101
|
Nadar VS, Chen J, Dheeman DS, Galván AE, Yoshinaga-Sakurai K, Kandavelu P, Sankaran B, Kuramata M, Ishikawa S, Rosen BP, Yoshinaga M. Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic. Commun Biol 2019; 2:131. [PMID: 30993215 PMCID: PMC6465285 DOI: 10.1038/s42003-019-0365-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich's salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits glutamine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the pervasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors.
Collapse
Affiliation(s)
- Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Dharmendra S. Dheeman
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
- Present Address: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Adriana Emilce Galván
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, T4001MVB Argentina
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Palani Kandavelu
- SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley Laboratory, Berkeley, CA 94720 USA
| | - Masato Kuramata
- Division of Hazardous Chemicals, National Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604 Japan
| | - Satoru Ishikawa
- Division of Hazardous Chemicals, National Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604 Japan
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| |
Collapse
|
102
|
Tarnecki AM, Wafapoor M, Phillips RN, Rhody NR. Benefits of a Bacillus probiotic to larval fish survival and transport stress resistance. Sci Rep 2019; 9:4892. [PMID: 30894554 PMCID: PMC6426941 DOI: 10.1038/s41598-019-39316-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/18/2019] [Indexed: 01/06/2023] Open
Abstract
The need for sustainable bacterial management approaches in aquaculture is crucial for advancement of the industry. Probiotics are a promising strategy as evidenced by benefits demonstrated in intensive larviculture of various marine fish species. In this study we investigate the effects of a mixed Bacillus species (B. licheniformis and B. amyloliquefaciens) probiotic on rearing of larval common snook (Centropomus undecimalis). Experimental treatments included (1) probiotics supplemented to the water and live feed, (2) probiotics supplemented to the water only, and (3) no probiotic controls. Data from two separate trials indicated up to 2.5 times higher survival with probiotic addition, as well as 20% higher survival 7 days following a transport event. These benefits were not explained by faster growth, measured water quality parameters, or innate immune enzyme activities. Microbiota analysis indicated the importance of system stabilization prior to larval stocking to improve rearing success and probiotic performance. ied Potential probiotic benefits include accelerated gastrointestinal tract development, enhanced immunity, inhibition of opportunistic bacteria, and improvements to water quality parameters. Results suggest this probiotic should be tested in other marine fish species in order to reduce larval rearing bottlenecks.
Collapse
Affiliation(s)
- Andrea M Tarnecki
- Mote Marine Laboratory, Marine Immunology Program, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
| | - Marzie Wafapoor
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, Massachusetts, 01908, USA
| | - Remy N Phillips
- Mote Marine Laboratory, Marine and Freshwater Aquaculture Program, 874 WR Mote Way, Sarasota, FL, 34240, USA
| | - Nicole R Rhody
- Mote Marine Laboratory, Marine and Freshwater Aquaculture Program, 874 WR Mote Way, Sarasota, FL, 34240, USA
| |
Collapse
|
103
|
Bougioukou DJ, Ting CP, Peck SC, Mukherjee S, van der Donk WA. Use of the dehydrophos biosynthetic enzymes to prepare antimicrobial analogs of alaphosphin. Org Biomol Chem 2019; 17:822-829. [PMID: 30608108 DOI: 10.1039/c8ob02860e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-terminal domain of the dehydrophos biosynthetic enzyme DhpH (DhpH-C) catalyzes the condensation of Leu-tRNALeu with (R)-1-aminoethylphosphonate, the aminophosphonate analog of alanine called Ala(P). The product of this reaction, Leu-Ala(P), is a phosphonodipeptide, a class of compounds that have previously been investigated for use as clinical antibiotics. In this study, we show that DhpH-C is highly substrate tolerant and can condense various aminophosphonates (Gly(P), Ser(P), Val(P), 1-amino-propylphosphonate, and phenylglycine(P)) to Leu. Moreover, the enzyme is also tolerant with respect to the amino acid attached to tRNALeu. Using a mutant of leucyl tRNA synthetase that is deficient in its proofreading ability allowed the preparation of a series of aminoacyl-tRNALeu derivatives (Ile, Ala, Val, Met, norvaline, and norleucine). DhpH-C accepted these aminoacyl-tRNA derivatives and condensed the amino acid with l-Ala(P) to form the corresponding phosphonodipeptides. A subset of these peptides displayed antimicrobial activities demonstrating that the enzyme is a versatile biocatalyst for the preparation of antimicrobial peptides. We also investigated another enzyme from the dehydrophos biosynthetic pathway, the 2-oxoglutarate dependent enzyme DhpA. This enzyme oxidizes 2-hydroxyethylphosphonate to 1,2-dihydroxyethylphosphonate en route to l-Ala(P), but longer incubation results in overoxidation to 1-oxo-2-hydroxyethylphosphonate. This α-ketophosphonate was converted by the pyridoxal phosphate dependent enzyme DhpD into l-Ser(P). Thus, the dehydrophos biosynthetic enzymes can generate not only l-Ala(P) but also l-Ser(P).
Collapse
Affiliation(s)
- Despina J Bougioukou
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
104
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
105
|
Nguyen K, DeSieno MA, Bae B, Johannes TW, Cobb RE, Zhao H, Nair SK. Characterization of the flavin monooxygenase involved in biosynthesis of the antimalarial FR-900098. Org Biomol Chem 2019; 17:1506-1518. [PMID: 30681110 DOI: 10.1039/c8ob02840k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The latter steps in this biosynthetic pathway for the antimalarial phosphonic acid FR-900098 include the installation of a hydroxamate onto 3-aminopropylphosphonate, which is catalyzed by the consecutive actions of an acetyltransferase and an amine hydroxylase. Here, we present the 1.6 Å resolution co-crystal structure and accompanying biochemical characterization of FrbG, which catalyzes the hydroxylation of aminopropylphosphonate. We show that FrbG is a flavin-dependent N-hydroxylating monooxygenase (NMO), which shares a similar overall structure with flavin-containing monooxygenases (FMOs). Notably, we also show that the cytidine-5'-monophosphate moiety of the substrate is a critical determinant of specificity, distinguishing FrbG from other FMOs in that the nucleotide cofactor-binding domain also serves in conferring substrate recognition. In the FrbG-FAD+-NADPH co-crystal structure, the C4 of the NADPH nicotinamide is situated near the N5 of the FAD isoalloxazine, and is oriented with a distance and stereochemistry to facilitate hydride transfer.
Collapse
Affiliation(s)
- Kim Nguyen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
McAlpine JB, Chen SN, Kutateladze A, MacMillan JB, Appendino G, Barison A, Beniddir MA, Biavatti MW, Bluml S, Boufridi A, Butler MS, Capon RJ, Choi YH, Coppage D, Crews P, Crimmins MT, Csete M, Dewapriya P, Egan JM, Garson MJ, Genta-Jouve G, Gerwick WH, Gross H, Harper MK, Hermanto P, Hook JM, Hunter L, Jeannerat D, Ji NY, Johnson TA, Kingston DGI, Koshino H, Lee HW, Lewin G, Li J, Linington RG, Liu M, McPhail KL, Molinski TF, Moore BS, Nam JW, Neupane RP, Niemitz M, Nuzillard JM, Oberlies NH, Ocampos FMM, Pan G, Quinn RJ, Reddy DS, Renault JH, Rivera-Chávez J, Robien W, Saunders CM, Schmidt TJ, Seger C, Shen B, Steinbeck C, Stuppner H, Sturm S, Taglialatela-Scafati O, Tantillo DJ, Verpoorte R, Wang BG, Williams CM, Williams PG, Wist J, Yue JM, Zhang C, Xu Z, Simmler C, Lankin DC, Bisson J, Pauli GF. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 2019; 36:35-107. [PMID: 30003207 PMCID: PMC6350634 DOI: 10.1039/c7np00064b] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.
Collapse
Affiliation(s)
- James B McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Andrei Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - John B MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Universita` del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | | | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Stefan Bluml
- University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Young H Choi
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - David Coppage
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Michael T Crimmins
- Kenan and Caudill Laboratories of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marie Csete
- University of Southern California, Huntington Medical Research Institutes, 99 N. El Molino Ave., Pasadena, CA 91101, USA
| | - Pradeep Dewapriya
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joseph M Egan
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mary J Garson
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Grégory Genta-Jouve
- C-TAC, UMR 8638 CNRS, Faculté de Pharmacie de Paris, Paris-Descartes University, Sorbonne, Paris Cité, 4, Aveue de l'Observatoire, 75006 Paris, France
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Precilia Hermanto
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luke Hunter
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Damien Jeannerat
- University of Geneva, Department of Organic Chemistry, 30 quai E. Ansermet, CH 1211 Geneva 4, Switzerland
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
| | - Tyler A Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Guy Lewin
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Tadeusz F Molinski
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Bradley S Moore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Joo-Won Nam
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ram P Neupane
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Matthias Niemitz
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jean-Marc Nuzillard
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Nicholas H Oberlies
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | | | - Guohui Pan
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - D Sai Reddy
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Jean-Hugues Renault
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - José Rivera-Chávez
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Wolfgang Robien
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Carla M Saunders
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Thomas J Schmidt
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Seger
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ben Shen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Steinbeck
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Hermann Stuppner
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Sonja Sturm
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Orazio Taglialatela-Scafati
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Dean J Tantillo
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Robert Verpoorte
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bin-Gui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China and Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Craig M Williams
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip G Williams
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Julien Wist
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jian-Min Yue
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Chen Zhang
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Zhengren Xu
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - David C Lankin
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Jonathan Bisson
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| |
Collapse
|
107
|
Krause J, Ratnakomala S, Lisdiyanti P, Ort-Winklbauer R, Wohlleben W, Mast Y. Complete Genome Sequence of the Putative Phosphonate Producer Streptomyces sp. Strain I6, Isolated from Indonesian Mangrove Sediment. Microbiol Resour Announc 2019; 8:e01580-18. [PMID: 30701253 PMCID: PMC6346202 DOI: 10.1128/mra.01580-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 11/28/2022] Open
Abstract
Streptomyces sp. strain I6 is a novel strain isolated from an Indonesian mangrove sediment sample. Bioinformatic analysis of the genome sequence of Streptomyces sp. I6 revealed 23 biosynthetic gene clusters. One of them encodes the synthesis of a putative phosphonate secondary metabolite, a class of underexplored natural compounds with great pharmaceutical potential.
Collapse
Affiliation(s)
- Janina Krause
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Shanti Ratnakomala
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Puspita Lisdiyanti
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Regina Ort-Winklbauer
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Wolfgang Wohlleben
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
108
|
Zhang L, Shi D, Shi C, Kaneko T, Chen M. Supramolecular micellar drug delivery system based on multi-arm block copolymer for highly effective encapsulation and sustained-release chemotherapy. J Mater Chem B 2019; 7:5677-5687. [DOI: 10.1039/c9tb01221d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel multi-arm polyphosphoester-based nanomaterial provides high drug loading efficiency and sustained-release drug delivery for effective chemotherapy.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- China
| | - Chunling Shi
- School of Chemistry and Chemical Engineering
- Xuzhou Institute of Technology
- Xuzhou
- China
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa
- Japan
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
109
|
Asselin JAE, Bonasera JM, Beer SV. Center Rot of Onion (Allium cepa) Caused by Pantoea ananatis Requires pepM, a Predicted Phosphonate-Related Gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1291-1300. [PMID: 29953334 DOI: 10.1094/mpmi-04-18-0077-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pantoea ananatis, a cause of center rot of onion, is problematic in the United States and elsewhere. The bacterium lacks disease determinants common to most other bacterial pathogens of plants. A genomic island containing the gene pepM was detected within many onion-pathogenic strains of P. ananatis of diverse origins. The pepM gene of P. ananatis putatively encodes a protein that converts phosphoenolpyruvate to phosphonopyruvate, the first step in the biosynthesis of phosphonates and related molecules. This gene appears to be essential for center rot disease. Deletion of pepM rendered the mutant strain unable to cause lesions in leaves of growing onions and water-soaking of inoculated yellow onion bulbs. Furthermore, growth of the deletion mutant in onion leaves was significantly diminished compared with wild-type bacteria, and the mutant failed to cause cell death in tobacco. Complementation of the mutated strain with pepM restored the phenotype to wild-type capability. The pepM gene is the first pathogenicity factor identified that affects bacterial fitness as well as symptom development in both leaves and bulbs in a pathogen causing center rot of onion.
Collapse
Affiliation(s)
- Jo Ann E Asselin
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, U.S.A
| | - Jean M Bonasera
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, U.S.A
| | - Steven V Beer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
110
|
Adler P, Pons A, Li J, Heider J, Brutiu BR, Maulide N. Chemoselective Activation of Diethyl Phosphonates: Modular Synthesis of Biologically Relevant Phosphonylated Scaffolds. Angew Chem Int Ed Engl 2018; 57:13330-13334. [PMID: 30067301 PMCID: PMC6175129 DOI: 10.1002/anie.201806343] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/14/2018] [Indexed: 01/13/2023]
Abstract
Phosphonates have garnered considerable attention for years owing to both their singular biological properties and their synthetic potential. State-of-the-art methods for the preparation of mixed phosphonates, phosphonamidates, phosphonothioates, and phosphinates rely on harsh and poorly selective reaction conditions. We report herein a mild method for the modular preparation of phosphonylated derivatives, several of which exhibit interesting biological activities, that is based on chemoselective activation with triflic anhydride. This procedure enables flexible and even iterative substitution with a broad range of O, S, N, and C nucleophiles.
Collapse
Affiliation(s)
- Pauline Adler
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Amandine Pons
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Jing Li
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Jörg Heider
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Bogdan R Brutiu
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
111
|
Adler P, Pons A, Li J, Heider J, Brutiu BR, Maulide N. Chemoselektive Aktivierung von Diethylphosphonaten: modulare Synthese von biologisch relevanten phosphonylierten Grundgerüsten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pauline Adler
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Amandine Pons
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Jing Li
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Jörg Heider
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Bogdan R. Brutiu
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| |
Collapse
|
112
|
Manav MC, Sofos N, Hove-Jensen B, Brodersen DE. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival. Bioessays 2018; 40:e1800091. [DOI: 10.1002/bies.201800091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Indexed: 12/11/2022]
Affiliation(s)
- M. Cemre Manav
- Department of Molecular Biology and Genetics; Aarhus University; DK-8000 Aarhus Denmark
| | - Nicholas Sofos
- Department of Molecular Biology and Genetics; Aarhus University; DK-8000 Aarhus Denmark
| | - Bjarne Hove-Jensen
- Department of Molecular Biology and Genetics; Aarhus University; DK-8000 Aarhus Denmark
| | - Ditlev E. Brodersen
- Department of Molecular Biology and Genetics; Aarhus University; DK-8000 Aarhus Denmark
| |
Collapse
|
113
|
Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 2018; 35:792-837. [PMID: 29932179 PMCID: PMC6093783 DOI: 10.1039/c7np00067g] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.
Collapse
Affiliation(s)
- Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xueting Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
114
|
Morgan MT, Yang B, Harankhedkar S, Nabatilan A, Bourassa D, McCallum AM, Sun F, Wu R, Forest CR, Fahrni CJ. Stabilization of Aliphatic Phosphines by Auxiliary Phosphine Sulfides Offers Zeptomolar Affinity and Unprecedented Selectivity for Probing Biological Cu I. Angew Chem Int Ed Engl 2018; 57:9711-9715. [PMID: 29885022 PMCID: PMC6105516 DOI: 10.1002/anie.201804072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/01/2018] [Indexed: 01/06/2023]
Abstract
Full elucidation of the functions and homeostatic pathways of biological copper requires tools that can selectively recognize and manipulate this trace nutrient within living cells and tissues, where it exists primarily as CuI . Buffered at attomolar concentrations, intracellular CuI is, however, not readily accessible to commonly employed amine and thioether-based chelators. Herein, we reveal a chelator design strategy in which phosphine sulfides aid in CuI coordination while simultaneously stabilizing aliphatic phosphine donors, producing a charge-neutral ligand with low-zeptomolar dissociation constant and 1017 -fold selectivity for CuI over ZnII , FeII , and MnII . As illustrated by reversing ATP7A trafficking in cells and blocking long-term potentiation of neurons in mouse hippocampal brain tissue, the ligand is capable of intercepting copper-dependent processes. The phosphine sulfide-stabilized phosphine (PSP) design approach, which confers resistance towards protonation, dioxygen, and disulfides, could be readily expanded towards ligands and probes with tailored properties for exploring CuI in a broad range of biological systems.
Collapse
Affiliation(s)
- M. Thomas Morgan
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Bo Yang
- Prof. Dr. C.R. Forest, Dr. B. Yang G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology 315 Ferst Drive, Atlanta, GA 30332, USA,
| | - Shefali Harankhedkar
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Arielle Nabatilan
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Daisy Bourassa
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Adam M. McCallum
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Fangxu Sun
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Ronghu Wu
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Craig R. Forest
- Prof. Dr. C.R. Forest, Dr. B. Yang G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology 315 Ferst Drive, Atlanta, GA 30332, USA,
| | - Christoph J. Fahrni
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| |
Collapse
|
115
|
Morgan MT, Yang B, Harankhedkar S, Nabatilan A, Bourassa D, McCallum AM, Sun F, Wu R, Forest CR, Fahrni CJ. Stabilization of Aliphatic Phosphines by Auxiliary Phosphine Sulfides Offers Zeptomolar Affinity and Unprecedented Selectivity for Probing Biological Cu
I. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- M. Thomas Morgan
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Bo Yang
- G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology 315 Ferst Drive Atlanta GA 30332 USA
| | - Shefali Harankhedkar
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Arielle Nabatilan
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Daisy Bourassa
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Adam M. McCallum
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Fangxu Sun
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Craig R. Forest
- G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology 315 Ferst Drive Atlanta GA 30332 USA
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| |
Collapse
|
116
|
Marques Netto CGC, Palmeira DJ, Brondani PB, Andrade LH. Enzymatic reactions involving the heteroatoms from organic substrates. AN ACAD BRAS CIENC 2018; 90:943-992. [PMID: 29742205 DOI: 10.1590/0001-3765201820170741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/01/2018] [Indexed: 11/22/2022] Open
Abstract
Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates.
Collapse
Affiliation(s)
| | - Dayvson J Palmeira
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia B Brondani
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, SC, Brazil
| | - Leandro H Andrade
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
117
|
Goettge MN, Cioni JP, Ju KS, Pallitsch K, Metcalf WW. PcxL and HpxL are flavin-dependent, oxime-forming N-oxidases in phosphonocystoximic acid biosynthesis in Streptomyces. J Biol Chem 2018; 293:6859-6868. [PMID: 29540479 PMCID: PMC5936822 DOI: 10.1074/jbc.ra118.001721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Several oxime-containing small molecules have useful properties, including antimicrobial, insecticidal, anticancer, and immunosuppressive activities. Phosphonocystoximate and its hydroxylated congener, hydroxyphosphonocystoximate, are recently discovered oxime-containing natural products produced by Streptomyces sp. NRRL S-481 and Streptomyces regensis NRRL WC-3744, respectively. The biosynthetic pathways for these two compounds are proposed to diverge at an early step in which 2-aminoethylphosphonate (2AEPn) is converted to (S)-1-hydroxy-2-aminoethylphosphonate ((S)-1H2AEPn) in S. regensis but not in Streptomyces sp. NRRL S-481). Subsequent installation of the oxime moiety into either 2AEPn or (S)-1H2AEPn is predicted to be catalyzed by PcxL or HpxL from Streptomyces sp. NRRL S-481 and S. regensis NRRL WC-3744, respectively, whose sequence and predicted structural characteristics suggest they are unusual N-oxidases. Here, we show that recombinant PcxL and HpxL catalyze the FAD- and NADPH-dependent oxidation of 2AEPn and 1H2AEPn, producing a mixture of the respective aldoximes and nitrosylated phosphonic acid products. Measurements of catalytic efficiency indicated that PcxL has almost an equal preference for 2AEPn and (R)-1H2AEPn. 2AEPn was turned over at a 10-fold higher rate than (R)-1H2AEPn under saturating conditions, resulting in a similar but slightly lower kcat/Km We observed that (S)-1H2AEPn is a relatively poor substrate for PcxL but is clearly the preferred substrate for HpxL, consistent with the proposed biosynthetic pathway in S. regensis. HpxL also used both 2AEPn and (R)-1H2AEPn, with the latter inhibiting HpxL at high concentrations. Bioinformatic analysis indicated that PcxL and HpxL are members of a new class of oxime-forming N-oxidases that are broadly dispersed among bacteria.
Collapse
Affiliation(s)
- Michelle N Goettge
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Joel P Cioni
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Kou-San Ju
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Katharina Pallitsch
- the Institute of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - William W Metcalf
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
118
|
Zhou F, Hu X, Zhang W, Li CJ. Direct conjugate additions using aryl and alkyl organic halides in air and water. Org Chem Front 2018. [DOI: 10.1039/c8qo01141a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct aryl-conjugate addition to electron-deficient alkenes without prior stoichiometric formation of organometallic reagents in water catalyzed by copper represents an important but unresolved challenge.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis
- McGill University
- Montreal
- Canada
| | - Xiaoyun Hu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis
- McGill University
- Montreal
- Canada
- College of Chemistry and Materials
| | - Wanying Zhang
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis
- McGill University
- Montreal
- Canada
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis
- McGill University
- Montreal
- Canada
| |
Collapse
|
119
|
Vagapova LI, Sadykova YM, Makhrus EM, Burilov AR, Eltaev AS, Kudiyar TA, Pudovik MA. Synthesis and Some Reactions of New Acetals Containing Aminoethylenephosphoryl Fragment. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
120
|
Bartlett C, Bansal S, Burnett A, Suits MD, Schaefer J, Cegelski L, Horsman GP, Weadge JT. Whole-Cell Detection of C-P Bonds in Bacteria. Biochemistry 2017; 56:5870-5873. [PMID: 29068202 DOI: 10.1021/acs.biochem.7b00814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Naturally produced molecules possessing a C-P bond, such as phosphonates and phosphinates, remain vastly underexplored. Although success stories like fosfomycin have reinvigorated small molecule phosphonate discovery efforts, bioinformatic analyses predict an enormous unexplored biological reservoir of C-P bond-containing molecules, including those attached to complex macromolecules. However, high polarity, a lack of chromophores, and complex macromolecular association impede phosphonate discovery and characterization. Here we detect widespread transcriptional activation of phosphonate biosynthetic machinery across diverse bacterial phyla and describe the use of solid-state nuclear magnetic resonance to detect C-P bonds in whole cells of representative Gram-negative and Gram-positive bacterial species. These results suggest that phosphonate tailoring is more prevalent than previously recognized and set the stage for elucidating the fascinating chemistry and biology of these modifications.
Collapse
Affiliation(s)
| | - Sonal Bansal
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | | | | | - Jacob Schaefer
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | |
Collapse
|
121
|
Abstract
Covering: 2006 to 2017Actinomycetes have been, for decades, one of the most important sources for the discovery of new antibiotics with an important number of drugs and analogs successfully introduced in the market and still used today in clinical practice. The intensive antibacterial discovery effort that generated the large number of highly potent broad-spectrum antibiotics, has seen a dramatic decline in the large pharma industry in the last two decades resulting in a lack of new classes of antibiotics with novel mechanisms of action reaching the clinic. Whereas the decline in the number of new chemical scaffolds and the rediscovery problem of old known molecules has become a hurdle for industrial natural products discovery programs, new actinomycetes compounds and leads have continued to be discovered and developed to the preclinical stages. Actinomycetes are still one of the most important sources of chemical diversity and a reservoir to mine for novel structures that is requiring the integration of diverse disciplines. These can range from novel strategies to isolate species previously not cultivated, innovative whole cell screening approaches and on-site analytical detection and dereplication tools for novel compounds, to in silico biosynthetic predictions from whole gene sequences and novel engineered heterologous expression, that have inspired the isolation of new NPs and shown their potential application in the discovery of novel antibiotics. This review will address the discovery of antibiotics from actinomycetes from two different perspectives including: (1) an update of the most important antibiotics that have only reached the clinical development in the recent years despite their early discovery, and (2) an overview of the most recent classes of antibiotics described from 2006 to 2017 in the framework of the different strategies employed to untap novel compounds previously overlooked with traditional approaches.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
122
|
Sevrain CM, Berchel M, Couthon H, Jaffrès PA. Phosphonic acid: preparation and applications. Beilstein J Org Chem 2017; 13:2186-2213. [PMID: 29114326 PMCID: PMC5669239 DOI: 10.3762/bjoc.13.219] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
The phosphonic acid functional group, which is characterized by a phosphorus atom bonded to three oxygen atoms (two hydroxy groups and one P=O double bond) and one carbon atom, is employed for many applications due to its structural analogy with the phosphate moiety or to its coordination or supramolecular properties. Phosphonic acids were used for their bioactive properties (drug, pro-drug), for bone targeting, for the design of supramolecular or hybrid materials, for the functionalization of surfaces, for analytical purposes, for medical imaging or as phosphoantigen. These applications are covering a large panel of research fields including chemistry, biology and physics thus making the synthesis of phosphonic acids a determinant question for numerous research projects. This review gives, first, an overview of the different fields of application of phosphonic acids that are illustrated with studies mainly selected over the last 20 years. Further, this review reports the different methods that can be used for the synthesis of phosphonic acids from dialkyl or diaryl phosphonate, from dichlorophosphine or dichlorophosphine oxide, from phosphonodiamide, or by oxidation of phosphinic acid. Direct methods that make use of phosphorous acid (H3PO3) and that produce a phosphonic acid functional group simultaneously to the formation of the P-C bond, are also surveyed. Among all these methods, the dealkylation of dialkyl phosphonates under either acidic conditions (HCl) or using the McKenna procedure (a two-step reaction that makes use of bromotrimethylsilane followed by methanolysis) constitute the best methods to prepare phosphonic acids.
Collapse
Affiliation(s)
- Charlotte M Sevrain
- CEMCA UMR CNRS 6521, Université de Brest, IBSAM. 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Mathieu Berchel
- CEMCA UMR CNRS 6521, Université de Brest, IBSAM. 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Hélène Couthon
- CEMCA UMR CNRS 6521, Université de Brest, IBSAM. 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Paul-Alain Jaffrès
- CEMCA UMR CNRS 6521, Université de Brest, IBSAM. 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| |
Collapse
|
123
|
Janicki I, Kiełbasiński P, Turrini NG, Faber K, Hall M. Asymmetric Bioreduction of β-Activated Vinylphosphonate Derivatives Using Ene-Reductases. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ignacy Janicki
- Department of Heteroorganic Chemistry; Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 90-363 Łódź Poland
| | - Piotr Kiełbasiński
- Department of Heteroorganic Chemistry; Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 90-363 Łódź Poland
| | - Nikolaus G. Turrini
- Department of Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Kurt Faber
- Department of Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Mélanie Hall
- Department of Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
124
|
Bauer KN, Tee HT, Velencoso MM, Wurm FR. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
125
|
Pallitsch K, Happl B, Stieger C. Determination of the Absolute Configuration of (-)-Hydroxynitrilaphos and Related Biosynthetic Questions. Chemistry 2017; 23:15655-15665. [PMID: 28703941 DOI: 10.1002/chem.201702904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 12/23/2022]
Abstract
The ongoing search for bioactive natural products has led to the development of new genome-based screening approaches to identify possible phosphonate producing microorganisms. From the identified phosphonate producers, several until now unknown phosphonic acid natural products were isolated, including (hydroxy)nitrilaphos (4 and 5) and (hydroxy)phosphonocystoximate (7 and 6). We present the synthesis of phosphonocystoximate via an aldoxime intermediate. Chlorination and coupling with methyl N-acetylcysteinate furnished 6 after global deprotection. The obtained experimental data confirm the previously assigned structure of the natural product. We were also able to determine the absolute configuration of (-)-hydroxynitrilaphos. Chiral resolution of diethyl cyanohydroxymethylphosphonate (24) with Noe's lactol furnished both enantiomers of 4. Conversion of (+)-24 to (R)-2-amino-1-hydroxyethylphosphonic acid by reduction of the cyano-group showed (-)-hydroxynitrilaphos ultimately to be S-configured. Further, we present a 13 C-isotope labeling strategy for 4 and 5 that will possibly solve the question of whether hydroxynitrilaphos is a biosynthetic intermediate or a downstream product of hydroxyphosphonocystoximate biosynthesis.
Collapse
Affiliation(s)
- Katharina Pallitsch
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
| | - Barbara Happl
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
| | - Christian Stieger
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
| |
Collapse
|
126
|
Frischkorn KR, Rouco M, Van Mooy BAS, Dyhrman ST. Epibionts dominate metabolic functional potential of Trichodesmium colonies from the oligotrophic ocean. THE ISME JOURNAL 2017; 11:2090-2101. [PMID: 28534879 PMCID: PMC5563961 DOI: 10.1038/ismej.2017.74] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 01/21/2023]
Abstract
Trichodesmium is a genus of marine diazotrophic colonial cyanobacteria that exerts a profound influence on global biogeochemistry, by injecting 'new' nitrogen into the low nutrient systems where it occurs. Colonies of Trichodesmium ubiquitously contain a diverse assemblage of epibiotic microorganisms, constituting a microbiome on the Trichodesmium host. Metagenome sequences from Trichodesmium colonies were analyzed along a resource gradient in the western North Atlantic to examine microbiome community structure, functional diversity and metabolic contributions to the holobiont. Here we demonstrate the presence of a core Trichodesmium microbiome that is modulated to suit different ocean regions, and contributes over 10 times the metabolic potential of Trichodesmium to the holobiont. Given the ubiquitous nature of epibionts on colonies, the substantial functional diversity within the microbiome is likely an integral facet of Trichodesmium physiological ecology across the oligotrophic oceans where this biogeochemically significant diazotroph thrives.
Collapse
Affiliation(s)
- Kyle R Frischkorn
- Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Mónica Rouco
- Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| |
Collapse
|
127
|
Pallitsch K, Rogers MP, Andrews FH, Hammerschmidt F, McLeish MJ. Phosphonodifluoropyruvate is a mechanism-based inhibitor of phosphonopyruvate decarboxylase from Bacteroides fragilis. Bioorg Med Chem 2017; 25:4368-4374. [PMID: 28693916 DOI: 10.1016/j.bmc.2017.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Bacteroides fragilis, a human pathogen, helps in the formation of intra-abdominal abscesses and is involved in 90% of anaerobic peritoneal infections. Phosphonopyruvate decarboxylase (PnPDC), a thiamin diphosphate (ThDP)-dependent enzyme, plays a key role in the formation of 2-aminoethylphosphonate, a component of the cell wall of B. fragilis. As such PnPDC is a possible target for therapeutic intervention in this, and other phosphonate producing organisms. However, the enzyme is of more general interest as it appears to be an evolutionary forerunner to the decarboxylase family of ThDP-dependent enzymes. To date, PnPDC has proved difficult to crystallize and no X-ray structures are available. In the past we have shown that ThDP-dependent enzymes will often crystallize if the cofactor has been irreversibly inactivated. To explore this possibility, and the utility of inhibitors of phosphonate biosynthesis as potential antibiotics, we synthesized phosphonodifluoropyruvate (PnDFP) as a prospective mechanism-based inhibitor of PnPDC. Here we provide evidence that PnDFP indeed inactivates the enzyme, that the inactivation is irreversible, and is accompanied by release of fluoride ion, i.e., PnDFP bears all the hallmarks of a mechanism-based inhibitor. Unfortunately, the enzyme remains refractive to crystallization.
Collapse
Affiliation(s)
| | - Megan P Rogers
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, USA
| | - Forest H Andrews
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, USA
| | | | - Michael J McLeish
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, USA.
| |
Collapse
|
128
|
Jimenez-Infante F, Ngugi DK, Vinu M, Blom J, Alam I, Bajic VB, Stingl U. Genomic characterization of two novel SAR11 isolates from the Red Sea, including the first strain of the SAR11 Ib clade. FEMS Microbiol Ecol 2017. [DOI: 10.1093/femsec/fix083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
129
|
Wohlgemuth R, Liese A, Streit W. Biocatalytic Phosphorylations of Metabolites: Past, Present, and Future. Trends Biotechnol 2017; 35:452-465. [DOI: 10.1016/j.tibtech.2017.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/08/2023]
|
130
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
131
|
Deng Q, Zhou L, Luo M, Deng Z, Zhao C. Heterologous expression of Avermectins biosynthetic gene cluster by construction of a Bacterial Artificial Chromosome library of the producers. Synth Syst Biotechnol 2017; 2:59-64. [PMID: 29062962 PMCID: PMC5625734 DOI: 10.1016/j.synbio.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/13/2022] Open
Abstract
Avermectins, a group of polyketide natural products, are widely used as anthelmintics in agriculture. Metabolic engineering and combinatorial biosynthesis were extensively employed to improve Avermectins production and create novel Avermectin derivatives, including Ivermectin and Doramectin. It is labor intensive and time cost to genetically manipulate Avermectins producer Streptomyces avermitilis in vivo. Cloning and heterologous expression of Avermectins biosynthetic gene cluster will make it possible to tailor the cluster in vitro. We constructed a Bacterial Artificial Chromosome (BAC) library of S. avermitilis ATCC 31267 with inserted DNA fragments ranged from 100 to 130 Kb. Five recombinant BAC clones which carried the Avermectins biosynthetic gene cluster ave (81 Kb in size) were screened out from the library. Then, ave was hetero-expressed in S. lividans. Three Avermectin components, A2a, B1a and A1a were detected from the cell extracts of recombinant strains. It will facilitate the development of Avermectin derivatives by polyketide synthase domain swapping and provide functional element for Avermectins synthetic biology study.
Collapse
Affiliation(s)
- Qian Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Li Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430073, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Changming Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
132
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
133
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
134
|
Elfenbein JR, Knodler LA, Schaeffer AR, Faber F, Bäumler AJ, Andrews-Polymenis HL. A Salmonella Regulator Modulates Intestinal Colonization and Use of Phosphonoacetic Acid. Front Cell Infect Microbiol 2017; 7:69. [PMID: 28361036 PMCID: PMC5351497 DOI: 10.3389/fcimb.2017.00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/23/2017] [Indexed: 11/21/2022] Open
Abstract
Many microorganisms produce phosphonates, molecules characterized by stable carbon-phosphorus bonds that store phosphorus or act as antimicrobials. The role of phosphonates in the marine biosphere is well characterized but the role of these molecules in the intestine is poorly understood. Salmonella enterica uses its virulence factors to influence the host immune response to compete with the host and normal microflora for nutrients. Salmonella cannot produce phosphonates but encodes the enzymes to use them suggesting that it is exposed to phosphonates during its life cycle. The role of phosphonates during enteric salmonellosis is unexplored. We have previously shown that STM3602, encoding a putative regulator of phosphonate metabolism, is needed for colonization in calves. Here, we report that the necessity of STM3602 in colonization of the murine intestine results from multiple factors. STM3602 is needed for full activation of the type-3 secretion system-1 and for optimal invasion of epithelial cells. The ΔSTM3602 mutant grows poorly in phosphonoacetic acid (PA) as the sole phosphorus source, but can use 2-aminoethylphosphonate. PhnA, an enzyme required for PA breakdown, is not controlled by STM3602 suggesting an additional mechanism for utilization of PA in S. Typhimurium. Finally, the requirement of STM3602 for intestinal colonization differs depending on the composition of the microflora. Our data suggest that STM3602 has multiple regulatory targets that are necessary for survival within the microbial community in the intestine. Determination of the members of the STM3602 regulon may illuminate new pathways needed for colonization of the host.
Collapse
Affiliation(s)
- Johanna R. Elfenbein
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science CenterBryan, TX, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleigh, NC, USA
| | - Leigh A. Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State UniversityPullman, WA, USA
| | - Allison R. Schaeffer
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science CenterBryan, TX, USA
| | - Franziska Faber
- Department of Medial Microbiology and Immunology, School of Medicine, University of California DavisDavis, CA, USA
| | - Andreas J. Bäumler
- Department of Medial Microbiology and Immunology, School of Medicine, University of California DavisDavis, CA, USA
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science CenterBryan, TX, USA
| |
Collapse
|
135
|
Olivares P, Ulrich EC, Chekan JR, van der Donk WA, Nair SK. Characterization of Two Late-Stage Enzymes Involved in Fosfomycin Biosynthesis in Pseudomonads. ACS Chem Biol 2017; 12:456-463. [PMID: 27977135 DOI: 10.1021/acschembio.6b00939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The broad-spectrum phosphonate antibiotic fosfomycin is currently in use for clinical treatment of infections caused by both Gram-positive and Gram-negative uropathogens. The antibiotic is biosynthesized by various streptomycetes, as well as by pseudomonads. Notably, the biosynthetic strategies used by the two genera share only two steps: the first step in which primary metabolite phosphoenolpyruvate (PEP) is converted to phosphonopyruvate (PnPy) and the terminal step in which 2-hydroxypropylphosphonate (2-HPP) is converted to fosfomycin. Otherwise, distinct enzymatic paths are employed. Here, we biochemically confirm the last two steps in the fosfomycin biosynthetic pathway of Pseudomonas syringae PB-5123, showing that Psf3 performs the reduction of 2-oxopropylphosphonate (2-OPP) to (S)-2-HPP, followed by the Psf4-catalyzed epoxidation of (S)-2-HPP to fosfomycin. Psf4 can also accept (R)-2-HPP as a substrate but instead performs an oxidation to make 2-OPP. We show that the combined activities of Psf3 and Psf4 can be used to convert racemic 2-HPP to fosfomycin in an enantioconvergent process. X-ray structures of each enzyme with bound substrates provide insights into the stereospecificity of each conversion. These studies shed light on the reaction mechanisms of the two terminal enzymes in a distinct pathway employed by pseudomonads for the production of a potent antimicrobial agent.
Collapse
Affiliation(s)
- Philip Olivares
- Department
of Biochemistry, ‡Department of Chemistry, §Carl R. Woese Institute for Genomic
Biology, ∥Howard Hughes Medical Institute, and ⊥Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emily C. Ulrich
- Department
of Biochemistry, ‡Department of Chemistry, §Carl R. Woese Institute for Genomic
Biology, ∥Howard Hughes Medical Institute, and ⊥Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan R. Chekan
- Department
of Biochemistry, ‡Department of Chemistry, §Carl R. Woese Institute for Genomic
Biology, ∥Howard Hughes Medical Institute, and ⊥Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, ‡Department of Chemistry, §Carl R. Woese Institute for Genomic
Biology, ∥Howard Hughes Medical Institute, and ⊥Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Satish K. Nair
- Department
of Biochemistry, ‡Department of Chemistry, §Carl R. Woese Institute for Genomic
Biology, ∥Howard Hughes Medical Institute, and ⊥Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
136
|
Schmid J, Day R, Zhang N, Dupont PY, Cox MP, Schardl CL, Minards N, Truglio M, Moore N, Harris DR, Zhou Y. Host Tissue Environment Directs Activities of an Epichloë Endophyte, While It Induces Systemic Hormone and Defense Responses in Its Native Perennial Ryegrass Host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:138-149. [PMID: 28027026 DOI: 10.1094/mpmi-10-16-0215-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Increased resilience of pasture grasses mediated by fungal Epichloë endophytes is crucial to pastoral industries. The underlying mechanisms are only partially understood and likely involve very different activities of the endophyte in different plant tissues and responses of the plant to these. We analyzed the transcriptomes of Epichloë festucae and its host, Lolium perenne, in host tissues of different function and developmental stages. The endophyte contributed approximately 10× more to the transcriptomes than to the biomass of infected tissues. Proliferating mycelium in growing host tissues highly expressed genes involved in hyphal growth. Nonproliferating mycelium in mature plant tissues, transcriptionally equally active, highly expressed genes involved in synthesizing antiherbivore compounds. Transcripts from the latter accounted for 4% of fungal transcripts. Endophyte infection systemically but moderately increased transcription of L. perenne genes with roles in hormone biosynthesis and perception as well as stress and pathogen resistance while reducing expression of genes involved in photosynthesis. There was a good correlation between transcriptome-based observations and physiological observations. Our data indicate that the fitness-enhancing effects of the endophyte are based both on its biosynthetic activities, predominantly in mature host tissues, and also on systemic alteration of the host's hormonal responses and induction of stress response genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Jan Schmid
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Robert Day
- 2 School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ningxin Zhang
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Pierre-Yves Dupont
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Murray P Cox
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Christopher L Schardl
- 3 Department of Plant Pathology, University of Kentucky, Lexington 40546-0312, U.S.A
| | - Niki Minards
- 4 Manawatu Microscopy and Imaging Centre, Palmerston North 4410, New Zealand
| | - Mauro Truglio
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Neil Moore
- 5 Computer Science Department, University of Kentucky; and
| | - Daniel R Harris
- 6 Institute for Pharmaceutical Outcomes & Policy, University of Kentucky
| | - Yanfei Zhou
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
137
|
Peck SC, Wang C, Dassama LMK, Zhang B, Guo Y, Rajakovich LJ, Bollinger JM, Krebs C, van der Donk WA. O-H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase. J Am Chem Soc 2017; 139:2045-2052. [PMID: 28092705 PMCID: PMC5302023 DOI: 10.1021/jacs.6b12147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Activation
of O–H bonds by inorganic metal-oxo complexes
has been documented, but no cognate enzymatic process is known. Our
mechanistic analysis of 2-hydroxyethylphosphonate dioxygenase
(HEPD), which cleaves the C1–C2 bond of its substrate to afford
hydroxymethylphosphonate on the biosynthetic pathway to
the commercial herbicide phosphinothricin, uncovered an example
of such an O–H-bond-cleavage event. Stopped-flow UV–visible
absorption and freeze-quench Mössbauer experiments identified
a transient iron(IV)-oxo (ferryl) complex. Maximal accumulation of
the intermediate required both the presence of deuterium in the substrate
and, importantly, the use of 2H2O as solvent.
The ferryl complex forms and decays rapidly enough to be on the catalytic
pathway. To account for these unanticipated results, a new mechanism
that involves activation of an O–H bond by the ferryl complex
is proposed. This mechanism accommodates all available data on the
HEPD reaction.
Collapse
Affiliation(s)
- Spencer C Peck
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Chen Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Laura M K Dassama
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Yisong Guo
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Lauren J Rajakovich
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
138
|
Moutiez M, Belin P, Gondry M. Aminoacyl-tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev 2017; 117:5578-5618. [DOI: 10.1021/acs.chemrev.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mireille Moutiez
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Belin
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
139
|
Abstract
The history and development of infectious disease genomics have been closely associated with the Human Genome Project (HGP) during the past 20 years. It has been emphasized since the beginning of the HGP that such effort must not be restricted to the human genome and should include other organisms including mouse, bacteria, yeast, fruit fly, and worm for comparative sequence analyses. A brief history is reviewed in this chapter. As of 2016, more than 7000 completed genome sequencing projects have been reported. One of the important motivations for these efforts is to develop preventative, diagnostic, and therapeutic strategies through the analysis of sequenced microorganisms, parasites, and vectors related to human health. A number of examples are discussed in this chapter.
Collapse
|
140
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
141
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
142
|
Peck SC, van der Donk WA. Go it alone: four-electron oxidations by mononuclear non-heme iron enzymes. J Biol Inorg Chem 2016; 22:381-394. [PMID: 27783267 DOI: 10.1007/s00775-016-1399-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
This review discusses the current mechanistic understanding of a group of mononuclear non-heme iron-dependent enzymes that catalyze four-electron oxidation of their organic substrates without the use of any cofactors or cosubstrates. One set of enzymes acts on α-ketoacid-containing substrates, coupling decarboxylation to oxygen activation. This group includes 4-hydroxyphenylpyruvate dioxygenase, 4-hydroxymandelate synthase, and CloR involved in clorobiocin biosynthesis. A second set of enzymes acts on substrates containing a thiol group that coordinates to the iron. This group is comprised of isopenicillin N synthase, thiol dioxygenases, and enzymes involved in the biosynthesis of ergothioneine and ovothiol. The final group of enzymes includes HEPD and MPnS that both carry out the oxidative cleavage of the carbon-carbon bond of 2-hydroxyethylphosphonate but generate different products. Commonalities amongst many of these enzymes are discussed and include the initial substrate oxidation by a ferric-superoxo-intermediate and a second oxidation by a ferryl species.
Collapse
Affiliation(s)
- Spencer C Peck
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
143
|
Cruz-Morales P, Kopp JF, Martínez-Guerrero C, Yáñez-Guerra LA, Selem-Mojica N, Ramos-Aboites H, Feldmann J, Barona-Gómez F. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes. Genome Biol Evol 2016; 8:1906-16. [PMID: 27289100 PMCID: PMC4943196 DOI: 10.1093/gbe/evw125] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored. Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded—repurposed enzyme families—from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy. As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real ‘chemical dark matter’ will be unveiled.
Collapse
Affiliation(s)
- Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| | - Johannes Florian Kopp
- Trace Element Speciation Laboratory (TESLA) College of Physical Sciences, Aberdeen, Scotland, UK
| | | | | | - Nelly Selem-Mojica
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| | - Hilda Ramos-Aboites
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| | - Jörg Feldmann
- Trace Element Speciation Laboratory (TESLA) College of Physical Sciences, Aberdeen, Scotland, UK
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| |
Collapse
|
144
|
Javed S, Bodugam M, Torres J, Ganguly A, Hanson PR. Modular Synthesis of Novel Macrocycles Bearing α,β-Unsaturated Chemotypes through a Series of One-Pot, Sequential Protocols. Chemistry 2016; 22:6755-6758. [PMID: 27059428 PMCID: PMC5094705 DOI: 10.1002/chem.201601004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/08/2022]
Abstract
A series of one-pot, sequential protocols was developed for the synthesis of novel macrocycles bearing α,β-unsaturated chemotypes. The method highlights a phosphate tether-mediated approach to establish asymmetry, and consecutive one-pot, sequential processes to access the macrocycles with minimal purification procedures. This library amenable strategy provided diverse macrocycles containing α,β-unsaturated carbon-, sulfur-, or phosphorus-based warheads.
Collapse
Affiliation(s)
- Salim Javed
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Mahipal Bodugam
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Jessica Torres
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Arghya Ganguly
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| | - Paul R. Hanson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (USA)
| |
Collapse
|
145
|
Chin JP, McGrath JW, Quinn JP. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling. Curr Opin Chem Biol 2016; 31:50-7. [DOI: 10.1016/j.cbpa.2016.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/24/2022]
|
146
|
Yao M, Elling FJ, Jones C, Nomosatryo S, Long CP, Crowe SA, Antoniewicz MR, Hinrichs KU, Maresca JA. Heterotrophic bacteria from an extremely phosphate-poor lake have conditionally reduced phosphorus demand and utilize diverse sources of phosphorus. Environ Microbiol 2016; 18:656-67. [PMID: 26415900 PMCID: PMC5872838 DOI: 10.1111/1462-2920.13063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Abstract
Heterotrophic Proteobacteria and Actinobacteria were isolated from Lake Matano, Indonesia, a stratified, ferruginous (iron-rich), ultra-oligotrophic lake with phosphate concentrations below 50 nM. Here, we describe the growth of eight strains of heterotrophic bacteria on a variety of soluble and insoluble sources of phosphorus. When transferred to medium without added phosphorus (P), the isolates grow slowly, their RNA content falls to as low as 1% of cellular dry weight, and 86-100% of the membrane lipids are replaced with amino- or glycolipids. Similar changes in lipid composition have been observed in marine photoautotrophs and soil heterotrophs, and similar flexibility in phosphorus sources has been demonstrated in marine and soil-dwelling heterotrophs. Our results demonstrate that heterotrophs isolated from this unusual environment alter their macromolecular composition, which allows the organisms to grow efficiently even in their extremely phosphorus-limited environment.
Collapse
Affiliation(s)
- Mengyin Yao
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716
| | - Felix J. Elling
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - CarriAyne Jones
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Sulung Nomosatryo
- Research Center for Limnology, Indonesian Institute of Sciences (LIPI), Cibinong, West Java, Indonesia 16911
| | - Christopher P. Long
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark DE 19716
| | - Sean A. Crowe
- Departments of Microbiology & Immunology and Earth, Ocean, and Atmosphere Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Maciek R. Antoniewicz
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark DE 19716
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Julia A. Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
147
|
Khanvilkar AN, Bedekar AV. Synthesis and characterization of chiral aza-macrocycles and study of their enantiomer recognition ability for organo-phosphoric acid and phosphonic acid derivatives by 31P NMR and fluorescence spectroscopy. Org Biomol Chem 2016; 14:2742-8. [DOI: 10.1039/c5ob02616d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two diastereomers of optically active N,O-containing new macrocycles with dual chirality were synthesized and evaluated for chiral discrimination of organo phosphoric and phosphonic acids by 31P NMR and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Aditya N. Khanvilkar
- Department of Chemistry
- Faculty of Science
- M.S. University of Baroda
- Vadodara 390 002
- India
| | - Ashutosh V. Bedekar
- Department of Chemistry
- Faculty of Science
- M.S. University of Baroda
- Vadodara 390 002
- India
| |
Collapse
|
148
|
Molleti N, Bjornberg C, Kang JY. Phospha-Michael addition reaction of maleimides employing N-heterocyclic phosphine-thiourea as a phosphonylation reagent: synthesis of 1-aryl-2,5-dioxopyrrolidine-3-yl-phosphonate derivatives. Org Biomol Chem 2016; 14:10695-10704. [DOI: 10.1039/c6ob01987k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phospha-Michael addition reaction of maleimides with NHP-thiourea under catalyst and additive free conditions has been developed for desymmetrization of maleimides.
Collapse
Affiliation(s)
- Nagaraju Molleti
- Department of Chemistry and Biochemistry
- University of Nevada Las Vegas
- Las Vegas
- USA
| | - Chad Bjornberg
- Department of Chemistry and Biochemistry
- University of Nevada Las Vegas
- Las Vegas
- USA
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry
- University of Nevada Las Vegas
- Las Vegas
- USA
| |
Collapse
|
149
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
150
|
Herrera A, Fernández-Valle E, Martínez-Álvarez R, Molero-Vílchez D, Pardo-Botero ZD, Sáez-Barajas E. Monitoring organic reactions by UF-NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:952-970. [PMID: 25998506 DOI: 10.1002/mrc.4240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
Standard 2D NMR experiments suffer from the many t1 increments needed for spectra with sufficient digital resolution in the indirect dimension. Despite the different methodological approaches to overcome this problem, these increments have prevented studies of fast reactions. The development of ultrafast NMR (UF-NMR) has decisively speeded up the time scale of standard NMR to allow the study of organic reactions as they happen in real time to reveal mechanistic details. This mini-review summarizes the results achieved in monitoring organic reactions through this exciting technique.
Collapse
Affiliation(s)
- Antonio Herrera
- CAI-RMN, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Química Orgánica I, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Roberto Martínez-Álvarez
- Departamento de Química Orgánica I, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Zulay D Pardo-Botero
- CAI-RMN, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Química Orgánica I, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|