse
Affiliation(s)
- Xiaozhuang Zhou
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Farzana Hossain
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
144
|
The Effect of the Gut Microbiota on Systemic and Anti-Tumor Immunity and Response to Systemic Therapy against Cancer. Cancers (Basel) 2022; 14:cancers14153563. [PMID: 35892821 PMCID: PMC9330582 DOI: 10.3390/cancers14153563] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota can have opposing functions from pro-tumorigenic to anti-tumorigenic effects. Increasing preclinical and clinical evidence suggests that the intestinal microbiota affects cancer patients’ response to immune checkpoint inhibitors (ICIs) immunotherapy, such as anti-programmed cell death protein 1 (PD-1) and its ligand (PD-L1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Microbiota-induced inflammation possibly contributes to tumor growth and cancer development. Microbiota-derived metabolites can also be converted to carcinogenic agents related to genetic mutations and DNA damage in organs such as the colon. However, other attributes of microbiota, such as greater diversity and specific bacterial species and their metabolites, are linked to better clinical outcomes and potentially improved anti-tumor immunity. In addition, the intratumoral microbial composition strongly affects T-cell-mediated cytotoxicity and anti-tumor immune surveillance, adding more complexity to the cancer-microbiome-immune axis. Despite the emerging clinical evidence for the activity of the gut microbiota in immuno-oncology, the fundamental mechanisms of such activity are not well understood. This review provides an overview of underlying mechanisms by which the gut microbiota and its metabolites enhance or suppress anti-tumor immune responses. Understanding such mechanisms allows for better design of microbiome-specific treatment strategies to improve the clinical outcome in cancer patients undergoing systemic therapy.
Collapse
|
145
|
Ghosh S, Singh R, Vanwinkle ZM, Guo H, Vemula PK, Goel A, Haribabu B, Jala VR. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis. Theranostics 2022; 12:5574-5595. [PMID: 35910798 PMCID: PMC9330515 DOI: 10.7150/thno.70754] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The survival rate of colorectal cancer patients is adversely affected by the selection of tumors resistant to conventional anti-cancer drugs such as 5-fluorouracil (5FU). Although there is mounting evidence that commensal gut microbiota is essential for effective colon cancer treatment, the detailed molecular mechanisms and the role of gut microbial metabolites remain elusive. The goal of this study is to decipher the impact and mechanisms of gut microbial metabolite, urolithin A (UroA) and its structural analogue, UAS03 on reversal of 5FU-resistant (5FUR) colon cancers. Methods: We have utilized the SW480 and HCT-116 parental (5FU-sensitive) and 5FUR colon cancer cells to examine the chemosensitization effects of UroA or UAS03 by using both in vitro and in vivo models. The effects of mono (UroA/UAS03/5FU) and combinatorial therapy (UroA/UAS03 + 5FU) on cell proliferation, apoptosis, cell migration and invasion, regulation of epithelial mesenchymal transition (EMT) mediators, expression and activities of drug transporters, and their regulatory transcription factors were examined using molecular, cellular, immunological and flowcytometric methods. Further, the anti-tumor effects of mono/combination therapy (UroA or UAS03 or 5FU or UroA/UAS03 + 5FU) were examined using pre-clinical models of 5FUR-tumor xenografts in NRGS mice and azoxymethane (AOM)-dextran sodium sulfate (DSS)-induced colon tumors. Results: Our data showed that UroA or UAS03 in combination with 5FU significantly inhibited cell viability, proliferation, invasiveness as well as induced apoptosis of the 5FUR colon cancer cells compared to mono treatments. Mechanistically, UroA or UAS03 chemosensitized the 5FUR cancer cells by downregulating the expression and activities of drug transporters (MDR1, BCRP, MRP2 and MRP7) leading to a decrease in the efflux of 5FU. Further, our data suggested the UroA or UAS03 chemosensitized 5FUR cancer cells to 5FU treatment through regulating FOXO3-FOXM1 axis. Oral treatment with UroA or UAS03 in combination with low dose i.p. 5FU significantly reduced the growth of 5FUR-tumor xenografts in NRGS mice. Further, combination therapy significantly abrogated colonic tumors in AOM-DSS-induced colon tumors in mice. Conclusions: In summary, gut microbial metabolite UroA and its structural analogue UAS03 chemosensitized the 5FUR colon cancers for effective 5FU chemotherapy. This study provided the novel characteristics of gut microbial metabolites to have significant translational implications in drug-resistant cancer therapeutics.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Zachary Matthew Vanwinkle
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK campus, Bangalore, Karnataka 560065, India
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| |
Collapse
|
146
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
147
|
Rangan P, Mondino A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J Immunother Cancer 2022; 10:jitc-2021-004147. [PMID: 35882448 PMCID: PMC9330349 DOI: 10.1136/jitc-2021-004147] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
The gut microbiota and its metabolites have been shown to play a pivotal role in the regulation of metabolic, endocrine and immune functions. Though the exact mechanism of action remains to be fully elucidated, available knowledge supports the ability of microbiota-fermented short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, to influence epigenetic and metabolic cascades controlling gene expression, chemotaxis, differentiation, proliferation, and apoptosis in several non-immune and immune cell subsets. While used as preferred metabolic substrates and sources of energy by colonic gut epithelial cells, most recent evidence indicates that these metabolites regulate immune functions, and in particular fine-tune T cell effector, regulatory and memory phenotypes, with direct in vivo consequences on the efficacy of chemotherapy, radiotherapy and immunotherapy. Most recent data also support the use of these metabolites over the course of T cell manufacturing, paving the way for refined adoptive T cell therapy engineering. Here, we review the most recent advances in the field, highlighting in vitro and in vivo evidence for the ability of SCFAs to shape T cell phenotypes and functions.
Collapse
Affiliation(s)
- Priya Rangan
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Anna Mondino
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
148
|
Ting NLN, Lau HCH, Yu J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 2022; 71:1412-1425. [PMID: 35277453 PMCID: PMC9185832 DOI: 10.1136/gutjnl-2021-326264] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/25/2022] [Indexed: 02/06/2023]
Abstract
Despite the promising advances in novel cancer therapy such as immune checkpoint inhibitors (ICIs), limitations including therapeutic resistance and toxicity remain. In recent years, the relationship between gut microbiota and cancer has been extensively studied. Accumulating evidence reveals the role of microbiota in defining cancer therapeutic efficacy and toxicity. Unlike host genetics, microbiota can be easily modified via multiple strategies, including faecal microbiota transplantation (FMT), probiotics and antibiotics. Preclinical studies have identified the mechanisms on how microbes influence cancer treatment outcomes. Clinical trials have also demonstrated the potential of microbiota modulation in cancer treatments. Herein, we review the mechanistic insights of gut microbial interactions with chemotherapy and ICIs, particularly focusing on the interplay between gut bacteria and the pharmacokinetics (eg, metabolism, enzymatic degradation) or pharmacodynamics (eg, immunomodulation) of cancer treatment. The translational potential of basic findings in clinical settings is then explored, including using microbes as predictive biomarkers and microbial modulation by antibiotics, probiotics, prebiotics, dietary modulations and FMT. We further discuss the current limitations of gut microbiota modulation in patients with cancer and suggest essential directions for future study. In the era of personalised medicine, it is crucial to understand the microbiota and its interactions with cancer. Manipulating the gut microbiota to augment cancer therapeutic responses can provide new insights into cancer treatment.
Collapse
Affiliation(s)
- Nick Lung-Ngai Ting
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
149
|
D'Angelo G. Microbiota and Hematological Diseases. Int J Hematol Oncol Stem Cell Res 2022; 16:164-173. [PMID: 36694706 PMCID: PMC9831866 DOI: 10.18502/ijhoscr.v16i3.10139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/28/2021] [Indexed: 01/27/2023] Open
Abstract
The microbiota is directly involved in the host metabolic process, as well as in immune response modulation and recruitment of different cells typology in the inflammatory site. Human microbiota modification (dysbiosis) is a condition which could be correlated with various pathologies. The short-chain fatty acids produced by the metabolic process have an important role as immune mediators. In hematology field, dysbiosis can represent a predisposing condition for triggering and/or conditioning both non-neoplastic (iron deficiency anemia, thrombosis, thrombocytosis or thrombocytopenia) and neoplastic disorders (lymphomas, leukemias, myeloma). Dysbiosis may also interfere on therapy efficacy (iron supplementation, chemotherapy, immunotherapy, and hematopoietic stem cell transplantation), impacting on patient's outcome.
Collapse
Affiliation(s)
- Guido D'Angelo
- Laboratory of Clinical-Chemistry, Hematology and Microbiology, (ASST-Valle Olona) Gallarate Hospital, Gallarate, Varese, Italy
| |
Collapse
|
150
|
Koyande N, Gangopadhyay M, Thatikonda S, Rengan AK. The role of gut microbiota in the development of colorectal cancer: a review. Int J Colorectal Dis 2022; 37:1509-1523. [PMID: 35704091 DOI: 10.1007/s00384-022-04192-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is the cancer of the colon and rectum. Recent research has found a link between CRC and human gut microbiota. This review explores the effect of gut microbiota on colorectal carcinogenesis and the development of chemoresistance. METHODS A literature overview was performed to identify the gut microbiota species that showed altered abundance in CRC patients and the mechanisms by which some of them aid in the development of chemoresistance. RESULTS Types of gut microbiota present and methods of analyzing them were discussed. We observed that numerous microbiota showed altered abundance in CRC patients and could act as a biomarker for CRC diagnosis and treatment. Further, it was demonstrated that microbes also have a role in the development of chemoresistance by mechanisms like immune system activation, drug modification, and autophagy modulation. Finally, the key issue of the growing global problem of antimicrobial resistance and its relationship with CRC was highlighted. CONCLUSION This review discussed the role of gut microbiota dysbiosis on colorectal cancer progression and the development of chemoresistance.
Collapse
Affiliation(s)
- Navami Koyande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Madhusree Gangopadhyay
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India.
| |
Collapse
|