101
|
Chi Y, Huddleston MJ, Zhang X, Young RA, Annan RS, Carr SA, Deshaies RJ. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 2001; 15:1078-92. [PMID: 11331604 PMCID: PMC312682 DOI: 10.1101/gad.867501] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The budding yeast transcriptional activator Gcn4 is rapidly degraded in an SCF(Cdc4)-dependent manner in vivo. Upon fractionation of yeast extracts to identify factors that mediate Gcn4 ubiquitination, we found that Srb10 phosphorylates Gcn4 and thereby marks it for recognition by SCF(Cdc4) ubiquitin ligase. Srb10 is a physiological regulator of Gcn4 stability because both phosphorylation and turnover of Gcn4 are diminished in srb10 mutants. Gcn4 is almost completely stabilized in srb10Delta pho85Delta cells, or upon mutation of all Srb10 phosphorylation sites within Gcn4, suggesting that the Pho85 and Srb10 cyclin-dependent kinases (CDKs) conspire to limit the accumulation of Gcn4. The multistress response transcriptional regulator Msn2 is also a substrate for Srb10 and is hyperphosphorylated in an Srb10-dependent manner upon heat-stress-induced translocation into the nucleus. Whereas Msn2 is cytoplasmic in resting wild-type cells, its nuclear exclusion is partially compromised in srb10 mutant cells. Srb10 has been shown to repress a subset of genes in vivo, and has been proposed to inhibit transcription via phosphorylation of the C-terminal domain of RNA polymerase II. We propose that Srb10 also inhibits gene expression by promoting the rapid degradation or nuclear export of specific transcription factors. Simultaneous down-regulation of both transcriptional regulatory proteins and RNA polymerase may enhance the potency and specificity of transcriptional inhibition by Srb10.
Collapse
Affiliation(s)
- Y Chi
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Zannis VI, Kan HY, Kritis A, Zanni EE, Kardassis D. Transcriptional regulatory mechanisms of the human apolipoprotein genes in vitro and in vivo. Curr Opin Lipidol 2001; 12:181-207. [PMID: 11264990 DOI: 10.1097/00041433-200104000-00012] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present review summarizes recent advances in the transcriptional regulation of the human apolipoprotein genes, focusing mostly, but not exclusively, on in-vivo studies and signaling mechanisms that affect apolipoprotein gene transcription. An attempt is made to explain how interactions of transcription factors that bind to proximal promoters and distal enhancers may bring about gene transcription. The experimental approaches used and the transcriptional regulatory mechanisms that emerge from these studies may also be applicable in other gene systems that are associated with human disease. Understanding extracellular stimuli and the specific mechanisms that underlie apolipoprotein gene transcription may in the long run allow us to selectively switch on antiatherogenic genes, and switch off proatherogenic genes. This may have beneficial effects and may confer protection from atherosclerosis to humans.
Collapse
Affiliation(s)
- V I Zannis
- Section of Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA.
| | | | | | | | | |
Collapse
|
103
|
Liu HY, Chiang YC, Pan J, Chen J, Salvadore C, Audino DC, Badarinarayana V, Palaniswamy V, Anderson B, Denis CL. Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. J Biol Chem 2001; 276:7541-8. [PMID: 11113136 DOI: 10.1074/jbc.m009112200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCR4-NOT transcriptional regulatory complex affects transcription both positively and negatively and consists of the following two complexes: a core 1 x 10(6) dalton (1 MDa) complex consisting of CCR4, CAF1, and the five NOT proteins and a larger, less defined 1.9-MDa complex. We report here the identification of two new factors that associate with the CCR4-NOT proteins as follows: CAF4, a WD40-containing protein, and CAF16, a putative ABC ATPase. Whereas neither CAF4 nor CAF16 was part of the core CCR4-NOT complex, both CAF16 and CAF4 appeared to be present in the 1.9-MDa complex. CAF4 also displayed physical interactions with multiple CCR4-NOT components and with DBF2, a likely component of the 1.9-MDa complex. In addition, both CAF4 and CAF16 were found to interact in a CCR4-dependent manner with SRB9, a component of the SRB complex that is part of the yeast RNA polymerase II holoenzyme. The three related SRB proteins, SRB9, SRB10, and SRB11, were found to interact with and to coimmunoprecipitate DBF2, CAF4, CCR4, NOT2, and NOT1. Defects in SRB9 and SRB10 also affected processes at the ADH2 locus known to be controlled by components of the CCR4-NOT complex; an srb9 mutation was shown to reduce ADH2 derepression and either an srb9 or srb10 allele suppressed spt10-enhanced expression of ADH2. In addition, srb9 and srb10 alleles increased ADR1(c)-dependent ADH2 expression; not4 and not5 deletions are the only other known defects that elicit this phenotype. These results suggest a close physical and functional association between components of the CCR4-NOT complexes and the SRB9, -10, and -11 components of the holoenzyme.
Collapse
Affiliation(s)
- H Y Liu
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
The past decade has seen an explosive increase in information about regulation of eukaryotic gene transcription, especially for protein-coding genes. The most striking advances in our knowledge of transcriptional regulation involve the chromatin template, the large complexes recruited by transcriptional activators that regulate chromatin structure and the transcription apparatus, the holoenzyme forms of RNA polymerase II involved in initiation and elongation, and the mechanisms that link mRNA processing with its synthesis. We describe here the major advances in these areas, with particular emphasis on the modular complexes associated with RNA polymerase II that are targeted by activators and other regulators of mRNA biosynthesis.
Collapse
Affiliation(s)
- T I Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
105
|
Abstract
Three lines of evidence have converged on a multiprotein Mediator complex as a conserved interface between gene-specific regulatory proteins and the general transcription apparatus of eukaryotes. Mediator was discovered as an activity required for transcriptional activation in a reconstituted system from yeast. Upon resolution to homogeneity, the activity proved to reside in a 20-protein complex, which could exist in a free state or in a complex with RNA polymerase II, termed holoenzyme. A second line of evidence came from screens in yeast for mutations affecting transcription. Two-thirds of Mediator subunits are encoded by genes revealed by these screens. Five of the genetically defined subunits, termed Srbs, were characterized as interacting with the C-terminal domain of RNA polymerase II in vivo, and were shown to bind polymerase in vitro. A third line of evidence has come recently from studies in mammalian transcription systems. Mammalian counterparts of yeast Mediator were shown to interact with transcriptional activator proteins and to play an essential role in transcriptional regulation. Mediator evidently integrates and transduces positive and negative regulatory information from enhancers and operators to promoters. It functions directly through RNA polymerase II, modulating its activity in promoter-dependent transcription. Details of the Mediator mechanism remain obscure. Additional outstanding questions include the patterns of promoter-specificity of the various Mediator subunits, the possible cell-type-specificity of Mediator subunit composition, and the full structures of both free Mediator and RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- L C Myers
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
106
|
Zaman Z, Ansari AZ, Koh SS, Young R, Ptashne M. Interaction of a transcriptional repressor with the RNA polymerase II holoenzyme plays a crucial role in repression. Proc Natl Acad Sci U S A 2001; 98:2550-4. [PMID: 11226276 PMCID: PMC30175 DOI: 10.1073/pnas.041611198] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2000] [Indexed: 11/18/2022] Open
Abstract
The yeast transcriptional repressor Tup1, tethered to DNA, represses to strikingly different degrees transcription elicited by members of two classes of activators. Repression in both cases is virtually eliminated by mutation of either member of the cyclin-kinase pair Srb10/11. In contrast, telomeric chromatin affects both classes of activators equally, and in neither case is that repression affected by mutation of Srb10/11. In vitro, Tup1 interacts with RNA polymerase II holoenzyme bearing Srb10 as well as with the separated Srb10. These and other findings indicate that at least one aspect of Tup1's action involves interaction with the RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- Z Zaman
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
107
|
Bone JR, Roth SY. Recruitment of the yeast Tup1p-Ssn6p repressor is associated with localized decreases in histone acetylation. J Biol Chem 2001; 276:1808-13. [PMID: 11056171 DOI: 10.1074/jbc.m008668200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational acetylation of histones is an important element of transcriptional regulation. The yeast Tup1p repressor is one of only a few non-enzyme proteins known to interact directly with the amino-terminal tail domains of histones H3 and H4 that are subject to acetylation. We demonstrated previously that Tup1p interacts poorly with more highly acetylated isoforms of these histones in vitro. Here we show that two separate classes of promoters repressed by Tup1p are associated with underacetylated histones in vivo. This decreased histone acetylation is dependent upon Tup1p and its partner Ssn6p and is localized to sequences near the point of Tup1p-Ssn6p recruitment. Increased acetylation of histones H3 and H4 is observed upon activation of these genes, but this increase is not dependent on transcription per se. Direct recruitment of Tup1p-Ssn6p complexes via fusion of Tup1p to the lexA DNA binding domain is sufficient to confer repression and induce decreased acetylation of H3 and H4 at a target promoter. Taken together, our results suggest that stable decreases in histone acetylation levels are directed and/or maintained by the Tup1p-Ssn6p repressor complex.
Collapse
Affiliation(s)
- J R Bone
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
108
|
Barillà D, Lee BA, Proudfoot NJ. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2001; 98:445-50. [PMID: 11149954 PMCID: PMC14606 DOI: 10.1073/pnas.98.2.445] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II plays an important role in transcription and processing of the nascent transcript by interacting with both transcription and RNA processing factors. We show here that the cleavage/polyadenylation factor IA of Saccharomyces cerevisiae directly contacts CTD. First by affinity chromatography experiments with yeast extracts we demonstrate that the Rna15p, Rna14p, and Pcf11p subunits of this complex are associated with phosphorylated CTD. This interaction is confirmed for Rna15p by yeast two-hybrid analysis. Second, Pcf11p, but not Rna15p, is shown to directly contact phosphorylated CTD based on in vitro binding studies with recombinant proteins. These findings establish a direct interaction of cleavage/polyadenylation factor IA with the CTD. Furthermore, a quantitative analysis of transcription run-on performed on temperature-sensitive mutant strains reveals that the lack of either functional Rna14p or Pcf11p affects transcription termination more severely than the absence of a functional Rna15p. Moreover, these data reinforce the concept that CTD phosphorylation acts as a regulatory mechanism in the maturation of the primary transcript.
Collapse
Affiliation(s)
- D Barillà
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
109
|
Chang YW, Howard SC, Budovskaya YV, Rine J, Herman PK. The rye mutants identify a role for Ssn/Srb proteins of the RNA polymerase II holoenzyme during stationary phase entry in Saccharomyces cerevisiae. Genetics 2001; 157:17-26. [PMID: 11139488 PMCID: PMC1461474 DOI: 10.1093/genetics/157.1.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae cells enter into a distinct resting state, known as stationary phase, in response to specific types of nutrient deprivation. We have identified a collection of mutants that exhibited a defective transcriptional response to nutrient limitation and failed to enter into a normal stationary phase. These rye mutants were isolated on the basis of defects in the regulation of YGP1 expression. In wild-type cells, YGP1 levels increased during the growth arrest caused by nutrient deprivation or inactivation of the Ras signaling pathway. In contrast, the levels of YGP1 and related genes were significantly elevated in the rye mutants during log phase growth. The rye defects were not specific to this YGP1 response as these mutants also exhibited multiple defects in stationary phase properties, including an inability to survive periods of prolonged starvation. These data indicated that the RYE genes might encode important regulators of yeast cell growth. Interestingly, three of the RYE genes encoded the Ssn/Srb proteins, Srb9p, Srb10p, and Srb11p, which are associated with the RNA polymerase II holoenzyme. Thus, the RNA polymerase II holoenzyme may be a target of the signaling pathways responsible for coordinating yeast cell growth with nutrient availability.
Collapse
Affiliation(s)
- Y W Chang
- Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
110
|
Ebright RH. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J Mol Biol 2000; 304:687-98. [PMID: 11124018 DOI: 10.1006/jmbi.2000.4309] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial RNA polymerase and eukaryotic RNA polymerase II exhibit striking structural similarities, including similarities in overall structure, relative positions of subunits, relative positions of functional determinants, and structures and folding topologies of subunits. These structural similarities are paralleled by similarities in mechanisms of interaction with DNA.
Collapse
Affiliation(s)
- R H Ebright
- Howard Hughes Medical Institute, Waksman Institute and Department of Chemistry Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
111
|
Watson AD, Edmondson DG, Bone JR, Mukai Y, Yu Y, Du W, Stillman DJ, Roth SY. Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 2000; 14:2737-44. [PMID: 11069890 PMCID: PMC317033 DOI: 10.1101/gad.829100] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2000] [Accepted: 09/13/2000] [Indexed: 11/25/2022]
Abstract
Ssn6-Tup1 regulates multiple genes in yeast, providing a paradigm for corepressor functions. Tup1 interacts directly with histones H3 and H4, and mutation of these histones synergistically compromises Ssn6-Tup1-mediated repression. In vitro, Tup1 interacts preferentially with underacetylated isoforms of H3 and H4, suggesting that histone acetylation may modulate Tup1 functions in vivo. Here we report that histone hyperacetylation caused by combined mutations in genes encoding the histone deacetylases (HDACs) Rpd3, Hos1, and Hos2 abolishes Ssn6-Tup1 repression. Unlike HDAC mutations that do not affect repression, this combination of mutations causes concomitant hyperacetylation of both H3 and H4. Strikingly, two of these class I HDACs interact physically with Ssn6-Tup1. These findings suggest that Ssn6-Tup1 actively recruits deacetylase activities to deacetylate adjacent nucleosomes and promote Tup1-histone interactions.
Collapse
Affiliation(s)
- A D Watson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Akoulitchev S, Chuikov S, Reinberg D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 2000; 407:102-6. [PMID: 10993082 DOI: 10.1038/35024111] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mammalian cyclin-dependent kinase 8 (cdk8) gene has been linked with a subset of acute lymphoblastic leukaemias, and its corresponding protein has been functionally implicated in regulation of transcription. Mammalian cdk8 and cyclin C, and their respective yeast homologues, Srb10 and Srb11, are components of the RNA polymerase II holoenzyme complex where they function as a protein kinase that phosphorylates the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (ref. 7). The yeast SRB10 and SRB11 genes have been implicated in the negative regulation of transcription. The cdk8/cyclin C protein complex is also found in a number of mammalian Mediator-like protein complexes, which repress activated transcription independently of the CTD in vitro. Here we show that cdk8/cyclin C can regulate transcription by targeting the cdk7/cyclin H subunits of the general transcription initiation factor IIH (TFIIH). cdk8 phosphorylates mammalian cyclin H in the vicinity of its functionally unique amino-terminal and carboxy-terminal alpha-helical domains. This phosphorylation represses both the ability of TFIIH to activate transcription and its CTD kinase activity. In addition, mimicking cdk8 phosphorylation of cyclin H in vivo has a dominant-negative effect on cell growth. Our results link the Mediator complex and the basal transcription machinery by a regulatory pathway involving two cyclin-dependent kinases. This pathway appears to be unique to higher organisms.
Collapse
Affiliation(s)
- S Akoulitchev
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
113
|
Zhang H, Emmons SW. A C. elegans mediator protein confers regulatory selectivity on lineage-specific expression of a transcription factor gene. Genes Dev 2000; 14:2161-72. [PMID: 10970880 PMCID: PMC316889 DOI: 10.1101/gad.814700] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Caenorhabditis elegans caudal homolog, pal-1, is required for neurogenesis in the male tail. We show that expression of pal-1 in the postembryonic neuroblast cell V6 can be initiated by two alternate pathways. One pathway, acting in wild type, requires a regulatory element in the fifth pal-1 intron. The other pathway, independent of this element, is normally repressed by the newly identified gene sop-1, which encodes a homolog of the mammalian Mediator complex protein TRAP230. In sop-1 mutants, pal-1 is activated by a pathway that is stimulated by bar-1/beta-catenin, a component of the Wnt signal transduction pathway. The results support a physiological role of the Mediator complex in conveying regulatory signals to the transcriptional apparatus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Lineage
- Cell Nucleus/metabolism
- Cytoskeletal Proteins/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Genotype
- Helminth Proteins/biosynthesis
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Helminth Proteins/physiology
- Homeodomain Proteins
- Introns
- Male
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phenotype
- Proto-Oncogene Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Suppression, Genetic
- Trans-Activators
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
- Wnt Proteins
- Zebrafish Proteins
- beta Catenin
Collapse
Affiliation(s)
- H Zhang
- Department of Molecular Genetics, Albert Einstein College of Medicine, The Bronx, New York 10461, USA
| | | |
Collapse
|
114
|
Wu X, Wilcox CB, Devasahayam G, Hackett RL, Arévalo-Rodríguez M, Cardenas ME, Heitman J, Hanes SD. The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J 2000; 19:3727-38. [PMID: 10899126 PMCID: PMC313980 DOI: 10.1093/emboj/19.14.3727] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Ess1/Pin1 peptidyl-prolyl isomerase (PPIase) is thought to control mitosis by binding to cell cycle regulatory proteins and altering their activity. Here we isolate temperature-sensitive ess1 mutants and identify six multicopy suppressors that rescue their mitotic-lethal phenotype. None are cell cycle regulators. Instead, five encode proteins involved in transcription that bind DNA, modify chromatin structure or are regulatory subunits of RNA polymerase II. A sixth suppressor, cyclophilin A, is a member of a distinct family of PPIases that are targets of immuno suppressive drugs. We show that the expression of some but not all genes is decreased in ess1 mutants, and that Ess1 interacts with the C-terminal domain (CTD) of RNA polymerase II in vitro and in vivo. The results forge a strong link between PPIases and the transcription machinery and suggest a new model for how Ess1/Pin1 controls mitosis. In this model, Ess1 binds and isomerizes the CTD of RNA polymerase II, thus altering its interaction with proteins required for transcription of essential cell cycle genes.
Collapse
Affiliation(s)
- X Wu
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Kuchin S, Treich I, Carlson M. A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 2000; 97:7916-20. [PMID: 10869433 PMCID: PMC16645 DOI: 10.1073/pnas.140109897] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase II holoenzymes respond to activators and repressors that are regulated by signaling pathways. Here we present evidence for a "shortcut" mechanism in which the Snf1 protein kinase of the glucose signaling pathway directly regulates transcription by the yeast holoenzyme. In response to glucose limitation, the Snf1 kinase stimulates transcription by holoenzyme that has been artificially recruited to a reporter by a LexA fusion to a holoenzyme component. We show that Snf1 interacts physically with the Srb/mediator proteins of the holoenzyme in both two-hybrid and coimmunoprecipitation assays. We also show that a catalytically hyperactive Snf1, when bound to a promoter as a LexA fusion protein, activates transcription in a glucose-regulated manner; moreover, this activation depends on the integrity of the Srb/mediator complex. These results suggest that direct regulatory interactions between signal transduction pathways and RNA polymerase II holoenzyme provide a mechanism for transcriptional control in response to important signals.
Collapse
Affiliation(s)
- S Kuchin
- Department of Genetics and Development and Department of Microbiology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
116
|
|
117
|
Smith RL, Johnson AD. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 2000; 25:325-30. [PMID: 10871883 DOI: 10.1016/s0968-0004(00)01592-9] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Ssn6-Tup1 repressor forms one of the largest and most important gene-regulatory circuits in budding yeast. This circuit, which appears conserved in flies, worms and mammals, exemplifies how a 'global' repressor (i.e. a repressor that regulates many genes in the cell) can be highly selective in the genes it represses. It also explains how, given the appropriate signal, specific subsets of these genes can be derepressed. Ssn6-Tup1 seems especially robust, bringing about a high level of repression irrespective of its precise placement on DNA or of specific features of the DNA control regions of its target genes. This high degree of repression probably results from several distinct mechanisms acting together.
Collapse
Affiliation(s)
- R L Smith
- Dept of Biochemistry and Biophysics, University of California San Francisco, Box 0414, San Francisco, CA 94143, USA
| | | |
Collapse
|
118
|
Sprague ER, Redd MJ, Johnson AD, Wolberger C. Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J 2000; 19:3016-27. [PMID: 10856245 PMCID: PMC203344 DOI: 10.1093/emboj/19.12.3016] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Tup1-Ssn6 corepressor complex regulates the expression of several sets of genes, including genes that specify mating type in the yeast Saccharomyces cerevisiae. Repression of mating-type genes occurs when Tup1-Ssn6 is brought to the DNA by the Matalpha2 DNA-binding protein and assembled upstream of a- and haploid-specific genes. We have determined the 2.3 A X-ray crystal structure of the C-terminal domain of Tup1 (accesion No. 1ERJ), a 43 kDa fragment that contains seven copies of the WD40 sequence motif and binds to the Matalpha2 protein. Moreover, this portion of the protein can partially substitute for full-length Tup1 in bringing about transcriptional repression. The structure reveals a seven-bladed beta propeller with an N-terminal subdomain that is anchored to the side of the propeller and extends the beta sheet of one of the blades. Point mutations in Tup1 that specifically affect the Tup1-Matalpha2 interaction cluster on one surface of the propeller. We identified regions of Tup1 that are conserved among the fungal Tup1 homologs and may be important in protein-protein interactions with additional components of the Tup1-mediated repression pathways.
Collapse
Affiliation(s)
- E R Sprague
- Department of Biophysics and Biophysical Chemistry and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
119
|
|
120
|
Malik S, Roeder RG. Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 2000; 25:277-83. [PMID: 10838567 DOI: 10.1016/s0968-0004(00)01596-6] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A novel multiprotein complex has recently been identified as a coactivator for transcriptional control of protein-encoding genes by RNA polymerase II in higher eukaryotic cells. This complex is evolutionarily related to the Mediator complex from yeast and, on the basis of its structural and functional characteristics, promises to be a key target of diverse regulatory circuits.
Collapse
Affiliation(s)
- S Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
121
|
Lehman AL, Dahmus ME. The sensitivity of RNA polymerase II in elongation complexes to C-terminal domain phosphatase. J Biol Chem 2000; 275:14923-32. [PMID: 10809737 DOI: 10.1074/jbc.275.20.14923] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphorylation state of the carboxyl-terminal domain (CTD) of the largest RNA polymerase (RNAP) II subunit plays an important role in the regulation of transcript elongation. This report examines the sensitivity of RNAP II to dephosphorylation by CTD phosphatase (CTDP) and addresses factors that regulate its sensitivity. The CTDP sensitivity of RNAP IIO in paused elongation complexes on a dC-tailed template does not significantly differ from that of free RNAP IIO. RNAP IIO contained in elongation complexes that initiate transcription from the adenovirus-2 major late promoter in the presence of a nuclear extract is relatively resistant to dephosphorylation. Complexes treated with 1% Sarkosyl remain elongation-competent but demonstrate a 5-fold increase in CTDP sensitivity. Furthermore, the sensitivity of RNAP IIO in both control and Sarkosyl-treated elongation complexes is dependent on their position relative to the start site of transcription. Elongation complexes 11-24 nucleotides downstream are more sensitive to dephosphorylation than complexes 50-150 nucleotides downstream. The incubation of Sarkosyl-treated elongation complexes with nuclear extract restores the original resistance to dephosphorylation. These results suggest that a conformational change occurs in RNAP II as it clears the promoter, which results in an increased resistance to dephosphorylation. Furthermore, the sensitivity to dephosphorylation can be modulated by a factor(s) present in the nuclear extract.
Collapse
Affiliation(s)
- A L Lehman
- Section of Molecular and Cellular Biology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
122
|
Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1048] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The corepressor SMRT mediates repression by thyroid hormone receptor (TR) as well as other nuclear hormone receptors and transcription factors. Here we report the isolation of a novel SMRT-containing complex from HeLa cells. This complex contains transducin β-like protein 1 (TBL1), whose gene is mutated in human sensorineural deafness. It also contains HDAC3, a histone deacetylase not previously thought to interact with SMRT. TBL1 displays structural and functional similarities to Tup1 and Groucho corepressors, sharing their ability to interact with histone H3. In vivo, TBL1 is bridged to HDAC3 through SMRT and can potentiate repression by TR. Intriguingly, loss-of-function TRβ mutations cause deafness in mice and humans. These results define a new TR corepressor complex with a physical link to histone structure and a potential biological link to deafness.
Collapse
|
123
|
Hollenhorst PC, Bose ME, Mielke MR, Müller U, Fox CA. Forkhead genes in transcriptional silencing, cell morphology and the cell cycle. Overlapping and distinct functions for FKH1 and FKH2 in Saccharomyces cerevisiae. Genetics 2000; 154:1533-48. [PMID: 10747051 PMCID: PMC1461039 DOI: 10.1093/genetics/154.4.1533] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The SIR1 gene is one of four specialized genes in Saccharomyces cerevisiae required for repressing transcription at the silent mating-type cassettes, HMLalpha and HMRa, by a mechanism known as silencing. Silencing requires the assembly of a specialized chromatin structure analogous to heterochromatin. FKH1 was isolated as a gene that, when expressed in multiple copies, could substitute for the function of SIR1 in silencing HMRa. FKH1 (Forkhead Homologue One) was named for its homology to the forkhead family of eukaryotic transcription factors classified on the basis of a conserved DNA binding domain. Deletion of FKH1 caused a defect in silencing HMRa, indicating that FKH1 has a positive role in silencing. Significantly, deletion of both FKH1 and its closest homologue in yeast, FKH2, caused a form of yeast pseudohyphal growth, indicating that the two genes have redundant functions in controlling yeast cell morphology. By several criteria, fkh1Delta fkh2Delta-induced pseudohyphal growth was distinct from the nutritionally induced form of pseudohyphal growth observed in some strains of S. cerevisiae. Although FKH2 is redundant with FKH1 in controlling pseudohyphal growth, the two genes have different functions in silencing HMRa. High-copy expression of CLB2, a G2/M-phase cyclin, prevented fkh1Delta fkh2Delta-induced pseudohyphal growth and modulated some of the fkhDelta-induced silencing phenotypes. Interestingly, deletions in either FKH1 or FKH2 alone caused subtle but opposite effects on cell-cycle progression and CLB2 mRNA expression, consistent with a role for each of these genes in modulating the cell cycle and having opposing effects on silencing. The differences between Fkh1p and Fkh2p in vivo were not attributable to differences in their DNA binding domains.
Collapse
Affiliation(s)
- P C Hollenhorst
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
124
|
Yu Y, Eriksson P, Stillman DJ. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Mol Cell Biol 2000; 20:2350-7. [PMID: 10713159 PMCID: PMC85404 DOI: 10.1128/mcb.20.7.2350-2357.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent work has shown that transcription of the yeast HO gene involves the sequential recruitment of a series of transcription factors. We have performed a functional analysis of HO regulation by determining the ability of mutations in SIN1, SIN3, RPD3, and SIN4 negative regulators to permit HO expression in the absence of certain activators. Mutations in the SIN1 (=SPT2) gene do not affect HO regulation, in contrast to results of other studies using an HO:lacZ reporter, and our data show that the regulatory properties of an HO:lacZ reporter differ from that of the native HO gene. Mutations in SIN3 and RPD3, which encode components of a histone deacetylase complex, show the same pattern of genetic suppression, and this suppression pattern differs from that seen in a sin4 mutant. The Sin4 protein is present in two transcriptional regulatory complexes, the RNA polymerase II holoenzyme/mediator and the SAGA histone acetylase complex. Our genetic analysis allows us to conclude that Swi/Snf chromatin remodeling complex has multiple roles in HO activation, and the data suggest that the ability of the SBF transcription factor to bind to the HO promoter may be affected by the acetylation state of the HO promoter. We also demonstrate that the Nhp6 architectural transcription factor, encoded by the redundant NHP6A and NHP6B genes, is required for HO expression. Suppression analysis with sin3, rpd3, and sin4 mutations suggests that Nhp6 and Gcn5 have similar functions. A gcn5 nhp6a nhp6b triple mutant is extremely sick, suggesting that the SAGA complex and the Nhp6 architectural transcription factors function in parallel pathways to activate transcription. We find that disruption of SIN4 allows this strain to grow at a reasonable rate, indicating a critical role for Sin4 in detecting structural changes in chromatin mediated by Gcn5 and Nhp6. These studies underscore the critical role of chromatin structure in regulating HO gene expression.
Collapse
Affiliation(s)
- Y Yu
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
125
|
Kim S, Cabane K, Hampsey M, Reinberg D. Genetic analysis of the YDR1-BUR6 repressor complex reveals an intricate balance among transcriptional regulatory proteins in yeast. Mol Cell Biol 2000; 20:2455-65. [PMID: 10713169 PMCID: PMC85436 DOI: 10.1128/mcb.20.7.2455-2465.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transcriptional repressor complex encoded by two essential genes, YDR1 and BUR6, was isolated from Saccharomyces cerevisiae and shown to be the functional counterpart of the human repressor complex Dr1-DRAP1. To elucidate the mechanism of repression by this complex, altered forms of Ydr1 and Bur6 were studied in vitro and in vivo. Deletion of the C-terminal 41 amino acids of Ydr1 resulted in loss of repressor activity and a growth defect, suggesting that the C-terminal domain of Ydr1 functions as a potent transcriptional repressor. A screen for extragenic suppressors of a cold-sensitive ydr1 (ydr1(cs)) mutant led to the identification of recessive mutations in the SIN4 gene, which encodes a component of the SRB-MED complex. The sin4 alleles suppressed not only ydr1(cs) mutations but also bur6(cs) mutations. In contrast, deletion of the gal11 gene, whose product is also a member of the SRB-MED complex, failed to suppress ydr1(cs) and bur6(cs) mutations, indicating that suppression is not due to general defects in the SRB-MED complex. Moreover, one of the sin4 alleles, but not the sin4 deletion, was found to specifically suppress the inviability of a ydr1 deletion, demonstrating that the essential function of Ydr1 becomes dispensable in a sin4 mutant background. Biochemical analysis of the SRB-MED complex from the sin4 suppressor strain revealed a structurally distinct form of the SRB-MED complex that lacks a subset of mediator subunits. These results define a delicate balance between positive and negative regulators of transcription operating through the Ydr1-Bur6 repressor complex.
Collapse
Affiliation(s)
- S Kim
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA
| | | | | | | |
Collapse
|
126
|
Abstract
The C-terminal domain (CTD) of the largest subunit (RPB1) of eukaryotic RNA polymerase II is essential for pol II function and has been shown to play a number of important roles in the mRNA transcription cycle. The CTD is composed of a tandemly repeated heptapeptide that is conserved in yeast, animals, plants and several protistan organisms. Some eukaryotes, however, have what appear to be degenerate or deviant CTD regions, and others have no CTD at all. The functional and evolutionary implications of this variation among RPB1 C-termini is largely unexplored. We have transformed yeast cells with a construct consisting of the yeast RPB1 gene with 25 heptads from the primitive protist Mastigamoeba invertens in place of the wild-type CTD. The Mastigamoeba heptads differ from the canonical CTD by the invariable presence of alanines in place of threonines at position 4, and in place of serines at position 7 of each heptad. Despite this double substitution, mutants are viable even under conditions of temperature and nutrient stress. These results provide new insights into the relative functional importance of several of the conserved CTD residues, and indicate that in vivo expression of evolutionary variants in yeast can provide important clues for understanding the origin, evolution and function of the pol II CTD.
Collapse
Affiliation(s)
- J W Stiller
- Department of Genetics, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
127
|
Spåhr H, Bève J, Larsson T, Bergström J, Karlsson KA, Gustafsson CM. Purification and characterization of RNA polymerase II holoenzyme from Schizosaccharomyces pombe. J Biol Chem 2000; 275:1351-6. [PMID: 10625684 DOI: 10.1074/jbc.275.2.1351] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have purified the RNA polymerase II holoenzyme from Schizosaccharomyces pombe to near homogeneity. The Mediator complex is considerably smaller than its counterpart in Saccharomyces cerevisiae, containing only nine polypeptides larger than 19 kDa. Five of these Mediator subunits have been identified as the S. pombe homologs to Rgr1, Srb4, Med7, and Nut2 found in S. cerevisiae and the gene product of a previously uncharacterized open reading frame, PMC2, with no clear homologies to any described protein. The presence of Mediator in a S. pombe RNA polymerase II holoenzyme stimulated phosphorylation of the C-terminal domain by TFIIH purified from S. pombe. This stimulation was species-specific, because S. pombe Mediator could not stimulate TFIIH purified from S. cerevisiae. We suggest that the overall structure and mechanism of the Mediator is evolutionary conserved. The subunit composition, however, has evolved to respond properly to physiological signals.
Collapse
Affiliation(s)
- H Spåhr
- Institute of Medical Biochemistry, Göteborg University, P. O. Box 440, 405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
128
|
Rodriguez CR, Cho EJ, Keogh MC, Moore CL, Greenleaf AL, Buratowski S. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol Cell Biol 2000; 20:104-12. [PMID: 10594013 PMCID: PMC85066 DOI: 10.1128/mcb.20.1.104-112.2000] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cotranscriptional placement of the 7-methylguanosine cap on pre-mRNA is mediated by recruitment of capping enzyme to the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II. Immunoblotting suggests that the capping enzyme guanylyltransferase (Ceg1) is stabilized in vivo by its interaction with the CTD and that serine 5, the major site of phosphorylation within the CTD heptamer consensus YSPTSPS, is particularly important. We sought to identify the CTD kinase responsible for capping enzyme targeting. The candidate kinases Kin28-Ccl1, CTDK1, and Srb10-Srb11 can each phosphorylate a glutathione S-transferase-CTD fusion protein such that capping enzyme can bind in vitro. However, kin28 mutant alleles cause reduced Ceg1 levels in vivo and exhibit genetic interactions with a mutant ceg1 allele, while srb10 or ctk1 deletions do not. Therefore, only the TFIIH-associated CTD kinase Kin28 appears necessary for proper capping enzyme targeting in vivo. Interestingly, levels of the polyadenylation factor Pta1 are also reduced in kin28 mutants, while several other polyadenylation factors remain stable. Pta1 in yeast extracts binds specifically to the phosphorylated CTD, suggesting that this interaction may mediate coupling of polyadenylation and transcription.
Collapse
Affiliation(s)
- C R Rodriguez
- Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
129
|
Mukai Y, Matsuo E, Roth SY, Harashima S. Conservation of histone binding and transcriptional repressor functions in a Schizosaccharomyces pombe Tup1p homolog. Mol Cell Biol 1999; 19:8461-8. [PMID: 10567571 PMCID: PMC84951 DOI: 10.1128/mcb.19.12.8461] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ssn6p-Tup1p corepressor complex is important to the regulation of several diverse genes in Saccharomyces cerevisiae and serves as a model for corepressor functions. To investigate the evolutionary conservation of these functions, sequences homologous to the S. cerevisiae TUP1 gene were cloned from Kluyveromyces lactis (TUP1) and Schizosaccharomyces pombe (tup11(+)). Interestingly, while the K. lactis TUP1 gene complemented an S. cerevisiae tup1 null mutation, the S. pombe tup11(+) gene did not, even when expressed under the control of the S. cerevisiae TUP1 promoter. However, an S. pombe Tup11p-LexA fusion protein repressed transcription of a corresponding reporter gene, indicating that this Tup1p homolog has intrinsic repressor activity. Moreover, a chimeric protein containing the amino-terminal Ssn6p-binding domain of S. cerevisiae Tup1p and 544 amino acids from the C-terminal region of S. pombe Tup11p complemented the S. cerevisiae tup1 mutation. The failure of native S. pombe Tup11p to complement loss of Tup1p functions in S. cerevisiae corresponds to an inability to bind to S. cerevisiae Ssn6p in vitro. Disruption of tup11(+) in combination with a disruption of tup12(+), another TUP1 homolog gene in S. pombe, causes a defect in glucose repression of fbp1(+), suggesting that S. pombe Tup1p homologs function as repressors in S. pombe. Furthermore, Tup11p binds specifically to histones H3 and H4 in vitro, indicating that both the repression and histone binding functions of Tup1p-related proteins are conserved across species.
Collapse
Affiliation(s)
- Y Mukai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
130
|
Oberholzer U, Collart MA. In vitro transcription of a TATA-less promoter: negative regulation by the Not1 protein. Biol Chem 1999; 380:1365-70. [PMID: 10661863 DOI: 10.1515/bc.1999.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genetic experiments in the yeast Saccharomyces cerevisiae have identified the five Not proteins as global repressors of transcription which preferentially repress core promoters which do not contain a canonical TATA sequence. Recently, the Ccr4 and Caf1 proteins, required for non-fermentative gene expression, were found to be associated with the five Not proteins in 1.2 and 2 MDa Ccr4-Not complexes. These Ccr4-Not complexes, as many other global regulators of transcription, appear to regulate transcription both positively and negatively in vivo. To further characterize the activity of Not1p, the only essential known protein of the Ccr4-Not complex, and determine whether it can act directly as a transcriptional repressor, we established an in vitro transcription system in which the HIS3 TATA-less promoter can be efficiently transcribed. We demonstrate that transcription from the HIS3 TATA-less promoter can be specifically increased in vitro by preparing nuclear extracts from a conditional mutant of the NOT1 gene and analyzing transcription after shifting the nuclear extracts to the restrictive temperature. This result is the first demonstration that one of the Not proteins directly represses transcription. Moreover, it now defines an experimental system in which TATA-less transcription initiation and repression by the Ccr4-Not complex can be studied further.
Collapse
Affiliation(s)
- U Oberholzer
- Département de Biochimie Médicale, CMU, Genève, Switzerland
| | | |
Collapse
|
131
|
Bai Y, Salvadore C, Chiang YC, Collart MA, Liu HY, Denis CL. The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 1999; 19:6642-51. [PMID: 10490603 PMCID: PMC84645 DOI: 10.1128/mcb.19.10.6642] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CCR4-NOT complex (1 mDa in size), consisting of the proteins CCR4, CAF1, and NOT1 to NOT5, regulates gene expression both positively and negatively and is distinct from other large transcriptional complexes in Saccharomyces cerevisiae such as SNF/SWI, TFIID, SAGA, and RNA polymerase II holoenzyme. The physical and genetic interactions between the components of the CCR4-NOT complex were investigated in order to gain insight into how this complex affects the expression of diverse genes and processes. The CAF1 protein was found to be absolutely required for CCR4 association with the NOT proteins, and CCR4 and CAF1, in turn, physically interacted with NOT1 through its central amino acid region from positions 667 to 1152. The NOT3, NOT4, and NOT5 proteins had no significant effect on the association of CCR4, CAF1, and NOT1 with each other. In contrast, the NOT2, NOT4, and NOT5 interacted with the C-terminal region (residues 1490 to 2108) of NOT1 in which NOT2 and NOT5 physically associated in the absence of CAF1, NOT3, and NOT4. These and other data indicate that the physical ordering of these proteins in the complex is CCR4-CAF1-NOT1-(NOT2, NOT5), with NOT4 and NOT3 more peripheral to NOT2 and NOT5. The physical separation of CCR4 and CAF1 from other components of the CCR4-NOT complex correlated with genetic analysis indicating partially separate functions for these two groups of proteins. ccr4 or caf1 deletion suppressed the increased 3-aminotriazole resistance phenotype conferred by not mutations, resulted in opposite effects on gene expression as compared to several not mutations, and resulted in a number of synthetic phenotypes in combination with not mutations. These results define the CCR4-NOT complex as consisting of at least two physically and functionally separated groups of proteins.
Collapse
Affiliation(s)
- Y Bai
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | | | |
Collapse
|
132
|
Yankulov K, Todorov I, Romanowski P, Licatalosi D, Cilli K, McCracken S, Laskey R, Bentley DL. MCM proteins are associated with RNA polymerase II holoenzyme. Mol Cell Biol 1999; 19:6154-63. [PMID: 10454562 PMCID: PMC84545 DOI: 10.1128/mcb.19.9.6154] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MCMs are a family of proteins related to ATP-dependent helicases that bind to origin recognition complexes and are required for initiation of DNA replication. We report that antibodies against MCM2(BM28) specifically inhibited transcription by RNA polymerase II (Pol II) in microinjected Xenopus oocytes. Consistent with this observation, MCM2 and other MCMs copurified with Pol II and general transcription factors (GTFs) in high-molecular-weight holoenzyme complexes isolated from Xenopus oocytes and HeLa cells. Pol II and GTFs also copurified with MCMs isolated by anti-MCM3 immunoaffinity chromatography. MCMs were specifically displaced from the holoenzyme complex by antibody against the C-terminal domain (CTD) of Pol II. In addition, MCMs bound to a CTD affinity column, suggesting that their association with holoenzyme depends in part on this domain of Pol II. These results suggest a new function for MCM proteins as components of the Pol II transcriptional apparatus.
Collapse
Affiliation(s)
- K Yankulov
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Douziech M, Forget D, Greenblatt J, Coulombe B. Topological localization of the carboxyl-terminal domain of RNA polymerase II in the initiation complex. J Biol Chem 1999; 274:19868-73. [PMID: 10391932 PMCID: PMC4492719 DOI: 10.1074/jbc.274.28.19868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) functions at multiple stages of transcription and is involved in the coupling of transcription to pre-mRNA processing. We have used site-specific protein-DNA photocross-linking to determine the position of the CTD along promoter DNA in the transcriptional pre-initiation complex. Comparison of the promoter contacts made by RNAP II with or without the CTD indicate that the CTD approaches promoter DNA downstream of the transcriptional initiation site between positions +16 and +26. Incubation of pre-assembled initiation complexes with antibodies to the CTD prior to UV irradiation led to specific photocross-linking of the IgG heavy chain to nucleotide +17, indicating that the CTD is accessible for protein-protein interactions in a complex containing RNAP II and the general initiation factors. In conjunction with previously published observations, our structural data are fully compatible with the notion that DNA wrapping around RNAP II places the CTD and the RNA exit channel into juxtaposition and provide a rationale for contacts between the SRB-mediator complex and core RNAP II observed in the RNAP II holoenzyme.
Collapse
Affiliation(s)
- M Douziech
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
| | | | | | | |
Collapse
|
134
|
Wahi M, Komachi K, Johnson AD. Gene regulation by the yeast Ssn6-Tup1 corepressor. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:447-57. [PMID: 10384309 DOI: 10.1101/sqb.1998.63.447] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M Wahi
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
135
|
Winston F, Sudarsanam P. The SAGA of Spt proteins and transcriptional analysis in yeast: past, present, and future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:553-61. [PMID: 10384320 DOI: 10.1101/sqb.1998.63.553] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- F Winston
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
136
|
Ebright RH. RNA polymerase-DNA interaction: structures of intermediate, open, and elongation complexes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:11-20. [PMID: 10384266 DOI: 10.1101/sqb.1998.63.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- R H Ebright
- Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
137
|
Roeder RG. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:201-18. [PMID: 10384284 DOI: 10.1101/sqb.1998.63.201] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R G Roeder
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
138
|
Edmondson DG, Zhang W, Watson A, Xu W, Bone JR, Yu Y, Stillman D, Roth SY. In vivo functions of histone acetylation/deacetylation in Tup1p repression and Gcn5p activation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:459-68. [PMID: 10384310 DOI: 10.1101/sqb.1998.63.459] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- D G Edmondson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999; 63:405-45. [PMID: 10357856 PMCID: PMC98971 DOI: 10.1128/mmbr.63.2.405-445.1999] [Citation(s) in RCA: 818] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
140
|
Shirra MK, Arndt KM. Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae. Genetics 1999; 152:73-87. [PMID: 10224244 PMCID: PMC1460605 DOI: 10.1093/genetics/152.1.73] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Binding of the TATA-binding protein (TBP) to the promoter is a pivotal step in RNA polymerase II transcription. To identify factors that regulate TBP, we selected for suppressors of a TBP mutant that exhibits promoter-specific defects in activated transcription in vivo and severely reduced affinity for TATA boxes in vitro. Dominant mutations in SNF4 and recessive mutations in REG1, OPI1, and RTF2 were isolated that specifically suppress the inositol auxotrophy of the TBP mutant strains. OPI1 encodes a repressor of INO1 transcription. REG1 and SNF4 encode regulators of the Glc7 phosphatase and Snf1 kinase, respectively, and have well-studied roles in glucose repression. In two-hybrid assays, one SNF4 mutation enhances the interaction between Snf4 and Snf1. Suppression of the TBP mutant by our reg1 and SNF4 mutations appears unrelated to glucose repression, since these mutations do not alleviate repression of SUC2, and glucose levels have little effect on INO1 transcription. Moreover, mutations in TUP1, SSN6, and GLC7, but not HXK2 and MIG1, can cause suppression. Our data suggest that association of TBP with the TATA box may be regulated, directly or indirectly, by a substrate of Snf1. Analysis of INO1 transcription in various mutant strains suggests that this substrate is distinct from Opi1.
Collapse
Affiliation(s)
- M K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
141
|
Hirst M, Kobor MS, Kuriakose N, Greenblatt J, Sadowski I. GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8. Mol Cell 1999; 3:673-8. [PMID: 10360183 DOI: 10.1016/s1097-2765(00)80360-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphorylation of the yeast transcription factor GAL4 at S699 is required for efficient galactose-inducible transcription. We demonstrate that this site is a substrate for the RNA polymerase holoenzyme-associated CDK SRB10. S699 phosphorylation requires SRB10 in vivo, and this site is phosphorylated by purified SRB10/ SRB11 CDK/cyclin in vitro. RNA Pol II holoenzymes purified from WT yeast phosphorylate GAL4 at sites observed in vivo whereas holoenzymes from srb10 yeast are incapable of phosphorylating GAL4 at S699. Mutations at GAL4 S699 and srb10 are epistatic for GAL induction, demonstrating that SRB10 regulates GAL4 activity through this phosphorylation in vivo. These results demonstrate a function for the SRB10/ CDK8 holoenzyme-associated CDK that involves regulation of transactivators by phosphorylation during transcriptional activation.
Collapse
Affiliation(s)
- M Hirst
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
142
|
Abstract
Small differences in the levels of an extracellular signaling molecule can specify cell fate during development. Threshold responses are often determined at the level of transcription. Cell-specific and spatially localized patterns of gene expression depend on combinations of sequence-specific activators and repressors that bind to extensive cis-regulatory regions. Different mechanisms for integrating this complex regulatory information are discussed, particularly the role of coregulatory proteins, which are recruited to the DNA template by sequence-specific transcription factors. Recent studies suggest that a growing set of coactivators and corepressors mediate communication between diverse upstream regulatory proteins and the core RNA polymerase II transcription complex.
Collapse
Affiliation(s)
- M Mannervik
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
143
|
Abstract
1999 marks the 30th anniversary of the reported discovery of sigma factor and the bacterial RNA polymerase holoenzyme. In 1994, an RNA polymerase II complex was discovered in yeast - mammalian complexes were subsequently identified. Recent developments regarding the composition and function of RNA polymerase II complexes suggest, however, that the concept of the holoenzyme, as defined in bacteria, might not be relevant to eukaryotes.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA.
| | | |
Collapse
|
144
|
Ho CK, Shuman S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell 1999; 3:405-11. [PMID: 10198643 DOI: 10.1016/s1097-2765(00)80468-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capping is targeted to pre-mRNAs through binding of the guanylyltransferase component of the capping apparatus to the phosphorylated CTD of RNA polymerase II. We report that mammalian guanylyltransferase binds synthetic CTD peptides containing phosphoserine at either position 2 or 5 of the YSPTSPS heptad repeat. CTD peptides containing Ser-5-PO4 stimulate guanylyltransferase activity by enhancing enzyme affinity for GTP and increasing the yield of the enzyme-GMP intermediate. A CTD peptide containing Ser-2-PO4 has no effect on guanylyltransferase activity. This implies an allosteric change in guanylyltransferase conformation that is specified by the position of phosphoserine in the CTD. Stimulation of guanylyltransferase increases with the number of Ser-5-phosphorylated heptads. Our results underscore how mRNA production may be regulated by the display of different CTD phosphorylation arrays during transcription elongation.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
145
|
Chaves RS, Herrero P, Moreno F. Med8, a subunit of the mediator CTD complex of RNA polymerase II, directly binds to regulatory elements of SUC2 and HXK2 genes. Biochem Biophys Res Commun 1999; 254:345-50. [PMID: 9918841 DOI: 10.1006/bbrc.1998.9954] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a search to identify new factors required for expression of SUC2 gene in Saccharomyces cerevisiae, we have partially purified a 27 kDa protein (p27) that bound both the DRSs of the HXK2 gene and the UASs of SUC2 gene. The amino terminal sequence of p27 identified the MED8 gene (open reading frame YBR193C), located in chromosome II of S. cerevisiae, as the gene coding for the protein. Disruption of this gene has demonstrated that is an essential gene for yeast growth. To determine whether the p27 protein represents the Med8 product, we expressed MED8 gene in E. coli and demonstrated that the heterologous synthesized protein specifically binds to both UASSUC2 and DRS2HXK2. This observation suggests that Med8 may be important for the coupling of the glucose repression pathway of SUC2 gene to the HXK2 gene expression. Med8 has been described as a mediator protein interacting with the CTD of the RNA polymerase II. Thus, the role of Med8 could be to act as coupling factor by linking activating and repressing transcription complexes to the RNA polymerase II holoenzyme transcriptional machinery.
Collapse
Affiliation(s)
- R S Chaves
- Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, 33006-, Spain
| | | | | |
Collapse
|
146
|
Balciunas D, Gälman C, Ronne H, Björklund S. The Med1 subunit of the yeast mediator complex is involved in both transcriptional activation and repression. Proc Natl Acad Sci U S A 1999; 96:376-81. [PMID: 9892641 PMCID: PMC15144 DOI: 10.1073/pnas.96.2.376] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mediator complex is essential for regulated transcription in vitro. In the yeast Saccharomyces cerevisiae, mediator comprises >15 subunits and interacts with the C-terminal domain of the largest subunit of RNA polymerase II, thus forming an RNA polymerase II holoenzyme. Here we describe the molecular cloning of the MED1 cDNA encoding the 70-kDa subunit of the mediator complex. Yeast cells lacking the MED1 gene are viable but show a complex phenotype including partial defects in both repression and induction of the GAL genes. Together with results on other mediator subunits, this implies that the mediator is involved in both transcriptional activation and repression. Similar to mutations in the SRB10 and SRB11 genes encoding cyclin C and the cyclin C-dependent kinase, a disruption of the MED1 gene can partially suppress loss of the Snf1 protein kinase. We further found that a lexA-Med1 fusion protein is a strong activator in srb11 cells, which suggests a functional link between Med1 and the Srb10/11 complex. Finally, we show that the Med2 protein is lost from the mediator on purification from Med1-deficient cells, indicating a physical interaction between Med1 and Med2.
Collapse
Affiliation(s)
- D Balciunas
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Center, Box 582, 751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
147
|
Myers LC, Gustafsson CM, Hayashibara KC, Brown PO, Kornberg RD. Mediator protein mutations that selectively abolish activated transcription. Proc Natl Acad Sci U S A 1999; 96:67-72. [PMID: 9874773 PMCID: PMC15094 DOI: 10.1073/pnas.96.1.67] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/1998] [Indexed: 11/18/2022] Open
Abstract
Deletion of any one of three subunits of the yeast Mediator of transcriptional regulation, Med2, Pgd1 (Hrs1), and Sin4, abolished activation by Gal4-VP16 in vitro. By contrast, other Mediator functions, stimulation of basal transcription and of TFIIH kinase activity, were unaffected. A different but overlapping Mediator subunit dependence was found for activation by Gcn4. The genetic requirements for activation in vivo were closely coincident with those in vitro. A whole genome expression profile of a Deltamed2 strain showed diminished transcription of a subset of inducible genes but only minor effects on "basal" transcription. These findings make an important connection between transcriptional activation in vitro and in vivo, and identify Mediator as a "global" transcriptional coactivator.
Collapse
Affiliation(s)
- L C Myers
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
148
|
Holstege FC, Young RA. Transcriptional regulation: contending with complexity. Proc Natl Acad Sci U S A 1999; 96:2-4. [PMID: 9874759 PMCID: PMC33537 DOI: 10.1073/pnas.96.1.2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- F C Holstege
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
149
|
Gu W, Malik S, Ito M, Yuan CX, Fondell JD, Zhang X, Martinez E, Qin J, Roeder RG. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol Cell 1999; 3:97-108. [PMID: 10024883 DOI: 10.1016/s1097-2765(00)80178-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel human complex that can either repress activator-dependent transcription mediated by PC4, or, at limiting TFIIH, act synergistically with PC4 to enhance activator-dependent transcription has been purified. This complex contains homologs of a subset of yeast mediator/holoenzyme components (including SRB7, SRB10, SRB11, MED6, and RGR1), homologs of other yeast transcriptional regulatory factors (SOH1 and NUT2), and, significantly, some components (TRAP220, TRAP170/hRGR1, and TRAP100) of a human thyroid hormone receptor-associated coactivator complex. The complex shows direct activator interactions but, unlike yeast mediator, can act independently of the RNA polymerase II CTD. These findings demonstrate both positive and negative functional capabilities for the human complex, emphasize novel (CTD-independent) regulatory mechanisms, and link the complex to other human coactivator complexes.
Collapse
Affiliation(s)
- W Gu
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Miyao T, Woychik NA. RNA polymerase subunit RPB5 plays a role in transcriptional activation. Proc Natl Acad Sci U S A 1998; 95:15281-6. [PMID: 9860960 PMCID: PMC28034 DOI: 10.1073/pnas.95.26.15281] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mutation in RPB5 (rpb5-9), an essential RNA polymerase subunit assembled into RNA polymerases I, II, and III, revealed a role for this subunit in transcriptional activation. Activation by GAL4-VP16 was impaired upon in vitro transcription with mutant whole-cell extracts. In vivo experiments using inducible reporter plasmids and Northern analysis support the in vitro data and demonstrate that RPB5 influences activation at some, but not all, promoters. Remarkably, this mutation maps to a conserved region of human RPB5 implicated by others to play a role in activation. Chimeric human-yeast RPB5 containing this conserved region now can function in place of its yeast counterpart. The defects noted with rpb5-9 are similar to those seen in truncation mutants of the RPB1-carboxyl terminal domain (CTD). We demonstrate that RPB5 and the RPB1-CTD have overlapping roles in activation because the double mutant is synthetically lethal and has exacerbated activation defects at the GAL1/10 promoter. These studies demonstrate that there are multiple activation targets in RNA polymerase II and that RPB5 and the CTD have similar roles in activation.
Collapse
Affiliation(s)
- T Miyao
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Molecular Genetics and Microbiology, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | |
Collapse
|