101
|
Criado PR, Pagliari C, Carneiro FRO, Quaresma JAS. Lessons from dermatology about inflammatory responses in Covid-19. Rev Med Virol 2020; 30:e2130. [PMID: 32656939 PMCID: PMC7404593 DOI: 10.1002/rmv.2130] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
The SARS-Cov-2 is a single-stranded RNA virus composed of 16 non-structural proteins (NSP 1-16) with specific roles in the replication of coronaviruses. NSP3 has the property to block host innate immune response and to promote cytokine expression. NSP5 can inhibit interferon (IFN) signalling and NSP16 prevents MAD5 recognition, depressing the innate immunity. Dendritic cells, monocytes, and macrophages are the first cell lineage against viruses' infections. The IFN type I is the danger signal for the human body during this clinical setting. Protective immune responses to viral infection are initiated by innate immune sensors that survey extracellular and intracellular space for foreign nucleic acids. In Covid-19 the pathogenesis is not yet fully understood, but viral and host factors seem to play a key role. Important points in severe Covid-19 are characterized by an upregulated innate immune response, hypercoagulopathy state, pulmonary tissue damage, neurological and/or gastrointestinal tract involvement, and fatal outcome in severe cases of macrophage activation syndrome, which produce a 'cytokine storm'. These systemic conditions share polymorphous cutaneous lesions where innate immune system is involved in the histopathological findings with acute respiratory distress syndrome, hypercoagulability, hyperferritinemia, increased serum levels of D-dimer, lactic dehydrogenase, reactive-C-protein and serum A amyloid. It is described that several polymorphous cutaneous lesions similar to erythema pernio, urticarial rashes, diffuse or disseminated erythema, livedo racemosa, blue toe syndrome, retiform purpura, vesicles lesions, and purpuric exanthema or exanthema with clinical aspects of symmetrical drug-related intertriginous and flexural exanthema. This review describes the complexity of Covid-19, its pathophysiological and clinical aspects.
Collapse
Affiliation(s)
- Paulo Ricardo Criado
- Dermatology DepartmentCentro Universitário Saúde ABCSanto AndréBrazil
- Dermatology Department, Faculdade de MedicinaCentro Universitário Saúde ABCSanto AndréBrazil
| | - Carla Pagliari
- Pathology Department, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | | | | |
Collapse
|
102
|
Criado PR, Pagliari C, Criado RFJ, Marques GF, Belda W. What the physicians should know about mast cells, dendritic cells, urticaria, and omalizumab during COVID-19 or asymptomatic infections due to SARS-CoV-2? Dermatol Ther 2020; 33:e14068. [PMID: 32713127 DOI: 10.1111/dth.14068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease (COVID-19) pandemic presents several dermatological manifestations described in the present indexed literature, with around 700 cases reported until May 2020, some described as urticaria or urticarial rashes. Urticaria is constituted by evanescent erythematous-edematous lesions (wheals and flare), which does not persist in the same site for more than 24 to 48 hours and appears in other topographic localization, resolving without residual hyper pigmentation. During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, some cytokines are synthesized, including Interferon (IFN) type I, TNF-α, and chemokines which may induce mast cells (MCs) and basophils degranulation by mechanisms similar to the autoinflammatory monogenic or polygenic diseases. In this article, we discuss the spectrum of the urticaria and urticarial-like lesions in the COVID-19's era, besides other aspects related to innate and adaptative immune response to viral infections, interactions between dermal dendritic cells and MCs, and degranulation of MCs by different stimuli. Plasmacytoid dendritic cells share, in allergic patients, expression of the high-affinity IgE receptors on cell membranes and demonstrated a low pattern of type I IFN secretion in viral infections. We discuss the previous descriptions of the effects of omalizumab, a monoclonal antibody directed to IgE and high-affinity IgE receptors, to improve the IFN responses and enhance their antiviral effects.
Collapse
Affiliation(s)
- Paulo Ricardo Criado
- Dermatology Department, Centro Universitário Saúde ABC, Santo André, Brazil.,Dermatology Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carla Pagliari
- Pathology Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Gabriela Franco Marques
- Dermatology Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Walter Belda
- Dermatology Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
103
|
Criado PR, Abdalla BMZ, de Assis IC, van Blarcum de Graaff Mello C, Caputo GC, Vieira IC. Are the cutaneous manifestations during or due to SARS-CoV-2 infection/COVID-19 frequent or not? Revision of possible pathophysiologic mechanisms. Inflamm Res 2020; 69:745-756. [PMID: 32488318 PMCID: PMC7266387 DOI: 10.1007/s00011-020-01370-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SARS-Cov-2 is a single-stranded RNA virus, a Betacoronavirus, composed of 16 non-structural proteins, with specific roles in replication of coronaviruses. The pathogenesis of COVID-19 is not yet fully understood. The virus and host factors interplay among distinct outcomes of infected patients. METHODS Using MeSH (Medical Subject Headings) in PubMed, authors searched for articles cotaining information on COVID-19 and the skin. RESULTS The pathophysiology of the disease is multifactorial: association with innate immune response, hypercoagulability state, lung tissue damage, neurological and/or gastrointestinal tract involvement, monocytic/macrophage activation syndrome, culminating in exaggerated cytokine secretion, called "cytokine storm", which leads to worsening and death. These systemic conditions may be associated with cutaneous lesions, that have polymorphic aspects, where at histopathological level show involvement in different skin changes. These lesions may be associated with multisystemic manifestations that could occur due to angiotensin-converting enzyme 2 receptor and transmembrane serine protease action, allowing the pulmonary infection and possibly skin manifestation. Several reports in literature show cutaneous lesions similar to chilblain, urticarial eruptions, diffuse or disseminated erythema, livedo racemosa, blue toe syndrome, retiform purpura, vesicle trunk, purpuric exanthema or exanthema with clinical aspects of symmetrical drug-related intertriginous and flexural exanthema (SDRIFE) and others. CONCLUSIONS This review describes the complexity of Covid-19, pathophysiological and clinical aspects, dermatological finding and other dermatological conditions associated with SARS-CoV-2 infection or COVID-19.
Collapse
Affiliation(s)
- Paulo Ricardo Criado
- Department of Dermatology, Faculdade de Medicina do ABC, Príncipe de Gales, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil
| | - Beatrice Martinez Zugaib Abdalla
- Department of Dermatology, Faculdade de Medicina do ABC, Príncipe de Gales, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil.
| | - Isabelle Carvalho de Assis
- Department of Dermatology, Faculdade de Medicina do ABC, Príncipe de Gales, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil
| | | | - Gabriela Cacciolari Caputo
- Department of Dermatology, Faculdade de Medicina do ABC, Príncipe de Gales, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil
| | - Ingrid Campos Vieira
- Department of Dermatology, Faculdade de Medicina do ABC, Príncipe de Gales, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil
| |
Collapse
|
104
|
Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood 2020; 136:418-428. [PMID: 32526028 PMCID: PMC7378458 DOI: 10.1182/blood.2019000952] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is an important curative therapy for high-risk hematological malignancies, but the development of severe and/or steroid-refractory acute graft-versus-host disease (aGVHD) remains a significant limitation to optimal outcomes. New approaches to prevent and treat aGVHD remain an unmet need that can be best addressed by understanding the complex disease pathophysiology. It is now clear that chemoradiotherapy used prior to alloSCT induces the release of endogenous alarmins (eg, HMGB-1, ATP, IL-1α, IL-33) from recipient tissue. Exogenous pathogen-derived molecules (eg, lipopolysaccharide, nucleic acids) also translocate from the gastrointestinal tract lumen. Together, these danger signals activate antigen-presenting cells (APCs) to efficiently present alloantigen to donor T cells while releasing cytokines (eg, interleukin-12 [IL-12], IL-23, IL-6, IL-27, IL-10, transforming growth factor-β) that expand and differentiate both pathogenic and regulatory donor T cells. Concurrent costimulatory signals at the APC-T-cell interface (eg, CD80/CD86-CD28, CD40-CD40L, OX40L-OX40, CD155/CD112-DNAM-1) and subsequent coinhibitory signals (eg, CD80/CD86-CTLA4, PDL1/2-PD1, CD155/CD112-TIGIT) are critical to the acquisition of effector T-cell function and ensuing secretion of pathogenic cytokines (eg, IL-17, interferon-γ, tissue necrosis factor, granulocyte-macrophage colony-stimulating factor) and cytolytic degranulation pathway effectors (eg, perforin/granzyme). This review focuses on the combination of cytokine and costimulatory networks at the T-cell surface that culminates in effector function and subsequent aGVHD in target tissue. Together, these pathways now represent robust and clinically tractable targets for preventing the initiation of deleterious immunity after alloSCT.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| |
Collapse
|
105
|
Roy ER, Wang B, Wan YW, Chiu G, Cole A, Yin Z, Propson NE, Xu Y, Jankowsky JL, Liu Z, Lee VMY, Trojanowski JQ, Ginsberg SD, Butovsky O, Zheng H, Cao W. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J Clin Invest 2020; 130:1912-1930. [PMID: 31917687 PMCID: PMC7108898 DOI: 10.1172/jci133737] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Type I interferon (IFN) is a key cytokine that curbs viral infection and cell malignancy. Previously, we demonstrated a potent IFN immunogenicity of nucleic acid-containing (NA-containing) amyloid fibrils in the periphery. Here, we investigated whether IFN is associated with β-amyloidosis inside the brain and contributes to neuropathology. An IFN-stimulated gene (ISG) signature was detected in the brains of multiple murine Alzheimer disease (AD) models, a phenomenon also observed in WT mouse brain challenged with generic NA-containing amyloid fibrils. In vitro, microglia innately responded to NA-containing amyloid fibrils. In AD models, activated ISG-expressing microglia exclusively surrounded NA+ amyloid β plaques, which accumulated in an age-dependent manner. Brain administration of rIFN-β resulted in microglial activation and complement C3-dependent synapse elimination in vivo. Conversely, selective IFN receptor blockade effectively diminished the ongoing microgliosis and synapse loss in AD models. Moreover, we detected activated ISG-expressing microglia enveloping NA-containing neuritic plaques in postmortem brains of patients with AD. Gene expression interrogation revealed that IFN pathway was grossly upregulated in clinical AD and significantly correlated with disease severity and complement activation. Therefore, IFN constitutes a pivotal element within the neuroinflammatory network of AD and critically contributes to neuropathogenic processes.
Collapse
Affiliation(s)
- Ethan R. Roy
- Huffington Center on Aging
- Translational Biology & Molecular Medicine Program, and
| | | | - Ying-wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas E. Propson
- Huffington Center on Aging
- Molecular and Cellular Biology Program, Department of Molecular and Cellular Biology
| | - Yin Xu
- Huffington Center on Aging
| | | | - Zhandong Liu
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA
- Departments of Psychiatry, Neuroscience & Physiology and the NYU Neuroscience Institute, New York University Langone Medical Center, New York, New York, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Zheng
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Cao
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
106
|
Szymura SJ, Bernal GM, Wu L, Zhang Z, Crawley CD, Voce DJ, Campbell PA, Ranoa DE, Weichselbaum RR, Yamini B. DDX39B interacts with the pattern recognition receptor pathway to inhibit NF-κB and sensitize to alkylating chemotherapy. BMC Biol 2020; 18:32. [PMID: 32209106 PMCID: PMC7093963 DOI: 10.1186/s12915-020-0764-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Nuclear factor-κB (NF-κB) plays a prominent role in promoting inflammation and resistance to DNA damaging therapy. We searched for proteins that modulate the NF-κB response as a prerequisite to identifying novel factors that affect sensitivity to DNA damaging chemotherapy. Results Using streptavidin-agarose pull-down, we identified the DExD/H-box RNA helicase, DDX39B, as a factor that differentially interacts with κB DNA probes. Subsequently, using both RNA interference and CRISPR/Cas9 technology, we demonstrated that DDX39B inhibits NF-κB activity by a general mechanism involving inhibition of p65 phosphorylation. Mechanistically, DDX39B mediates this effect by interacting with the pattern recognition receptor (PRR), LGP2, a pathway that required the cellular response to cytoplasmic double-stranded RNA (dsRNA). From a functional standpoint, loss of DDX39B promoted resistance to alkylating chemotherapy in glioblastoma cells. Further examination of DDX39B demonstrated that its protein abundance was regulated by site-specific sumoylation that promoted its poly-ubiquitination and degradation. These post-translational modifications required the presence of the SUMO E3 ligase, PIASx-β. Finally, genome-wide analysis demonstrated that despite the link to the PRR system, DDX39B did not generally inhibit interferon-stimulated gene expression, but rather acted to attenuate expression of factors associated with the extracellular matrix, cellular migration, and angiogenesis. Conclusions These results identify DDX39B, a factor with known functions in mRNA splicing and nuclear export, as an RNA-binding protein that blocks a subset of the inflammatory response. While these findings identify a pathway by which DDX39B promotes sensitization to DNA damaging therapy, the data also reveal a mechanism by which this helicase may act to mitigate autoimmune disease.
Collapse
Affiliation(s)
- Szymon J Szymura
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Giovanna M Bernal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Longtao Wu
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhongqin Zhang
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Clayton D Crawley
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - David J Voce
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Paige-Ashley Campbell
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Diana E Ranoa
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Bakhtiar Yamini
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
107
|
Schorer M, Lambert K, Rakebrandt N, Rost F, Kao KC, Yermanos A, Spörri R, Oderbolz J, Raeber ME, Keller CW, Lünemann JD, Rogler G, Boyman O, Oxenius A, Joller N. Rapid expansion of Treg cells protects from collateral colitis following a viral trigger. Nat Commun 2020; 11:1522. [PMID: 32251280 PMCID: PMC7090079 DOI: 10.1038/s41467-020-15309-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Foxp3+ regulatory T (Treg) cells are essential for maintaining peripheral tolerance and preventing autoimmunity. While genetic factors may predispose for autoimmunity, additional environmental triggers, such as viral infections, are usually required to initiate the onset of disease. Here, we show that viral infection with LCMV results in type I IFN-dependent Treg cell loss that is rapidly compensated by the conversion and expansion of Vβ5+ conventional T cells into iTreg cells. Using Vβ5-deficient mice, we show that these Vβ5+ iTreg cells are dispensable for limiting anti-viral immunity. Rather, the delayed replenishment of Treg cells in Vβ5-deficient mice compromises suppression of microbiota-dependent activation of CD8+ T cells, resulting in colitis. Importantly, recovery from clinical symptoms in IBD patients is marked by expansion of the corresponding Vβ2+ Treg population in humans. Collectively, we provide a link between a viral trigger and an impaired Treg cell compartment resulting in the initiation of immune pathology.
Collapse
Affiliation(s)
- Michelle Schorer
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katharina Lambert
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Nikolas Rakebrandt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Felix Rost
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Kung-Chi Kao
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Systems and Synthetic Immunology, D-BSSE, ETH Zurich, 4058, Basel, Switzerland
| | - Roman Spörri
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Josua Oderbolz
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Miro E Raeber
- Department of Immunology, University Hospital Zurich, Häldeliweg 4, 8044, Zurich, Switzerland
| | - Christian W Keller
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology with Institute of Translational Neurology, University Hospital Munster, 48149, Munster, Germany
| | - Jan D Lünemann
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology with Institute of Translational Neurology, University Hospital Munster, 48149, Munster, Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Häldeliweg 4, 8044, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Pestalozzistrasse 3/5, 8091, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
108
|
Chalmers TJ, Wu LE. Transposable Elements Cross Kingdom Boundaries and Contribute to Inflammation and Ageing: Somatic Acquisition of Foreign Transposable Elements as a Catalyst of Genome Instability, Epigenetic Dysregulation, Inflammation, Senescence, and Ageing. Bioessays 2020; 42:e1900197. [PMID: 31994769 DOI: 10.1002/bies.201900197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Indexed: 01/07/2023]
Abstract
The de-repression of transposable elements (TEs) in mammalian genomes is thought to contribute to genome instability, inflammation, and ageing, yet is viewed as a cell-autonomous event. In contrast to mammalian cells, prokaryotes constantly exchange genetic material through TEs, crossing both cell and species barriers, contributing to rapid microbial evolution and diversity in complex communities such as the mammalian gut. Here, it is proposed that TEs released from prokaryotes in the microbiome or from pathogenic infections regularly cross the kingdom barrier to the somatic cells of their eukaryotic hosts. It is proposed this horizontal transfer of TEs from microbe to host is a stochastic, ongoing catalyst of genome destabilization, resulting in structural and epigenetic variations, and activation of well-evolved host defense mechanisms contributing to inflammation, senescence, and biological ageing. It is proposed that innate immunity pathways defend against the horizontal acquisition of microbial TEs, and that activation of this pathway during horizontal transposon transfer promotes chronic inflammation during ageing. Finally, it is suggested that horizontal acquisition of prokaryotic TEs into mammalian genomes has been masked and subsequently under-reported due to flaws in current sequencing pipelines, and new strategies to uncover these events are proposed.
Collapse
Affiliation(s)
| | - Lindsay E Wu
- School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
109
|
Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 2020; 21:17-29. [PMID: 31819255 DOI: 10.1038/s41590-019-0556-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Pathogen-derived nucleic acids are crucial signals for innate immunity. Despite the structural similarity between those and host nucleic acids, mammalian cells have been able to evolve powerful innate immune signaling pathways that originate from the detection of cytosolic nucleic acid species, one of the most prominent being the cGAS-STING pathway for DNA and the RLR-MAVS pathway for RNA, respectively. Recent advances have revealed a plethora of regulatory mechanisms that are crucial for balancing the activity of nucleic acid sensors for the maintenance of overall cellular homeostasis. Elucidation of the various mechanisms that enable cells to maintain control over the activity of cytosolic nucleic acid sensors has provided new insight into the pathology of human diseases and, at the same time, offers a rich and largely unexplored source for new therapeutic targets. This Review addresses the emerging literature on regulation of the sensing of cytosolic DNA and RNA via cGAS and RLRs.
Collapse
Affiliation(s)
- Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
110
|
Volkman HE, Cambier S, Gray EE, Stetson DB. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife 2019; 8:47491. [PMID: 31808743 PMCID: PMC6927687 DOI: 10.7554/elife.47491] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/05/2019] [Indexed: 12/29/2022] Open
Abstract
cGAS is an intracellular innate immune sensor that detects double-stranded DNA. The presence of billions of base pairs of genomic DNA in all nucleated cells raises the question of how cGAS is not constitutively activated. A widely accepted explanation for this is the sequestration of cGAS in the cytosol, which is thought to prevent cGAS from accessing nuclear DNA. Here, we demonstrate that endogenous cGAS is predominantly a nuclear protein, regardless of cell cycle phase or cGAS activation status. We show that nuclear cGAS is tethered tightly by a salt-resistant interaction. This tight tethering is independent of the domains required for cGAS activation, and it requires intact nuclear chromatin. We identify the evolutionarily conserved tethering surface on cGAS and we show that mutation of single amino acids within this surface renders cGAS massively and constitutively active against self-DNA. Thus, tight nuclear tethering maintains the resting state of cGAS and prevents autoreactivity.
Collapse
Affiliation(s)
- Hannah E Volkman
- Department of Immunology, University of Washington School of Medicine, Seattle, United States
| | - Stephanie Cambier
- Department of Immunology, University of Washington School of Medicine, Seattle, United States
| | - Elizabeth E Gray
- Department of Immunology, University of Washington School of Medicine, Seattle, United States
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
111
|
Abstract
DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China; ,
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China; ,
| |
Collapse
|
112
|
Li D, Qi J, Wang J, Pan Y, Li J, Xia X, Dou H, Hou Y. Protective effect of dihydroartemisinin in inhibiting senescence of myeloid-derived suppressor cells from lupus mice via Nrf2/HO-1 pathway. Free Radic Biol Med 2019; 143:260-274. [PMID: 31419476 DOI: 10.1016/j.freeradbiomed.2019.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by multi-organ injury. However, whether myeloid-derived suppressor cells (MDSCs) senescence exists and participates in SLE pathogenesis remains unclear. And whether dihydroartemisinin (DHA) attenuates the symptoms of SLE via relieving MDSCs senescence remains elusive. In the present study, we measured the senescence of MDSCs in SLE using SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. We identified that the MDSCs senescence promoted the SLE progress by adaptive transfer MDSCs assays. Meanwhile, we further showed DHA ameliorated the symptoms of pristane-induced lupus by histopathological detection, Western blot analysis, immunofluorescence, QPCR and flow cytometry analysis. DHA reversed MDSCs senescence by detecting SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. Furthermore, mechanistic analysis indicated that the inhibitory effect of DHA on MDSCs senescence was blocked by ML385, the specific antagonist of Nrf2, which revealed that the effect of DHA on MDSCs senescence was dependent on the induction of Nrf2/HO-1 pathway. Of note, we revealed that DHA inhibited MDSCs senescence to ameliorate the SLE development by adaptive transfer DHA-treated MDSCs assays. In conclusion, MDSCs senescence played a vital role in the pathogenesis of SLE, and DHA attenuated the symptoms of SLE via relieving MDSCs aging involved in the induction of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingjing Qi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
113
|
Inoue K, Ishizawa M, Kubota T. Monoclonal anti-dsDNA antibody 2C10 escorts DNA to intracellular DNA sensors in normal mononuclear cells and stimulates secretion of multiple cytokines implicated in lupus pathogenesis. Clin Exp Immunol 2019; 199:150-162. [PMID: 31604370 PMCID: PMC6954677 DOI: 10.1111/cei.13382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 01/11/2023] Open
Abstract
There have been many studies on the mechanisms of internalization of DNA–anti‐DNA immune complexes by cells, including the one used for rheumatoid factor‐expressing mouse B cells. In parallel, studies on the role of intracellular DNA sensors in the pathogenesis of systemic lupus erythematosus (SLE) have been conducted, including the one using a mouse model lacking one of the sensors. These and other data have established a framework for understanding the pathogenic role of anti‐DNA antibodies, but studies on normal cells are limited. Here, we used the monoclonal anti‐dsDNA antibody 2C10, 2‐kbp dsDNA and healthy human peripheral blood mononuclear cells (PBMCs) to test whether and how 2C10 and/or DNA cause pathology in normal cells. We found that on culture with PBMCs, 2C10 preferentially entered monocytes and that DNA enhanced this internalization. In contrast, DNA alone was not significantly internalized by monocytes, but 2C10 facilitated its internalization. This was suppressed by cytochalasin D, but not by methyl‐β‐cyclodextrin, chloroquine or an Fc blocker, suggesting the involvement of macropinocytosis in this process. Internalization of 2C10 and DNA together resulted in production of interferon (IFN)‐α, IFN‐γ, tumor necrosis factor (TNF)‐α, monocyte chemoattractant protein‐1 (MCP‐1), interleukin (IL)‐1β, IL‐6, IL‐10 and IL‐33 by PBMCs. Cytokine production was suppressed by chloroquine and shikonin, but not by RU.521, suggesting dependence on activation of the Toll‐like receptor (TLR)‐9 and absent in melanoma 2 (AIM‐2) pathways. These results established a simple model to demonstrate that anti‐DNA antibodies can cause dysregulation of cytokine network mimicking systemic lupus erythematosus in culture of normal PBMCs, and emphasize again the importance of maintaining anti‐DNA antibodies at low levels by treatment.
Collapse
Affiliation(s)
- K Inoue
- Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - M Ishizawa
- Department of Immunopathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Kubota
- Department of Immunopathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
114
|
Joslyn RC, Forero A, Green R, Parker SE, Savan R. Long Noncoding RNA Signatures Induced by Toll-Like Receptor 7 and Type I Interferon Signaling in Activated Human Plasmacytoid Dendritic Cells. J Interferon Cytokine Res 2019; 38:388-405. [PMID: 30230983 DOI: 10.1089/jir.2018.0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) exhibit highly lineage-specific expression and act through diverse mechanisms to exert control over a wide range of cellular processes. lncRNAs can function as potent modulators of innate immune responses through control of transcriptional and posttranscriptional regulation of mRNA expression and processing. Recent studies have demonstrated that lncRNAs participate in the regulation of antiviral responses and autoimmune disease. Despite their emerging role as immune mediators, the mechanisms that govern lncRNA expression and function have only begun to be characterized. In this study, we explore the role of lncRNAs in human plasmacytoid dendritic cells (pDCs), which are critical sentinel sensors of viral infection and contribute to the development of autoimmune disease. Using genome-wide sequencing approaches, we dissect the contributions of Toll-like receptor 7 (TLR7) and type I interferon (IFN-I) in the regulation of coding and noncoding RNA expression in CAL-1 pDCs treated with R848 or IFNβ. Functional enrichment analysis reveals both the unique and synergistic roles of TLR7 and IFN-I signaling in the orchestration of pDC function. These observations were consistent with primary cell immune responses elicited by detection of viral infection. We identified and characterized the conditional TLR7- and IFN-I-dependent regulation of 588 lncRNAs. Dysregulation of these lncRNAs could significantly alter pDC maturation, IFN-I and inflammatory cytokine production, antigen presentation, costimulation or tolerance cues, turnover, or localization, all consequential events during viral infection or IFN-I-driven autoimmune diseases such as systemic lupus erythematosus. These findings demonstrate the differential responsiveness of lncRNAs to unique immune stimuli, uncover regulatory mechanisms of lncRNA expression, and reveal a novel and tractable platform for the study of lncRNA expression and function.
Collapse
Affiliation(s)
- Rochelle C Joslyn
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Adriana Forero
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Richard Green
- 1 Department of Immunology and University of Washington , Seattle, Washington.,2 Center for Innate Immunity and Immune Disease, University of Washington , Seattle, Washington
| | - Stephen E Parker
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Ram Savan
- 1 Department of Immunology and University of Washington , Seattle, Washington.,2 Center for Innate Immunity and Immune Disease, University of Washington , Seattle, Washington
| |
Collapse
|
115
|
West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 2019; 67:1821-1841. [PMID: 31033014 DOI: 10.1002/glia.23634] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2025]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). They are a heterogenous, exquisitely responsive, and highly plastic cell population, which enables them to perform diverse roles. They sense and respond to the local production of many different signals, including an assorted range of cytokines. Microglia respond strongly to interleukin-6 (IL-6) and members of the type I interferon (IFN-I) family, IFN-alpha (IFN-α), and IFN-beta (IFN-β). Although these cytokines are essential in maintaining homeostasis and for activating and regulating immune responses, their chronic production has been linked to the development of distinct human neurological diseases, termed "cerebral cytokinopathies." IL-6 and IFN-α have been identified as key mediators in the pathogenesis of neuroinflammatory disorders including neuromyelitis optica and Aicardi-Goutières syndrome, respectively, whereas IFN-β has an emerging role as a causal factor in age-associated cognitive decline. One of the key features that unites these diseases is the presence of highly reactive microglia. The current understanding is that microglia contribute to the development of cerebral cytokinopathies and represent an important therapeutic target. However, it remains to be resolved whether microglia have beneficial or detrimental effects. Here we review and discuss what is currently known about the microglial response to IL-6 and IFN-I, based on both animal models and clinical studies. Foundational knowledge regarding the microglial response to IL-6 and IFN-I is now being used to devise therapeutic strategies to ameliorate neuroinflammation and promote repair: either through targeting microglia, or by targeting the reduction of CNS levels or downstream biological pathways of IL-6 or IFN-I.
Collapse
Affiliation(s)
- Phillip K West
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
116
|
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
117
|
Ablasser A, Chen ZJ. cGAS in action: Expanding roles in immunity and inflammation. Science 2019; 363:363/6431/eaat8657. [PMID: 30846571 DOI: 10.1126/science.aat8657] [Citation(s) in RCA: 680] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA is highly immunogenic. It represents a key pathogen-associated molecular pattern (PAMP) during infection. Host DNA can, however, also act as a danger-associated molecular pattern (DAMP) and elicit strong inflammatory responses. The cGAS-STING pathway has emerged as a major pathway that detects intracellular DNA. Here, we highlight recent advances on how cGAS and STING mediate inflammatory responses and how these are regulated, allowing cells to readily respond to infections and noxious agents while avoiding the inappropriate sensing of self-DNA. A particular focus is placed on the role of cGAS in the context of sterile inflammatory conditions. Manipulating cGAS or STING may open the door for new therapeutic strategies for the treatment of acute and chronic inflammation relevant to many human diseases.
Collapse
Affiliation(s)
- Andrea Ablasser
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Zhijian J Chen
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
118
|
Wang PH, Fung SY, Gao WW, Deng JJ, Cheng Y, Chaudhary V, Yuen KS, Ho TH, Chan CP, Zhang Y, Kok KH, Yang W, Chan CP, Jin DY. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res 2019; 46:4054-4071. [PMID: 29547894 PMCID: PMC5934658 DOI: 10.1093/nar/gky186] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
STING is a core adaptor in innate nucleic acid sensing in mammalian cells, on which different sensing pathways converge to induce type I interferon (IFN) production. Particularly, STING is activated by 2'3'-cGAMP, a cyclic dinucleotide containing mixed phosphodiester linkages and produced by cytoplasmic DNA sensor cGAS. Here, we reported on a novel transcript isoform of STING designated STING-β that dominantly inhibits innate nucleic acid sensing. STING-β without transmembrane domains was widely expressed at low levels in various human tissues and viral induction of STING-β correlated inversely with IFN-β production. The expression of STING-β declined in patients with lupus, in which type I IFNs are commonly overproduced. STING-β suppressed the induction of IFNs, IFN-stimulated genes and other cytokines by various immunostimulatory agents including cyclic dinucleotides, DNA, RNA and viruses, whereas depletion of STING-β showed the opposite effect. STING-β interacted with STING-α and antagonized its antiviral function. STING-β also interacted with TBK1 and prevented it from binding with STING-α, TRIF or other transducers. In addition, STING-β bound to 2'3'-cGAMP and impeded its binding with and activation of STING-α, leading to suppression of IFN-β production. Taken together, STING-β sequesters 2'3'-cGAMP second messenger and other transducer molecules to inhibit innate nucleic acid sensing dominantly.
Collapse
Affiliation(s)
- Pei-Hui Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei-Wei Gao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian-Jun Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vidyanath Chaudhary
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ting-Hin Ho
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ching-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yan Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
119
|
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; 20:657-674. [PMID: 31358977 DOI: 10.1038/s41576-019-0151-1] [Citation(s) in RCA: 929] [Impact Index Per Article: 154.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
The detection of pathogens through nucleic acid sensors is a defining principle of innate immunity. RNA-sensing and DNA-sensing receptors sample subcellular compartments for foreign nucleic acids and, upon recognition, trigger immune signalling pathways for host defence. Over the past decade, our understanding of how the recognition of nucleic acids is coupled to immune gene expression has advanced considerably, particularly for the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signalling effector stimulator of interferon genes (STING), as well as the molecular components and regulation of this pathway. Moreover, the ability of self-DNA to engage cGAS has emerged as an important mechanism fuelling the development of inflammation and implicating the cGAS-STING pathway in human inflammatory diseases and cancer. This detailed mechanistic and biological understanding is paving the way for the development and clinical application of pharmacological agonists and antagonists in the treatment of chronic inflammation and cancer.
Collapse
Affiliation(s)
- Mona Motwani
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Scott Pesiridis
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
120
|
Zhang X, Liu B, Tang L, Su Q, Hwang N, Sehgal M, Cheng J, Ma J, Zhang X, Tan Y, Zhou Y, Duan Z, DeFilippis VR, Viswanathan U, Kulp J, Du Y, Guo JT, Chang J. Discovery and Mechanistic Study of a Novel Human-Stimulator-of-Interferon-Genes Agonist. ACS Infect Dis 2019; 5:1139-1149. [PMID: 31060350 PMCID: PMC7082846 DOI: 10.1021/acsinfecdis.9b00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stimulator of interferon genes (STING) is an integral ER-membrane protein that can be activated by 2'3'-cGAMP synthesized by cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) upon binding of double-stranded DNA. It activates interferon (IFN) and inflammatory cytokine responses to defend against infection by microorganisms. Pharmacologic activation of STING has been demonstrated to induce an antiviral state and boost antitumor immunity. We previously reported a cell-based high-throughput-screening assay that allowed for identification of small-molecule cGAS-STING-pathway agonists. We report herein a compound, 6-bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-5-carboxamide (BNBC), that induces a proinflammatory cytokine response in a human-STING-dependent manner. Specifically, we showed that BNBC induced type I and III IFN dominant cytokine responses in primary human fibroblasts and peripheral-blood mononuclear cells (PBMCs). BNBC also induced cytokine response in PBMC-derived myeloid dendritic cells and promoted their maturation, suggesting that STING-agonist treatment could potentially regulate the activation of CD4+ and CD8+ T lymphocytes. As anticipated, treatment of primary human fibroblast cells with BNBC induced an antiviral state that inhibited the infection of several kinds of flaviviruses. Taken together, our results indicate that BNBC is a human-STING agonist that not only induces innate antiviral immunity against a broad spectrum of viruses but may also stimulate the activation of adaptive immune responses, which is important for the treatment of chronic viral infections and tumors.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Fengtai, Beijing 100069, China
| | - Bowei Liu
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, 7 Weiwu Rd., Jinshui, Zhengzhou, Henan 450016, China
| | - Liudi Tang
- Microbiology and Immunology graduate program, Drexel University College of Medicine, 2900 W Queen Ln, Philadelphia, Philadelphia, Pennsylvania 19129, USA
| | - Qing Su
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Nicky Hwang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Mohit Sehgal
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Junjun Cheng
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Julia Ma
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Xuexiang Zhang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Yinfei Tan
- Genomics Facilities, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia 19111, Pennsylvania, USA
| | - Yan Zhou
- Bioinformatics and Biostatistics Facility, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia 19111, USA
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Fengtai, Beijing 100069, China
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Usha Viswanathan
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - John Kulp
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Yanming Du
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Ju-Tao Guo
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Jinhong Chang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| |
Collapse
|
121
|
Soni C, Reizis B. Self-DNA at the Epicenter of SLE: Immunogenic Forms, Regulation, and Effects. Front Immunol 2019; 10:1601. [PMID: 31354738 PMCID: PMC6637313 DOI: 10.3389/fimmu.2019.01601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10–20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
122
|
Boccitto M, Wolin SL. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit Rev Biochem Mol Biol 2019; 54:133-152. [PMID: 31084369 DOI: 10.1080/10409238.2019.1608902] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ro60, also known as SS-A or TROVE2, is an evolutionarily conserved RNA-binding protein that is found in most animal cells, approximately 5% of sequenced prokaryotic genomes and some archaea. Ro60 is present in cells as both a free protein and as a component of a ribonucleoprotein complex, where its best-known partners are members of a class of noncoding RNAs called Y RNAs. Structural and biochemical analyses have revealed that Ro60 is a ring-shaped protein that binds Y RNAs on its outer surface. In addition to Y RNAs, Ro60 binds misfolded and aberrant noncoding RNAs in some animal cell nuclei. Although the fate of these defective Ro60-bound noncoding RNAs in animal cells is not well-defined, a bacterial Ro60 ortholog functions with 3' to 5' exoribonucleases to assist structured RNA degradation. Studies of Y RNAs have revealed that these RNAs regulate the subcellular localization of Ro60, tether Ro60 to effector proteins and regulate the access of other RNAs to its central cavity. As both mammalian cells and bacteria lacking Ro60 are sensitized to ultraviolet irradiation, Ro60 function may be important during exposure to some environmental stressors. Here we summarize the current knowledge regarding the functions of Ro60 and Y RNAs in animal cells and bacteria. Because the Ro60 RNP is a clinically important target of autoantibodies in patients with rheumatic diseases such as Sjogren's syndrome, systemic lupus erythematosus, and neonatal lupus, we also discuss potential roles for Ro60 RNPs in the initiation and pathogenesis of systemic autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Marco Boccitto
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| | - Sandra L Wolin
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| |
Collapse
|
123
|
Hardy MP, Audemard É, Migneault F, Feghaly A, Brochu S, Gendron P, Boilard É, Major F, Dieudé M, Hébert MJ, Perreault C. Apoptotic endothelial cells release small extracellular vesicles loaded with immunostimulatory viral-like RNAs. Sci Rep 2019; 9:7203. [PMID: 31076589 PMCID: PMC6510763 DOI: 10.1038/s41598-019-43591-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells have multifaceted interactions with the immune system, both as initiators and targets of immune responses. In vivo, apoptotic endothelial cells release two types of extracellular vesicles upon caspase-3 activation: apoptotic bodies and exosome-like nanovesicles (ApoExos). Only ApoExos are immunogenic: their injection causes inflammation and autoimmunity in mice. Based on deep sequencing of total RNA, we report that apoptotic bodies and ApoExos are loaded with divergent RNA cargos that are not released by healthy endothelial cells. Apoptotic bodies, like endothelial cells, contain mainly ribosomal RNA whereas ApoExos essentially contain non-ribosomal non-coding RNAs. Endogenous retroelements, bearing viral-like features, represented half of total ApoExos RNA content. ApoExos also contained several copies of unedited Alu repeats and large amounts of non-coding RNAs with a demonstrated role in autoimmunity such as U1 RNA and Y RNA. Moreover, ApoExos RNAs had a unique nucleotide composition and secondary structure characterized by strong enrichment in U-rich motifs and unstably folded RNAs. Globally, ApoExos were therefore loaded with RNAs that can stimulate a variety of RIG-I-like receptors and endosomal TLRs. Hence, apoptotic endothelial cells selectively sort in ApoExos a diversified repertoire of immunostimulatory "self RNAs" that are tailor-made for initiation of innate immune responses and autoimmunity.
Collapse
Affiliation(s)
- Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Éric Audemard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Francis Migneault
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Éric Boilard
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mélanie Dieudé
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
| | - Marie-Josée Hébert
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
124
|
Lee JH, Chiang C, Gack MU. Endogenous Nucleic Acid Recognition by RIG-I-Like Receptors and cGAS. J Interferon Cytokine Res 2019; 39:450-458. [PMID: 31066607 DOI: 10.1089/jir.2019.0015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The innate immune defense of mammalian hosts relies on its capacity to detect invading pathogens and then directly eliminate them or help guide adaptive immune responses. Recognition of microbial DNA and RNA by pattern recognition receptors (PRRs) is central to the detection of pathogens by initiating cytokine-mediated innate immunity. In contrast, disturbance of this pathogen surveillance system can result in aberrant innate immune activation, leading to proinflammatory or autoimmune diseases. Among the many important PRRs are proteins of the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) family as well as cyclic GMP-AMP synthase (cGAS), which detect viral RNA and DNA, respectively, within the host cell. Intriguingly, recent evidence has shown that "unmasked," misprocessed, or mislocalized host-derived RNA or DNA molecules can also be recognized by RLRs or cGAS, thereby triggering antiviral host defenses or causing inflammation. Here, we review recent advances of endogenous nucleic acid recognition by RLRs and cGAS during viral infection and systemic proinflammatory/autoimmune disorders.
Collapse
Affiliation(s)
- Jung-Hyun Lee
- Department of Microbiology, The University of Chicago, Chicago, Illinois
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, Illinois
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
125
|
Kumar V. A STING to inflammation and autoimmunity. J Leukoc Biol 2019; 106:171-185. [PMID: 30990921 DOI: 10.1002/jlb.4mir1018-397rr] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Various intracellular pattern recognition receptors (PRRs) recognize cytosolic pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Cyclic GMP-AMP synthase (cGAS), a cytosolic PRR, recognizes cytosolic nucleic acids including dsDNAs. The recognition of dsDNA by cGAS generates cyclic GMP-AMP (GAMP). The cGAMP is then recognized by STING generating type 1 IFNs and NF-κB-mediated generation of pro-inflammatory cytokines and molecules. Thus, cGAS-STING signaling mediated recognition of cytosolic dsDNA causing the induction of type 1 IFNs plays a crucial role in innate immunity against cytosolic pathogens, PAMPs, and DAMPs. The overactivation of this system may lead to the development of autoinflammation and autoimmune diseases. The article opens with the introduction of different PRRs involved in the intracellular recognition of dsDNA and gives a brief introduction of cGAS-STING signaling. The second section briefly describes cGAS as intracellular PRR required to recognize intracellular nucleic acids (dsDNA and CDNs) and the formation of cGAMP. The cGAMP acts as a second messenger to activate STING- and TANK-binding kinase 1-mediated generation of type 1 IFNs and the activation of NF-κB. The third section of the article describes the role of cGAS-STING signaling in the induction of autoinflammation and various autoimmune diseases. The subsequent fourth section describes both chemical compounds developed and the endogenous negative regulators of cGAS-STING signaling required for its regulation. Therapeutic targeting of cGAS-STING signaling could offer new ways to treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
126
|
Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol 2019; 10:778. [PMID: 31031767 PMCID: PMC6473462 DOI: 10.3389/fimmu.2019.00778] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural "IFN producing cells" due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
127
|
Hu HL, Shiflett LA, Kobayashi M, Chao MV, Wilson AC, Mohr I, Huang TT. TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency. Mol Cell 2019; 74:466-480.e4. [PMID: 30930055 DOI: 10.1016/j.molcel.2019.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/10/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2β-DNA cleavage complex (TOP2βcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2βcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.
Collapse
Affiliation(s)
- Hui-Lan Hu
- Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Lora A Shiflett
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Mariko Kobayashi
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, NYU School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Angus C Wilson
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
128
|
Choubey D, Panchanathan R. Interferon (IFN)-inducible Absent in Melanoma 2 proteins in the negative regulation of the type I IFN response: Implications for lupus nephritis. Cytokine 2019; 132:154682. [PMID: 30904426 DOI: 10.1016/j.cyto.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that exhibits a strong female bias (female-to-male ratio 9:1) in patients. Further, 40-60% SLE patients develop lupus nephritis (LN), which significantly increases the mortality rates. The failure of current therapies to adequately treat LN in patients reflects an incomplete understanding of the disease pathogenesis. Notably, a chronic increase in serum interferon-α (IFN-α) activity is a heritable risk factor to develop SLE. Accordingly, blood cells from most SLE patients with an active disease exhibit an increase in the expression of the type I IFN (IFN-α/β)-stimulated genes (ISGs, also referred to as "IFN-signature"), a type I IFN response. Further, LN patients during renal flares also exhibit an "IFN-signature" in renal biopsies. Therefore, an improved understanding of the regulation of type I IFNs expression is needed. Basal levels of the IFN-β through "priming" of IFN-α producing cells augment the expression of the IFN-α genes. Of interest, recent studies have indicated a role for the type I IFN-inducible Absent in Melanoma 2 proteins (the murine Aim2 and human AIM2) in the negative regulation of the type I IFN response through inflammasome-dependent and independent mechanisms. Further, an increase in the expression of Aim2 and AIM2 proteins in kidney and renal macrophages associated with the development of nephritis. Therefore, we discuss the role of Aim2/AIM2 proteins in the regulation of type I IFNs and LN. An improved understanding of the mechanisms by which the Absent in Melanoma 2 proteins suppress the type I IFN response and modulate nephritis is key to identify novel therapeutic targets to treat a group of LN patients.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P.O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States.
| | - Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P.O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States
| |
Collapse
|
129
|
Abstract
Uncontrolled expression of type I interferon (IFN-I) drives autoimmunity, necessitating the need for tight regulation. In this issue, Cao et al reveal a role for the kinase HIPK2 in the transcriptional control of IFN-I during antiviral immune responses.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840, USA.
| | - Sanket S Ponia
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840, USA
| |
Collapse
|
130
|
Fujita Y, Tinoco R, Li Y, Senft D, Ronai ZA. Ubiquitin Ligases in Cancer Immunotherapy - Balancing Antitumor and Autoimmunity. Trends Mol Med 2019; 25:428-443. [PMID: 30898473 DOI: 10.1016/j.molmed.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
Considerable progress has been made in understanding the contribution of E3 ubiquitin ligases to health and disease, including the pathogenesis of immunological disorders. Ubiquitin ligases exert exquisite spatial and temporal control over protein stability and function, and are thus crucial for the regulation of both innate and adaptive immunity. Given that immune responses can be both detrimental (autoimmunity) and beneficial (antitumor immunity), it is vital to understand how ubiquitin ligases maintain immunological homeostasis. Such knowledge could reveal novel mechanisms underlying immune regulation and identify new therapeutic approaches to enhance antitumor immunity and safeguard against autoimmunity.
Collapse
Affiliation(s)
- Yu Fujita
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Present address: Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Yan Li
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Ze'ev A Ronai
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
131
|
Sun C, Luecke S, Bodda C, Jønsson KL, Cai Y, Zhang BC, Jensen SB, Nordentoft I, Jensen JM, Jakobsen MR, Paludan SR. Cellular Requirements for Sensing and Elimination of Incoming HSV-1 DNA and Capsids. J Interferon Cytokine Res 2019; 39:191-204. [PMID: 30855198 DOI: 10.1089/jir.2018.0141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Incoming viruses challenge the cell with diverse foreign molecules, which need to be sensed quickly to initiate immune responses and to remove the viral components. In this study, we investigate the cellular requirements for sensing and degradation of incoming viral DNA and capsids during herpes simplex virus type 1 (HSV-1) infections. Using click chemistry labeling of the viral genome, we found that HSV-1 DNA was released from a subset of capsids into the cytosol early in infection. By next-generation sequencing of cyclic GMP-AMP (cGAMP) synthase (cGAS)-bound DNA from HSV-1-infected cells, we show that HSV-1 DNA was bound by the cytosolic DNA sensor cGAS. Activation of cGAS enzymatic activity by viral DNA did not require proteasomal activity, indicating that viral DNA release into the cytosol is not proteasome-dependent. However, induction of interferon (IFN)-β expression was blocked by inhibition of the proteasome, suggesting a contribution of the proteasome to IFN-β induction through the cGAS-stimulator of interferon genes pathway. Viral DNA was cleared from the cytosol within few hours, in a manner dependent on TREX1 and a cGAS-dependent process. Capsid material in the cytoplasm was also degraded rapidly. This was partially blocked by treatment with a proteasome inhibitor. This treatment led to accumulation of DNA-containing viral capsids near the nucleus and reduced nuclear entry of viral DNA. Thus, cells infected with HSV-1 use a panel of mechanisms to eliminate viral DNA and capsids. This represents a barrier for establishment of infection and potentially enables the host to gear the IFN-β response to a level required for antiviral defense without causing immunopathology.
Collapse
Affiliation(s)
- Chenglong Sun
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Stefanie Luecke
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | | | - Kasper L Jønsson
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Yujia Cai
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Bao-Cun Zhang
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Søren B Jensen
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Iver Nordentoft
- 2 Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob M Jensen
- 3 Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | | | - Søren R Paludan
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| |
Collapse
|
132
|
Gui X, Yang H, Li T, Tan X, Shi P, Li M, Du F, Chen ZJ. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 2019; 567:262-266. [PMID: 30842662 PMCID: PMC9417302 DOI: 10.1038/s41586-019-1006-9] [Citation(s) in RCA: 813] [Impact Index Per Article: 135.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/05/2019] [Indexed: 02/01/2023]
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) detects infections or tissue damage by binding to microbial or self-DNA in the cytoplasm1. Upon binding DNA, cGAS produces cGAMP that binds to and activates the adaptor protein STING, which then activates the kinases IKK and TBK1 to induce interferons and other cytokines2–6. Here, we report that STING also activates autophagy through a mechanism independent of TBK1 activation and interferon induction. Upon binding cGAMP, STING translocates to the ER-Golgi intermediate compartment (ERGIC) and the Golgi in a process dependent on the COP-II complex and ARF GTPases. STING-containing ERGIC serves as a membrane source for LC3 lipidation, a key step in autophagosome biogenesis. cGAMP induced LC3 lipidation through a pathway dependent on WIPI2 and ATG5 but independent of the ULK and VPS34/BECLIN kinase complexes. Furthermore, we show that cGAMP-induced autophagy is important for the clearance of DNA and viruses in the cytosol. Interestingly, STING from the sea anemone Nematostella vectensis induces autophagy but not interferons in response to stimulation by cGAMP, suggesting that induction of autophagy is a primordial function of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Xiang Gui
- Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hui Yang
- Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tuo Li
- Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaojun Tan
- Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peiqing Shi
- Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Minghao Li
- Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fenghe Du
- Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhijian J Chen
- Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
133
|
Yum S, Li M, Frankel AE, Chen ZJ. Roles of the cGAS-STING Pathway in Cancer Immunosurveillance and Immunotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055636] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that initiates innate immune responses. DNA-bound cGAS produces cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING) to induce inflammatory cytokines and other immune mediators. cGAS detects DNA without sequence specificity and responds to both cytosolic foreign DNA from pathogens and self-DNA leaked into the cytosol due to genome instability or cellular damage. Because of the diverse sources of cytosolic DNA, the cGAS-STING pathway plays a critical role during infection, autoimmune diseases, and senescence. Moreover, cGAS detects tumor-derived DNA and stimulates endogenous antitumor immunity. Thus, the cGAS-STING pathway is a promising target for cancer immunotherapy. Here, we review the role of the cGAS-STING pathway in various diseases and highlight various approaches targeting the cGAS-STING pathway for cancer therapy.
Collapse
Affiliation(s)
- Seoyun Yum
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Minghao Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Arthur E. Frankel
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Zhijian J. Chen
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
134
|
Abstract
Long double-stranded RNAs (dsRNAs) are abundantly expressed in animals, in which they frequently occur in introns and 3' untranslated regions of mRNAs. Functions of long, cellular dsRNAs are poorly understood, although deficiencies in adenosine deaminases that act on RNA, or ADARs, promote their recognition as viral dsRNA and an aberrant immune response. Diverse dsRNA-binding proteins bind cellular dsRNAs, hinting at additional roles. Understanding these roles is facilitated by mapping the genomic locations that express dsRNA in various tissues and organisms. ADAR editing provides a signature of dsRNA structure in cellular transcripts. In this review, we detail approaches to map ADAR editing sites and dsRNAs genome-wide, with particular focus on high-throughput sequencing methods and considerations for their successful application to the detection of editing sites and dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
135
|
Abe T, Marutani Y, Shoji I. Cytosolic DNA-sensing immune response and viral infection. Microbiol Immunol 2019; 63:51-64. [PMID: 30677166 PMCID: PMC7168513 DOI: 10.1111/1348-0421.12669] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
Abstract
How host cells recognize many kinds of RNA and DNA viruses and initiate innate antiviral responses against them has not yet been fully elucidated. Over the past decade, investigations into the mechanisms underlying these antiviral responses have focused extensively on immune surveillance sensors that recognize virus‐derived components (such as lipids, sugars and nucleic acids). The findings of these studies have suggested that antiviral responses are mediated by cytosolic or intracellular compartment sensors and their adaptor molecules (e.g., TLR, myeloid differentiation primary response 88, retinoic acid inducible gene‐I, IFN‐β promoter stimulator‐1, cyclic GMP‐AMP synthase and stimulator of IFN genes axis) for the primary sensing of virus‐derived nucleic acids, leading to production of type I IFNs, pro‐inflammatory cytokines and chemokines by the host cells. Thus, host cells have evolved an elaborate host defense machinery to recognize and eliminate virus infections. In turn, to achieve sustained viral infection and induce pathogenesis, viruses have also evolved several counteracting strategies for achieving immune escape by targeting immune sensors, adaptor molecules, intracellular kinases and transcription factors. In this review, we discuss recent discoveries concerning the role of the cytosolic nucleic acid‐sensing immune response in viral recognition and control of viral infection. In addition, we consider the regulatory machinery of the cytosolic nucleic acid‐sensing immune response because these immune surveillance systems must be tightly regulated to prevent aberrant immune responses to self and non‐self‐nucleic acids.
Collapse
Affiliation(s)
- Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| | - Yuki Marutani
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| |
Collapse
|
136
|
Tsubata T. CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus. Immune Netw 2019; 19:e1. [PMID: 30838156 PMCID: PMC6399098 DOI: 10.4110/in.2019.19.e1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by production of autoantibodies to various nuclear antigens and overexpression of genes regulated by IFN-I called IFN signature. Genetic studies on SLE patients and mutational analyses of mouse models demonstrate crucial roles of nucleic acid (NA) sensors in development of SLE. Although NA sensors are involved in induction of anti-microbial immune responses by recognizing microbial NAs, recognition of self NAs by NA sensors induces production of autoantibodies to NAs in B cells and production of IFN-I in plasmacytoid dendritic cells. Among various NA sensors, the endosomal RNA sensor TLR7 plays an essential role in development of SLE at least in mouse models. CD72 is an inhibitory B cell co-receptor containing an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic region and a C-type lectin like-domain (CTLD) in the extracellular region. CD72 is known to regulate development of SLE because CD72 polymorphisms associate with SLE in both human and mice and CD72−/− mice develop relatively severe lupus-like disease. CD72 specifically recognizes the RNA-containing endogenous TLR7 ligand Sm/RNP by its extracellular CTLD, and inhibits B cell responses to Sm/RNP by ITIM-mediated signal inhibition. These findings indicate that CD72 inhibits development of SLE by suppressing TLR7-dependent B cell response to self NAs. CD72 is thus involved in discrimination of self-NAs from microbial NAs by specifically suppressing autoimmune responses to self-NAs.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
137
|
Larochette V, Miot C, Poli C, Beaumont E, Roingeard P, Fickenscher H, Jeannin P, Delneste Y. IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense. Front Immunol 2019; 10:204. [PMID: 30809226 PMCID: PMC6379347 DOI: 10.3389/fimmu.2019.00204] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin 26 (IL-26) is the most recently identified member of the IL-20 cytokine subfamily, and is a novel mediator of inflammation overexpressed in activated or transformed T cells. Novel properties have recently been assigned to IL-26, owing to its non-conventional cationic, and amphipathic features. IL-26 binds to DNA released from damaged cells and, as a carrier molecule for extracellular DNA, links DNA to inflammation. This observation suggests that IL-26 may act both as a driver and an effector of inflammation, leading to the establishment of a deleterious amplification loop and, ultimately, sustained inflammation. Thus, IL-26 emerges as an important mediator in local immunity/inflammation. The dysregulated expression and extracellular DNA carrier capacity of IL-26 may have profound consequences for the chronicity of inflammation. IL-26 also exhibits direct antimicrobial properties. This review summarizes recent advances on the biology of IL-26 and discusses its roles as a novel kinocidin.
Collapse
Affiliation(s)
- Vincent Larochette
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Charline Miot
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Caroline Poli
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Elodie Beaumont
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Philippe Roingeard
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| |
Collapse
|
138
|
RNA Modifications Modulate Activation of Innate Toll-Like Receptors. Genes (Basel) 2019; 10:genes10020092. [PMID: 30699960 PMCID: PMC6410116 DOI: 10.3390/genes10020092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have immune-modulatory functions: Gm, a naturally occurring ribose-methylation within tRNA resulted in a lack of TLR7 stimulation and within a defined sequence context acted as antagonist. Additional RNA modifications with immune-modulatory functions have now been identified and recent work also indicates that RNA modifications within the context of whole prokaryotic or eukaryotic cells are indeed used for immune-modulation. This review will discuss new findings and developments in the field of immune-modulatory RNA modifications.
Collapse
|
139
|
Hu MM, He WR, Gao P, Yang Q, He K, Cao LB, Li S, Feng YQ, Shu HB. Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity. Cell Res 2019; 29:193-205. [PMID: 30651583 DOI: 10.1038/s41422-018-0136-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
The mechanisms on metabolic regulation of immune responses are still elusive. We show here that viral infection induces immediate-early NF-κB activation independent of viral nucleic acid-triggered signaling, which triggers a rapid transcriptional induction of bile acid (BA) transporter and rate-limiting biosynthesis enzymes as well as accumulation of intracellular BAs in divergent cell types. The accumulated intracellular BAs activate SRC kinase via the TGR5-GRK-β-arrestin axis, which mediates tyrosine phosphorylation of multiple antiviral signaling components including RIG-I, VISA/MAVS, MITA/STING, TBK1 and IRF3. The tyrosine phosphorylation of these components by SRC conditions for efficient innate antiviral immune response. Consistently, TGR5 deficiency impairs innate antiviral immunity, whereas BAs exhibit potent antiviral activity in wild-type but not TGR5-deficient cells and mice. Our findings reveal an intrinsic and universal role of intracellular BA metabolism in innate antiviral immunity.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China. .,State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, China.
| | - Wen-Rui He
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Peng Gao
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qing Yang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Ke He
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Li-Bo Cao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
140
|
Ghosh A, Shao L, Sampath P, Zhao B, Patel NV, Zhu J, Behl B, Parise RA, Beumer JH, O'Sullivan RJ, DeLuca NA, Thorne SH, Rathinam VAK, Li P, Sarkar SN. Oligoadenylate-Synthetase-Family Protein OASL Inhibits Activity of the DNA Sensor cGAS during DNA Virus Infection to Limit Interferon Production. Immunity 2019; 50:51-63.e5. [PMID: 30635239 DOI: 10.1016/j.immuni.2018.12.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/23/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
Abstract
Interferon-inducible human oligoadenylate synthetase-like (OASL) and its mouse ortholog, Oasl2, enhance RNA-sensor RIG-I-mediated type I interferon (IFN) induction and inhibit RNA virus replication. Here, we show that OASL and Oasl2 have the opposite effect in the context of DNA virus infection. In Oasl2-/- mice and OASL-deficient human cells, DNA viruses such as vaccinia, herpes simplex, and adenovirus induced increased IFN production, which resulted in reduced virus replication and pathology. Correspondingly, ectopic expression of OASL in human cells inhibited IFN induction through the cGAS-STING DNA-sensing pathway. cGAS was necessary for the reduced DNA virus replication observed in OASL-deficient cells. OASL directly and specifically bound to cGAS independently of double-stranded DNA, resulting in a non-competitive inhibition of the second messenger cyclic GMP-AMP production. Our findings define distinct mechanisms by which OASL differentially regulates host IFN responses during RNA and DNA virus infection and identify OASL as a negative-feedback regulator of cGAS.
Collapse
Affiliation(s)
- Arundhati Ghosh
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lulu Shao
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Padmavathi Sampath
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Baoyu Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Nidhi V Patel
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianzhong Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bharat Behl
- Department of Immunology, University of Connecticut Health School of Medicine, Farmington, CT 06030, USA
| | - Robert A Parise
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15213, USA
| | - Jan H Beumer
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15213, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Neal A DeLuca
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stephen H Thorne
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Vijay A K Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine, Farmington, CT 06030, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
141
|
Scheu S, Ali S, Mann-Nüttel R, Richter L, Arolt V, Dannlowski U, Kuhlmann T, Klotz L, Alferink J. Interferon β-Mediated Protective Functions of Microglia in Central Nervous System Autoimmunity. Int J Mol Sci 2019; 20:E190. [PMID: 30621022 PMCID: PMC6337097 DOI: 10.3390/ijms20010190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and axonal damage. It often affects young adults and can lead to neurological disability. Interferon β (IFNβ) preparations represent widely used treatment regimens for patients with relapsing-remitting MS (RRMS) with therapeutic efficacy in reducing disease progression and frequency of acute exacerbations. In mice, IFNβ therapy has been shown to ameliorate experimental autoimmune encephalomyelitis (EAE), an animal model of MS while genetic deletion of IFNβ or its receptor augments clinical severity of disease. However, the complex mechanism of action of IFNβ in CNS autoimmunity has not been fully elucidated. Here, we review our current understanding of the origin, phenotype, and function of microglia and CNS immigrating macrophages in the pathogenesis of MS and EAE. In addition, we highlight the emerging roles of microglia as IFNβ-producing cells and vice versa the impact of IFNβ on microglia in CNS autoimmunity. We finally discuss recent progress in unraveling the underlying molecular mechanisms of IFNβ-mediated effects in EAE.
Collapse
Affiliation(s)
- Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
- Cells in Motion, Cluster of Excellence, University of Münster, 48149 Münster, Germany.
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany.
| | - Luisa Klotz
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Judith Alferink
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
- Cells in Motion, Cluster of Excellence, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
142
|
Heil M, Vega-Muñoz I. Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:225-285. [PMID: 30904194 DOI: 10.1016/bs.ircmb.2018.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accumulation of nucleic acids in aberrant compartments is a signal of danger: fragments of cytosolic or extracellular self-DNA indicate cellular dysfunctions or disruption, whereas cytosolic fragments of nonself-DNA or RNA indicate infections. Therefore, nucleic acids trigger immunity in mammals and plants. In mammals, endosomal Toll-like receptors (TLRs) sense single-stranded (ss) or double-stranded (ds) RNA or CpG-rich DNA, whereas various cytosolic receptors sense dsDNA. Although a self/nonself discrimination could favor targeted immune responses, no sequence-specific sensing of nucleic acids has been reported for mammals. Specific immune responses to extracellular self-DNA versus DNA from related species were recently reported for plants, but the underlying mechanism remains unknown. The subcellular localization of mammalian receptors can favor self/nonself discrimination based on the localization of DNA fragments. However, autoantibodies and diverse damage-associated molecular patterns (DAMPs) shuttle DNA through membranes, and most of the mammalian receptors share downstream signaling elements such as stimulator of interferon genes (STING) and the master transcription regulators, nuclear factor (NF)-κB, and interferon regulatory factor 3 (IRF3). The resulting type I interferon (IFN) response stimulates innate immunity against multiple threats-from infection to physical injury or endogenous DNA damage-all of which lead to the accumulation of eDNA or cytoplasmatic dsDNA. Therefore, no or only low selective pressures might have favored a strict self/nonself discrimination in nucleic acid sensing. We conclude that the discrimination between self- and nonself-DNA is likely to be less strict-and less important-than assumed originally.
Collapse
Affiliation(s)
- Martin Heil
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico.
| | - Isaac Vega-Muñoz
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
143
|
Rajshekar S, Yao J, Arnold PK, Payne SG, Zhang Y, Bowman TV, Schmitz RJ, Edwards JR, Goll M. Pericentromeric hypomethylation elicits an interferon response in an animal model of ICF syndrome. eLife 2018; 7:39658. [PMID: 30484769 PMCID: PMC6261255 DOI: 10.7554/elife.39658] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/04/2018] [Indexed: 12/13/2022] Open
Abstract
Pericentromeric satellite repeats are enriched in 5-methylcytosine (5mC). Loss of 5mC at these sequences is common in cancer and is a hallmark of Immunodeficiency, Centromere and Facial abnormalities (ICF) syndrome. While the general importance of 5mC is well-established, the specific functions of 5mC at pericentromeres are less clear. To address this deficiency, we generated a viable animal model of pericentromeric hypomethylation through mutation of the ICF-gene ZBTB24. Deletion of zebrafish zbtb24 caused a progressive loss of 5mC at pericentromeres and ICF-like phenotypes. Hypomethylation of these repeats triggered derepression of pericentromeric transcripts and activation of an interferon-based innate immune response. Injection of pericentromeric RNA is sufficient to elicit this response in wild-type embryos, and mutation of the MDA5-MAVS dsRNA-sensing machinery blocks the response in mutants. These findings identify activation of the innate immune system as an early consequence of pericentromeric hypomethylation, implicating derepression of pericentromeric transcripts as a trigger of autoimmunity. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). Cells package DNA into structures called chromosomes. When cells divide, each chromosome duplicates, and a structure called a centromere initially holds the copies together. The sequences of DNA on either side of the centromeres are often highly repetitive. In backboned animals, this DNA normally also has extra chemical modifications called methyl groups attached to it. The role that these methyl groups play in this region is not known, although in other DNA regions they often stop the DNA being ‘transcribed’ into molecules of RNA. The cells of people who have a rare human genetic disorder called ICF syndrome, lack the methyl groups near the centromere. The methyl groups may also be lost in old and cancerous cells. Researchers often use ‘model’ animals to investigate the effects of DNA modifications. But, until now, there were no animal models that lose methyl groups from the DNA around centromeres in the same way as seen in ICF syndrome. Rajshekar et al. have developed a new zebrafish model for ICF syndrome that loses the methyl groups around its centromeres over time. Studying the cells of these zebrafish showed that when the methyl groups are missing, the cell starts to transcribe the DNA sequences around the centromeres. The resulting RNA molecules appear to be mistaken by the cell for viral RNA. They activate immune sensors that normally detect RNA viruses, which triggers an immune response. The new zebrafish model can now be used in further studies to help researchers to understand the key features of ICF syndrome. Future work could also investigate whether the loss of methyl groups around the centromeres plays a role in other diseases where the immune system attacks healthy tissues.
Collapse
Affiliation(s)
- Srivarsha Rajshekar
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, United States.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Institute of Bioinformatics, University of Georgia, Athens, United States
| | - Jun Yao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Paige K Arnold
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Sara G Payne
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States
| | - Yinwen Zhang
- Institute of Bioinformatics, University of Georgia, Athens, United States
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Georgia, United States
| | - John R Edwards
- Department of Medicine, Center for Pharmacogenomics, Washington University in St. Louis School of Medicine, Missouri, United States
| | - Mary Goll
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Department of Genetics, University of Georgia, Georgia, United States
| |
Collapse
|
144
|
Rubio RM, Depledge DP, Bianco C, Thompson L, Mohr I. RNA m 6 A modification enzymes shape innate responses to DNA by regulating interferon β. Genes Dev 2018; 32:1472-1484. [PMID: 30463905 PMCID: PMC6295168 DOI: 10.1101/gad.319475.118] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
Abstract
In this study, Rubio et al. researched how the dynamic genome-wide landscape of m6A-modified mRNAs impacts virus infection and host immune responses. They show that type I interferon (IFN) production triggered by dsDNA or human cytomegalovirus (HCMV) is controlled by the cellular m6A methyltrasferase subunit METTL14 and ALKBH5 demethylase, and their results demonstrate that responses to nonmicrobial dsDNA in uninfected cells are regulated by enzymes controlling m6A epitranscriptomic changes. Modification of mRNA by N6-adenosine methylation (m6A) on internal bases influences gene expression in eukaryotes. How the dynamic genome-wide landscape of m6A-modified mRNAs impacts virus infection and host immune responses remains poorly understood. Here, we show that type I interferon (IFN) production triggered by dsDNA or human cytomegalovirus (HCMV) is controlled by the cellular m6A methyltrasferase subunit METTL14 and ALKBH5 demethylase. While METTL14 depletion reduced virus reproduction and stimulated dsDNA- or HCMV-induced IFNB1 mRNA accumulation, ALKBH5 depletion had the opposite effect. Depleting METTL14 increased both nascent IFNB1 mRNA production and stability in response to dsDNA. In contrast, ALKBH5 depletion reduced nascent IFNB1 mRNA production without detectably influencing IFN1B mRNA decay. Genome-wide transcriptome profiling following ALKBH5 depletion identified differentially expressed genes regulating antiviral immune responses, while METTL14 depletion altered pathways impacting metabolic reprogramming, stress responses, and aging. Finally, we determined that IFNB1 mRNA was m6A-modified within both the coding sequence and the 3′ untranslated region (UTR). This establishes that the host m6A modification machinery controls IFNβ production triggered by HCMV or dsDNA. Moreover, it demonstrates that responses to nonmicrobial dsDNA in uninfected cells, which shape host immunity and contribute to autoimmune disease, are regulated by enzymes controlling m6A epitranscriptomic changes.
Collapse
Affiliation(s)
- Rosa M Rubio
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Christopher Bianco
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Letitia Thompson
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.,Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
145
|
Lu D, Song J, Sun Y, Qi F, Liu L, Jin Y, McNutt MA, Yin Y. Mutations of deubiquitinase OTUD1 are associated with autoimmune disorders. J Autoimmun 2018; 94:156-165. [PMID: 30100102 DOI: 10.1016/j.jaut.2018.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Dysregulation of innate immunity accompanied by excessive interferon production contributes to autoimmune disease. However, the mechanism by which the immune response is modulated in autoimmune disorders is largely unknown. Here we identified loss-of-function mutations of OTUD1 associated with multiple autoimmune diseases. Under inflammatory conditions, inducible OTUD1 acts as an immune checkpoint and blocks RIG-I-like receptors signaling. As a deubiquitinase, OTUD1 directly interacts with transcription factor IRF3 and removes the K63-linked poly-ubiquitin chains on IRF3 Lysine 98, which inhibits IRF3 nuclear translocation and transcriptional activity. In contrast, OTUD1 mutants impair its suppressive effects on IRF3 via attenuating the OTUD1 deubiquinase activity or its association with IRF3. Moreover, we found FOXO3 signaling is required for OTUD1 induction upon antigenic stimulation. Our data demonstrate that OTUD1 is involved in maintaining immune homeostasis and loss-of-function mutations of OTUD1 enhance the immune response and are associated with autoimmunity.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Case-Control Studies
- Cell Line, Tumor
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- Female
- Forkhead Box Protein O3/genetics
- Forkhead Box Protein O3/immunology
- Gene Expression Regulation
- HEK293 Cells
- Hashimoto Disease/genetics
- Hashimoto Disease/immunology
- Hashimoto Disease/pathology
- Homeostasis/immunology
- Humans
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/immunology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lymphocytes/immunology
- Lymphocytes/pathology
- Male
- Mutation
- Protein Transport
- Receptors, Immunologic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Ubiquitin-Specific Proteases/genetics
- Ubiquitin-Specific Proteases/immunology
Collapse
Affiliation(s)
- Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China
| | - Jia Song
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yizhe Sun
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Fang Qi
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Liang Liu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yan Jin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China
| | - Michael A McNutt
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
146
|
Abstract
In mammals, cytosolic detection of nucleic acids is critical in initiating innate antiviral responses against invading pathogens (like bacteria, viruses, fungi and parasites). These programs are mediated by multiple cytosolic and endosomal sensors and adaptor molecules (c-GAS/STING axis and TLR9/MyD88 axis, respectively) and lead to the production of type I interferons (IFNs), pro-inflammatory cytokines, and chemokines. While the identity and role of multiple pattern recognition receptors (PRRs) have been elucidated, such immune surveillance systems must be tightly regulated to limit collateral damage and prevent aberrant responses to self- and non-self-nucleic acids. In this review, we discuss recent advances in our understanding of how cytosolic sensing of DNA is controlled during inflammatory immune responses.
Collapse
Affiliation(s)
- Takayuki Abe
- Department of Systems Biology, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Columbia University, New York, NY, United States.
| |
Collapse
|
147
|
Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nat Commun 2018; 9:4291. [PMID: 30327464 PMCID: PMC6191420 DOI: 10.1038/s41467-018-06603-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Cell-free DNA (cfDNA) released from damaged or dead cells can activate DNA sensors that exacerbate the pathogenesis of rheumatoid arthritis (RA). Here we show that ~40 nm cationic nanoparticles (cNP) can scavenge cfDNA derived from RA patients and inhibit the activation of primary synovial fluid monocytes and fibroblast-like synoviocytes. Using clinical scoring, micro-CT images, MRI, and histology, we show that intravenous injection of cNP into a CpG-induced mouse model or collagen-induced arthritis rat model can relieve RA symptoms including ankle and tissue swelling, and bone and cartilage damage. This culminates in the manifestation of partial mobility recovery of the treated rats in a rotational cage test. Mechanistic studies on intracellular trafficking and biodistribution of cNP, as well as measurement of cytokine expression in the joints and cfDNA levels in systemic circulation and inflamed joints also correlate with therapeutic outcomes. This work suggests a new direction of nanomedicine in treating inflammatory diseases. Cell-free DNA (cfDNA) released from damaged or dead cells can activate DNA sensors that exacerbate the pathogenesis of rheumatoid arthritis (RA). Here the authors use ~40 nm cationic nanoparticles to scavenge cfDNA, and demonstrate the potential for nanomedicine to relieve debilitating RA symptoms.
Collapse
|
148
|
MyD88 signaling causes autoimmune sialadenitis through formation of high endothelial venules and upregulation of LTβ receptor-mediated signaling. Sci Rep 2018; 8:14272. [PMID: 30250175 PMCID: PMC6155371 DOI: 10.1038/s41598-018-32690-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/13/2018] [Indexed: 01/17/2023] Open
Abstract
Autoimmune sialadenitis (AS), chronic inflammation of the salivary glands (SGs) with focal lymphocyte infiltration, appears in autoimmune diseases such as Sjӧgren’s syndrome. The pathological role of MyD88-dependent innate immune signaling in autoimmune diseases including AS has been studied using mouse models, such as NOD mice. Although AS development in NOD mice was reported to be suppressed by Myd88 deficiency, its specific role remains unclear. Here, we determined the potent suppressive effects of Myd88 deficiency on AS development in lupus-prone B6/lpr mice, which have lymphoproliferation abnormalities, and also in NOD mice, which have no lymphoproliferation abnormalities. This indicates that MyD88 signaling triggers AS through both lymphoproliferation-dependent and -independent mechanisms. To address the MyD88-dependent lymphoproliferation-independent AS manifestation, SGs from C57BL/6 mice were analyzed. Remarkable upregulation of Glycam1 and high endothelial venule (HEV)-associated changes were unexpectedly found in Myd88+/+ mice, compared with Myd88−/− mice. MyD88-dependent HEV-associated changes were also observed in NOD mice. Additionally, Lta, Ltb, and Ltbr in SGs of NOD mice were lowered by Myd88 deficiency. Interestingly, LTβR-induced HEV-associated gene expression in cultured cells was impaired by Myd88 deficiency. Our findings highlight novel roles for MyD88 in AS development, which imply the existence of MyD88-dependent HEV formation in ectopic lymphoid neogenesis.
Collapse
|
149
|
Soni C, Reizis B. DNA as a self-antigen: nature and regulation. Curr Opin Immunol 2018; 55:31-37. [PMID: 30261321 DOI: 10.1016/j.coi.2018.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
High-affinity antibodies to double-stranded DNA are a hallmark of systemic lupus erythematosus (SLE) and are thought to contribute to disease flares and tissue inflammation such as nephritis. Notwithstanding their clinical importance, major questions remain about the development and regulation of these pathogenic anti-DNA responses. These include the mechanisms that prevent anti-DNA responses in healthy subjects, despite the constant generation of self-DNA and the abundance of DNA-reactive B cells; the nature and physical form of antigenic DNA in SLE; the regulation of DNA availability as an antigen; and potential therapeutic strategies targeting the pathogenic DNA in SLE. This review summarizes current progress in these directions, focusing on the role of secreted DNases in the regulation of antigenic extracellular DNA.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
150
|
Antiochos B, Matyszewski M, Sohn J, Casciola-Rosen L, Rosen A. IFI16 filament formation in salivary epithelial cells shapes the anti-IFI16 immune response in Sjögren's syndrome. JCI Insight 2018; 3:120179. [PMID: 30232276 DOI: 10.1172/jci.insight.120179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/17/2018] [Indexed: 01/03/2023] Open
Abstract
IFN-inducible protein 16 (IFI16) is an innate immune sensor that forms filamentous oligomers when activated by double-stranded DNA (dsDNA). Anti-IFI16 autoantibodies occur in patients with Sjögren's syndrome (SS) and associate with severe phenotypic features. We undertook this study to determine whether the structural and functional properties of IFI16 play a role in its status as an SS autoantigen. IFI16 immunostaining in labial salivary glands (LSGs) yielded striking evidence of filamentous IFI16 structures in the cytoplasm of ductal epithelial cells, representing the first microscopic description of IFI16 oligomerization in human tissues, to our knowledge. Transfection of cultured epithelial cells with dsDNA triggered the formation of cytoplasmic IFI16 filaments with similar morphology to those observed in LSGs. We found that a majority of SS anti-IFI16 autoantibodies immunoprecipitate IFI16 more effectively in the oligomeric dsDNA-bound state. Epitopes in the C-terminus of IFI16 are accessible to antibodies in the DNA-bound oligomer and are preferentially targeted by SS sera. Furthermore, cytotoxic lymphocyte granule pathways (highly enriched in the SS gland) induce striking release of IFI16•dsDNA complexes from cultured cells. Our studies reveal that IFI16 is present in a filamentous state in the target tissue of SS and suggest that this property of DNA-induced filament formation contributes to its status as an autoantigen in SS. These studies highlight the role that tissue-specific modifications and immune effector pathways might play in the selection of autoantigens in rheumatic diseases.
Collapse
Affiliation(s)
| | - Mariusz Matyszewski
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|