101
|
Altered protein networks and cellular pathways in severe west nile disease in mice. PLoS One 2013; 8:e68318. [PMID: 23874584 PMCID: PMC3707916 DOI: 10.1371/journal.pone.0068318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/28/2013] [Indexed: 01/25/2023] Open
Abstract
Background The recent West Nile virus (WNV) outbreaks in developed countries, including Europe and the United States, have been associated with significantly higher neuropathology incidence and mortality rate than previously documented. The changing epidemiology, the constant risk of (re-)emergence of more virulent WNV strains, and the lack of effective human antiviral therapy or vaccines makes understanding the pathogenesis of severe disease a priority. Thus, to gain insight into the pathophysiological processes in severe WNV infection, a kinetic analysis of protein expression profiles in the brain of WNV-infected mice was conducted using samples prior to and after the onset of clinical symptoms. Methodology/Principal Findings To this end, 2D-DIGE and gel-free iTRAQ labeling approaches were combined, followed by protein identification by mass spectrometry. Using these quantitative proteomic approaches, a set of 148 proteins with modified abundance was identified. The bioinformatics analysis (Ingenuity Pathway Analysis) of each protein dataset originating from the different time-point comparisons revealed that four major functions were altered during the course of WNV-infection in mouse brain tissue: i) modification of cytoskeleton maintenance associated with virus circulation; ii) deregulation of the protein ubiquitination pathway; iii) modulation of the inflammatory response; and iv) alteration of neurological development and neuronal cell death. The differential regulation of selected host protein candidates as being representative of these biological processes were validated by western blotting using an original fluorescence-based method. Conclusion/Significance This study provides novel insights into the in vivo kinetic host reactions against WNV infection and the pathophysiologic processes involved, according to clinical symptoms. This work offers useful clues for anti-viral research and further evaluation of early biomarkers for the diagnosis and prevention of severe neurological disease caused by WNV.
Collapse
|
102
|
Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci 2013; 1285:26-43. [DOI: 10.1111/nyas.12049] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michel J. Massaad
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Narayanaswamy Ramesh
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Raif S. Geha
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| |
Collapse
|
103
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
104
|
The formins FMNL1 and mDia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages. Infect Immun 2013; 81:1683-95. [PMID: 23460512 DOI: 10.1128/iai.01411-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Spirochetes of the Borrelia burgdorferi sensu lato complex are the causative agent of Lyme borreliosis, a tick-borne infectious disease primarily affecting the skin, nervous system, and joints. During infection, macrophages and dendritic cells are the first immune cells to encounter invading borreliae. Phagocytosis and intracellular processing of Borrelia by these cells is thus decisive for the eventual outcome of infection. Phagocytic uptake of Borrelia by macrophages proceeds preferentially through coiling phagocytosis, which is characterized by actin-rich unilateral pseudopods that capture and enwrap spirochetes. Actin-dependent growth of these pseudopods necessitates de novo nucleation of actin filaments, which is regulated by actin-nucleating factors such as Arp2/3 complex. Here, we demonstrate that, in addition, also actin-regulatory proteins of the formin family are important for uptake of borreliae by primary human macrophages. Using immunofluorescence, live-cell imaging, and ratiometric analysis, we find specific enrichment of the formins FMNL1 and mDia1 at macrophage pseudopods that are in contact with borreliae. Consistently, small interfering RNA (siRNA)-mediated knockdown of FMNL1 or mDia1 leads to decreased formation of Borrelia-induced pseudopods and to decreased internalization of borreliae by macrophages. Our results suggest that macrophage coiling phagocytosis is a complex process involving several actin nucleation/regulatory factors. They also point specifically to the formins mDia1 and FMNL1 as novel regulators of spirochete uptake by human immune cells.
Collapse
|
105
|
MacGrath SM, Koleske AJ. Cortactin in cell migration and cancer at a glance. J Cell Sci 2013; 125:1621-6. [PMID: 22566665 DOI: 10.1242/jcs.093781] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Stacey M MacGrath
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
106
|
Pankewycz O, Ambrus J, Shen L, Xuan J, Li H, Wu J, Guo LW, Feng L, Laftavi MR. Inhibiting Wipf2 downregulation by transgenic expression of its 3′ mRNA-untranslated region improves cytotoxicity and vaccination response. Eur J Immunol 2012; 42:2409-18. [PMID: 22674044 DOI: 10.1002/eji.201141533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oleh Pankewycz
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Julian Ambrus
- Department of Medicine; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Long Shen
- Department of Medicine; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Jingxiu Xuan
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Hong Li
- Joint Research Center of West China Second University; Hospital of Sichuan University; Chengdu; China
| | - Jing Wu
- Department of Medicine; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Li-Wu Guo
- Division of Genetic Toxicology; National Center for Toxicological Research-Food and Drug Administration; Jefferson; AR; USA
| | - Lin Feng
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Mark R. Laftavi
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| |
Collapse
|
107
|
Soria Fregozo C, Pérez Vega M. Actin-binding proteins and signalling pathways associated with the formation and maintenance of dendritic spines. NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2011.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
108
|
Veltman DM, King JS, Machesky LM, Insall RH. SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods. J Cell Biol 2012; 198:501-8. [PMID: 22891261 PMCID: PMC3514037 DOI: 10.1083/jcb.201205058] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/11/2012] [Indexed: 11/22/2022] Open
Abstract
Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.
Collapse
Affiliation(s)
- Douwe M Veltman
- Beatson Institute for Cancer Research, Glasgow G61 1BD, Scotland, UK
| | | | | | | |
Collapse
|
109
|
Zhang W, Huang Y, Gunst SJ. The small GTPase RhoA regulates the contraction of smooth muscle tissues by catalyzing the assembly of cytoskeletal signaling complexes at membrane adhesion sites. J Biol Chem 2012; 287:33996-4008. [PMID: 22893699 DOI: 10.1074/jbc.m112.369603] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The activation of the small GTPase RhoA is necessary for ACh-induced actin polymerization and airway smooth muscle (ASM) contraction, but the mechanism by which it regulates these events is unknown. Actin polymerization in ASM is catalyzed by the actin filament nucleation activator, N-WASp and the polymerization catalyst, Arp2/3 complex. Activation of the small GTPase cdc42, a specific N-WASp activator, is also required for actin polymerization and tension generation. We assessed the mechanism by which RhoA regulates actin dynamics and smooth muscle contraction by expressing the dominant negative mutants RhoA T19N and cdc42 T17N, and non-phosphorylatable paxillin Y118/31F and paxillin ΔLD4 deletion mutants in SM tissues. Their effects were evaluated in muscle tissue extracts and freshly dissociated SM cells. Protein interactions and cellular localization were analyzed using proximity ligation assays (PLA), immunofluorescence, and GTPase and kinase assays. RhoA inhibition prevented ACh-induced cdc42 activation, N-WASp activation and the interaction of N-WASp with the Arp2/3 complex at the cell membrane. ACh induced paxillin phosphorylation and its association with the cdc42 GEFS, DOCK180 and α/βPIX. Paxillin tyrosine phosphorylation and its association with βPIX were RhoA-dependent, and were required for cdc42 activation. The ACh-induced recruitment of paxillin and FAK to the cell membrane was dependent on RhoA. We conclude that RhoA regulates the contraction of ASM by catalyzing the assembly and activation of cytoskeletal signaling modules at membrane adhesomes that initiate signaling cascades that regulate actin polymerization and tension development in response to contractile agonist stimulation. Our results suggest that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to agonist -induced smooth muscle contraction.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
110
|
Taulet N, Delorme-Walker VD, DerMardirossian C. Reactive oxygen species regulate protrusion efficiency by controlling actin dynamics. PLoS One 2012; 7:e41342. [PMID: 22876286 PMCID: PMC3410878 DOI: 10.1371/journal.pone.0041342] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022] Open
Abstract
Productive protrusions allowing motile cells to sense and migrate toward a chemotactic gradient of reactive oxygen species (ROS) require a tight control of the actin cytoskeleton. However, the mechanisms of how ROS affect cell protrusion and actin dynamics are not well elucidated yet. We show here that ROS induce the formation of a persistent protrusion. In migrating epithelial cells, protrusion of the leading edge requires the precise regulation of the lamellipodium and lamella F-actin networks. Using fluorescent speckle microscopy, we showed that, upon ROS stimulation, the F-actin retrograde flow is enhanced in the lamellipodium. This event coincides with an increase of cofilin activity, free barbed ends formation, Arp2/3 recruitment, and ERK activity at the cell edge. In addition, we observed an acceleration of the F-actin flow in the lamella of ROS-stimulated cells, which correlates with an enhancement of the cell contractility. Thus, this study demonstrates that ROS modulate both the lamellipodium and the lamella networks to control protrusion efficiency.
Collapse
Affiliation(s)
- Nicolas Taulet
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Violaine D. Delorme-Walker
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Céline DerMardirossian
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
111
|
Gaucher JF, Maugé C, Didry D, Guichard B, Renault L, Carlier MF. Interactions of isolated C-terminal fragments of neural Wiskott-Aldrich syndrome protein (N-WASP) with actin and Arp2/3 complex. J Biol Chem 2012; 287:34646-59. [PMID: 22847007 DOI: 10.1074/jbc.m112.394361] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wiskott-Aldrich syndrome proteins (WASP) are a family of proteins that all catalyze actin filament branching with the Arp2/3 complex in a variety of actin-based motile processes. The constitutively active C-terminal domain, called VCA, harbors one or more WASP homology 2 (WH2) domains that bind G-actin, whereas the CA extension binds the Arp2/3 complex. The VCA·actin·Arp2/3 entity associates with a mother filament to form a branched junction from which a daughter filament is initiated. The number and function of WH2-bound actin(s) in the branching process are not known, and the stoichiometry of the VCA·actin·Arp2/3 complex is debated. We have expressed the tandem WH2 repeats of N-WASP, either alone (V) or associated with the C (VC) and CA (VCA) extensions. We analyzed the structure of actin in complex with V, VC, and VCA using protein crystallography and hydrodynamic and spectrofluorimetric methods. The partial crystal structure of the VC·actin 1:1 complex shows two actins in the asymmetric unit with extensive actin-actin contacts. In solution, each of the two WH2 domains in V, VC, and VCA binds G-actin in 1:2 complexes that participate in barbed end assembly. V, VC, and VCA enhance barbed end depolymerization like profilin but neither nucleate nor sever filaments, in contrast with other WH2 repeats. VCA binds the Arp2/3 complex in a 1:1 complex even in the presence of a large excess of VCA. VCA·Arp2/3 binds one actin in a latrunculin A-sensitive fashion, in a 1:1:1 complex, indicating that binding of the second actin to VCA is weakened in the ternary complex.
Collapse
Affiliation(s)
- Jean-François Gaucher
- Laboratoire de Cristallographie et RMN Biologiques CNRS UMR 8015, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
112
|
Slanina H, Hebling S, Hauck CR, Schubert-Unkmeir A. Cell invasion by Neisseria meningitidis requires a functional interplay between the focal adhesion kinase, Src and cortactin. PLoS One 2012; 7:e39613. [PMID: 22768099 PMCID: PMC3387252 DOI: 10.1371/journal.pone.0039613] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/23/2012] [Indexed: 02/07/2023] Open
Abstract
Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells.
Collapse
Affiliation(s)
- Heiko Slanina
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Sabrina Hebling
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
113
|
|
114
|
Abstract
The RNA-binding protein hnRNP Q has been implicated in neuronal mRNA metabolism. Here, we show that knockdown of hnRNP Q increased neurite complexity in cultured rat cortical neurons and induced filopodium formation in mouse neuroblastoma cells. Reexpression of hnRNP Q1 in hnRNP Q-depleted cells abrogated the morphological changes of neurites, indicating a specific role for hnRNP Q1 in neuronal morphogenesis. A search for mRNA targets of hnRNP Q1 identified functionally coherent sets of mRNAs encoding factors involved in cellular signaling or cytoskeletal regulation and determined its preferred binding sequences. We demonstrated that hnRNP Q1 bound to a set of identified mRNAs encoding the components of the actin nucleation-promoting Cdc42/N-WASP/Arp2/3 complex and was in part colocalized with Cdc42 mRNA in granules. Using subcellular fractionation and immunofluorescence, we showed that knockdown of hnRNP Q reduced the level of some of those mRNAs in neurites and redistributed their encoded proteins from neurite tips to soma to different extents. Overexpression of dominant negative mutants of Cdc42 or N-WASP compromised hnRNP Q depletion-induced neurite complexity. Together, our results suggest that hnRNP Q1 may participate in localization of mRNAs encoding Cdc42 signaling factors in neurites, and thereby may regulate actin dynamics and control neuronal morphogenesis.
Collapse
|
115
|
Ryan GL, Petroccia HM, Watanabe N, Vavylonis D. Excitable actin dynamics in lamellipodial protrusion and retraction. Biophys J 2012; 102:1493-502. [PMID: 22500749 DOI: 10.1016/j.bpj.2012.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/19/2012] [Accepted: 03/02/2012] [Indexed: 12/28/2022] Open
Abstract
Many animal cells initiate crawling by protruding lamellipodia, consisting of a dense network of actin filaments, at their leading edge. We imaged XTC cells that exhibit flat lamellipodia on poly-L-lysine-coated coverslips. Using active contours, we tracked the leading edge and measured the total amount of F-actin by summing the pixel intensities within a 5-μm band. We observed protrusion and retraction with period 130-200 s and local wavelike features. Positive (negative) velocities correlated with minimum (maximum) integrated actin concentration. Approximately constant retrograde flow indicated that protrusions and retractions were driven by fluctuations of the actin polymerization rate. We present a model of these actin dynamics as an excitable system in which a diffusive, autocatalytic activator causes actin polymerization; F-actin accumulation in turn inhibits further activator accumulation. Simulations of the model reproduced the pattern of actin polymerization seen in experiments. To explore the model's assumption of an autocatalytic activation mechanism, we imaged cells expressing markers for both F-actin and the p21 subunit of the Arp2/3 complex. We found that integrated Arp2/3-complex concentrations spike several seconds before spikes of F-actin concentration. This suggests that the Arp2/3 complex participates in an activation mechanism that includes additional diffuse components. Response of cells to stimulation by fetal calf serum could be reproduced by the model, further supporting the proposed dynamical picture.
Collapse
Affiliation(s)
- Gillian L Ryan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | |
Collapse
|
116
|
Echarri A, Muriel O, Pavón DM, Azegrouz H, Escolar F, Terrón MC, Sanchez-Cabo F, Martínez F, Montoya MC, Llorca O, Del Pozo MA. Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J Cell Sci 2012; 125:3097-113. [PMID: 22454521 DOI: 10.1242/jcs.090134] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The biology of caveolin-1 (Cav1)/caveolae is intimately linked to actin dynamics and adhesion receptors. Caveolar domains are organized in hierarchical levels of complexity from curved or flattened caveolae to large, higher-order caveolar rosettes. We report that stress fibers controlled by Abl kinases and mDia1 determine the level of caveolar domain organization, which conditions the subsequent inward trafficking of caveolar domains induced upon loss of cell adhesion from the extracellular matrix. Abl-deficient cells have fewer stress fibers, a smaller pool of stress-fiber co-aligned Cav1 and increased clustering of Cav1/caveolae at the cell surface. Defective caveolar linkage to stress fibers prevents the formation of big caveolar rosettes upon loss of cell adhesion, correlating with a lack of inward trafficking. Live imaging of stress fibers and Cav1 showed that the actin-linked Cav1 pool loses its spatial organization in the absence of actin polymerization and is dragged and clustered by depolymerizing filaments. We identified mDia1 as the actin polymerization regulator downstream of Abl kinases that controls the stress-fiber-linked Cav1 pool. mDia1 knockdown results in Cav1/caveolae clustering and defective inward trafficking upon loss of cell adhesion. By contrast, cell elongation imposed by the excess of stress fibers induced by active mDia1 flattens caveolae. Furthermore, active mDia1 rescues the actin co-aligned Cav1 pool and Cav1 inward trafficking upon loss of adhesion in Abl-deficient cells. Thus, caveolar domain organization and trafficking are tightly coupled to adhesive and stress fiber regulatory pathways.
Collapse
Affiliation(s)
- Asier Echarri
- Integrin Signaling Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, [corrected] Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Nazari H, Khaleghian A, Takahashi A, Harada N, Webster NJG, Nakano M, Kishi K, Ebina Y, Nakaya Y. Cortactin, an actin binding protein, regulates GLUT4 translocation via actin filament remodeling. BIOCHEMISTRY (MOSCOW) 2012; 76:1262-9. [PMID: 22117553 DOI: 10.1134/s0006297911110083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin regulates glucose uptake into fat and skeletal muscle cells by modulating the translocation of GLUT4 between the cell surface and interior. We investigated a role for cortactin, a cortical actin binding protein, in the actin filament organization and translocation of GLUT4 in Chinese hamster ovary (CHO-GLUT4myc) and L6-GLUT4myc myotube cells. Overexpression of wild-type cortactin enhanced insulin-stimulated GLUT4myc translocation but did not alter actin fiber formation. Conversely, cortactin mutants lacking the Src homology 3 (SH3) domain inhibited insulin-stimulated formation of actin stress fibers and GLUT4 translocation similar to the actin depolymerizing agent cytochalasin D. Wortmannin, genistein, and a PP1 analog completely blocked insulin-induced Akt phosphorylation, formation of actin stress fibers, and GLUT4 translocation indicating the involvement of both PI3-K/Akt and the Src family of kinases. The effect of these inhibitors was even more pronounced in the presence of overexpressed cortactin suggesting that the same pathways are involved. Knockdown of cortactin by siRNA did not inhibit insulin-induced Akt phosphorylation but completely inhibited actin stress fiber formation and glucose uptake. These results suggest that the actin binding protein cortactin is required for actin stress fiber formation in muscle cells and that this process is absolutely required for translocation of GLUT4-containing vesicles to the plasma membrane.
Collapse
Affiliation(s)
- H Nazari
- Department of Nutrition and Metabolism, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Eke I, Deuse Y, Hehlgans S, Gurtner K, Krause M, Baumann M, Shevchenko A, Sandfort V, Cordes N. β₁Integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy. J Clin Invest 2012; 122:1529-40. [PMID: 22378044 DOI: 10.1172/jci61350] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/18/2012] [Indexed: 02/06/2023] Open
Abstract
Integrin signaling critically contributes to the progression, growth, and therapy resistance of malignant tumors. Here, we show that targeting of β₁ integrins with inhibitory antibodies enhances the sensitivity to ionizing radiation and delays the growth of human head and neck squamous cell carcinoma cell lines in 3D cell culture and in xenografted mice. Mechanistically, dephosphorylation of focal adhesion kinase (FAK) upon inhibition of β₁ integrin resulted in dissociation of a FAK/cortactin protein complex. This, in turn, downregulated JNK signaling and induced cell rounding, leading to radiosensitization. Thus, these findings suggest that robust and selective pharmacological targeting of β₁ integrins may provide therapeutic benefit to overcome tumor cell resistance to radiotherapy.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Hu X, Kuhn JR. Actin filament attachments for sustained motility in vitro are maintained by filament bundling. PLoS One 2012; 7:e31385. [PMID: 22359589 PMCID: PMC3281059 DOI: 10.1371/journal.pone.0031385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/06/2012] [Indexed: 02/06/2023] Open
Abstract
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.
Collapse
Affiliation(s)
- Xiaohua Hu
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jeffrey R. Kuhn
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
120
|
Sarpal R, Pellikka M, Patel RR, Hui FYW, Godt D, Tepass U. Mutational analysis supports a core role for Drosophila α-catenin in adherens junction function. J Cell Sci 2012; 125:233-45. [PMID: 22266901 DOI: 10.1242/jcs.096644] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
α-catenin associates the cadherin-catenin complex with the actin cytoskeleton. α-catenin binds to β-catenin, which links it to the cadherin cytoplasmic tail, and F-actin, but also to a multitude of actin-associated proteins. These interactions suggest a highly complex cadherin-actin interface. Moreover, mammalian αE-catenin has been implicated in a cadherin-independent cytoplasmic function in Arp2/3-dependent actin regulation, and in cell signaling. The function and regulation of individual molecular interactions of α-catenin, in particular during development, are not well understood. We have generated mutations in Drosophila α-Catenin (α-Cat) to investigate α-Catenin function in this model, and to establish a setup for testing α-Catenin-related constructs in α-Cat-null mutant cells in vivo. Our analysis of α-Cat mutants in embryogenesis, imaginal discs and oogenesis reveals defects consistent with a loss of cadherin function. Compromising components of the Arp2/3 complex or its regulator SCAR ameliorate the α-Cat loss-of-function phenotype in embryos but not in ovaries, suggesting negative regulatory interactions between α-Catenin and the Arp2/3 complex in some tissues. We also show that the α-Cat mutant phenotype can be rescued by the expression of a DE-cadherin::α-Catenin fusion protein, which argues against an essential cytosolic, cadherin-independent role of Drosophila α-Catenin.
Collapse
Affiliation(s)
- Ritu Sarpal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
121
|
Enculescu M, Falcke M. Modeling morphodynamic phenotypes and dynamic regimes of cell motion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:337-58. [PMID: 22161339 DOI: 10.1007/978-1-4419-7210-1_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many cellular processes and signaling pathways converge onto cell morphology and cell motion, which share important components. The mechanisms used for propulsion could also be responsible for shape changes, if they are capable of generating the rich observed variety of dynamic regimes. Additionally, the analysis of cell shape changes in space and time promises insight into the state of the cytoskeleton and signaling pathways controlling it. While this has been obvious for some time by now, little effort has been made to systematically and quantitatively explore this source of information. First pioneering experimental work revealed morphodynamic phenotypes which can be associated with dynamic regimes like oscillations and excitability. Here, we review the current state of modeling of morphodynamic phenotypes, the experimental results and discuss the ideas on the mechanisms driving shape changes which are suggested by modeling.
Collapse
Affiliation(s)
- Mihaela Enculescu
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | |
Collapse
|
122
|
Soria Fregozo C, Pérez Vega MI. Actin-binding proteins and signalling pathways associated with the formation and maintenance of dendritic spines. Neurologia 2011; 27:421-31. [PMID: 22178050 DOI: 10.1016/j.nrl.2011.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/09/2011] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Dendritic spines are the main sites of excitatory synaptic contacts. Moreover, they present plastic responses to different stimuli present in synaptic activity or damage, ranging from an increase or decrease in their total number, to redistribution of progenitor dendritic spines, to variations in their size or shape. However, the spines can remain stable for a long time. BACKGROUND The use of experimental models has shown that different molecules of the F-actin binding and signalling pathways are closely related to the development, maintenance and plasticity of excitatory synapses, which could affect the number, size and shape of the dendritic spines; these mechanisms affect and depend on the reorganisation of the actin cytoskeleton. DEVELOPMENT It is proposed that the filopodia are precursors of dendritic spines. Drebrin is an F-actin binding protein, and it is responsible for concentrating F-actin and PSD-95 in filopodia that will guide the formation of the new spines. CONCLUSION The specific mechanisms of actin regulation are an integral part in the formation, maturing process and plasticity of dendritic spines in association with the various actin cytoskeleton-binding proteins The signalling pathways mediated by small GTPases and the equilibrium between G-actin and F-actin are also involved.
Collapse
Affiliation(s)
- C Soria Fregozo
- Laboratorio de Psicobiología y Biología Molecular, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Guadalajara, Mexico.
| | | |
Collapse
|
123
|
MANNHERZ HANSGEORG, MACH MONIKA, NOWAK DOROTA, MALICKA-BLASZKIEWICZ MARIA, MAZUR ANTONINA. LAMELLIPODIAL AND AMOEBOID CELL LOCOMOTION: THE ROLE OF ACTIN-CYCLING AND BLEB FORMATION. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048007000404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell migration depends on the rapid changes of the organization of actin filaments and generation of force by motor proteins. Vertebrate cells use two different mechanisms: mesenchymal or amoeboid migration. Cells migrating in mesenchymal mode are elongated and move over a two-dimensional substratum. They extend thin veil-like extensions at their leading face — lamellipodia, whose protrusion depend on polymerization and depolymerization processes of actin. During mesenchymal migration actin filaments are firmly connected by integrins to the extracellular matrix (ECM) at focal contacts, which serve as points of fixation for subsequent cell body traction by force producing actomyosin interactions. Cells migrating in amoeboid fashion are rounded and move through a three-dimensional ECM-network undergoing considerable shape changes and generating vesicle-like surface extensions — so-called blebs. These blebs and the migrating cells exhibit no or strongly reduced affinity to the ECM. Bleb formation depends on a transient decrease of plasma membrane stiffness and locally increased hydrostatic pressure, which is generated by actin-myosin interactions. Formation of numerous surface blebs is also typical of cells that undergo apoptotic cell death. Since these share a number of properties to blebs of amoeboid cells, an analysis is given of the distribution of some cytoskeletal components in apoptotic blebs.
Collapse
Affiliation(s)
- HANS GEORG MANNHERZ
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - MONIKA MACH
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
- Faculty of Biotechnology, Przybyszewskiego 63, PL-51-148 Wroclaw, Poland
| | - DOROTA NOWAK
- Department of Cell Pathology, Faculty of Biotechnology, Przybyszewskiego 63, PL-51-148 Wroclaw, Poland
| | | | - ANTONINA MAZUR
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Str. 11, D-44227-Dortmund, Germany
| |
Collapse
|
124
|
Heimsath EG, Higgs HN. The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends. J Biol Chem 2011; 287:3087-98. [PMID: 22094460 DOI: 10.1074/jbc.m111.312207] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin.
Collapse
Affiliation(s)
- Ernest G Heimsath
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
125
|
Mellis DJ, Itzstein C, Helfrich MH, Crockett JC. The skeleton: a multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 2011; 211:131-43. [PMID: 21903860 DOI: 10.1530/joe-11-0212] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoclasts are the specialised cells that resorb bone matrix and are important both for the growth and shaping of bones throughout development as well as during the process of bone remodelling that occurs throughout life to maintain a healthy skeleton. Osteoclast formation, function and survival are tightly regulated by a network of signalling pathways, many of which have been identified through the study of rare monogenic diseases, knockout mouse models and animal strains carrying naturally occurring mutations in key molecules. In this review, we describe the processes of osteoclast formation, activation and function and discuss the major transcription factors and signalling pathways (including those that control the cytoskeletal rearrangements) that are important at each stage.
Collapse
Affiliation(s)
- David J Mellis
- Musculoskeletal Research Programme, University of Aberdeen, Institute of Medical Sciences, Foresterhill, UK
| | | | | | | |
Collapse
|
126
|
Egami Y, Fukuda M, Araki N. Rab35 regulates phagosome formation through recruitment of ACAP2 in macrophages during FcγR-mediated phagocytosis. J Cell Sci 2011; 124:3557-67. [PMID: 22045739 DOI: 10.1242/jcs.083881] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phagosome formation and subsequent maturation are complex sequences of events that involve actin cytoskeleton remodeling and membrane trafficking. Here, we demonstrate that the Ras-related protein Rab35 is involved in the early stage of FcγR-mediated phagocytosis in macrophages. Live-cell image analysis revealed that Rab35 was markedly concentrated at the membrane where IgG-opsonized erythrocytes (IgG-Es) are bound. Rab35 silencing by RNA interference (RNAi) or the expression of GDP- or GTP-locked Rab35 mutant drastically reduced the rate of phagocytosis of IgG-Es. Actin-mediated pseudopod extension to form phagocytic cups was disturbed by the Rab35 silencing or the expression of GDP-Rab35, although initial actin assembly at the IgG-E binding sites was not inhibited. Furthermore, GTP-Rab35-dependent recruitment of ACAP2, an ARF6 GTPase-activating protein, was shown in the phagocytic cup formation. Concomitantly, overexpression of ACAP2 along with GTP-locked Rab35 showed a synergistic inhibitory effect on phagocytosis. It is likely that Rab35 regulates actin-dependent phagosome formation by recruiting ACAP2, which might control actin remodeling and membrane traffic through ARF6.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
127
|
Kim JS, Bak EJ, Lee BC, Kim YS, Park JB, Choi IG. Neuregulin induces HaCaT keratinocyte migration via Rac1-mediated NADPH-oxidase activation. J Cell Physiol 2011; 226:3014-21. [DOI: 10.1002/jcp.22649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
128
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
129
|
Aerbajinai W, Liu L, Chin K, Zhu J, Parent CA, Rodgers GP. Glia maturation factor-γ mediates neutrophil chemotaxis. J Leukoc Biol 2011; 90:529-38. [PMID: 21653232 DOI: 10.1189/jlb.0710424] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chemotaxis is fundamental to the directional migration of neutrophils toward endogenous and exogenous chemoattractants. Recent studies have demonstrated that ADF/cofilin superfamily members play important roles in reorganizing the actin cytoskeleton by disassembling actin filaments. GMFG, a novel ADF/cofilin superfamily protein that is expressed in inflammatory cells, has been implicated in regulating actin reorganization in microendothelial cells, but its function in neutrophils remains unclear. Here, we show that GMFG is an important regulator for cell migration and polarity in neutrophils. Knockdown of endogenous GMFG impaired fMLF- and IL-8 (CXCL8)-induced chemotaxis in dHL-60 cells. GMFG knockdown attenuated the formation of lamellipodia at the leading edge of cells exposed to fMLF or CXCL8, as well as the phosphorylation of p38 and PAK1/2 in response to fMLF or CXCL8. Live cell imaging revealed that GMFG was recruited to the leading edge of cells in response to fMLF, as well as CXCL8. Overexpression of GMFG enhanced phosphorylation of p38 but not of PAK1/2 in dHL-60 cells. In addition, we found that GMFG is associated with WAVE2. Taken together, our findings suggest that GMFG is a novel factor in regulating neutrophil chemotaxis by modulating actin cytoskeleton reorganization.
Collapse
Affiliation(s)
- Wulin Aerbajinai
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-2560, USA
| | | | | | | | | | | |
Collapse
|
130
|
Basu R, Chang F. Characterization of dip1p reveals a switch in Arp2/3-dependent actin assembly for fission yeast endocytosis. Curr Biol 2011; 21:905-16. [PMID: 21620704 PMCID: PMC3121306 DOI: 10.1016/j.cub.2011.04.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 03/31/2011] [Accepted: 04/28/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND During endocytosis in yeast, a choreographed series of discrete local events at the plasma membrane lead to a rapid burst of actin polymerization and the subsequent internalization of an endocytic vesicle. What initiates Arp2/3-dependent actin polymerization in this process is not well understood. RESULTS The Schizosaccharomyces pombe WISH/DIP/SPIN90 ortholog dip1p is an actin-patch protein that regulates the temporal sequence of endocytic events. dip1Δ mutants exhibit a novel phenotype in which early events such as WASp localization occur normally but arrival of Arp2/3, actin polymerization, and subsequent steps are delayed and occur with apparently random timing. In studying this mutant, we demonstrate that positive feedback loops of WASp, rapid actin assembly, and Arp2/3 contribute to switch-like behavior that initiates actin polymerization. In the absence of dip1p, a subset of patches is activated concurrently with the "touch" of a neighboring endocytic vesicle. CONCLUSIONS These studies reveal a switch-like mechanism responsible for the initiation of actin assembly during endocytosis. This switch may be activated in at least two ways, through a dip1p-dependent mechanism and through contact with another endocytic vesicle.
Collapse
Affiliation(s)
- Roshni Basu
- Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Fred Chang
- Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
131
|
Lacy P, Willetts L, Kim JD, Lo AN, Lam B, Maclean EI, Moqbel R, Rothenberg ME, Zimmermann N. Agonist activation of f-actin-mediated eosinophil shape change and mediator release is dependent on Rac2. Int Arch Allergy Immunol 2011; 156:137-47. [PMID: 21576984 PMCID: PMC3104871 DOI: 10.1159/000322597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/03/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Tissue recruitment and activation of eosinophils contribute to allergic symptoms by causing airway hyperresponsiveness and inflammation. Shape changes and mediator release in eosinophils may be regulated by mammalian Rho-related guanosine triphosphatases. Of these, Rac2 is essential for F-actin formation as a central process underlying cell motility, exocytosis, and respiratory burst in neutrophils, while the role of Rac2 in eosinophils is unknown.We set out to determine the role of Rac2 in eosinophil mediator release and F-actin-dependent shape change in response to chemotactic stimuli. METHODS Rac2-deficient eosinophils from CD2-IL-5 transgenic mice crossed with rac2 gene knockout animals were examined for their ability to release superoxide through respiratory burst or eosinophil peroxidase by degranulation. Eosinophil shape change and actin polymerization were also assessed by flow cytometry and confocal microscopy following stimulation with eotaxin-2 or platelet-activating factor. RESULTS Eosinophils from wild-type mice displayed inducible superoxide release, but at a small fraction (4-5%) of human eosinophils. Rac2-deficient eosinophils showed significantly less superoxide release (p < 0.05, 26% less than wild type). Eosinophils lacking Rac2 had diminished degranulation (p < 0.05, 62% less eosinophil peroxidase) and shape changes in response to eotaxin-2 or platelet-activating factor (with 68 and 49% less F-actin formation, respectively; p < 0.02) compared with wild-type cells. CONCLUSION These results demonstrate that Rac2 is an important regulator of eosinophil function by contributing to superoxide production, granule protein release, and eosinophil shape change. Our findings suggest that Rho guanosine triphosphatases are key regulators of cellular inflammation in allergy and asthma.
Collapse
Affiliation(s)
- Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alta., Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
von Holleben M, Gohla A, Janssen KP, Iritani BM, Beer-Hammer S. Immunoinhibitory adapter protein Src homology domain 3 lymphocyte protein 2 (SLy2) regulates actin dynamics and B cell spreading. J Biol Chem 2011; 286:13489-501. [PMID: 21296879 PMCID: PMC3075695 DOI: 10.1074/jbc.m110.155184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 01/11/2011] [Indexed: 12/21/2022] Open
Abstract
Appropriate B cell activation is essential for adaptive immunity. In contrast to the molecular mechanisms that regulate positive signaling in immune responses, the counterbalancing negative regulatory pathways remain insufficiently understood. The Src homology domain 3 (SH3)-containing adapter protein SH3 lymphocyte protein 2 (SLy2, also known as hematopoietic adapter-containing SH3 and sterile α-motif (SAM) domains 1; HACS1) is strongly up-regulated upon B cell activation and functions as an endogenous immunoinhibitor in vivo, but the underlying molecular mechanisms of SLy2 function have been elusive. We have generated transgenic mice overexpressing SLy2 in B and T cells and have studied the biological effects of elevated SLy2 levels in Jurkat and HeLa cells. Our results demonstrate that SLy2 induces Rac1-dependent membrane ruffle formation and regulates cell spreading and polarization and that the SLy2 SH3 domain is essential for these effects. Using immunoprecipitation and confocal microscopy, we provide evidence that the actin nucleation-promoting factor cortactin is an SH3 domain-directed interaction partner of SLy2. Consistent with an important role of SLy2 for actin cytoskeletal reorganization, we further show that SLy2-transgenic B cells are severely defective in cell spreading. Together, our findings extend our mechanistic understanding of the immunoinhibitory roles of SLy2 in vivo and suggest that the physiological up-regulation of SLy2 observed upon B cell activation functions to counteract excessive B cell spreading.
Collapse
Affiliation(s)
- Max von Holleben
- From the Institute of Medical Microbiology and Hospital Hygiene and
| | - Antje Gohla
- Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, 40225 Duesseldorf, Germany
- the Institute of Pharmacology and Toxicology and Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, 97078 Würzburg, Germany
| | - Klaus-Peter Janssen
- the Department of Surgery, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Brian M. Iritani
- the Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington 98195, and
| | - Sandra Beer-Hammer
- From the Institute of Medical Microbiology and Hospital Hygiene and
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard-Karls-University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tuebingen, 72074 Tuebingen, Germany
| |
Collapse
|
133
|
Itk: the rheostat of the T cell response. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:297868. [PMID: 21747996 PMCID: PMC3116522 DOI: 10.1155/2011/297868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
The nonreceptor tyrosine kinase Itk plays a key role in TCR-initiated signaling that directly and significantly affects the regulation of PLCγ1 and the consequent mobilization of Ca2+. Itk also participates in the regulation of cytoskeletal reorganization as well as cellular adhesion, which is necessary for a productive T cell response. The functional cellular outcome of these molecular regulations by Itk renders it an important mediator of T cell development and differentiation. This paper encompasses the structure of Itk, the signaling parameters leading to Itk activation, and Itk effects on molecular pathways resulting in functional cellular outcomes. The incorporation of these factors persuades one to believe that Itk serves as a modulator, or rheostat, critically fine-tuning the T cell response.
Collapse
|
134
|
Liu SL, Needham KM, May JR, Nolen BJ. Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J Biol Chem 2011; 286:17039-46. [PMID: 21454476 DOI: 10.1074/jbc.m111.219964] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Arp2/3 complex is a key actin filament nucleator that assembles branched actin networks in response to cellular signals. The activity of Arp2/3 complex is regulated by both activating and inhibitory proteins. Coronins make up a large class of actin-binding proteins previously shown to inhibit Arp2/3 complex. Although coronins are known to play a role in controlling actin dynamics in diverse processes, including endocytosis and cell motility, the precise mechanism by which they regulate Arp2/3 complex is unclear. We conducted a detailed biochemical analysis of budding yeast coronin, Crn1, and found that it not only inhibits Arp2/3 complex but also activates it. We mapped regions required for activation and found that Crn1 contains a sequence called CA, which is conserved in WASp/Scar proteins, the prototypical activators of Arp2/3 complex. Point mutations in CA abolished activation of Arp2/3 complex by Crn1 in vitro. Confocal microscopy and quantitative actin patch tracking showed that these mutants had defective endocytic actin patch dynamics in Saccharomyces cerevisiae, indicating that activation of Arp2/3 complex by coronin is required for normal actin dynamics in vivo. The switch between the dual modes of regulation by Crn1 is controlled by concentration, and low concentrations of Crn1 enhance filament binding by Arp2/3 complex, whereas high concentrations block binding. Our data support a direct tethering recruitment model for activation of Arp2/3 complex by Crn1 and suggest that Crn1 indirectly inhibits Arp2/3 complex by blocking it from binding actin filaments.
Collapse
Affiliation(s)
- Su-Ling Liu
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
135
|
Leonard M, Zhang L, Zhai N, Cader A, Chan Y, Nowak RB, Fowler VM, Menko AS. Modulation of N-cadherin junctions and their role as epicenters of differentiation-specific actin regulation in the developing lens. Dev Biol 2011; 349:363-77. [PMID: 20969840 PMCID: PMC3018542 DOI: 10.1016/j.ydbio.2010.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/05/2010] [Accepted: 10/09/2010] [Indexed: 12/01/2022]
Abstract
Extensive elongation of lens fiber cells is a central feature of lens morphogenesis. Our study investigates the role of N-cadherin junctions in this process in vivo. We investigate both the molecular players involved in N-cadherin junctional maturation and the subsequent function of these junctions as epicenters for the assembly of an actin cytoskeleton that drives morphogenesis. We present the first evidence of nascent cadherin junctions in vivo, and show that they are a prominent feature along lateral interfaces of undifferentiated lens epithelial cells. Maturation of these N-cadherin junctions, required for lens cell differentiation, preceded organization of a cortical actin cytoskeleton along the cells' lateral borders, but was linked to recruitment of α-catenin and dephosphorylation of N-cadherin-linked β-catenin. Biochemical analysis revealed differentiation-specific recruitment of actin regulators cortactin and Arp3 to maturing N-cadherin junctions of differentiating cells, linking N-cadherin junctional maturation with actin cytoskeletal assembly during fiber cell elongation. Blocking formation of mature N-cadherin junctions led to reduced association of α-catenin with N-cadherin, prevented organization of actin along lateral borders of differentiating lens fiber cells and blocked their elongation. These studies provide a molecular link between N-cadherin junctions and the organization of an actin cytoskeleton that governs lens fiber cell morphogenesis in vivo.
Collapse
Affiliation(s)
- Michelle Leonard
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Bennett MR, Farnell L, Gibson WG. A Model of NMDA Receptor Control of F-actin Treadmilling in Synaptic Spines and Their Growth. Bull Math Biol 2010; 73:2109-31. [DOI: 10.1007/s11538-010-9614-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/26/2010] [Indexed: 12/16/2022]
|
137
|
Minamida S, Iwamura M, Kodera Y, Kawashima Y, Ikeda M, Okusa H, Fujita T, Maeda T, Baba S. Profilin 1 overexpression in renal cell carcinoma. Int J Urol 2010; 18:63-71. [PMID: 21091798 DOI: 10.1111/j.1442-2042.2010.02670.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To gain information about overexpressed antigens in renal cell carcinoma (RCC) by using a chemical proteomics approach. METHODS RCC cell line 769P was cultured and proteome analysis was subsequently carried out in the culture supernatants. By using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry (LC-MS/MS), proteins in the culture supernatants were searched. A MEDLINE search to define the functions of the identified proteins was carried out. RESULTS Four differentially regulated proteins (profilin 1, amyloid beta A4 protein [APP], proprotein convertase subtilisin/kexin type 1 inhibitor [ProSAAS], galectin-3-binding protein [LGALS3BP]) were selected. These were not overexpressed in normal kidney tissue or reported in RCC. Their levels were measured through western blotting of normal kidney and RCC tissues. No differences were observed in the expression levels of APP, ProSAAS or LGALS3BP between RCC and normal kidney tissues. Profilin 1 was overexpressed in RCC tissue. On the basis of this observation, an immunohistochemical analysis of profilin 1 in normal kidney and RCC tissues was carried out. In normal tissues, tubules that were sources of RCC stained positive for profilin 1. In RCC tissue, in contrast, the stromal cells in the tumors stained positive. CONCLUSIONS Profilin 1 can be a key element in the pathological processes of RCC, such as tumorigenesis and/or tumor growth. Thus, it has the potential to serve as a diagnostic or progression biomarker and therapeutic target in RCC.
Collapse
Affiliation(s)
- Satoru Minamida
- Department of Urology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Pichot CS, Arvanitis C, Hartig SM, Jensen SA, Bechill J, Marzouk S, Yu J, Frost JA, Corey SJ. Cdc42-interacting protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp. Cancer Res 2010; 70:8347-56. [PMID: 20940394 PMCID: PMC2970640 DOI: 10.1158/0008-5472.can-09-4149] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the earliest stages of metastasis, breast cancer cells must reorganize the cytoskeleton to affect cell shape change and promote cell invasion and motility. These events require the cytoskeletal regulators Cdc42 and Rho, their effectors such as N-WASp/WAVE, and direct inducers of actin polymerization such as Arp2/3. Little consideration has been given to molecules that shape the cell membrane. The F-BAR proteins CIP4, TOCA-1, and FBP17 generate membrane curvature and act as scaffolding proteins for activated Cdc42 and N-WASp. We found that expression of CIP4, but not TOCA-1 or FBP17, was increased in invasive breast cancer cell lines in comparison with weakly or noninvasive breast cancer cell lines. Endogenous CIP4 localized to the leading edge of migrating cells and to invadopodia in cells invading gelatin. Because CIP4 serves as a scaffolding protein for Cdc42, Src, and N-WASp, we tested whether loss of CIP4 could result in decreased N-WASp function. Interaction between CIP4 and N-WASp was epidermal growth factor responsive, and CIP4 silencing by small interfering RNA caused decreased tyrosine phosphorylation of N-WASp at a Src-dependent activation site (Y256). CIP4 silencing also impaired the migration and invasion of MDA-MB-231 cells and was associated with decreased formation of invadopodia and gelatin degradation. This study presents a new role for CIP4 in the promotion of migration and invasion of MDA-MB-231 breast cancer cells and establishes the contribution of F-BAR proteins to cancer cell motility and invasion.
Collapse
Affiliation(s)
- Christina S. Pichot
- Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - Constadina Arvanitis
- Departments of Pediatrics and Cellular and Molecular Biology, Children’s Memorial Hospital and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sean M. Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Samuel A. Jensen
- Departments of Pediatrics and Cellular and Molecular Biology, Children’s Memorial Hospital and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Bechill
- Departments of Pediatrics and Cellular and Molecular Biology, Children’s Memorial Hospital and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Saad Marzouk
- Departments of Pediatrics and Cellular and Molecular Biology, Children’s Memorial Hospital and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jindan Yu
- Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | - Jeffrey A. Frost
- Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - Seth J. Corey
- Departments of Pediatrics and Cellular and Molecular Biology, Children’s Memorial Hospital and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
139
|
Otomo T, Tomchick DR, Otomo C, Machius M, Rosen MK. Crystal structure of the Formin mDia1 in autoinhibited conformation. PLoS One 2010; 5. [PMID: 20927343 PMCID: PMC2948019 DOI: 10.1371/journal.pone.0012896] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/27/2010] [Indexed: 11/21/2022] Open
Abstract
Background Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID). Methodology/Principal Findings Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state. Conclusions/Significance Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition.
Collapse
Affiliation(s)
- Takanori Otomo
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Chinatsu Otomo
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Mischa Machius
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Michael K. Rosen
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
140
|
Rana A, Dolmetsch RE. Using light to control signaling cascades in live neurons. Curr Opin Neurobiol 2010; 20:617-22. [PMID: 20850295 DOI: 10.1016/j.conb.2010.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 11/15/2022]
Abstract
Understanding the complexity of neuronal biology requires the manipulation of cellular processes with high specificity and spatio-temporal precision. The recent development of synthetic photo-activatable proteins designed using the light-oxygen-voltage and phytochrome domains provides a new set of tools for genetically targeted optical control of cell signaling. Their modular design, functional diversity, precisely controlled activity and in vivo applicability offer many advantages for investigating neuronal function. Although designing these proteins is still a considerable challenge, future advances in rational protein design and a deeper understanding of their photoactivation mechanisms will allow the development of the next generation of optogenetic techniques.
Collapse
Affiliation(s)
- Anshul Rana
- Graduate Program in Biochemistry, Stanford University, Beckman Center B400, 279 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
141
|
Ujfalusi-Pozsonyi K, Hild G, Gróf P, Gutay-Tóth Z, Bacsó Z, Nyitrai M. The effects of detergents on the polymerization properties of actin. Cytometry A 2010; 77:447-56. [PMID: 20151434 DOI: 10.1002/cyto.a.20855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effects of some detergents-most frequently used in membrane raft studies-on the polymerization properties of actin were examined under in vitro and in vivo conditions, for protein and cellular investigations, respectively. Under in vitro conditions the polymerization rates were measured with pyrene-labeled actin. We found that polymerization rate depended on the detergent concentration by following either biphasic characteristics or only decreasing tendency. The strongest effects were observed at relatively low detergent concentrations. SDS-PAGE electrophoresis and dynamic light-scattering measurements provided further evidences for the size distribution of actin filaments formed under the influence of detergents. Comparing the polymerization rates measured in the presence of different detergents to those obtained with various magnesium and KCl concentrations showed that detergents may influence the actin polymerization at three levels by modifying: (i) the monomer-monomer interaction, (ii) the local ionic strength, and (iii) the affinity of actin for various cations. In vivo studies on NIH 3T3MDR1 cells using TRITC-phalloidin detected fast depolymerization of large extent around the critical micellar concentrations of the detergents. We concluded that microdomain insolubility observed in the presence of detergents is hardly to be the result of the stabilization of the submembrane actin cytoskeleton merely; rather inter-lipid and lipid-protein interactions are also involved within the detergent-resistant membranes.
Collapse
Affiliation(s)
- Kinga Ujfalusi-Pozsonyi
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | | | | | | | |
Collapse
|
142
|
Cabrera R, Sha Z, Vadakkan TJ, Otero J, Kriegenburg F, Hartmann-Petersen R, Dickinson ME, Chang EC. Proteasome nuclear import mediated by Arc3 can influence efficient DNA damage repair and mitosis in Schizosaccharomyces pombe. Mol Biol Cell 2010; 21:3125-36. [PMID: 20668161 PMCID: PMC2938379 DOI: 10.1091/mbc.e10-06-0506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proteasomes must efficiently remove their substrates throughout the cells in a timely manner as many of these proteins can be toxic. This study shows that proteasomes can do so efficiently because they are highly mobile. Furthermore this study uncovers that proteasome mobility requires functional Arc3, a subunit of the Arp2/3 complex. Proteasomes must remove regulatory molecules and abnormal proteins throughout the cell, but how proteasomes can do so efficiently remains unclear. We have isolated a subunit of the Arp2/3 complex, Arc3, which binds proteasomes. When overexpressed, Arc3 rescues phenotypes associated with proteasome deficiencies; when its expression is repressed, proteasome deficiencies intensify. Arp2/3 is best known for regulating membrane dynamics and vesicular transport; thus, we performed photobleaching experiments and showed that proteasomes are readily imported into the nucleus but exit the nucleus slowly. Proteasome nuclear import is reduced when Arc3 is inactivated, leading to hypersensitivity to DNA damage and inefficient cyclin-B degradation, two events occurring in the nucleus. These data suggest that proteasomes display Arc3-dependent mobility in the cell, and mobile proteasomes can efficiently access substrates throughout the cell, allowing them to effectively regulate cell-compartment–specific activities.
Collapse
Affiliation(s)
- Rodrigo Cabrera
- Department of Molecular and Cellular Biology, Interdepartmental Program of Cell and Molecular Biology, and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Li C, Yu S, Nakamura F, Pentikäinen OT, Singh N, Yin S, Xin W, Sy MS. Pro-prion binds filamin A, facilitating its interaction with integrin beta1, and contributes to melanomagenesis. J Biol Chem 2010; 285:30328-39. [PMID: 20650901 DOI: 10.1074/jbc.m110.147413] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Filamin A (FLNA) is an integrator of cell mechanics and signaling. The spreading and migration observed in FLNA sufficient A7 melanoma cells but not in the parental FLNA deficient M2 cells have been attributed to FLNA. In A7 and M2 cells, the normal prion (PrP) exists as pro-PrP, retaining its glycosylphosphatidyl-inositol (GPI) anchor peptide signal sequence (GPI-PSS). The GPI-PSS of PrP has a FLNA binding motif and binds FLNA. Reducing PrP expression in A7 cells alters the spatial distribution of FLNA and organization of actin and diminishes cell spreading and migration. Integrin β1 also binds FLNA. In A7 cells, FLNA, PrP, and integrin β1 exist as two independent, yet functionally linked, complexes; they are FLNA with PrP or FLNA with integrin β1. Reducing PrP expression in A7 cells decreases the amount of integrin β1 bound to FLNA. A PrP GPI-PSS synthetic peptide that crosses the cell membrane inhibits A7 cell spreading and migration. Thus, in A7 cells FLNA does not act alone; the binding of pro-PrP enhances association between FLNA and integrin β1, which then promotes cell spreading and migration. Pro-PrP is detected in melanoma in situ but not in melanocyte. Invasive melanoma has more pro-PrP. The binding of pro-PrP to FLNA, therefore, contributes to melanomagenesis.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Monfregola J, Napolitano G, D'Urso M, Lappalainen P, Ursini MV. Functional characterization of Wiskott-Aldrich syndrome protein and scar homolog (WASH), a bi-modular nucleation-promoting factor able to interact with biogenesis of lysosome-related organelle subunit 2 (BLOS2) and gamma-tubulin. J Biol Chem 2010; 285:16951-7. [PMID: 20308062 PMCID: PMC2878011 DOI: 10.1074/jbc.m109.078501] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/17/2010] [Indexed: 11/06/2022] Open
Abstract
The Arp2/3 complex is essential for actin filament nucleation in a variety of cellular processes. The activation of the Arp2/3 complex is mediated by nucleation-promoting factors, such as the Wiskott-Aldrich syndrome family proteins, which share a WCA (WH2 domain, central region, acidic region) catalytic module at the C-terminal region, required for Arp2/3 activation, but diverge at the N-terminal region, required for binding to specific activators. Here, we report the characterization of WASH, a new member of the WAS family that has nucleation-promoting factor activity and recently has been demonstrated to play a role in endosomal sorting. We found that overexpression of the WASH-WCA domain induced disruption of the actin cytoskeleton, whereas overexpression of full-length WASH in mammalian cells did not affect stress fiber organization. Furthermore, our analysis has revealed that nerve growth factor treatment of PC12 cells overexpressing full-length WASH leads to disruption of the actin cytoskeleton. We have also found that WASH interacts through its N-terminal region with BLOS2, a centrosomal protein belonging to the BLOC-1 complex that functions as a scaffolding factor in the biogenesis of lysosome-related organelles. In addition to BLOS2, WASH also interacts with centrosomal gamma-tubulin and with pallidin, an additional component of the BLOC-1 complex. Collectively, our data propose that WASH is a bimodular protein in which the C terminus is involved in Arp2/3-mediated actin nucleation, whereas the N-terminal portion is required for its regulation and localization in the cells. Moreover, our data suggest that WASH is also a component of the BLOC-1 complex that is associated with the centrosomes.
Collapse
Affiliation(s)
- Jlenia Monfregola
- From the Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, 80131 Naples, Italy and
| | - Gennaro Napolitano
- From the Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, 80131 Naples, Italy and
| | - Michele D'Urso
- From the Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, 80131 Naples, Italy and
| | - Pekka Lappalainen
- the Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Matilde Valeria Ursini
- From the Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, 80131 Naples, Italy and
| |
Collapse
|
145
|
Zhang SY, Kamal M, Dahan K, Pawlak A, Ory V, Desvaux D, Audard V, Candelier M, BenMohamed F, Mohamed FB, Matignon M, Christov C, Decrouy X, Bernard V, Mangiapan G, Lang P, Guellaën G, Ronco P, Sahali D. c-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci Signal 2010; 3:ra39. [PMID: 20484117 DOI: 10.1126/scisignal.2000678] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Idiopathic nephrotic syndrome comprises several podocyte diseases of unknown origin that affect the glomerular podocyte, which controls the permeability of the filtration barrier in the kidney to proteins. It is characterized by the daily loss of more than 3 g of protein in urine and the lack of inflammatory lesions or cell infiltration. We found that the abundance of c-mip (c-maf inducing protein) was increased in the podocytes of patients with various acquired idiopathic nephrotic syndromes in which the podocyte is the main target of injury. Mice engineered to have excessive c-mip in podocytes developed proteinuria without morphological alterations, inflammatory lesions, or cell infiltration. Excessive c-mip blocked podocyte signaling by preventing the interaction of the slit diaphragm transmembrane protein nephrin with the tyrosine kinase Fyn, thereby decreasing phosphorylation of nephrin in vitro and in vivo. Moreover, c-mip inhibited interactions between Fyn and the cytoskeletal regulator N-WASP (neural Wiskott-Aldrich syndrome protein) and between the adaptor protein Nck and nephrin, potentially accounting for cytoskeletal disorganization and the effacement of foot processes seen in idiopathic nephrotic syndromes. The intravenous injection of small interfering RNA targeting c-mip prevented lipopolysaccharide-induced proteinuria in mice. Together, these results identify c-mip as a key component in the molecular pathogenesis of acquired podocyte diseases.
Collapse
|
146
|
Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. ACTA ACUST UNITED AC 2010; 189:541-56. [PMID: 20421424 PMCID: PMC2867303 DOI: 10.1083/jcb.200909113] [Citation(s) in RCA: 400] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Microtubules and intermediate filaments cooperate with actin and other components of filopodia during invadopodia maturation. Invasive cancer cells are believed to breach the basement membrane (BM) using specialized protrusions called invadopodia. We found that the crossing of a native BM is a three-stage process: invadopodia indeed form and perforate the BM, elongate into mature invadopodia, and then guide the cell toward the stromal compartment. We studied the remodeling of cytoskeleton networks during invadopodia formation and elongation using ultrastructural analysis, spatial distribution of molecular markers, and RNA interference silencing of protein expression. We show that formation of invadopodia requires only the actin cytoskeleton and filopodia- and lamellipodia-associated proteins. In contrast, elongation of invadopodia is mostly dependent on filopodial actin machinery. Moreover, intact microtubules and vimentin intermediate filament networks are required for further growth. We propose that invadopodia form by assembly of dendritic/diagonal and bundled actin networks and then mature by elongation of actin bundles, followed by the entry of microtubules and vimentin filaments. These findings provide a link between the epithelial to mesenchymal transition and BM transmigration.
Collapse
Affiliation(s)
- Marie Schoumacher
- Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique, Paris, Cedex 05, France.
| | | | | | | |
Collapse
|
147
|
Barkó S, Bugyi B, Carlier MF, Gombos R, Matusek T, Mihály J, Nyitrai M. Characterization of the biochemical properties and biological function of the formin homology domains of Drosophila DAAM. J Biol Chem 2010; 285:13154-69. [PMID: 20177055 PMCID: PMC2857102 DOI: 10.1074/jbc.m109.093914] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/04/2010] [Indexed: 11/06/2022] Open
Abstract
We characterized the properties of Drosophila melanogaster DAAM-FH2 and DAAM-FH1-FH2 fragments and their interactions with actin and profilin by using various biophysical methods and in vivo experiments. The results show that although the DAAM-FH2 fragment does not have any conspicuous effect on actin assembly in vivo, in cells expressing the DAAM-FH1-FH2 fragment, a profilin-dependent increase in the formation of actin structures is observed. The trachea-specific expression of DAAM-FH1-FH2 also induces phenotypic effects, leading to the collapse of the tracheal tube and lethality in the larval stages. In vitro, both DAAM fragments catalyze actin nucleation but severely decrease both the elongation and depolymerization rate of the filaments. Profilin acts as a molecular switch in DAAM function. DAAM-FH1-FH2, remaining bound to barbed ends, drives processive assembly of profilin-actin, whereas DAAM-FH2 forms an abortive complex with barbed ends that does not support profilin-actin assembly. Both DAAM fragments also bind to the sides of the actin filaments and induce actin bundling. These observations show that the D. melanogaster DAAM formin represents an extreme class of barbed end regulators gated by profilin.
Collapse
Affiliation(s)
- Szilvia Barkó
- From the
Faculty of Medicine, Department of Biophysics, University of Pécs, Szigeti Str. 12, Pécs H-7624, Hungary
| | - Beáta Bugyi
- Cytoskeleton Dynamics and Motility, Laboratoire d'Enzymologie et Biochemie Structurales, Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France, and
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Motility, Laboratoire d'Enzymologie et Biochemie Structurales, Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France, and
| | - Rita Gombos
- the
Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, Szeged H-6726, Hungary
| | - Tamás Matusek
- the
Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, Szeged H-6726, Hungary
| | - József Mihály
- the
Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, Szeged H-6726, Hungary
| | - Miklós Nyitrai
- From the
Faculty of Medicine, Department of Biophysics, University of Pécs, Szigeti Str. 12, Pécs H-7624, Hungary
| |
Collapse
|
148
|
Enculescu M, Sabouri-Ghomi M, Danuser G, Falcke M. Modeling of protrusion phenotypes driven by the actin-membrane interaction. Biophys J 2010; 98:1571-81. [PMID: 20409477 PMCID: PMC2856167 DOI: 10.1016/j.bpj.2009.12.4311] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 01/04/2023] Open
Abstract
We propose a mathematical model for simulating the leading-edge dynamics of a migrating cell from the interplay among elastic properties, architecture of the actin cytoskeleton, and the mechanics of the membrane. Our approach is based on the description of the length and attachment dynamics of actin filaments in the lamellipodium network. It is used to determine the total force exerted on the membrane at each position along the leading edge and at each time step. The model reproduces the marked state switches in protrusion morphodynamics found experimentally between epithelial cells in control conditions and cells expressing constitutively active Rac, a signaling molecule involved in the regulation of lamellipodium network assembly. The model also suggests a mechanistic explanation of experimental distortions in protrusion morphodynamics induced by deregulation of Arp2/3 and cofilin activity.
Collapse
Affiliation(s)
- Mihaela Enculescu
- Department of Theoretical Physics, Helmholtz Centre Berlin for Materials and Energy, Berlin, Germany
| | - Mohsen Sabouri-Ghomi
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California
| | - Gaudenz Danuser
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California
| | - Martin Falcke
- Mathematical Cell Physiology, Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| |
Collapse
|
149
|
Hassona MDH, Abouelnaga ZA, Elnakish MT, Awad MM, Alhaj M, Goldschmidt-Clermont PJ, Hassanain H. Vascular hypertrophy-associated hypertension of profilin1 transgenic mouse model leads to functional remodeling of peripheral arteries. Am J Physiol Heart Circ Physiol 2010; 298:H2112-20. [PMID: 20400688 DOI: 10.1152/ajpheart.00016.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased mechanical stress/hypertension in the vessel wall triggers the hypertrophic signaling pathway, resulting in structural remodeling of vasculature. Vascular hypertrophy of resistance vessels leads to reduced compliance and elevation of blood pressure. We showed before that increased expression of profilin1 protein in the medial layer of the aorta induces stress fiber formation, triggering the hypertrophic signaling resulting in vascular hypertrophy and, ultimately, hypertension in older mice. Our hypothesis is that profilin1 induced vascular hypertrophy in resistance vessels, which led to elevation of blood pressure, both of which contributed to the modulation of vascular function. Our results showed significant increases in the expression of alpha(1)- and beta(1)-integrins (280 + or - 6.3 and 325 + or - 7.4%, respectively) and the activation of the Rho/Rho-associated kinase (ROCK) II pathway (260 and 350%, respectively, P < 0.05) in profilin1 mesenteric arteries. The activation of Rho/ROCK led to the inhibition of endothelial nitric oxide synthase expression (39 + or - 5.4%; P < 0.05) and phosphorylation (35 + or - 4.5%; P < 0.05) but also an increase in myosin light chain 20 phosphorylation (372%, P < 0.05). There were also increases in hypertrophic signaling pathways in the mesenteric arteries of profilin1 mice such as phospho-extracellular signal-regulated kinase 1/2 and phospho-c-Jun NH(2)-terminal kinase (312.15 and 232.5%, respectively, P < 0.05). Functional analyses of mesenteric arteries toward the vasoactive drugs were assessed using wire-myograph and showed significant increases in the vascular responses of profilin1 mesenteric arteries toward phenylephrine, but significant decreases in response toward ROCK inhibitor Y-27632, ACh, sodium nitrite, and cytochalasin D. The changes in vascular responses in the mesenteric arteries of profilin1 mice are due to vascular hypertrophy and the elevation of blood pressure in the profilin1 transgenic mice.
Collapse
Affiliation(s)
- Mohamed D H Hassona
- Dept. of Anesthesiology and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State Univ., 460 West 12th Ave., Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Hausott B, Kurnaz I, Gajovic S, Klimaschewski L. Signaling by neuronal tyrosine kinase receptors: relevance for development and regeneration. Anat Rec (Hoboken) 2010; 292:1976-85. [PMID: 19943349 DOI: 10.1002/ar.20964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinase activation by binding of neurotrophic factors determines neuronal morphology and identity, migration of neurons to appropriate destinations, and integration into functional neural circuits as well as synapse formation with appropriate targets at the right time and at the right place. This review summarizes the most important aspects of intraneuronal signaling mechanisms and induced gene expression changes that underlie morphological and neurochemical consequences of receptor tyrosine kinase activation in central and peripheral neurons.
Collapse
Affiliation(s)
- Barbara Hausott
- Division of Neuroanatomy, Medical University Innsbruck, Muellerstrasse 59, Innsbruck, Austria
| | | | | | | |
Collapse
|