101
|
Li C, Iqbal MA. Leveraging the sugarcane CRISPR/Cas9 technique for genetic improvement of non-cultivated grasses. FRONTIERS IN PLANT SCIENCE 2024; 15:1369416. [PMID: 38601306 PMCID: PMC11004347 DOI: 10.3389/fpls.2024.1369416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Under changing climatic scenarios, grassland conservation and development have become imperative to impart functional sustainability to their ecosystem services. These goals could be effectively and efficiently achieved with targeted genetic improvement of native grass species. To the best of our literature search, very scant research findings are available pertaining to gene editing of non-cultivated grass species (switch grass, wild sugarcane, Prairie cordgrass, Bermuda grass, Chinese silver grass, etc.) prevalent in natural and semi-natural grasslands. Thus, to explore this novel research aspect, this study purposes that gene editing techniques employed for improvement of cultivated grasses especially sugarcane might be used for non-cultivated grasses as well. Our hypothesis behind suggesting sugarcane as a model crop for genetic improvement of non-cultivated grasses is the intricacy of gene editing owing to polyploidy and aneuploidy compared to other cultivated grasses (rice, wheat, barley, maize, etc.). Another reason is that genome editing protocols in sugarcane (x = 10-13) have been developed and optimized, taking into consideration the high level of genetic redundancy. Thus, as per our knowledge, this review is the first study that objectively evaluates the concept and functioning of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technique in sugarcane regarding high versatility, target specificity, efficiency, design simplicity, and multiplexing capacity in order to explore novel research perspectives for gene editing of non-cultivated grasses against biotic and abiotic stresses. Additionally, pronounced challenges confronting sugarcane gene editing have resulted in the development of different variants (Cas9, Cas12a, Cas12b, and SpRY) of the CRISPR tool, whose technicalities have also been critically assessed. Moreover, different limitations of this technique that could emerge during gene editing of non-cultivated grass species have also been highlighted.
Collapse
Affiliation(s)
- Chunjia Li
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Muhammad Aamir Iqbal
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| |
Collapse
|
102
|
Jia H, Omar AA, Xu J, Dalmendray J, Wang Y, Feng Y, Wang W, Hu Z, Grosser JW, Wang N. Generation of transgene-free canker-resistant Citrus sinensis cv. Hamlin in the T0 generation through Cas12a/CBE co-editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1385768. [PMID: 38595767 PMCID: PMC11002166 DOI: 10.3389/fpls.2024.1385768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Citrus canker disease affects citrus production. This disease is caused by Xanthomonas citri subsp. citri (Xcc). Previous studies confirmed that during Xcc infection, PthA4, a transcriptional activator like effector (TALE), is translocated from the pathogen to host plant cells. PthA4 binds to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 (EBEPthA4-LOBP) to activate its expression and subsequently cause canker symptoms. Previously, the Cas12a/CBE co-editing method was employed to disrupt EBEPthA4-LOBP of pummelo, which is highly homozygous. However, most commercial citrus cultivars are heterozygous hybrids and more difficult to generate homozygous/biallelic mutants. Here, we employed Cas12a/CBE co-editing method to edit EBEPthA4-LOBP of Hamlin (Citrus sinensis), a commercial heterozygous hybrid citrus cultivar grown worldwide. Binary vector GFP-p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1 was constructed and shown to be functional via Xcc-facilitated agroinfiltration in Hamlin leaves. This construct allows the selection of transgene-free regenerants via GFP, edits ALS to generate chlorsulfuron-resistant regenerants as a selection marker for genome editing resulting from transient expression of the T-DNA via nCas9-mPBE:ALS2:ALS1, and edits gene(s) of interest (i.e., EBEPthA4-LOBP in this study) through ttLbCas12a, thus creating transgene-free citrus. Totally, 77 plantlets were produced. Among them, 8 plantlets were transgenic plants (#HamGFP1 - #HamGFP8), 4 plantlets were transgene-free (#HamNoGFP1 - #HamNoGFP4), and the rest were wild type. Among 4 transgene-free plantlets, three lines (#HamNoGFP1, #HamNoGFP2 and #HamNoGFP3) contained biallelic mutations in EBEpthA4, and one line (#HamNoGFP4) had homozygous mutations in EBEpthA4. We achieved 5.2% transgene-free homozygous/biallelic mutation efficiency for EBEPthA4-LOBP in C. sinensis cv. Hamlin, compared to 1.9% mutation efficiency for pummelo in a previous study. Importantly, the four transgene-free plantlets and 3 transgenic plantlets that survived were resistant against citrus canker. Taken together, Cas12a/CBE co-editing method has been successfully used to generate transgene-free canker-resistant C. sinensis cv. Hamlin in the T0 generation via biallelic/homozygous editing of EBEpthA4 of the canker susceptibility gene LOB1.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Javier Dalmendray
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Zhuyuan Hu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
103
|
Atia M, Jiang W, Sedeek K, Butt H, Mahfouz M. Crop bioengineering via gene editing: reshaping the future of agriculture. PLANT CELL REPORTS 2024; 43:98. [PMID: 38494539 PMCID: PMC10944814 DOI: 10.1007/s00299-024-03183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Genome-editing technologies have revolutionized research in plant biology, with major implications for agriculture and worldwide food security, particularly in the face of challenges such as climate change and increasing human populations. Among these technologies, clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR-associated protein [Cas] systems are now widely used for editing crop plant genomes. In this review, we provide an overview of CRISPR-Cas technology and its most significant applications for improving crop sustainability. We also review current and potential technological advances that will aid in the future breeding of crops to enhance food security worldwide. Finally, we discuss the obstacles and challenges that must be overcome to realize the maximum potential of genome-editing technologies for future crop and food production.
Collapse
Affiliation(s)
- Mohamed Atia
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Wenjun Jiang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
104
|
Tian Y, Song K, Li B, Song Y, Zhang X, Li H, Yang L. Genome-wide identification and expression analysis of NF-Y gene family in tobacco (Nicotiana tabacum L.). Sci Rep 2024; 14:5257. [PMID: 38438470 PMCID: PMC10912202 DOI: 10.1038/s41598-024-55799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Nuclear factor Y (NF-Y) gene family is an important transcription factor composed of three subfamilies of NF-YA, NF-YB and NF-YC, which is involved in plant growth, development and stress response. In this study, 63 tobacco NF-Y genes (NtNF-Ys) were identified in Nicotiana tabacum L., including 17 NtNF-YAs, 30 NtNF-YBs and 16 NtNF-YCs. Phylogenetic analysis revealed ten pairs of orthologues from tomato and tobacco and 25 pairs of paralogues from tobacco. The gene structure of NtNF-YAs exhibited similarities, whereas the gene structure of NtNF-YBs and NtNF-YCs displayed significant differences. The NtNF-Ys of the same subfamily exhibited a consistent distribution of motifs and protein 3D structure. The protein interaction network revealed that NtNF-YC12 and NtNF-YC5 exhibited the highest connectivity. Many cis-acting elements related to light, stress and hormone response were found in the promoter of NtNF-Ys. Transcriptome analysis showed that more than half of the NtNF-Y genes were expressed in all tissues, and NtNF-YB9/B14/B15/B16/B17/B29 were specifically expressed in roots. A total of 15, 12, 5, and 6 NtNF-Y genes were found to respond to cold, drought, salt, and alkali stresses, respectively. The results of this study will lay a foundation for further study of NF-Y genes in tobacco and other Solanaceae plants.
Collapse
Affiliation(s)
- Yue Tian
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Kangkang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Bin Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanru Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaohua Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
105
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
106
|
He J, Zeng C, Li M. Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300203. [PMID: 38465224 PMCID: PMC10919289 DOI: 10.1002/ggn2.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Indexed: 03/12/2024]
Abstract
Plant biology studies in the post-genome era have been focused on annotating genome sequences' functions. The established plant mutant collections have greatly accelerated functional genomics research in the past few decades. However, most plant genome sequences' roles and the underlying regulatory networks remain substantially unknown. Clustered, regularly interspaced short palindromic repeat (CRISPR)-associated systems are robust, versatile tools for manipulating plant genomes with various targeted DNA perturbations, providing an excellent opportunity for high-throughput interrogation of DNA elements' roles. This study compares methods frequently used for plant functional genomics and then discusses different DNA multi-targeted strategies to overcome gene redundancy using the CRISPR-Cas9 system. Next, this work summarizes recent reports using CRISPR libraries for high-throughput gene knockout and function discoveries in plants. Finally, this work envisions the future perspective of optimizing and leveraging CRISPR library screening in plant genomes' other uncharacterized DNA sequences.
Collapse
Affiliation(s)
- Jianjie He
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Can Zeng
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| |
Collapse
|
107
|
Bai X, Yu K, Xiong S, Chen J, Yang Y, Ye X, Yao H, Wang F, Fang Q, Song Q, Ye G. CRISPR/Cas9-mediated mutagenesis of the white gene in an ectoparasitic wasp, Habrobracon hebetor. PEST MANAGEMENT SCIENCE 2024; 80:1219-1227. [PMID: 37899674 DOI: 10.1002/ps.7851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The ectoparasitic wasp Habrobracon hebetor (Hymenoptera, Braconidae) can parasitize various species of lepidopteran pests. To maximize its potential for biological control, it is necessary to investigate its gene function through genome engineering. RESULTS To test the effectiveness of genome engineering system in H. hebetor, we injected the mixture of clustered regularly interspaced short palindromic repeats (CRISPR) -associated (Cas) 9 protein and single guide RNA(s) targeting gene white into embryos. The resulting mutants display a phenotype of eye pigment loss. The phenotype was caused by small indel and is heritable. Then, we compared some biological parameters between wildtype and mutant, and found there were no significant differences in other parameters except for the offspring female rate and adult longevity. In addition, cocoons could be used to extract genomic DNA for genotype during the gene editing process without causing unnecessary harm to H. hebetor. CONCLUSION Our results demonstrate that the CRISPR/Cas9 system can be used for H. hebetor genome editing and it does not adversely affect biological parameters of the parasitoid wasps. We also provide a feasible non-invasive genotype detection method using genomic DNA extracted from cocoons. Our study introduces a novel tool and method for studying gene function in H. hebetor, and may contribute to better application of H. hebetor in biocontrol. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kaili Yu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
108
|
Hozumi S, Chen YC, Takemoto T, Sawatsubashi S. Cas12a and MAD7, genome editing tools for breeding. BREEDING SCIENCE 2024; 74:22-31. [PMID: 39246434 PMCID: PMC11375424 DOI: 10.1270/jsbbs.23049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/15/2024] [Indexed: 09/10/2024]
Abstract
Food shortages due to population growth and climate change are expected to occur in the near future as a problem that urgently requires solutions. Conventional breeding techniques, notably crossbreeding and mutation breeding, are known for being inefficient and time-consuming in obtaining seeds and seedlings with desired traits. Thus, there is an urgent need for novel methods for efficient plant breeding. Breeding by genome editing is receiving substantial attention because it can efficiently modify the target gene to obtain desired traits compared with conventional methods. Among the programmable sequence-specific nucleases that have been developed for genome editing, CRISPR-Cas12a and CRISPR-MAD7 nucleases are becoming more broadly adopted for the application of genome editing in grains, vegetables and fruits. Additionally, ST8, an improved variant of MAD7, has been developed to enhance genome editing efficiency and has potential for application to breeding of crops.
Collapse
Affiliation(s)
- Shunya Hozumi
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yi-Chen Chen
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Tatsuya Takemoto
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shun Sawatsubashi
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Research and Innovation Liaison Office, Institute for Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
109
|
Chovatiya A, Rajyaguru R, Tomar RS, Joshi P. Revolutionizing Agriculture: Harnessing CRISPR/Cas9 for Crop Enhancement. Indian J Microbiol 2024; 64:59-69. [PMID: 38468733 PMCID: PMC10924811 DOI: 10.1007/s12088-023-01154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/16/2023] [Indexed: 03/13/2024] Open
Abstract
Plant crops serve as essential sources of nutritional sustenance, supplying vital nutrients to human diets. However, their productivity and quality are severely jeopardized by factors such as pests, diseases, and adverse abiotic conditions. Addressing these challenges using innovative biotechnological approaches is imperative for advancing sustainable agriculture. In recent years, genome editing technologies have emerged as pivotal genetic tools, revolutionizing plant molecular biology. Among these, the CRISPR-Cas9 system has gained prominence due to its unparalleled precision, streamlined design, and heightened success rates. This review article highlights the profound impact of CRISPR/Cas9 technology on crop improvement. The article critically examines the breakthroughs, ongoing enhancements, and future prospects associated with this cutting-edge technology. In conclusion, the utilization of CRISPR/Cas9 presents a transformative shift in agricultural biotechnology, holding the potential to mitigate longstanding agricultural challenges.
Collapse
Affiliation(s)
- Ashish Chovatiya
- Department of Biotechnology, Atmiya University, Rajkot, Gujarat 360005 India
| | - Riddhi Rajyaguru
- Department of Biotechnology, Junagadh Agriculture University, Junagadh, Gujarat 362001 India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agriculture University, Junagadh, Gujarat 362001 India
| | - Preetam Joshi
- Department of Biotechnology, Atmiya University, Rajkot, Gujarat 360005 India
| |
Collapse
|
110
|
Naveen AK, Sontakke M. A review on regulatory aspects, challenges and public perception in acceptance of genetically modified foods. Food Sci Biotechnol 2024; 33:791-804. [PMID: 38371681 PMCID: PMC10866814 DOI: 10.1007/s10068-023-01481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 02/20/2024] Open
Abstract
A clear vision for the future of the world's food supply must be developed by all stakeholders, including consumers, farmers, and governments, especially in light of the rapid improvements in the production of genetically modified crops. It has been possible through biotechnology and genetic engineering, genetically modified (GM) crops have been engineered to have certain qualities, such as resistance to pests, illnesses, or herbicides. Concerns about risks and unintended effects of GM crops include ecosystem impacts, new pests or diseases, and health effects on humans and animals. There is mounting evidence that consumers may respond unfavourably to the introduction of genetically altered foods. This research focuses at how genetic engineering can raise agricultural yields, improve nutrient content, and lessen the use for hazardous pesticides and herbicides in food production. Regulatory framework for GM foods may impact on perception and acceptance of consumers.
Collapse
Affiliation(s)
- A. Kanthi Naveen
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144001 India
| | - Manmath Sontakke
- Department of Food Processing Technology, Institute of Biosciences and Technology, MGM University, Chatrapati Sambhajinagar, Maharashtra 431003 India
| |
Collapse
|
111
|
Hu H, Zhang Y, Yu F. A CRISPR/Cas9-based vector system enables the fast breeding of selection-marker-free canola with Rcr1-rendered clubroot resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1347-1363. [PMID: 37991105 PMCID: PMC10901203 DOI: 10.1093/jxb/erad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Breeding for disease resistance in major crops is of crucial importance for global food security and sustainability. However, common biotechnologies such as traditional transgenesis or genome editing do not provide an ideal solution, whereas transgenic crops free of selection markers such as cisgenic/intragenic crops might be suitable. In this study, after cloning and functional verification of the Rcr1 gene for resistance to clubroot (Plasmodiophora brassicae), we confirmed that the genes Rcr1, Rcr2, Rcr4, and CRa from Brassica rapa crops and the resistance gene from B. napus oilseed rape cv. 'Mendel' on chromosome A03 were identical in their coding regions. We also determined that Rcr1 has a wide distribution in Brassica breeding materials and renders potent resistance against multiple representative clubroot strains in Canada. We then modified a CRISPR/Cas9-based cisgenic vector system and found that it enabled the fast breeding of selection-marker-free transgenic crops with add-on traits, with selection-marker-free canola (B. napus) germplasms with Rcr1-rendered stable resistance to clubroot disease being successfully developed within 2 years. In the B. napus background, the intragenic vector system was able to remove unwanted residue sequences from the final product with high editing efficiency, and off-target mutations were not detected. Our study demonstrates the potential of applying this breeding strategy to other crops that can be transformed by Agrobacterium. Following the streamlined working procedure, intragenic germplasms can be developed within two generations, which could significantly reduce the breeding time and labor compared to traditional introgression whilst still achieving comparable or even better breeding results.
Collapse
Affiliation(s)
- Hao Hu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yan Zhang
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
112
|
Lan H, Shu W, Jiang D, Yu L, Xu G. Cas-based bacterial detection: recent advances and perspectives. Analyst 2024; 149:1398-1415. [PMID: 38357966 DOI: 10.1039/d3an02120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Persistent bacterial infections pose a formidable threat to global health, contributing to widespread challenges in areas such as food safety, medical hygiene, and animal husbandry. Addressing this peril demands the urgent implementation of swift and highly sensitive detection methodologies suitable for point-of-care testing and large-scale screening. These methodologies play a pivotal role in the identification of pathogenic bacteria, discerning drug-resistant strains, and managing and treating diseases. Fortunately, new technology, the CRISPR/Cas system, has emerged. The clustered regularly interspaced short joint repeats (CRISPR) system, which is part of bacterial adaptive immunity, has already played a huge role in the field of gene editing. It has been employed as a diagnostic tool for virus detection, featuring high sensitivity, specificity, and single-nucleotide resolution. When applied to bacterial detection, it also surpasses expectations. In this review, we summarise recent advances in the detection of bacteria such as Mycobacterium tuberculosis (MTB), methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), Salmonella and Acinetobacter baumannii (A. baumannii) using the CRISPR/Cas system. We emphasize the significance and benefits of this methodology, showcasing the capability of diverse effector proteins to swiftly and precisely recognize bacterial pathogens. Furthermore, the CRISPR/Cas system exhibits promise in the identification of antibiotic-resistant strains. Nevertheless, this technology is not without challenges that need to be resolved. For example, CRISPR/Cas systems must overcome natural off-target effects and require high-quality nucleic acid samples to improve sensitivity and specificity. In addition, limited applicability due to the protospacer adjacent motif (PAM) needs to be addressed to increase its versatility. Despite the challenges, we are optimistic about the future of bacterial detection using CRISPR/Cas. We have already highlighted its potential in medical microbiology. As research progresses, this technology will revolutionize the detection of bacterial infections.
Collapse
Affiliation(s)
- Huatao Lan
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Weitong Shu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Dan Jiang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
113
|
Slaman E, Kottenhagen L, de Martines W, Angenent GC, de Maagd RA. Comparison of Cas12a and Cas9-mediated mutagenesis in tomato cells. Sci Rep 2024; 14:4508. [PMID: 38402312 PMCID: PMC10894265 DOI: 10.1038/s41598-024-55088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Cas12a is a promising addition to the CRISPR toolbox, offering versatility due to its TTTV-protospacer adjacent motif (PAM) and the fact that it induces double-stranded breaks (DSBs) with single-stranded overhangs. We characterized Cas12a-mediated genome editing in tomato using high-throughput amplicon sequencing on protoplasts. Of the three tested variants, Lachnospiraceae (Lb) Cas12a was the most efficient. Additionally, we developed an easy and effective Golden-Gate-based system for crRNA cloning. We compared LbCas12a to SpCas9 by investigating on-target efficacy and specificity at 35 overlapping target sites and 57 (LbCas12a) or 100 (SpCas9) predicted off-target sites. We found LbCas12a an efficient, robust addition to SpCas9, with similar overall though target-dependent efficiencies. LbCas12a induced more and larger deletions than SpCas9, which can be advantageous for specific genome editing applications. Off-target activity for LbCas12a was found at 10 out of 57 investigated sites. One or two mismatches were present distal from the PAM in all cases. We conclude that Cas12a-mediated genome editing is generally precise as long as such off-target sites can be avoided. In conclusion, we have determined the mutation pattern and efficacy of Cas12a-mediated CRISPR mutagenesis in tomato and developed a cloning system for the routine application of Cas12a for tomato genome editing.
Collapse
Affiliation(s)
- Ellen Slaman
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Lisanne Kottenhagen
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - William de Martines
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Ruud A de Maagd
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
114
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
115
|
Gupta A, Liu B, Raza S, Chen QJ, Yang B. Modularly assembled multiplex prime editors for simultaneous editing of agronomically important genes in rice. PLANT COMMUNICATIONS 2024; 5:100741. [PMID: 37897041 PMCID: PMC10873889 DOI: 10.1016/j.xplc.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Prime editing (PE) technology enables precise alterations in the genetic code of a genome of interest. PE offers great potential for identifying major agronomically important genes in plants and editing them into superior variants, ideally targeting multiple loci simultaneously to realize the collective effects of the edits. Here, we report the development of a modular assembly-based multiplex PE system in rice and demonstrate its efficacy in editing up to four genes in a single transformation experiment. The duplex PE (DPE) system achieved a co-editing efficiency of 46.1% in the T0 generation, converting TFIIAγ5 to xa5 and xa23 to Xa23SW11. The resulting double-mutant lines exhibited robust broad-spectrum resistance against multiple Xanthomonas oryzae pathovar oryzae (Xoo) strains in the T1 generation. In addition, we successfully edited OsEPSPS1 to an herbicide-tolerant variant and OsSWEET11a to a Xoo-resistant allele, achieving a co-editing rate of 57.14%. Furthermore, with the quadruple PE (QPE) system, we edited four genes-two for herbicide tolerance (OsEPSPS1 and OsALS1) and two for Xoo resistance (TFIIAγ5 and OsSWEET11a)-using one construct, with a co-editing efficiency of 43.5% for all four genes in the T0 generation. We performed multiplex PE using five more constructs, including two for triplex PE (TPE) and three for QPE, each targeting a different set of genes. The editing rates were dependent on the activity of pegRNA and/or ngRNA. For instance, optimization of ngRNA increased the PE rates for one of the targets (OsSPL13) from 0% to 30% but did not improve editing at another target (OsGS2). Overall, our modular assembly-based system yielded high PE rates and streamlined the cloning of PE reagents, making it feasible for more labs to utilize PE for their editing experiments. These findings have significant implications for advancing gene editing techniques in plants and may pave the way for future agricultural applications.
Collapse
Affiliation(s)
- Ajay Gupta
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bo Liu
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Saad Raza
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
116
|
Lin JY, Liu YC, Tseng YH, Chan MT, Chang CC. TALE-based organellar genome editing and gene expression in plants. PLANT CELL REPORTS 2024; 43:61. [PMID: 38336900 DOI: 10.1007/s00299-024-03150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE TALE-based editors provide an alternative way to engineer the organellar genomes in plants. We update and discuss the most recent developments of TALE-based organellar genome editing in plants. Gene editing tools have been widely used to modify the nuclear genomes of plants for various basic research and biotechnological applications. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 editing platform is the most commonly used technique because of its ease of use, fast speed, and low cost; however, it encounters difficulty when being delivered to plant organelles for gene editing. In contrast, protein-based editing technologies, such as transcription activator-like effector (TALE)-based tools, could be easily delivered, expressed, and targeted to organelles in plants via Agrobacteria-mediated nuclear transformation. Therefore, TALE-based editors provide an alternative way to engineer the organellar genomes in plants since the conventional chloroplast transformation method encounters technical challenges and is limited to certain species, and the direct transformation of mitochondria in higher plants is not yet possible. In this review, we update and discuss the most recent developments of TALE-based organellar genome editing in plants.
Collapse
Affiliation(s)
- Jer-Young Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chang Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan
| | - Yan-Hao Tseng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Ching-Chun Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
117
|
Leng F, Zhou G, Shi R, Liu C, Lin Y, Yu X, Zhang Y, He X, Liu Z, Sun M, Bao F, Hu Y, He Y. Development of PEG-mediated genetic transformation and gene editing system of Bryum argenteum as an abiotic stress tolerance model plant. PLANT CELL REPORTS 2024; 43:63. [PMID: 38340191 DOI: 10.1007/s00299-024-03143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE To establish a sterile culture system and protoplast regeneration system for Bryum argenteum, and to establish and apply CRISPR/Cas9 system in Bryum argenteum. Bryum argenteum is a fascinating, cosmopolitan, and versatile moss species that thrives in various disturbed environments. Because of its comprehensive tolerance to the desiccation, high UV and extreme temperatures, it is emerging as a model moss for studying the molecular mechanisms underlying plant responses to abiotic stresses. However, the lack of basic tools such as gene transformation and targeted genome modification has hindered the understanding of the molecular mechanisms underlying the survival of B. argenteum in different environments. Here, we reported the protonema of B. argenteum can survive up to 95.4% water loss. In addition, the genome size of B. argenteum is approximately 313 Mb by kmer analysis, which is smaller than the previously reported 700 Mb. We also developed a simple method for protonema induction and an efficient protoplast isolation and regeneration protocol for B. argenteum. Furthermore, we established a PEG-mediated protoplast transient transfection and stable transformation system for B. argenteum. Two homologues of ABI3(ABA-INSENSITIVE 3) gene were successfully cloned from B. argenteum. To further investigate the function of the ABI3 gene in B. argenteum, we used the CRISPR/Cas9 genetic editing system to target the BaABI3A and BaABI3B gene in B. argenteum protoplasts. This resulted in mutagenesis at the target in about 2-5% of the regenerated plants. The isolated abi3a and abi3b mutants exhibited increased sensitivity to desiccation, suggesting that BaABI3A and BaABI3B play redundant roles in desiccation stress. Overall, our results provide a rapid and simple approach for molecular genetics in B. argenteum. This study contributes to a better understanding of the molecular mechanisms of plant adaptation to extreme environmental.
Collapse
Affiliation(s)
- Fengjun Leng
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Guiwei Zhou
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruoyuan Shi
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Chengyang Liu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yirui Lin
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xinqiang Yu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yanhua Zhang
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiangxi He
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zhu Liu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Mingming Sun
- Laboratory for Micro-Sized Functional Materials, College of Elementary Education, Capital Normal University, Beijing, 100048, China
| | - Fang Bao
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Yong Hu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Yikun He
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
118
|
Dong H. Application of genome editing techniques to regulate gene expression in crops. BMC PLANT BIOLOGY 2024; 24:100. [PMID: 38331711 PMCID: PMC10854132 DOI: 10.1186/s12870-024-04786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Enhanced agricultural production is urgently required to meet the food demands of the increasing global population. Abundant genetic diversity is expected to accelerate crop development. In particular, the development of the CRISPR/Cas genome editing technology has greatly enhanced our ability to improve crop's genetic diversity through direct artificial gene modification. However, recent studies have shown that most crop improvement efforts using CRISPR/Cas techniques have mainly focused on the coding regions, and there is a relatively lack of studies on the regulatory regions of gene expression. RESULTS This review briefly summarizes the development of CRISPR/Cas system in the beginning. Subsequently, the importance of gene regulatory regions in plants is discussed. The review focuses on recent developments and applications of mutations in regulatory regions via CRISPR/Cas techniques in crop breeding. CONCLUSION Finally, an outline of perspectives for future crop breeding using genome editing technologies is provided. This review provides new research insights for crop improvement using genome editing techniques.
Collapse
Affiliation(s)
- Huirong Dong
- College of Agronomy and Biotechnology, Yunnan Agriculture University, Kunming, 650201, Yunnan, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572024, China.
| |
Collapse
|
119
|
Saikia B, S R, Debbarma J, Maharana J, Sastry GN, Chikkaputtaiah C. CRISPR/Cas9-based genome editing and functional analysis of SlHyPRP1 and SlDEA1 genes of Solanum lycopersicum L. in imparting genetic tolerance to multiple stress factors. FRONTIERS IN PLANT SCIENCE 2024; 15:1304381. [PMID: 38371406 PMCID: PMC10869523 DOI: 10.3389/fpls.2024.1304381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
CRISPR/Cas is a breakthrough genome editing system because of its precision, target specificity, and efficiency. As a speed breeding system, it is more robust than the conventional breeding and biotechnological approaches for qualitative and quantitative trait improvement. Tomato (Solanum lycopersicum L.) is an economically important crop, but its yield and productivity have been severely impacted due to different abiotic and biotic stresses. The recently identified SlHyPRP1 and SlDEA1 are two potential negative regulatory genes in response to different abiotic (drought and salinity) and biotic stress (bacterial leaf spot and bacterial wilt) conditions in S. lycopersicum L. The present study aimed to evaluate the drought, salinity, bacterial leaf spot, and bacterial wilt tolerance response in S. lycopersicum L. crop through CRISPR/Cas9 genome editing of SlHyPRP1 and SlDEA1 and their functional analysis. The transient single- and dual-gene SlHyPRP1 and SlDEA1 CRISPR-edited plants were phenotypically better responsive to multiple stress factors taken under the study. The CRISPR-edited SlHyPRP1 and SlDEA1 plants showed a higher level of chlorophyll and proline content compared to wild-type (WT) plants under abiotic stress conditions. Reactive oxygen species accumulation and the cell death count per total area of leaves and roots under biotic stress were less in CRISPR-edited SlHyPRP1 and SlDEA1 plants compared to WT plants. The study reveals that the combined loss-of-function of SlHyPRP1 along with SlDEA1 is essential for imparting significant multi-stress tolerance (drought, salinity, bacterial leaf spot, and bacterial wilt) in S. lycopersicum L. The main feature of the study is the detailed genetic characterization of SlDEA1, a poorly studied 8CM family gene in multi-stress tolerance, through the CRISPR/Cas9 gene editing system. The study revealed the key negative regulatory role of SlDEA1 that function together as an anchor gene with SlHyPRP1 in imparting multi-stress tolerance in S. lycopersicum L. It was interesting that the present study also showed that transient CRISPR/Cas9 editing events of SlHyPRP1 and SlDEA1 genes were successfully replicated in stably generated parent-genome-edited line (GEd0) and genome-edited first-generation lines (GEd1) of S. lycopersicum L. With these upshots, the study's key findings demonstrate outstanding value in developing sustainable multi-stress tolerance in S. lycopersicum L. and other crops to cope with climate change.
Collapse
Affiliation(s)
- Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Remya S
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - G. Narahari Sastry
- Advanced Computational and Data Science Division, CSIR-NEIST, Jorhat, Assam, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
120
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
121
|
Li H, Yu K, Zhang Z, Yu Y, Wan J, He H, Fan C. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:445-459. [PMID: 37856327 PMCID: PMC10826991 DOI: 10.1111/pbi.14197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/08/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Yellow-seed is widely accepted as a good-quality trait in Brassica crops. Previous studies have shown that the flavonoid biosynthesis pathway is essential for the development of seed colour, but its function in Brassica napus, an important oil crop, is poorly understood. To systematically explore the gene functions of the flavonoid biosynthesis pathway in rapeseed, several representative TRANSPARENT TESTA (TT) genes, including three structural genes (BnaTT7, BnaTT18, BnaTT10), two regulatory genes (BnaTT1, BnaTT2) and a transporter (BnaTT12), were selected for targeted mutation by CRISPR/Cas9 in the present study. Seed coat colour, lignin content, seed quality and yield-related traits were investigated in these Bnatt mutants together with Bnatt8 generated previously. These Bnatt mutants produced seeds with an elevated seed oil content and decreased pigment and lignin accumulation in the seed coat without any serious defects in the yield-related traits. In addition, the fatty acid (FA) composition was also altered to different degrees, i.e., decreased oleic acid and increased linoleic acid and α-linolenic acid, in all Bnatt mutants except Bnatt18. Furthermore, gene expression analysis revealed that most of BnaTT mutations resulted in the down-regulation of key genes related to flavonoid and lignin synthesis, and the up-regulation of key genes related to lipid synthesis and oil body formation, which may contribute to the phenotype. Collectively, our study generated valuable resources for breeding programs, and more importantly demonstrated the functional divergence and overlap of flavonoid biosynthesis pathway genes in seed coat colour, oil content and FA composition of rapeseed.
Collapse
Affiliation(s)
- Huailin Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Kaidi Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Zilu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Yalun Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Jiakai Wan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Hanzi He
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| |
Collapse
|
122
|
Kaul T, Thangaraj A, Jain R, Bharti J, Kaul R, Verma R, Sony SK, Abdel Motelb KF, Yadav P, Agrawal PK. CRISPR/Cas9-mediated homology donor repair base editing system to confer herbicide resistance in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108374. [PMID: 38310724 DOI: 10.1016/j.plaphy.2024.108374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024]
Abstract
Weed infestation is a significant concern to crop yield loss, globally. The potent broad-spectrum glyphosate (N-phosphomethyl-glycine) has a widely utilized herbicide, acting on the shikimic acid pathway within chloroplast by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). This crucial enzyme plays a vital role in aromatic amino acid synthesis. Repurposing of CRISPR/Cas9-mediated gene-editing was the inflection point for generating novel crop germplasm with diverse genetic variations in essential agronomic traits, achieved through the introduction of nucleotide substitutions at target sites within the native genes, and subsequent induction of indels through error-prone non-homologous end-joining DNA repair mechanisms. Here, we describe the development of efficient herbicide-resistant maize lines by using CRISPR/Cas9 mediated site-specific native ZmEPSPS gene fragment replacement via knock-out of conserved region followed by knock-in of desired homologous donor repair (HDR-GATIPS-mZmEPSPS) with triple amino acid substitution. The novel triple substitution conferred high herbicide tolerance in edited maize plants. Transgene-free progeny harbouring the triple amino acid substitutions revealed agronomic performances similar to that of wild-type plants, suggesting that the GATIPS-mZmEPSPS allele substitutions are crucial for developing elite maize varieties with significantly enhanced glyphosate resistance. Furthermore, the aromatic amino acid contents in edited maize lines were significantly higher than in wild-type plants. The present study describing the introduction of site-specific CRISPR/Cas9- GATIPS mutations in the ZmEPSPS gene via genome editing has immense potential for higher tolerance to glyphosate with no yield penalty in maize.
Collapse
Affiliation(s)
- Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India.
| | - Arulprakash Thangaraj
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Rashmi Jain
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Jyotsna Bharti
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Rachana Verma
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Sonia Khan Sony
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Khaled Fathy Abdel Motelb
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Pranjal Yadav
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Pawan Kumar Agrawal
- Indian Council of Agricultural Research, New Delhi, 110012, India; ICAR-National Institute of Biotic Stress Management, Raipur, 493225, Chhattisgarh, India
| |
Collapse
|
123
|
Xu X, Sun SK, Zhang W, Tang Z, Zhao FJ. Editing Silicon Transporter Genes to Reduce Arsenic Accumulation in Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1976-1985. [PMID: 38232111 DOI: 10.1021/acs.est.3c10763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Rice is a dominant source of inorganic arsenic (As) exposure for populations consuming rice as a staple food. Decreasing As accumulation in rice grain is important for improving food safety. Arsenite [As(III)], the main form of As in paddy soil porewater, is taken up inadvertently by OsLsi1 and OsLsi2, the two key transporters for silicon (Si) uptake in rice roots. Here, we investigated whether editing OsLsi1 or OsLsi2 can decrease As accumulation in rice grain without compromising grain yield. We used the CRISPR-Cas9 technology to edit the promoter region of OsLsi1 and the C-terminal coding sequence of OsLsi1 and OsLsi2, and we generated a total of 27 mutants. Uptake and accumulation of Si and As were evaluated in both short-term hydroponic experiments and in a paddy field. Deletion of 1.2-2 kb of the OsLsi1 promoter suppressed OsLsi1 expression in roots and Si uptake markedly and did not affect As(III) uptake or grain As concentration. Some of the OsLsi1 and OsLsi2 coding sequence mutants showed large decreases in the uptake of Si and As(III) as well as large decreases in Si accumulation in rice husks. However, only OsLsi2 mutants showed significant decreases (by up to 63%) in the grain total As concentration. Editing OsLsi2 mainly affected the accumulation of inorganic As in rice grain with little effect on the accumulation of dimethylarsenate (DMA). Grain yields of the OsLsi2 mutants were comparable to those of the wild type. Editing OsLsi2 provides a promising way to reduce As accumulation in rice grain without compromising the grain yield.
Collapse
Affiliation(s)
- Xuejie Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Sheng-Kai Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Wenwen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Zhu Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
124
|
Ikram M, Rauf A, Rao MJ, Maqsood MFK, Bakhsh MZM, Ullah M, Batool M, Mehran M, Tahira M. CRISPR-Cas9 based molecular breeding in crop plants: a review. Mol Biol Rep 2024; 51:227. [PMID: 38281301 DOI: 10.1007/s11033-023-09086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Traditional crop breeding techniques are not quickly boosting yields to fulfill the expanding population needs. Long crop lifespans hinder the ability of plant breeding to develop superior crop varieties. Due to the arduous crossing, selecting, and challenging processes, it can take decades to establish new varieties with desired agronomic traits. Develop new plant varieties instantly to reduce hunger and improve food security. As a result of the adoption of conventional agricultural techniques, crop genetic diversity has decreased over time. Several traditional and molecular techniques, such as genetic selection, mutant breeding, somaclonal variation, genome-wide association studies, and others, have improved agronomic traits associated with agricultural plant productivity, quality, and resistance to biotic and abiotic stresses. In addition, modern genome editing approaches based on programmable nucleases, CRISPR, and Cas9 proteins have escorted an exciting new era of plant breeding. Plant breeders and scientists worldwide rely on cutting-edge techniques like quick breeding, genome editing tools, and high-throughput phenotyping to boost crop breeding output. This review compiles discoveries in numerous areas of crop breeding, such as using genome editing tools to accelerate the breeding process and create yearly crop generations with the desired features, to describe the shift from conventional to modern plant breeding techniques.
Collapse
Affiliation(s)
- Muhammad Ikram
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdul Rauf
- National Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, Hubei, China
| | - Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | | | | | - Maaz Ullah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Mehran
- Key Laboratory of Arable Land Conservation, Huazhong Agricultural University, Ministry of Agriculture, Wuhan, 430070, China
| | - Maryam Tahira
- National Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, Hubei, China
| |
Collapse
|
125
|
Harsij Z, Ghafoorzadeh Z, Goharian E. The CRISPR Revolution: Unraveling the mysteries of Life's genetic code. Gene 2024; 892:147870. [PMID: 37797781 DOI: 10.1016/j.gene.2023.147870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
A biotechnological revolution is triggered by CRISPR-Cas systems' variety, measured quality, and proficiency. Identifying nucleic acid biomarkers, one of the methods that use CRISPR for diagnosis, is an extremely sensitive diagnostic method.A broad range of infectious and noninfecting diseases, mutations, and CRISPR deletions associated with genetic disorders have been detected using diagnostics. Furthermore, this technology is used to test proteins and micromolecules. We focus on how Cas proteins can be used to detect diseases in genes, agriculture, and cancer therapy. Furthermore, CRISPR technology has many negative impacts on the health of living organisms, environmental and population structures in spite of its numerous contributions to biomedical science. Therefore, an investigation into the impact of genome editing on nontargeted species is important for these reasons. CRISPR in the future is briefly discussed towards the end of this review.
Collapse
Affiliation(s)
- Zohreh Harsij
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Zahra Ghafoorzadeh
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| | - Elahe Goharian
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
126
|
Norouzi M, Nazarain-Firouzabadi F, Ismaili A, Ahmadvand R, Poormazaheri H. CRISPR/Cas StNRL1 gene knockout increases resistance to late blight and susceptibility to early blight in potato. FRONTIERS IN PLANT SCIENCE 2024; 14:1278127. [PMID: 38304452 PMCID: PMC10830690 DOI: 10.3389/fpls.2023.1278127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024]
Abstract
With the development of genome editing technologies, editing susceptible genes is a promising method to modify plants for resistance to stress. NPH3/RPT2-LIKE1 protein (NRL1) interacts with effector Pi02860 of Phytophthora infestans and creates a protein complex, promoting the proteasome-mediated degradation of the guanine nucleotide exchange factor SWAP70. SWAP70, as a positive regulator, enhances cell death triggered by the perception of the P. infestans pathogen-associated molecular pattern (PAMP) INF1. Using a clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, a construct was made to introduce four guide RNAs into the potato cultivar Agria. A total of 60 putative transgenic lines were regenerated, in which 10 transgenic lines with deletions were selected and analyzed. A mutant line with a four-allelic knockdown of StNRL1 gene was obtained, showing an ~90% reduction in StNRL1 expression level, resulting in enhanced resistance to P. infestans. Surprisingly, mutant lines were susceptible to Alternaria alternata, suggesting that StNRL1 may play a role as a resistance gene; hence, silencing StNRL1 enhances resistance to P. infestans.
Collapse
Affiliation(s)
- Moshen Norouzi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Farhad Nazarain-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Rahim Ahmadvand
- Associate Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Helen Poormazaheri
- Department of Biology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
127
|
Naqvi RZ, Mahmood MA, Mansoor S, Amin I, Asif M. Omics-driven exploration and mining of key functional genes for the improvement of food and fiber crops. FRONTIERS IN PLANT SCIENCE 2024; 14:1273859. [PMID: 38259913 PMCID: PMC10800452 DOI: 10.3389/fpls.2023.1273859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
The deployment of omics technologies has obtained an incredible boost over the past few decades with the advances in next-generation sequencing (NGS) technologies, innovative bioinformatics tools, and the deluge of available biological information. The major omics technologies in the limelight are genomics, transcriptomics, proteomics, metabolomics, and phenomics. These biotechnological advances have modernized crop breeding and opened new horizons for developing crop varieties with improved traits. The genomes of several crop species are sequenced, and a huge number of genes associated with crucial economic traits have been identified. These identified genes not only provide insights into the understanding of regulatory mechanisms of crop traits but also decipher practical grounds to assist in the molecular breeding of crops. This review discusses the potential of omics technologies for the acquisition of biological information and mining of the genes associated with important agronomic traits in important food and fiber crops, such as wheat, rice, maize, potato, tomato, cassava, and cotton. Different functional genomics approaches for the validation of these important genes are also highlighted. Furthermore, a list of genes discovered by employing omics approaches is being represented as potential targets for genetic modifications by the latest genome engineering methods for the development of climate-resilient crops that would in turn provide great impetus to secure global food security.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| |
Collapse
|
128
|
Paramasivam G, Sanmugam A, Palem VV, Sevanan M, Sairam AB, Nachiappan N, Youn B, Lee JS, Nallal M, Park KH. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol 2024; 254:127904. [PMID: 37939770 DOI: 10.1016/j.ijbiomac.2023.127904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Vishnu Vardhan Palem
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Nachiappan Nachiappan
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Republic of Korea; School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
129
|
Thomson G, Dickinson L, Jacob Y. Genomic consequences associated with Agrobacterium-mediated transformation of plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:342-363. [PMID: 37831618 PMCID: PMC10841553 DOI: 10.1111/tpj.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Attenuated strains of the naturally occurring plant pathogen Agrobacterium tumefaciens can transfer virtually any DNA sequence of interest to model plants and crops. This has made Agrobacterium-mediated transformation (AMT) one of the most commonly used tools in agricultural biotechnology. Understanding AMT, and its functional consequences, is of fundamental importance given that it sits at the intersection of many fundamental fields of study, including plant-microbe interactions, DNA repair/genome stability, and epigenetic regulation of gene expression. Despite extensive research and use of AMT over the last 40 years, the extent of genomic disruption associated with integrating exogenous DNA into plant genomes using this method remains underappreciated. However, new technologies like long-read sequencing make this disruption more apparent, complementing previous findings from multiple research groups that have tackled this question in the past. In this review, we cover progress on the molecular mechanisms involved in Agrobacterium-mediated DNA integration into plant genomes. We also discuss localized mutations at the site of insertion and describe the structure of these DNA insertions, which can range from single copy insertions to large concatemers, consisting of complex DNA originating from different sources. Finally, we discuss the prevalence of large-scale genomic rearrangements associated with the integration of DNA during AMT with examples. Understanding the intended and unintended effects of AMT on genome stability is critical to all plant researchers who use this methodology to generate new genetic variants.
Collapse
Affiliation(s)
- Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Lauren Dickinson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
- Yale Cancer Center, Yale School of Medicine; New Haven, Connecticut 06511, USA
| |
Collapse
|
130
|
Vu TV, Nguyen NT, Kim J, Hong JC, Kim J. Prime editing: Mechanism insight and recent applications in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:19-36. [PMID: 37794706 PMCID: PMC10754014 DOI: 10.1111/pbi.14188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Prime editing (PE) technology utilizes an extended prime editing guide RNA (pegRNA) to direct a fusion peptide consisting of nCas9 (H840) and reverse transcriptase (RT) to a specific location in the genome. This enables the installation of base changes at the targeted site using the extended portion of the pegRNA through RT activity. The resulting product of the RT reaction forms a 3' flap, which can be incorporated into the genomic site through a series of biochemical steps involving DNA repair and synthesis pathways. PE has demonstrated its effectiveness in achieving almost all forms of precise gene editing, such as base conversions (all types), DNA sequence insertions and deletions, chromosomal translocation and inversion and long DNA sequence insertion at safe harbour sites within the genome. In plant science, PE could serve as a groundbreaking tool for precise gene editing, allowing the creation of desired alleles to improve crop varieties. Nevertheless, its application has encountered limitations due to efficiency constraints, particularly in dicotyledonous plants. In this review, we discuss the step-by-step mechanism of PE, shedding light on the critical aspects of each step while suggesting possible solutions to enhance its efficiency. Additionally, we present an overview of recent advancements and future perspectives in PE research specifically focused on plants, examining the key technical considerations of its applications.
Collapse
Affiliation(s)
- Tien V. Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Ngan Thi Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Jae‐Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
- Division of Life ScienceGyeongsang National UniversityJinjuKorea
- Nulla Bio Inc.JinjuKorea
| |
Collapse
|
131
|
|
132
|
Saini H, Thakur R, Gill R, Tyagi K, Goswami M. CRISPR/Cas9-gene editing approaches in plant breeding. GM CROPS & FOOD 2023; 14:1-17. [PMID: 37725519 PMCID: PMC10512805 DOI: 10.1080/21645698.2023.2256930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
CRISPR/Cas9 gene editing system is recently developed robust genome editing technology for accelerating plant breeding. Various modifications of this editing system have been established for adaptability in plant varieties as well as for its improved efficiency and portability. This review provides an in-depth look at the various strategies for synthesizing gRNAs for efficient delivery in plant cells, including chemical synthesis and in vitro transcription. It also covers traditional analytical tools and emerging developments in detection methods to analyze CRISPR/Cas9 mediated mutation in plant breeding. Additionally, the review outlines the various analytical tools which are used to detect and analyze CRISPR/Cas9 mediated mutations, such as next-generation sequencing, restriction enzyme analysis, and southern blotting. Finally, the review discusses emerging detection methods, including digital PCR and qPCR. Hence, CRISPR/Cas9 has great potential for transforming agriculture and opening avenues for new advancements in the system for gene editing in plants.
Collapse
Affiliation(s)
- Himanshu Saini
- School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- School of Agriculture, Forestry & Fisheries, Himgiri Zee University, Dehradun, Uttarakhand, India
| | - Rajneesh Thakur
- Department of Plant Pathology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Rubina Gill
- Department of Agronomy, School of Agriculture, Lovely professional university, Phagwara, Punjab, India
| | - Kalpana Tyagi
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, India
| | - Manika Goswami
- Department of Fruit Science, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| |
Collapse
|
133
|
Bravo-Vázquez LA, Méndez-García A, Chamu-García V, Rodríguez AL, Bandyopadhyay A, Paul S. The applications of CRISPR/Cas-mediated microRNA and lncRNA editing in plant biology: shaping the future of plant non-coding RNA research. PLANTA 2023; 259:32. [PMID: 38153530 DOI: 10.1007/s00425-023-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023]
Abstract
MAIN CONCLUSION CRISPR/Cas technology has greatly facilitated plant non-coding RNA (ncRNA) biology research, establishing itself as a promising tool for ncRNA functional characterization and ncRNA-mediated plant improvement. Throughout the last decade, the promising genome editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins (Cas; CRISPR/Cas) has allowed unprecedented advances in the field of plant functional genomics and crop improvement. Even though CRISPR/Cas-mediated genome editing system has been widely used to elucidate the biological significance of a number of plant protein-coding genes, this technology has been barely applied in the functional analysis of those non-coding RNAs (ncRNAs) that modulate gene expression, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Nevertheless, compelling findings indicate that CRISPR/Cas-based ncRNA editing has remarkable potential for deciphering the biological roles of ncRNAs in plants, as well as for plant breeding. For instance, it has been demonstrated that CRISPR/Cas tool could overcome the challenges associated with other approaches employed in functional genomic studies (e.g., incomplete knockdown and off-target activity). Thus, in this review article, we discuss the current status and progress of CRISPR/Cas-mediated ncRNA editing in plant science in order to provide novel prospects for further assessment and validation of the biological activities of plant ncRNAs and to enhance the development of ncRNA-centered protocols for crop improvement.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Andrea Méndez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Verenice Chamu-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, 72453, Puebla, Mexico
| | - Alma L Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines.
- Reliance Industries Ltd., Navi Mumbai, Maharashtra, 400701, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico.
| |
Collapse
|
134
|
Viswan A, Yoshikawa C, Yamagishi A, Furuhata Y, Kato Y, Yamazaki T, Nakamura C. Efficient genome editing by controlled release of Cas9 ribonucleoprotein in plant cytosol using polymer-modified microneedle array. Biochem Biophys Res Commun 2023; 686:149179. [PMID: 37922572 DOI: 10.1016/j.bbrc.2023.149179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Direct delivery of genome-editing proteins into plant tissues could be useful in obtaining DNA-free genome-edited crops obviating the need for backcrossing to remove vector-derived DNA from the host genome as in the case of genetically modified organisms generated using DNA vector. Previously, we successfully delivered Cas9 ribonucleoprotein (RNP) into plant tissue by inserting microneedle array (MNA) physisorbed with Cas9 RNPs. Here, to enhance protein delivery and improve genome-editing efficiency, we introduced a bioactive polymer DMA/HPA/NHS modification to the MNA, which allowed strong bonding between the proteins and MNA. Compared with other modifying agents, this MNA modification resulted in better release of immobilized protein in a plant cytosol-mimicking environment. The delivery of Cas9 RNPs in Arabidopsis thaliana reporter plants was improved from 4 out of 17 leaf tissues when using unmodified MNAs to 9 out of 17 when using the polymer-modified MNAs. Further improvements in delivery efficiency can be envisaged by optimizing the polymer modification conditions, which could have significant implications for the development of more effective plant genome editing techniques.
Collapse
Affiliation(s)
- Anchu Viswan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Chiaki Yoshikawa
- Research Center of Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Ayana Yamagishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yuichi Furuhata
- Research Center for Macromolecules & Biomaterials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yoshio Kato
- Research Center for Macromolecules & Biomaterials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Tomohiko Yamazaki
- Research Center of Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Chikashi Nakamura
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan.
| |
Collapse
|
135
|
Hernandes-Lopes J, Pinto MS, Vieira LR, Monteiro PB, Gerasimova SV, Nonato JVA, Bruno MHF, Vikhorev A, Rausch-Fernandes F, Gerhardt IR, Pauwels L, Arruda P, Dante RA, Yassitepe JEDCT. Enabling genome editing in tropical maize lines through an improved, morphogenic regulator-assisted transformation protocol. Front Genome Ed 2023; 5:1241035. [PMID: 38144709 PMCID: PMC10748596 DOI: 10.3389/fgeed.2023.1241035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
The recalcitrance exhibited by many maize (Zea mays) genotypes to traditional genetic transformation protocols poses a significant challenge to the large-scale application of genome editing (GE) in this major crop species. Although a few maize genotypes are widely used for genetic transformation, they prove unsuitable for agronomic tests in field trials or commercial applications. This challenge is exacerbated by the predominance of transformable maize lines adapted to temperate geographies, despite a considerable proportion of maize production occurring in the tropics. Ectopic expression of morphogenic regulators (MRs) stands out as a promising approach to overcome low efficiency and genotype dependency, aiming to achieve 'universal' transformation and GE capabilities in maize. Here, we report the successful GE of agronomically relevant tropical maize lines using a MR-based, Agrobacterium-mediated transformation protocol previously optimized for the B104 temperate inbred line. To this end, we used a CRISPR/Cas9-based construct aiming at the knockout of the VIRESCENT YELLOW-LIKE (VYL) gene, which results in an easily recognizable phenotype. Mutations at VYL were verified in protoplasts prepared from B104 and three tropical lines, regardless of the presence of a single nucleotide polymorphism (SNP) at the seed region of the VYL target site in two of the tropical lines. Three out of five tropical lines were amenable to transformation, with efficiencies reaching up to 6.63%. Remarkably, 97% of the recovered events presented indels at the target site, which were inherited by the next generation. We observed off-target activity of the CRISPR/Cas9-based construct towards the VYL paralog VYL-MODIFIER, which could be partly due to the expression of the WUSCHEL (WUS) MR. Our results demonstrate efficient GE of relevant tropical maize lines, expanding the current availability of GE-amenable genotypes of this major crop.
Collapse
Affiliation(s)
- José Hernandes-Lopes
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Maísa Siqueira Pinto
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Letícia Rios Vieira
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Patrícia Brant Monteiro
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Sophia V. Gerasimova
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Juliana Vieira Almeida Nonato
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Maria Helena Faustinoni Bruno
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Alexander Vikhorev
- Frontier Engineering School, Novosibirsk State University, Novosibirsk, Russia
| | - Fernanda Rausch-Fernandes
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Embrapa Agricultura Digital, Campinas, Brazil
| | - Isabel R. Gerhardt
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Embrapa Agricultura Digital, Campinas, Brazil
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Paulo Arruda
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ricardo A. Dante
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Embrapa Agricultura Digital, Campinas, Brazil
| | - Juliana Erika de Carvalho Teixeira Yassitepe
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Embrapa Agricultura Digital, Campinas, Brazil
| |
Collapse
|
136
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
137
|
Rogowska-van der Molen MA, Berasategui-Lopez A, Coolen S, Jansen RS, Welte CU. Microbial degradation of plant toxins. Environ Microbiol 2023; 25:2988-3010. [PMID: 37718389 DOI: 10.1111/1462-2920.16507] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Plants produce a variety of secondary metabolites in response to biotic and abiotic stresses. Although they have many functions, a subclass of toxic secondary metabolites mainly serve plants as deterring agents against herbivores, insects, or pathogens. Microorganisms present in divergent ecological niches, such as soil, water, or insect and rumen gut systems have been found capable of detoxifying these metabolites. As a result of detoxification, microbes gain growth nutrients and benefit their herbivory host via detoxifying symbiosis. Here, we review current knowledge on microbial degradation of toxic alkaloids, glucosinolates, terpenes, and polyphenols with an emphasis on the genes and enzymes involved in breakdown pathways. We highlight that the insect-associated microbes might find application in biotechnology and become targets for an alternative microbial pest control strategy.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Aileen Berasategui-Lopez
- Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit, Amsterdam, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
138
|
Mekapogu M, Song HY, Lim SH, Jung JA. Genetic Engineering and Genome Editing Advances to Enhance Floral Attributes in Ornamental Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2023; 12:3983. [PMID: 38068619 PMCID: PMC10707928 DOI: 10.3390/plants12233983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
The ornamental horticulture industry is a highly dynamic and rapidly changing market. Constant development of novel cultivars with elite traits is essential to sustain competitiveness. Conventional breeding has been used to develop cultivars, which is often laborious. Biotechnological strategies such as genetic engineering have been crucial in manipulating and improving various beneficial traits that are technically not possible through cross-breeding. One such trait is the highly desired blue-colored flower in roses and chrysanthemums, which can be achieved through transgenic technology. Advances in genome sequencing platforms have enhanced the opportunities to access the whole genome sequence in various ornamentals, facilitating the dissection of the molecular genetics and regulatory controls of different traits. The recent advent of genome editing tools, including CRISPR/Cas9, has revolutionized plant breeding. CRISPR/Cas9-based gene editing offers efficient and highly precise trait modification, contributing to various beneficial advancements. Although genome editing in ornamentals is currently in its infancy, the recent increase in the availability of ornamental genome sequences provides a platform to extend the frontiers of future genome editing in ornamentals. Hence, this review depicts the implication of various commercially valuable ornamental attributes, and details the research attempts and achievements in enhancing floral attributes using genetic engineering and genome editing in ornamental plants.
Collapse
Affiliation(s)
| | | | | | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
139
|
Martín-Valmaseda M, Devin SR, Ortuño-Hernández G, Pérez-Caselles C, Mahdavi SME, Bujdoso G, Salazar JA, Martínez-Gómez P, Alburquerque N. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding. Int J Mol Sci 2023; 24:16656. [PMID: 38068981 PMCID: PMC10705926 DOI: 10.3390/ijms242316656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
CRISPR (short for "Clustered Regularly Interspaced Short Palindromic Repeats") is a technology that research scientists use to selectively modify the DNA of living organisms. CRISPR was adapted for use in the laboratory from the naturally occurring genome-editing systems found in bacteria. In this work, we reviewed the methods used to introduce CRISPR/Cas-mediated genome editing into fruit species, as well as the impacts of the application of this technology to activate and knock out target genes in different fruit tree species, including on tree development, yield, fruit quality, and tolerance to biotic and abiotic stresses. The application of this gene-editing technology could allow the development of new generations of fruit crops with improved traits by targeting different genetic segments or even could facilitate the introduction of traits into elite cultivars without changing other traits. However, currently, the scarcity of efficient regeneration and transformation protocols in some species, the fact that many of those procedures are genotype-dependent, and the convenience of segregating the transgenic parts of the CRISPR system represent the main handicaps limiting the potential of genetic editing techniques for fruit trees. Finally, the latest news on the legislation and regulations about the use of plants modified using CRISPR/Cas systems has been also discussed.
Collapse
Affiliation(s)
- Marina Martín-Valmaseda
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sama Rahimi Devin
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Germán Ortuño-Hernández
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Cristian Pérez-Caselles
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sayyed Mohammad Ehsan Mahdavi
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Geza Bujdoso
- Research Centre for Fruit Growing, Hungarian University of Agriculture and Life Sciences, 1223 Budapest, Hungary;
| | - Juan Alfonso Salazar
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Pedro Martínez-Gómez
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Nuria Alburquerque
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| |
Collapse
|
140
|
Wang H, Qi X, Zhu J, Liu C, Fan H, Zhang X, Li X, Yang Q, Xie C. Pollen self-elimination CRISPR-Cas genome editing prevents transgenic pollen dispersal in maize. PLANT COMMUNICATIONS 2023; 4:100637. [PMID: 37301980 PMCID: PMC10721481 DOI: 10.1016/j.xplc.2023.100637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
This study reports the development of a programmed pollen self-elimination CRISPR-Cas (PSEC) system in which the pollen is infertile when PSEC is present in haploid pollen. PSEC can be inherited through the female gametophyte and retains genome editing activity in vivo across generations. This system could greatly alleviate serious concerns about the widespread diffusion of genetically modified (GM) elements into natural and agricultural environments via outcrossing.
Collapse
Affiliation(s)
- Honglin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiantao Qi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jinjie Zhu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Changlin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Lab, Sanya, Hainan Province 572024 China
| | - Hongwei Fan
- Henan Jinyuan Seed Industry Co., Ltd., Zhengzhou, Henan Province, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), EI Batan, Mexico
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Qin Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Lab, Sanya, Hainan Province 572024 China.
| |
Collapse
|
141
|
Caccialupi G, Milc J, Caradonia F, Nasar MF, Francia E. The Triticeae CBF Gene Cluster-To Frost Resistance and Beyond. Cells 2023; 12:2606. [PMID: 37998341 PMCID: PMC10670769 DOI: 10.3390/cells12222606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals. Triticeae crops seem to share common mechanisms characterized, however, by some peculiar aspects of the response to stress, highlighting a combined landscape of single-nucleotide variants and copy number variation involving CBF members of subgroup IV. Moreover, while chromosome 5 ploidy appears to confer species-specific levels of resistance, an important involvement of the ICE factor might explain the greater tolerance of rye. By unraveling the genetic basis of abiotic stress tolerance, researchers can develop resilient varieties better equipped to withstand extreme environmental conditions. Hence, advancing our knowledge of CBFs and their interactions represents a promising avenue for improving crop resilience and food security.
Collapse
Affiliation(s)
- Giovanni Caccialupi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (J.M.); (F.C.); (M.F.N.); (E.F.)
| | | | | | | | | |
Collapse
|
142
|
Joshi A, Yang SY, Song HG, Min J, Lee JH. Genetic Databases and Gene Editing Tools for Enhancing Crop Resistance against Abiotic Stress. BIOLOGY 2023; 12:1400. [PMID: 37997999 PMCID: PMC10669554 DOI: 10.3390/biology12111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Abiotic stresses extensively reduce agricultural crop production globally. Traditional breeding technology has been the fundamental approach used to cope with abiotic stresses. The development of gene editing technology for modifying genes responsible for the stresses and the related genetic networks has established the foundation for sustainable agriculture against environmental stress. Integrated approaches based on functional genomics and transcriptomics are now expanding the opportunities to elucidate the molecular mechanisms underlying abiotic stress responses. This review summarizes some of the features and weblinks of plant genome databases related to abiotic stress genes utilized for improving crops. The gene-editing tool based on clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has revolutionized stress tolerance research due to its simplicity, versatility, adaptability, flexibility, and broader applications. However, off-target and low cleavage efficiency hinder the successful application of CRISPR/Cas systems. Computational tools have been developed for designing highly competent gRNA with better cleavage efficiency. This powerful genome editing tool offers tremendous crop improvement opportunities, overcoming conventional breeding techniques' shortcomings. Furthermore, we also discuss the mechanistic insights of the CRISPR/Cas9-based genome editing technology. This review focused on the current advances in understanding plant species' abiotic stress response mechanism and applying the CRISPR/Cas system genome editing technology to develop crop resilience against drought, salinity, temperature, heavy metals, and herbicides.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Hyung-Geun Song
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
- Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
143
|
Hernández F, Palmieri L, Brunet J. Introgression and persistence of cultivar alleles in wild carrot (Daucus carota) populations in the United States. AMERICAN JOURNAL OF BOTANY 2023; 110:e16242. [PMID: 37681637 DOI: 10.1002/ajb2.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
PREMISE Cultivated species and their wild relatives often hybridize in the wild, and the hybrids can survive and reproduce in some environments. However, it is unclear whether cultivar alleles are permanently incorporated into the wild genomes or whether they are purged by natural selection. This question is key to accurately assessing the risk of escape and spread of cultivar genes into wild populations. METHODS We used genomic data and population genomic methods to study hybridization and introgression between cultivated and wild carrot (Daucus carota) in the United States. We used single nucleotide polymorphisms (SNPs) obtained via genotyping by sequencing for 450 wild individuals from 29 wild georeferenced populations in seven states and 144 cultivars from the United States, Europe, and Asia. RESULTS Cultivated and wild carrot formed two genetically differentiated groups, and evidence of crop-wild admixture was detected in several but not all wild carrot populations in the United States. Two regions were identified where cultivar alleles were present in wild carrots: California and Nantucket Island (Massachusetts). Surprisingly, there was no evidence of introgression in some populations with a long-known history of sympatry with the crop, suggesting that post-hybridization barriers might prevent introgression in some areas. CONCLUSIONS Our results provide support for the introgression and long-term persistence of cultivar alleles in wild carrots populations. We thus anticipate that the release of genetically engineered (GE) cultivars would lead to the introduction and spread of GE alleles in wild carrot populations.
Collapse
Affiliation(s)
- Fernando Hernández
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina
- CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Luciano Palmieri
- Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Madison, WI, USA
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA-ARS, Madison, WI, USA
| |
Collapse
|
144
|
Yang X, Pan Y, Xia X, Qing D, Chen W, Nong B, Zhang Z, Zhou W, Li J, Li D, Dai G, Deng G. Molecular basis of genetic improvement for key rice quality traits in Southern China. Genomics 2023; 115:110745. [PMID: 37977332 DOI: 10.1016/j.ygeno.2023.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Grain qualities including milling quality, appearance quality, eating and cooking quality, and nutritional quality are important indicators in rice breeding. Significant achievements in genetic improvement of rice quality have been made. In this study, we analyzed the variation patterns of 16 traits in 1570 rice varieties and found significant improvements in appearance quality and eating and cooking quality, particularly in hybrid rice. Through genome-wide association study and allelic functional nucleotide polymorphisms analysis of quality trait genes, we found that ALK, FGR1, FLO7, GL7/GW7, GLW7, GS2, GS3, ONAC129, OsGRF8, POW1, WCR1, and Wx were associated with the genetic improvement of rice quality traits in Southern China. Allelic functional nucleotide polymorphisms analysis of 13 important rice quality genes, including fragrance gene fgr, were performed using the polymerase chain reaction amplification refractory mutation system technology. The results showed that Gui516, Gui569, Gui721, Ryousi, Rsimiao, Rbasi, and Yuehui9802 possessed multiple superior alleles. This study elucidates the phenotypic changes and molecular basis of key quality traits of varieties in Southern China. The findings will provide guidance for genetic improvement of rice quality and the development of new varieties.
Collapse
Affiliation(s)
- Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Dongjin Qing
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weiyong Zhou
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Jingcheng Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| | - Gaoxing Dai
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| |
Collapse
|
145
|
Zhao F, Ding X, Liu Z, Yan X, Chen Y, Jiang Y, Chen S, Wang Y, Kang T, Xie C, He M, Zheng J. Application of CRISPR/Cas9-based genome editing in ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122458. [PMID: 37633433 DOI: 10.1016/j.envpol.2023.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Chemicals are widely used and released into the environment, and their degradation, accumulation, migration, and transformation processes in the environment can pose a threat to the ecosystem. The advancement in analytical methods with high-throughput screening of biomolecules has revolutionized the way toxicologists used to explore the effects of chemicals on organisms. CRISPR/Cas is a newly developed tool, widely used in the exploration of basic science and biologically engineered products given its high efficiency and low cost. For example, it can edit target genes efficiently, and save loss of the crop yield caused by environmental pollution as well as gain a better understanding of the toxicity mechanisms from various chemicals. This review briefly introduces the development history of CRISPR/Cas and summarizes the current application of CRISPR/Cas in ecotoxicology, including its application on improving crop yield and drug resistance towards agricultural pollution, antibiotic pollution and other threats. The benefits by applying the CRISPR/Cas9 system in conventional toxicity mechanism studies are fully demonstrated here together with its foreseeable expansions in other area of ecotoxicology. Finally, the prospects and disadvantages of CRISPR/Cas system in the field of ecotoxicology are also discussed.
Collapse
Affiliation(s)
- Fang Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Xiaofan Ding
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zimeng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| | - Yanzhen Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yaxin Jiang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shunjie Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuanfang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chun Xie
- School of Public Health, Guizhou Medical University, Guizhou, China
| | - Mian He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Jing Zheng
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| |
Collapse
|
146
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
147
|
Xiong X, Liu K, Li Z, Xia FN, Ruan XM, He X, Li JF. Split complementation of base editors to minimize off-target edits. NATURE PLANTS 2023; 9:1832-1847. [PMID: 37845337 DOI: 10.1038/s41477-023-01540-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Base editors (BEs) empower the efficient installation of beneficial or corrective point mutations in crop and human genomes. However, conventional BEs can induce unpredictable guide RNA (gRNA)-independent off-target edits in the genome and transcriptome due to spurious activities of BE-enclosing deaminases, and current improvements mostly rely on deaminase-specific mutagenesis or exogenous regulators. Here we developed a split deaminase for safe editing (SAFE) system applicable to BEs containing distinct cytidine or adenosine deaminases, with no need of external regulators. In SAFE, a BE was properly split at a deaminase domain embedded inside a Cas9 nickase, simultaneously fragmenting and deactivating both the deaminase and the Cas9 nickase. The gRNA-conditioned BE reassembly conferred robust on-target editing in plant, human and yeast cells, while minimizing both gRNA-independent and gRNA-dependent off-target DNA/RNA edits. SAFE also substantially increased product purity by eliminating indels. Altogether, SAFE provides a generalizable solution for BEs to suppress off-target editing and improve on-target performance.
Collapse
Affiliation(s)
- Xiangyu Xiong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kehui Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Zhenxiang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xue-Ming Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
148
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
149
|
Li H, Song K, Li B, Zhang X, Wang D, Dong S, Yang L. CRISPR/Cas9 Editing Sites Identification and Multi-Elements Association Analysis in Camellia sinensis. Int J Mol Sci 2023; 24:15317. [PMID: 37894996 PMCID: PMC10607008 DOI: 10.3390/ijms242015317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
CRISPR/Cas9 is an efficient genome-editing tool, and the identification of editing sites and potential influences in the Camellia sinensis genome have not been investigated. In this study, bioinformatics methods were used to characterise the Camellia sinensis genome including editing sites, simple sequence repeats (SSRs), G-quadruplexes (GQ), gene density, and their relationships. A total of 248,134,838 potential editing sites were identified in the genome, and five PAM types, AGG, TGG, CGG, GGG, and NGG, were observed, of which 66,665,912 were found to be specific, and they were present in all structural elements of the genes. The characteristic region of high GC content, GQ density, and PAM density in contrast to low gene density and SSR density was identified in the chromosomes in the joint analysis, and it was associated with secondary metabolites and amino acid biosynthesis pathways. CRISPR/Cas9, as a technology to drive crop improvement, with the identified editing sites and effector elements, provides valuable tools for functional studies and molecular breeding in Camellia sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
150
|
Vu BN, Vu TV, Yoo JY, Nguyen NT, Ko KS, Kim JY, Lee KO. CRISPR-Cas-mediated unfolded protein response control for enhancing plant stress resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1271368. [PMID: 37908833 PMCID: PMC10613997 DOI: 10.3389/fpls.2023.1271368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Plants consistently encounter environmental stresses that negatively affect their growth and development. To mitigate these challenges, plants have developed a range of adaptive strategies, including the unfolded protein response (UPR), which enables them to manage endoplasmic reticulum (ER) stress resulting from various adverse conditions. The CRISPR-Cas system has emerged as a powerful tool for plant biotechnology, with the potential to improve plant tolerance and resistance to biotic and abiotic stresses, as well as enhance crop productivity and quality by targeting specific genes, including those related to the UPR. This review highlights recent advancements in UPR signaling pathways and CRISPR-Cas technology, with a particular focus on the use of CRISPR-Cas in studying plant UPR. We also explore prospective applications of CRISPR-Cas in engineering UPR-related genes for crop improvement. The integration of CRISPR-Cas technology into plant biotechnology holds the promise to revolutionize agriculture by producing crops with enhanced resistance to environmental stresses, increased productivity, and improved quality traits.
Collapse
Affiliation(s)
- Bich Ngoc Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Tien Van Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Ngan Thi Nguyen
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio Inc., Jinju, Republic of Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|