101
|
Gating in CNGA1 channels. Pflugers Arch 2009; 459:547-55. [PMID: 19898862 DOI: 10.1007/s00424-009-0751-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 01/07/2023]
Abstract
The aminoacid sequences of CNG and K(+) channels share a significant sequence identity, and it has been suggested that these channels have a common ancestral 3D architecture. However, K(+) and CNG channels have profoundly different physiological properties: indeed, K(+) channels have a high ionic selectivity, their gating strongly depends on membrane voltage and when opened by a steady depolarizing voltage several K(+) channels inactivate, whereas CNG channels have a low ion selectivity, their gating is poorly voltage dependent, and they do not desensitize in the presence of a steady concentration of cyclic nucleotides that cause their opening. The purpose of the present review is to summarize and recapitulate functional and structural differences between K(+) and CNG channels with the aim to understand the gating mechanisms of CNG channels.
Collapse
|
102
|
Waldeck C, Vocke K, Ungerer N, Frings S, Möhrlen F. Activation and desensitization of the olfactory cAMP-gated transduction channel: identification of functional modules. ACTA ACUST UNITED AC 2009; 134:397-408. [PMID: 19822638 PMCID: PMC2768803 DOI: 10.1085/jgp.200910296] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Olfactory receptor neurons respond to odor stimulation with a receptor potential that results from the successive activation of cyclic AMP (cAMP)-gated, Ca2+-permeable channels and Ca2+-activated chloride channels. The cAMP-gated channels open at micromolar concentrations of their ligand and are subject to a Ca2+-dependent feedback inhibition by calmodulin. Attempts to understand the operation of these channels have been hampered by the fact that the channel protein is composed of three different subunits, CNGA2, CNGA4, and CNGB1b. Here, we explore the individual role that each subunit plays in the gating process. Using site-directed mutagenesis and patch clamp analysis, we identify three functional modules that govern channel operation: a module that opens the channel, a module that stabilizes the open state at low cAMP concentrations, and a module that mediates rapid Ca2+-dependent feedback inhibition. Each subunit could be assigned to one of these functions that, together, define the gating logic of the olfactory transduction channel.
Collapse
Affiliation(s)
- Clemens Waldeck
- Department of Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
103
|
Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong ACM, Tong L, Isacoff EY, Yang J. Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 2009; 106:11558-63. [PMID: 19556541 PMCID: PMC2710685 DOI: 10.1073/pnas.0903684106] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Indexed: 01/20/2023] Open
Abstract
Mutations in PKD1 and TRPP2 account for nearly all cases of autosomal dominant polycystic kidney disease (ADPKD). These 2 proteins form a receptor/ion channel complex on the cell surface. Using a combination of biochemistry, crystallography, and a single-molecule method to determine the subunit composition of proteins in the plasma membrane of live cells, we find that this complex contains 3 TRPP2 and 1 PKD1. A newly identified coiled-coil domain in the C terminus of TRPP2 is critical for the formation of this complex. This coiled-coil domain forms a homotrimer, in both solution and crystal structure, and binds to a single coiled-coil domain in the C terminus of PKD1. Mutations that disrupt the TRPP2 coiled-coil domain trimer abolish the assembly of both the full-length TRPP2 trimer and the TRPP2/PKD1 complex and diminish the surface expression of both proteins. These results have significant implications for the assembly, regulation, and function of the TRPP2/PKD1 complex and the pathogenic mechanism of some ADPKD-producing mutations.
Collapse
Affiliation(s)
- Yong Yu
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Maximilian H. Ulbrich
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Ming-Hui Li
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Xing-Zhen Chen
- Membrane Protein Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7; and
| | - Albert C. M. Ong
- Kidney Genetics Group, Academic Unit of Nephrology, Sheffield Kidney Institute, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Material Science and Physical Bioscience Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
104
|
Abstract
Ion channels are the gatekeepers to neuronal excitability. Retinal neurons of vertebrates and invertebrates, neurons of the suprachiasmatic nucleus (SCN) of vertebrates, and pinealocytes of non-mammalian vertebrates display daily rhythms in their activities. The interlocking transcription-translation feedback loops with specific post-translational modulations within individual cells form the molecular clock, the basic mechanism that maintains the autonomic approximately 24-h rhythm. The molecular clock regulates downstream output signaling pathways that further modulate activities of various ion channels. Ultimately, it is the circadian regulation of ion channel properties that govern excitability and behavior output of these neurons. In this review, we focus on the recent development of research in circadian neurobiology mainly from 1980 forward. We will emphasize the circadian regulation of various ion channels, including cGMP-gated cation channels, various voltage-gated calcium and potassium channels, Na(+)/K(+)-ATPase, and a long-opening cation channel. The cellular mechanisms underlying the circadian regulation of these ion channels and their functions in various tissues and organisms will also be discussed. Despite the magnitude of chronobiological studies in recent years, the circadian regulation of ion channels still remains largely unexplored. Through more investigation and understanding of the circadian regulation of ion channels, the future development of therapeutic strategies for the treatment of sleep disorders, cardiovascular diseases, and other illnesses linked to circadian misalignment will benefit.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | |
Collapse
|
105
|
Hirono M, Yamada M, Obata K. Ethanol enhances both action potential-dependent and action potential-independent GABAergic transmission onto cerebellar Purkinje cells. Neuropharmacology 2009; 57:109-20. [PMID: 19426745 DOI: 10.1016/j.neuropharm.2009.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 11/19/2022]
Abstract
Ethanol (EtOH) modulates synaptic efficacy in various brain areas, including the cerebellum, which plays a role in motor coordination. Previous studies have shown that EtOH enhances tonic inhibition of cerebellar granule cells, which is one of the possible reasons for the alcohol-induced motor impairment. However, the effects of EtOH on molecular layer interneurons (MLIs) in the mouse cerebellum have remained unknown. Here we found that MLIs were depolarized by EtOH through enhancement of hyperpolarization-activated cationic currents (I(h)). Under physiological conditions, a low EtOH concentration (3-50 mM) caused a small increase in the firing rate of MLIs, whereas, in the presence of blockers for ionotropic glutamate and GABA receptors, EtOH (>or=10 mM) robustly enhanced MLI firing, suggesting that synaptic inputs, which seem to serve as the phasic inhibition, could suppress the EtOH-mediated excitation of MLIs and Purkinje cells (PCs). Even in the absence of synaptic blockers, a high EtOH concentration (100 mM) markedly increased the firing rate of MLIs to enhance GABAergic transmission. Furthermore, 100 mM EtOH-facilitated miniature IPSCs via a mechanism that depended on intracellular cyclic AMP, voltage-dependent Ca(2+) channels, and intracellular Ca(2+) stores, but was independent of I(h) or PKA. The two distinct effects of a high EtOH concentration (>or=100 mM), however, failed to attenuate the EtOH-induced strong depolarization of MLIs. These results suggest that acute exposure to a low EtOH concentration (<or=50 mM) enhanced GABAergic synaptic transmission, which suppressed the EtOH-evoked excitation of MLIs and PCs, thereby maintaining precise synaptic integration of PCs.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Yamada Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
106
|
Kwan HY, Huang Y, Yao XQ, Leung FP. Role of cyclic nucleotides in the control of cytosolic Ca2+ levels in vascular endothelial cells. Clin Exp Pharmacol Physiol 2009; 36:857-66. [PMID: 19413591 DOI: 10.1111/j.1440-1681.2009.05199.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. Endothelial cells have a key role in the cardiovascular system. Most endothelial cell functions depend on changes in cytosolic Ca(2+) concentrations ([Ca(2+)](i)) to some extent and Ca2+ signalling acts to link external stimuli with the synthesis and release of regulatory factors in endothelial cells. The [Ca(2+)](i) is maintained by a well-balanced Ca(2+) flux across the endoplasmic reticulum and plasma membrane. 2. Cyclic nucleotides, such as cAMP and cGMP, are very important second messengers. The cyclic nucleotides can affect [Ca(2+)](i) directly or indirectly (via the actions of protein kinase (PK) A or PKG-mediated phosphorylation) by regulating Ca(2+) mobilization and Ca(2+) influx. Fine-tuning of [Ca(2+)](i) is also fundamental to protect endothelial cells against damaged caused by the excessive accumulation of Ca(2+). 3. Therapeutic agents that control cAMP and cGMP levels have been used to treat various cardiovascular diseases. 4. The aim of the present review is to discuss: (i) the functions of endothelial cells; (ii) the importance of [Ca(2+)](i) in endothelial cells; (iii) the impact of excessive [Ca(2+)](i) in endothelial cells; and (iv) the balanced control of [Ca(2+)](i) in endothelial cells via involvement of cyclic nucleotides (cAMP and cGMP) and their general effectors.
Collapse
Affiliation(s)
- H Y Kwan
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
107
|
Kizhatil K, Baker SA, Arshavsky VY, Bennett V. Ankyrin-G promotes cyclic nucleotide-gated channel transport to rod photoreceptor sensory cilia. Science 2009; 323:1614-7. [PMID: 19299621 PMCID: PMC2792576 DOI: 10.1126/science.1169789] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels localize exclusively to the plasma membrane of photosensitive outer segments of rod photoreceptors where they generate the electrical response to light. Here, we report the finding that targeting of CNG channels to the rod outer segment required their interaction with ankyrin-G. Ankyrin-G localized exclusively to rod outer segments, coimmunoprecipitated with the CNG channel, and bound to the C-terminal domain of the channel beta1 subunit. Ankyrin-G depletion in neonatal mouse retinas markedly reduced CNG channel expression. Transgenic expression of CNG channel beta-subunit mutants in Xenopus rods showed that ankyrin-G binding was necessary and sufficient for targeting of the beta1 subunit to outer segments. Thus, ankyrin-G is required for transport of CNG channels to the plasma membrane of rod outer segments.
Collapse
|
108
|
Mazzolini M, Anselmi C, Torre V. The analysis of desensitizing CNGA1 channels reveals molecular interactions essential for normal gating. ACTA ACUST UNITED AC 2009; 133:375-86. [PMID: 19289572 PMCID: PMC2699107 DOI: 10.1085/jgp.200810157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pore region of cyclic nucleotide–gated (CNG) channels acts as the channel gate. Therefore, events occurring in the cyclic nucleotide–binding (CNB) domain must be coupled to the movements of the pore walls. When Glu363 in the pore region, Leu356 and Thr355 in the P helix, and Phe380 in the upper portion of the S6 helix are mutated into an alanine, gating is impaired: mutant channels E363A, L356A, T355A, and F380A desensitize in the presence of a constant cGMP concentration, contrary to what can be observed in wild-type (WT) CNGA1 channels. Similarly to C-type inactivation of K+ channels, desensitization in these mutant channels is associated with rearrangements of residues in the outer vestibule. In the desensitized state, Thr364 residues in different subunits become closer and Pro366 becomes more accessible to extracellular reagents. Desensitization is also observed in the mutant channel L356C, but not in the double-mutant channel L356C+F380C. Mutant channels L356F and F380K did not express, but cGMP-gated currents with a normal gating were observed in the double-mutant channels L356F+F380L and L356D+F380K. Experiments with tandem constructs with L356C, F380C, and L356C+F380C and WT channels indicate that the interaction between Leu356 and Phe380 is within the same subunit. These results show that Leu356 forms a hydrophobic interaction with Phe380, coupling the P helix with S6, whereas Glu363 could interact with Thr355, coupling the pore wall to the P helix. These interactions are essential for normal gating and underlie the transduction between the CNB domain and the pore.
Collapse
Affiliation(s)
- Monica Mazzolini
- International School for Advanced Studies, I-34014 Trieste, Italy
| | | | | |
Collapse
|
109
|
Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol 2009; 30:10-29. [PMID: 18708085 DOI: 10.1016/j.yfrne.2008.07.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 04/28/2008] [Accepted: 07/21/2008] [Indexed: 01/22/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is the first key hormone of reproduction. GnRH analogs are extensively used in in vitro fertilization, and treatment of sex hormone-dependent cancers, due to their ability to bring about 'chemical castration'. The interaction of GnRH with its cognate type I receptor (GnRHR) in pituitary gonadotropes results in the activation of Gq/G(11), phospholipase Cbeta (PLCbetaI), PLA(2), and PLD. Sequential activation of the phospholipases generates the second messengers inositol 1, 4, 5-trisphosphate (IP(3)), diacylglycerol (DAG), and arachidonic acid (AA), which are required for Ca(2+) mobilization, the activation of various protein kinase C isoforms (PKCs), and the production of prostaglandin (PG) and other metabolites of AA, respectively. PKC isoforms are the major mediators of the downstream activation of a number of mitogen-activated protein kinase (MAPK) cascades by GnRH, namely: extracellular signal-regulated kinase (ERK), jun-N-terminal kinase (JNK), and p38MAPK. The activated MAPKs phosphorylate both cytosolic and nuclear proteins to initiate the transcriptional activation of the gonadotropin subunit genes and the GnRHR. While Ca(2+) mobilization has been found to initiate rapid gonadotropin secretion, Ca(2+), together with various PKC isoforms, MAPKs and AA metabolites also serve as key nodes, in the GnRH-stimulated signaling network that enables the gonadotropes to decode GnRH pulse frequencies and translating that into differential gonadotropin synthesis and release. Even though pulsatility of GnRH is recognized as a major determinant for differential gonadotropin subunit gene expression and gonadotropin secretion very little is yet known about the signaling circuits governing GnRH action at the 'Systems Biology' level. Direct apoptotic and metastatic effects of GnRH analogs in gonadal steroid-dependent cancers expressing the GnRHR also seem to be mediated by the activation of the PKC/MAPK pathways. However, the mechanisms dictating life (pituitary) vs. death (cancer) decisions made by the same GnRHR remain elusive. Understanding these molecular mechanisms triggered by the GnRHR through biochemical and 'Systems Biology' approaches would provide the basis for the construction of the dynamic connectivity maps, which operate in the various cell types (endocrine, cancer, and immune system) targeted by GnRH. The connectivity maps will open a new vista for exploring the direct effects of GnRH analogs in tumors and the design of novel combined therapies for fertility control, reproductive disorders and cancers.
Collapse
|
110
|
Abstract
Cyclic nucleotide-gated (CNG) channels are ion channels which are activated by the binding of cGMP or cAMP. The channels are important cellular switches which transduce changes in intracellular concentrations of cyclic nucleotides into changes of the membrane potential and the Ca2+ concentration. CNG channels play a central role in the signal transduction pathways of vision and olfaction. Structurally, the channels belong to the superfamily of pore-loop cation channels. They share a common domain structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and Eag-like K+ channels. In this chapter, we give an overview on the molecular properties of CNG channels and describe the signal transduction pathways these channels are involved in. We will also summarize recent insights into the physiological and pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient mouse models and human channelopathies.
Collapse
Affiliation(s)
- Martin Biel
- Center for Integrated Protein Science CIPS-M and Zentrum für Pharmaforschung-Department Pharmazie, Pharmakologie für Naturwissenschaften, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München, 81377, Germany.
| | | |
Collapse
|
111
|
Oesch-Bartlomowicz B, Oesch F. Role of cAMP in mediating AHR signaling. Biochem Pharmacol 2008; 77:627-41. [PMID: 19013136 DOI: 10.1016/j.bcp.2008.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/11/2008] [Accepted: 10/13/2008] [Indexed: 01/30/2023]
Abstract
Regulation of the nuclear import of many transcription factors represents a step in gene regulation which is crucial for a number of cellular processes. The aryl hydrocarbon receptor (AHR), a basic helix-loop-helix protein of the PAS (PER-ARNT-SIM) family of transcriptional regulators is a cytosol-associated and ligand-activated receptor. The environmental toxin dioxin binds with high affinity to AHR rendering it nuclear and leading to the activation of AHR sensitive genes. However, the fact, that the AHR mediates a large variety of physiological events without the involvement of any known exogenous ligand, including liver and vascular system development, maturation of the immune system, regulation of genes involved in cellular growth, cell differentiation and circadian rhythm, speaks for an important role of AHR in cell biology independent of the presence of an exogenous ligand. Different approaches were applied to study mechanism(s) which render AHR nuclear and design its function in absence of exogenous ligands. We found that AHR is sensitive to cAMP signaling mediated by cAMP-dependent protein kinase (PKA) which fundamentally differs from AHR signaling mediated by the exogenous ligand dioxin. It has been shown that PKA mediated signaling can be confined by compartmentalization of signaling components in microdomains conferring specificity to signaling by the ubiquitous second messenger cAMP. Moreover, A-kinase-anchoring proteins (AKAPs) and newly discovered cAMP receptors, Epac (exchange protein directly activated by cAMP), may give us a further chance to enter into new dimensions of cAMP signal transmissions that potentially may bring us closer to AHR physiology.
Collapse
|
112
|
Togashi K, von Schimmelmann MJ, Nishiyama M, Lim CS, Yoshida N, Yun B, Molday RS, Goshima Y, Hong K. Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion. Neuron 2008; 58:694-707. [PMID: 18549782 DOI: 10.1016/j.neuron.2008.03.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 02/06/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
Cyclic nucleotide-gated channels (CNGCs) transduce external signals required for sensory processes, e.g., photoreception, olfaction, and taste. Nerve growth cone guidance by diffusible attractive and repulsive molecules is regulated by differential growth cone Ca2+ signaling. However, the Ca2+-conducting ion channels that transduce guidance molecule signals are largely unknown. We show that rod-type CNGC-like channels function in the repulsion of cultured Xenopus spinal neuron growth cones by Sema3A, which triggers the production of the cGMP that activates the Xenopus CNGA1 (xCNGA1) subunit-containing channels in interneurons. Downregulation of xCNGA1 or overexpression of a mutant xCNGA1 incapable of binding cGMP abolished CNG currents and converted growth cone repulsion to attraction in response to Sema3A. We also show that Ca2+ entry through xCNGCs is required to mediate the repulsive Sema3A signal. These studies extend our knowledge of the function of CNGCs by demonstrating their requirement for signal transduction in growth cone guidance.
Collapse
Affiliation(s)
- Kazunobu Togashi
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016-6402, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kelley DJ, Bhattacharyya A, Lahvis GP, Yin JCP, Malter J, Davidson RJ. The cyclic AMP phenotype of fragile X and autism. Neurosci Biobehav Rev 2008; 32:1533-43. [PMID: 18601949 DOI: 10.1016/j.neubiorev.2008.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/06/2008] [Accepted: 06/08/2008] [Indexed: 12/27/2022]
Abstract
Cyclic AMP (cAMP) is a second messenger involved in many processes including mnemonic processing and anxiety. Memory deficits and anxiety are noted in the phenotype of fragile X (FX), the most common heritable cause of mental retardation and autism. Here we review reported observations of altered cAMP cascade function in FX and autism. Cyclic AMP is a potentially useful biochemical marker to distinguish autism comorbid with FX from autism per se and the cAMP cascade may be a viable therapeutic target for both FX and autism.
Collapse
Affiliation(s)
- Daniel J Kelley
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Altieri SL, Clayton GM, Silverman WR, Olivares AO, De la Cruz EM, Thomas LR, Morais-Cabral JH. Structural and energetic analysis of activation by a cyclic nucleotide binding domain. J Mol Biol 2008; 381:655-69. [PMID: 18619611 DOI: 10.1016/j.jmb.2008.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/28/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
MlotiK1 is a prokaryotic homolog of cyclic-nucleotide-dependent ion channels that contains an intracellular C-terminal cyclic nucleotide binding (CNB) domain. X-ray structures of the CNB domain have been solved in the absence of ligand and bound to cAMP. Both the full-length channel and CNB domain fragment are easily expressed and purified, making MlotiK1 a useful model system for dissecting activation by ligand binding. We have used X-ray crystallography to determine three new MlotiK1 CNB domain structures: a second apo configuration, a cGMP-bound structure, and a second cAMP-bound structure. In combination, the five MlotiK1 CNB domain structures provide a unique opportunity for analyzing, within a single protein, the structural differences between the apo state and the bound state, and the structural variability within each state. With this analysis as a guide, we have probed the nucleotide selectivity and importance of specific residue side chains in ligand binding and channel activation. These data help to identify ligand-protein interactions that are important for ligand dependence in MlotiK1 and, more globally, in the class of nucleotide-dependent proteins.
Collapse
Affiliation(s)
- Stephen L Altieri
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Wensel TG. Signal transducing membrane complexes of photoreceptor outer segments. Vision Res 2008; 48:2052-61. [PMID: 18456304 DOI: 10.1016/j.visres.2008.03.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/25/2022]
Abstract
Signal transduction in outer segments of vertebrate photoreceptors is mediated by a series of reactions among multiple polypeptides that form protein-protein complexes within or on the surface of the disk and plasma membranes. The individual components in the activation reactions include the photon receptor rhodopsin and the products of its absorption of light, the three subunits of the G protein, transducin, the four subunits of the cGMP phosphodiesterase, PDE6 and the four subunits of the cGMP-gated cation channel. Recovery involves membrane complexes with additional polypeptides including the Na(+)/Ca(2+), K(+) exchanger, NCKX2, rhodopsin kinases RK1 and RK7, arrestin, guanylate cyclases, guanylate cyclase activating proteins, GCAP1 and GCAP2, and the GTPase accelerating complex of RGS9-1, G(beta5L), and membrane anchor R9AP. Modes of membrane binding by these polypeptides include transmembrane helices, fatty acyl or isoprenyl modifications, polar interactions with lipid head groups, non-polar interactions of hydrophobic side chains with lipid hydrocarbon phase, and both polar and non-polar protein-protein interactions. In the course of signal transduction, complexes among these polypeptides form and dissociate, and undergo structural rearrangements that are coupled to their interactions with and catalysis of reactions by small molecules and ions, including guanine nucleotides, ATP, Ca(2+), Mg(2+), and lipids. The substantial progress that has been made in understanding the composition and function of these complexes is reviewed, along with the more preliminary state of our understanding of the structures of these complexes and the challenges and opportunities that present themselves for deepening our understanding of these complexes, and how they work together to convert a light signal into an electrical signal.
Collapse
Affiliation(s)
- Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
116
|
Mazzolini M, Nair AV, Torre V. A comparison of electrophysiological properties of the CNGA1, CNGA1tandem and CNGA1cys-free channels. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:947-59. [PMID: 18379773 DOI: 10.1007/s00249-008-0312-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/10/2008] [Indexed: 11/25/2022]
Abstract
Three constructs are used for the analysis of biophysical properties of CNGA1 channels: the WT CNGA1 channel, a CNGA1 channel where all endogenous cysteines were removed (CNGA1cys-free) and a construct composed of two CNGA1 subunits connected by a small linker (CNGA1tandem). So far, it has been assumed, but not proven, that the molecular structure of these ionic channels is almost identical. The I/V relations, ionic selectivity to alkali monovalent cations, blockage by tetracaine and TMA+ were not significantly different. The cGMP dose response and blockage by TEA+ and Cd2+ were instead significantly different in CNGA1 and CNGA1cys-free channels, but not in CNGA1 and CNGA1tandem channels. Cd2+ blocked irreversibly the mutant channel A406C in the absence of cGMP. By contrast, Cd2+ did not block the mutant channel A406C in the CNGA1cys-free background (A406Ccys-free), but an irreversible and almost complete blockage was observed in the presence of the cross-linker M-4-M. Results obtained with different MTS cross-linkers and reagents suggest that the 3D structure of the CNGA1cys-free differs from that of the CNGA1 channel and that the distance between homologous residues at position 406 in CNGA1cys-free is longer than in the WT CNGA1 by several Angstroms.
Collapse
Affiliation(s)
- Monica Mazzolini
- International School for Advanced Studies, via Beirut 2-4, 34014, Trieste, Italy
| | | | | |
Collapse
|
117
|
Gutièrrez-Mecinas M, Blasco-Ibáñez JM, Nàcher J, Varea E, Martínez-Guijarro FJ, Crespo C. Distribution of the A3 subunit of the cyclic nucleotide-gated ion channels in the main olfactory bulb of the rat. Neuroscience 2008; 153:1164-76. [PMID: 18434027 DOI: 10.1016/j.neuroscience.2008.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
Previous data suggest that cyclic GMP (cGMP) signaling can play key roles in the circuitry of the olfactory bulb (OB). Therefore, the expression of cGMP-selective subunits of the cyclic nucleotide-gated ion channels (CNGs) can be expected in this brain region. In the present study, we demonstrate a widespread expression of the cGMP-selective A3 subunit of the cyclic nucleotide-gated ion channels (CNGA3) in the rat OB. CNGA3 appears in principal cells, including mitral cells and internal, medium and external tufted cells. Moreover, it appears in two populations of interneurons, including a subset of periglomerular cells and a group of deep short-axon cells. In addition to neurons, CNGA3-immunoreactivity is found in the ensheathing glia of the olfactory nerve. Finally, an abundant population of CNGA3-containing cells with fusiform morphology and radial processes is found in the inframitral layers. These cells express doublecortin and have a morphology similar to that of the undifferentiated cells that leave the rostral migratory stream and migrate radially through the layers of the OB. Altogether, our results suggest that CNGA3 can play important and different roles in the OB. Channels composed of this subunit can be involved in the processing of the olfactory information taking place in the bulbar circuitry. Moreover, they can be involved in the function of the ensheathing glia and in the radial migration of immature cells through the bulbar layers.
Collapse
Affiliation(s)
- M Gutièrrez-Mecinas
- Departamento de Biología Celular, Unidad de Neurobiología, Facultad de Ciencias Biológicas, Universidad de Valencia, Street Dr. Moliner 50, Burjasot, Spain
| | | | | | | | | | | |
Collapse
|
118
|
Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol Neurobiol 2008; 35:266-77. [PMID: 17917115 DOI: 10.1007/s12035-007-0025-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/30/1999] [Accepted: 01/05/2007] [Indexed: 10/22/2022]
Abstract
Channels directly gated by cyclic nucleotides (CNG channels) are important cellular switches that mediate influx of Na+ and Ca2+ in response to increases in the intracellular concentration of cAMP and cGMP. In photoreceptors and olfactory receptor neurons, these channels serve as final targets for cGMP and cAMP signaling pathways that are initiated by the absorption of photons and the binding of odorants, respectively. CNG channels have been also found in other types of neurons and in non-excitable cells. However, in most of these cells, the physiological role of CNG channels has yet to be determined. CNG channels have a complex heteromeric structure. The properties of individual subunits that assemble in specific stoichiometries to the native channels have been extensively investigated in heterologous expression systems. Recently, mutations in human CNG channel genes leading to inherited diseases (so-called channelopathies) have been functionally characterized. Moreover, mouse knockout models were generated to define the role of CNG channel proteins in vivo. In this review, we will summarize recent insights into the physiological and pathophysiological role of CNG channel proteins that have emerged from genetic studies in mice and humans.
Collapse
|
119
|
Alam A, Shi N, Jiang Y. Structural insight into Ca2+ specificity in tetrameric cation channels. Proc Natl Acad Sci U S A 2007; 104:15334-9. [PMID: 17878296 PMCID: PMC2000519 DOI: 10.1073/pnas.0707324104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apparent blockage of monovalent cation currents by the permeating blocker Ca(2+) is a physiologically essential phenomenon relevant to cyclic nucleotide-gated (CNG) channels. The recently determined crystal structure of a bacterial homolog of CNG channel pores, the NaK channel, revealed a Ca(2+) binding site at the extracellular entrance to the selectivity filter. This site is not formed by the side-chain carboxylate groups from the conserved acidic residue, Asp-66 in NaK, conventionally thought to directly chelate Ca(2+) in CNG channels, but rather by the backbone carbonyl groups of residue Gly-67. Here we present a detailed structural analysis of the NaK channel with a focus on Ca(2+) permeability and blockage. Our results confirm that the Asp-66 residue, although not involved in direct chelation of Ca(2+), plays an essential role in external Ca(2+) binding. Furthermore, we give evidence for the presence of a second Ca(2+) binding site within the NaK selectivity filter where monovalent cations also bind, providing a structural basis for Ca(2+) permeation through the NaK pore. Compared with other Ca(2+)-binding proteins, both sites in NaK present a novel mode of Ca(2+) chelation, using only backbone carbonyl oxygen atoms from residues in the selectivity filter. The external site is under indirect control by an acidic residue (Asp-66), making it Ca(2+)-specific. These findings give us a glimpse of the possible underlying mechanisms allowing Ca(2+) to act both as a permeating ion and blocker of CNG channels and raise the possibility of a similar chemistry governing Ca(2+) chelation in Ca(2+) channels.
Collapse
Affiliation(s)
- Amer Alam
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040
| | - Ning Shi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040
- *To whom correspondence should be addressed at:
Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040. E-mail:
| |
Collapse
|
120
|
Strassmaier T, Karpen JW. Novel N7- and N1-substituted cGMP derivatives are potent activators of cyclic nucleotide-gated channels. J Med Chem 2007; 50:4186-94. [PMID: 17665892 PMCID: PMC2597524 DOI: 10.1021/jm0702581] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels, key players in olfactory and visual signal transduction, generate electrical responses to odorant- and light-induced changes in cyclic nucleotide concentration. Previous work suggests that substitutions are tolerated solely at the C8 position on the purine ring of cGMP. Our studies with C8, 2'-OH, and 2-NH2-modified cGMP derivatives support this assertion. To gain further insight into determinants important for CNG channel binding and activation, we targeted previously unexplored positions. Modifications at N7 of 8-SH-cGMP (6) are well tolerated by olfactory and retinal rod CNG channels. Toleration of a very large substituent, a 3400 molecular weight PEG, at either N7 or C8 argues for broad accommodation at these positions in the binding site. Modification at N1 of cGMP reduces the apparent affinity for the channel; however, when combined with 8-parachlorophenylthio derivatization, the resulting cGMP analogue is more potent than cGMP itself. These studies establish the N7 and N1 positions of cGMP as targets for modification in the design of novel CNG channel agonists.
Collapse
Affiliation(s)
| | - Jeffrey W. Karpen
- Corresponding author: Jeffrey W. Karpen, Phone 503-494-7463. E-mail:
| |
Collapse
|
121
|
Vassalle M. The vicissitudes of the pacemaker current I Kdd of cardiac purkinje fibers. J Biomed Sci 2007; 14:699-716. [PMID: 17564816 DOI: 10.1007/s11373-007-9182-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/10/2007] [Indexed: 01/23/2023] Open
Abstract
The mechanisms underlying the pacemaker current in cardiac tissues is not agreed upon. The pacemaker potential in Purkinje fibers has been attributed to the decay of the potassium current I (Kdd). An alternative proposal is that the hyperpolarization-activated current I (f) underlies the pacemaker potential in all cardiac pacemakers. The aim of this review is to retrace the experimental development related to the pacemaker mechanism in Purkinje fibers with reference to findings about the pacemaker mechanism in the SAN as warranted. Experimental data and their interpretation are critically reviewed. Major findings were attributed to K(+) depletion in narrow extracellular spaces which would result in a time dependent decay of the inward rectifier current I (K1). In turn, this decay would be responsible for a "fake" reversal of the pacemaker current. In order to avoid such a postulated depletion, Ba(2+) was used to block the decay of I (K1). In the presence of Ba(2+) the time-dependent current no longer reversed and instead increased with time and more so at potentials as negative as -120 mV. In this regard, the distinct possibility needs to be considered that Ba(2+) had blocked I (Kdd) (and not only I (K1)). That indeed this was the case was demonstrated by studying single Purkinje cells in the absence and in the presence of Ba(2+). In the absence of Ba(2+), I (Kdd) was present in the pacemaker potential range and reversed at E (K). In the presence of Ba(2+), I (Kdd) was blocked and I (f) appeared at potentials negative to the pacemaker range. The pacemaker potential behaves in a manner consistent with the underlying I (Kdd) but not with I (f). The fact that I (f) is activated on hyperpolarization at potential negative to the pacemaker range makes it suitable as a safety factor to prevent the inhibitory action of more negative potentials on pacemaker discharge. It is concluded that the large body of evidence reviewed proves the pacemaker role of I (Kdd) (but not of I (f)) in Purkinje fibers.
Collapse
Affiliation(s)
- Mario Vassalle
- Department of Physiology and Pharmacology, Box 31 State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
122
|
Camici M. Guanylin peptides and colorectal cancer (CRC). Biomed Pharmacother 2007; 62:70-6. [PMID: 17582727 DOI: 10.1016/j.biopha.2007.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Accepted: 04/26/2007] [Indexed: 12/27/2022] Open
Abstract
Agonists of guanylyl-C receptor, such as guanylin/uroguanylin, are correlated not only with the intestinal cell epithelial physiology but also with the colorectal cancer tumorigenesis. Activation of the second intracellular messenger cyclic guanosine monophosphate by guanylyl cyclase-C receptor results in a complex intracellular signalling cascade involving the phosphodiesterase, the ion channels and the protein kinase. After an analytical review of relevant new knowledge, new diagnostic and therapeutic approaches for colorectal cancer are discussed.
Collapse
Affiliation(s)
- Marcello Camici
- Internal Medicine Department, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| |
Collapse
|
123
|
Abstract
Phototransduction is the process by which light triggers an electrical signal in a photoreceptor cell. Image-forming vision in vertebrates is mediated by two types of photoreceptors: the rods and the cones. In this review, we provide a summary of the success in which the mouse has served as a vertebrate model for studying rod phototransduction, with respect to both the activation and termination steps. Cones are still not as well-understood as rods partly because it is difficult to work with mouse cones due to their scarcity and fragility. The situation may change, however.
Collapse
Affiliation(s)
- Yingbin Fu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
124
|
Bright SR, Rich ED, Varnum MD. Regulation of human cone cyclic nucleotide-gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3,4,5-trisphosphate. Mol Pharmacol 2007; 71:176-83. [PMID: 17018579 DOI: 10.1124/mol.106.026401] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are critical components of the vertebrate visual transduction cascade involved in converting light-induced changes in intracellular cGMP concentrations into electrical signals that can be interpreted by the brain as visual information. To characterize regulatory mechanisms capable of altering the apparent ligand affinity of cone channels, we have expressed heteromeric (CNGA3 + CNGB3) human cone CNG channels in Xenopus laevis oocytes and characterized the alterations in channel activity that occur after patch excision using patch-clamp recording in the inside-out configuration. We found that cone channels exhibit spontaneous changes in current at subsaturating cGMP concentrations; these changes are enhanced by application of ATP and seem to reflect alterations in channel gating. Similar to rod CNG channels, lavendustin A prevented this regulation, suggesting the involvement of a tyrosine phosphorylation event. However, the tyrosine residue in CNGB3 (Tyr545) that is equivalent to the critical tyrosine residues in rod and olfactory CNG channel subunits does not participate in cone channel regulation. Furthermore, the changes in ligand sensitivity of CNGA3 + CNGB3 channels were prevented by inhibition of phosphatidylinositol 3-kinase (PI3-kinase) using wortmannin or 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which suggests that phospholipid metabolism can regulate the channels. Direct application of phosphatidylinositol 3,4,5-trisphosphate (PIP3) to the intracellular face of excised patches also resulted in down-regulation of channel activity. Thus, phospholipid metabolism and exogenously applied PIP3 can modulate heterologously expressed cone CNG channels.
Collapse
Affiliation(s)
- Scott R Bright
- Department of Veterinary, Washington State University, PO Box 646520, Pullman, WA 99164, USA
| | | | | |
Collapse
|
125
|
Das R, Esposito V, Abu-Abed M, Anand GS, Taylor SS, Melacini G. cAMP activation of PKA defines an ancient signaling mechanism. Proc Natl Acad Sci U S A 2006; 104:93-8. [PMID: 17182741 PMCID: PMC1765484 DOI: 10.1073/pnas.0609033103] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
cAMP and the cAMP binding domain (CBD) constitute a ubiquitous regulatory switch that translates an extracellular signal into a biological response. The CBD contains alpha- and beta-subdomains with cAMP binding to a phosphate binding cassette (PBC) in the beta-sandwich. The major receptors for cAMP in mammalian cells are the regulatory subunits (R-subunits) of PKA where cAMP and the catalytic subunit compete for the same CBD. The R-subunits inhibit kinase activity, whereas cAMP releases that inhibition. Here, we use NMR to map at residue resolution the cAMP-dependent interaction network of the CBD-A domain of isoform Ialpha of the R-subunit of PKA. Based on H/D, H/H, and N(z) exchange data, we propose a molecular model for the allosteric regulation of PKA by cAMP. According to our model, cAMP binding causes long-range perturbations that propagate well beyond the immediate surroundings of the PBC and involve two key relay sites located at the C terminus of beta(2) (I163) and N terminus of beta(3) (D170). The I163 site functions as one of the key triggers of global unfolding, whereas the D170 locus acts as an electrostatic switch that mediates the communication between the PBC and the B-helix. Removal of cAMP not only disrupts the cap for the B' helix within the PBC, but also breaks the circuitry of cooperative interactions stemming from the PBC, thereby uncoupling the alpha- and beta-subdomains. The proposed model defines a signaling mechanism, conserved in every genome, where allosteric binding of a small ligand disrupts a large protein-protein interface.
Collapse
Affiliation(s)
- Rahul Das
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Veronica Esposito
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Mona Abu-Abed
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Ganesh S. Anand
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- To whom correspondence may be addressed. E-mail:
or
| | - Giuseppe Melacini
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
126
|
Yoshimura M, Pearson S, Kadota Y, Gonzalez CE. Identification of ethanol responsive domains of adenylyl cyclase. Alcohol Clin Exp Res 2006; 30:1824-32. [PMID: 17067346 DOI: 10.1111/j.1530-0277.2006.00219.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The activity of adenylyl cyclase (AC) is enhanced by pharmacologically relevant concentrations of ethanol. The enhancing effect of ethanol on AC activity is AC isoform-specific. Therefore, we hypothesized that within a cyclic AMP-generating system, AC is the target of ethanol's action and that ethanol-sensitive AC molecules contain structural elements modulated by ethanol. The structural elements are designated as "ethanol responsive domains." METHODS By using a series of chimeric mutants, we searched regions of the AC molecule that are important for the ethanol effect. These chimeric mutants were derived from 3 isoforms of AC: AC7 (type 7), the most ethanol responsive isoform; AC3 (type 3), an isoform that is far less responsive to ethanol; and AC2 (type 2), an isoform that is homologous to AC7 but less responsive to ethanol. RESULTS We identified 2 discrete regions of the AC molecule that are important for the enhancement of AC activity by ethanol. The first is the N-terminal 28-amino-acid (aa) region of the C(1a) domain. The second is the C-terminal region ( approximately 140 aa) of the AC molecule. Sequence differences in the N-terminal tail, 2 putative transmembrane domains, and the C(1b) domain are not important for ethanol's effect. CONCLUSIONS The current study with mammalian ACs provides a new class of alcohol-responsive protein and possibly a new mechanism of alcohol action on cellular function. The identification of ethanol responsive domains will facilitate the elucidation of the mechanisms by which ethanol enhances the activity of AC.
Collapse
Affiliation(s)
- Masami Yoshimura
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO, USA.
| | | | | | | |
Collapse
|
127
|
Das R, Melacini G. A model for agonism and antagonism in an ancient and ubiquitous cAMP-binding domain. J Biol Chem 2006; 282:581-93. [PMID: 17074757 DOI: 10.1074/jbc.m607706200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP-binding domain (CBD) is an ancient and conserved regulatory motif that allosterically modulates the function of a group of diverse proteins, thereby translating the cAMP signal into a controlled biological response. The main receptor for cAMP in mammals is the ubiquitous regulatory (R) subunit of protein kinase A. Despite the recognized significant potential for pharmacological applications of CBDs, currently only one group of competitive inhibitor antagonists is known: the (R(p))-cAMPS family of phosphorothioate cAMP analogs, in which the equatorial exocyclic oxygen of cAMP is replaced by sulfur. It is also known that the diastereoisomer (S(p))-cAMPS with opposite phosphorous chirality is a cAMP agonist, but the molecular mechanism of action of these analogs is currently not fully understood. Previous crystallographic and unfolding investigations point to the enhanced CBD dynamics as a key determinant of antagonism. Here, we investigate the (R(p))- and (S(p))-cAMPS-bound states of R(CBD-A) using a comparative NMR approach that reveals a clear chemical shift and dynamic NMR signature, differentiating the (S(p))-cAMPS agonist from the (R(p))-cAMPS antagonist. Based on these data, we have proposed a model for the (R(p)/S(p))-cAMPS antagonism and agonism in terms of steric and electronic effects on two main allosteric relay sites, Ile(163) and Asp(170), respectively, affecting the stability of a ternary inhibitory complex formed by the effector ligand, the regulatory and the catalytic subunits of protein kinase A. The proposed model not only rationalizes the existing data on the phosphorothioate analogs, but it will also facilitate the design of novel cAMP antagonists and agonists.
Collapse
Affiliation(s)
- Rahul Das
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | |
Collapse
|
128
|
Michalakis S, Reisert J, Geiger H, Wetzel C, Zong X, Bradley J, Spehr M, Hüttl S, Gerstner A, Pfeifer A, Hatt H, Yau KW, Biel M. Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping. J Biol Chem 2006; 281:35156-66. [PMID: 16980309 PMCID: PMC2885922 DOI: 10.1074/jbc.m606409200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Olfactory receptor neurons (ORNs) employ a cyclic nucleotide-gated (CNG) channel to generate a receptor current in response to an odorant-induced rise in cAMP. This channel contains three types of subunits, the principal CNGA2 subunit and two modulatory subunits (CNGA4 and CNGB1b). Here, we have analyzed the functional relevance of CNGB1 for olfaction by gene targeting in mice. Electro-olfactogram responses of CNGB1-deficient (CNGB1-/-) mice displayed a reduced maximal amplitude and decelerated onset and recovery kinetics compared with wild-type mice. In a behavioral test, CNGB1-/- mice exhibited a profoundly decreased olfactory performance. Electrophysiological recordings revealed that ORNs of CNGB1-/- mice weakly expressed a CNG current with decreased cAMP sensitivity, very rapid flicker-gating behavior and no fast modulation by Ca2+-calmodulin. Co-immunoprecipitation confirmed the presence of a CNGA2/CNGA4 channel in the olfactory epithelium of CNGB1-/- mice. This CNGA2/CNGA4 channel was targeted to the plasma membrane of olfactory knobs, but failed to be trafficked into olfactory cilia. Interestingly, we observed a similar trafficking defect in mice deficient for the CNGA4 subunit. In conclusion, these results demonstrate that CNGB1 has a dual function in vivo. First, it endows the olfactory CNG channel with a variety of biophysical properties tailored to the specific requirements of olfactory transduction. Second, together with the CNGA4 subunit, CNGB1 is needed for ciliary targeting of the olfactory CNG channel.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Department Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, D-81377 München, Germany
| | - Johannes Reisert
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heidi Geiger
- Department Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, D-81377 München, Germany
| | - Christian Wetzel
- Lehrstuhl für Zellphysiologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Xiangang Zong
- Department Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, D-81377 München, Germany
| | - Jonathan Bradley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Marc Spehr
- Lehrstuhl für Zellphysiologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Sabine Hüttl
- Department Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, D-81377 München, Germany
| | - Andrea Gerstner
- Department Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, D-81377 München, Germany
| | - Alexander Pfeifer
- Department Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, D-81377 München, Germany
| | - Hanns Hatt
- Lehrstuhl für Zellphysiologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - King-Wai Yau
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Martin Biel
- Department Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, D-81377 München, Germany
- To whom correspondence should be addressed: Dept. Pharmazie, Pharmakologie für Naturwissenschaften, Ludwig-Maximilians-Universität München, Butenandtstr. 7, D-81377 München, Germany. Tel.: 49-89-2180-77327; Fax: 49-89-2180-77326;
| |
Collapse
|
129
|
Zaccolo M, Di Benedetto G, Lissandron V, Mancuso L, Terrin A, Zamparo I. Restricted diffusion of a freely diffusible second messenger: mechanisms underlying compartmentalized cAMP signalling. Biochem Soc Trans 2006; 34:495-7. [PMID: 16856842 DOI: 10.1042/bst0340495] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is becoming increasingly evident that the freely diffusible second messenger cAMP can transduce specific responses by localized signalling. The machinery that underpins compartmentalized cAMP signalling is only now becoming appreciated. Adenylate cyclases, the enzymes that synthesize cAMP, are localized at discrete parts of the plasma membrane, and phosphodiesterases, the enzymes that degrade cAMP, can be targeted to selected subcellular compartments. A-kinase-anchoring proteins then serve to anchor PKA (protein kinase A) close to specific targets, resulting in selective activation. The specific activation of such individual subsets of PKA requires that cAMP is made available in discrete compartments. In this presentation, the molecular and structural mechanisms responsible for compartmentalized PKA signalling and restricted diffusion of cAMP will be discussed.
Collapse
Affiliation(s)
- M Zaccolo
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35100 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
130
|
Tetreault ML, Henry D, Horrigan DM, Matthews G, Zimmerman AL. Characterization of a novel cyclic nucleotide-gated channel from zebrafish brain. Biochem Biophys Res Commun 2006; 348:441-9. [PMID: 16887101 DOI: 10.1016/j.bbrc.2006.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels have been well characterized in the sensory receptors of vision and olfaction, but their characteristics in other tissues remain largely unknown. Here, we report characterization of a novel brain-specific CNG channel from zebrafish. Unique among CNG channels, the transcript is expressed mainly in the brain. When expressed in Xenopus oocytes, the channel's electrophysiological properties are distinct compared to CNG channels from either rods (CNGA1), olfactory receptors (CNGA2), or cones (CNGA3). The channel is less sensitive to cAMP than cGMP (K(1/2) of 280 and 7 microM, respectively), with a maximum cAMP efficacy at least 80% of that with saturating levels of cGMP. The single-channel conductance of 58pS is larger than most other CNG channels. Like other CNG channels the channel is relatively nonselective among monovalent cations. However, unlike other CNG channels, there was rundown of the macroscopic current within 30-100 min after patch excision.
Collapse
Affiliation(s)
- Michelle L Tetreault
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
131
|
Abstract
MthK is a calcium-gated, inwardly rectifying, prokaryotic potassium channel. Although little functional information is available for MthK, its high-resolution structure is used as a model for eukaryotic Ca2+-dependent potassium channels. Here we characterize in detail the main gating characteristics of MthK at the single-channel level with special focus on the mechanism of Ca2+ activation. MthK has two distinct gating modes: slow gating affected mainly by Ca2+ and fast gating affected by voltage. Millimolar Ca2+ increases MthK open probability over 100-fold by mainly increasing the frequency of channel opening while leaving the opening durations unchanged. The Ca2+ dose–response curve displays an unusually high Hill coefficient (n = ∼8), suggesting strong coupling between Ca2+ binding and channel opening. Depolarization affects both the fast gate by dramatically reducing the fast flickers, and to a lesser extent, the slow gate, by increasing MthK open probability. We were able to capture the mechanistic features of MthK with a modified MWC model.
Collapse
Affiliation(s)
- Brittany Zadek
- Department of Biochemistry and Membrane Biology, University of California, Davis, 95616, USA
| | | |
Collapse
|
132
|
Kruse LS, Sandholdt NTH, Gammeltoft S, Olesen J, Kruuse C. Phosphodiesterase 3 and 5 and cyclic nucleotide-gated ion channel expression in rat trigeminovascular system. Neurosci Lett 2006; 404:202-7. [PMID: 16808996 DOI: 10.1016/j.neulet.2006.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 11/27/2022]
Abstract
Activation of the trigeminovascular pain signalling system appears involved in migraine pathophysiology. However, the molecular mechanisms are only partially known. Stimulation of cAMP and cGMP production as well as inhibition of their breakdown induce migraine-like headache. Additionally, migraine may be associated with mutations in ion channels. The aim of the present study was to describe the expression of phosphodiesterase 3 (PDE3) and 5 (PDE5) and cyclic nucleotide-gated ion channels (CNG) in cerebral arteries, meninges, and the trigeminal ganglion. mRNA for PDE and CNG was determined in the rat middle cerebral artery, basilar artery, trigeminal ganglion, and dura mater using real-time PCR. PDE and CNG proteins were identified using Western blot. For comparison, rat aorta and mesenteric artery were analysed. PDE3A, PDE3B, and PDE5A mRNA were detected in all tissues examined except for PDE3A mRNA in dura mater and the trigeminal ganglion. PDE5A and PDE3A protein expression was present in both cerebral and peripheral arteries, whereas PDE3B protein was present only in the cerebral arteries. The CNGA4 and B1 subunit mRNAs were detected in cerebral arteries and CNGA2 also in the mesenteric artery. CNGA2 and A3 proteins were found in cerebral arteries and dura and CNGA1, CNGA2 and CNGA3 in the trigeminal ganglion. In conclusion, PDE3A, PDE3B, PDE5A, and five CNG subunits were expressed in several components of the trigeminovascular system of the rat. This suggests that modulation of cAMP and cGMP levels by PDE and activation of CNG may play a role in trigeminovascular pain signalling leading to migraine headache.
Collapse
Affiliation(s)
- Lars S Kruse
- Department of Neurology, Glostrup Hospital, Nordre Ringvej 57, Denmark.
| | | | | | | | | |
Collapse
|
133
|
Shalom R, Barki-Harrington L, Rimon G. Interaction between prostaglandin E2 and l-cis-diltiazem, a specific blocker of cyclic nucleotide gated channels in bovine aortic endothelial cells. Eur J Pharmacol 2006; 543:8-13. [PMID: 16842773 DOI: 10.1016/j.ejphar.2006.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 06/06/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
Prostaglandins are known to transduce their signals via 7 transmembrane prostanoid receptors, which typically signal through coupling to G proteins and downstream second messenger molecules and protein kinase activation. Recently we have shown that cyclic nucleotides affect prostaglandins binding to bovine aortic endothelial cells independent of protein kinases. Here we show that incubation of bovine aortic endothelial cells with permeable analogs of cAMP or cGMP leads to a rapid and reversible reduction in PGE(2) binding to the cells. Since cyclic nucleotides are known modulators of cyclic nucleotide gated channels, we examined the effect of a specific cyclic nucleotide gated channel blocker l-cis-diltiazem on prostaglandin E(2) (PGE(2)) binding to bovine aortic endothelial cells. L-cis-diltiazem is shown to displace PGE(2) binding to bovine aortic endothelial cells in a dose dependent manner. In addition the effect of PGE(2) and l-cis-diltiazem on thapsigargin induced calcium elevation in the cells was compared. Both agents reduced in bovine aortic endothelial cells the thapsigargin induced calcium elevation by about half. PGE(2) also retarded the time course of the response to thapsigargin. Simultaneous treatment of the cells with both PGE(2) and l-cis-diltiazem did not yield an inhibitory effect beyond that observed with l-cis-diltiazem alone. Together our data point at the cyclic nucleotide gated channels as a feasible candidate for association with the PGE(2) binding site in bovine aortic endothelial cells.
Collapse
Affiliation(s)
- Ron Shalom
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
134
|
Mitarai A, Nakaoka Y. Photosensitive signal transduction induces membrane hyperpolarization in Paramecium bursaria. Photochem Photobiol 2006; 81:1424-9. [PMID: 16033323 DOI: 10.1562/2005-05-23-ra-537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The protozoan ciliate Paramecium bursaria exhibits membrane hyperpolarization in response to photostimulation, accompanied with an increased swimming speed. The external addition of cyclic nucleotide phosphodiesterase (PDE) inhibitors, either theophylline (1,3-dimethylxanthine) or 3-isobutyl-1-methylxanthin (IBMX), increased in both amplitudes of the membrane hyperpolarization and the increase in swimming speed. Moreover, the addition of membrane permeable cyclic nucleotide analogs, either 8-bromo-adenosine 3',5'-cyclic monophosphate (Br-cAMP) or 8-Br-guanosine 3',5'-cyclic monophosphate (Br-cGMP), increased these amplitudes. On the other hand, the addition of l-cis-diltiazem, known to block the conductance of cyclic nucleotide-gated channels, partially decreased both amplitudes of the membrane hyperpolarization and the increase in swimming speed. An enzyme immunoassay of cellular cyclic nucleotide contents showed that photostimulation induced a rapid increase in adenosine 3',5'-cyclic monophosphate (cAMP), but little increase in guanosine 3',5'-cyclic monophosphate (cGMP), raising the possibility that a rapid increase in cAMP mediates the light-induced hyperpolarization in P. bursaria.
Collapse
Affiliation(s)
- Atsushi Mitarai
- Biophysical Dynamics Laboratories, Graduate School of Frontier Bioscience, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | |
Collapse
|
135
|
Abstract
Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.
Collapse
Affiliation(s)
- Kimberley B Craven
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
136
|
Paillart C, Zhang K, Rebrik TI, Baehr W, Korenbrot JI. Cloning and molecular characterization of cGMP-gated ion channels from rod and cone photoreceptors of striped bass ( M. saxatilis ) retina. Vis Neurosci 2006; 23:99-113. [PMID: 16597354 DOI: 10.1017/s0952523806231092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 10/01/2005] [Indexed: 11/06/2022]
Abstract
Vertebrate photoreceptors respond to light with changes in membrane conductance that reflect the activity of cyclic-nucleotide gated channels (CNG channels). The functional features of these channels differ in rods and cones; to understand the basis of these differences we cloned CNG channels from the retina of striped bass, a fish from which photoreceptors can be isolated and studied electrophysiologically. Through a combination of experimental approaches, we recovered and sequenced three full-length cDNA clones. We made unambiguous assignments of the cellular origin of the clones through single photoreceptor RT-PCR. Synthetic peptides derived from the sequence were used to generate monospecific antibodies which labeled intact, unfixed photoreceptors and confirmed the cellular assignment of the various clones. In rods, we identified the channel alpha subunit gene product as 2040 bp in length, transcribed into two mRNA 1.8 kb and 2.9 kb in length and translated into a single 96-kDa protein. In cones we identified both alpha (CNGA3) and beta (CNGB3) channel subunits. For alpha, the gene product is 1956 bp long, the mRNA 3.4 kb, and the protein 74 kDa. For beta, the gene product is 2265 bp long and the mRNA 3.3 kb. Based on deduced amino acid sequence, we developed a phylogenetic map of the evolution of vertebrate rod and cone CNG channels. Sequence comparison revealed channels in striped bass, unlike those in mammals, are likely not N-linked-glycosylated as they are transported within the photoreceptor. Also bass cone channels lack certain residues that, in mammals, can be phosphorylated and, thus, affect the cGMP sensitivity of gating. On the other hand, functionally critical residues, such as positively charged amino acids within the fourth transmembrane helix (S4) and the Ca(2+)-binding glutamate in the pore loop are absolutely the same in mammalian and nonmammalian species.
Collapse
Affiliation(s)
- Christophe Paillart
- Department of Physiology, School of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
137
|
Sarfare S, Pittler SJ. Focus on molecules: rod photoreceptor cGMP-gated cation channel. Exp Eye Res 2006; 85:173-4. [PMID: 16697368 PMCID: PMC3132568 DOI: 10.1016/j.exer.2006.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Revised: 03/10/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
|
138
|
Pifferi S, Boccaccio A, Menini A. Cyclic nucleotide-gated ion channels in sensory transduction. FEBS Lett 2006; 580:2853-9. [PMID: 16631748 DOI: 10.1016/j.febslet.2006.03.086] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Accepted: 03/31/2006] [Indexed: 11/16/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels, directly activated by the binding of cyclic nucleotides, were first discovered in retinal rods, cones and olfactory sensory neurons. In the visual and olfactory systems, CNG channels mediate sensory transduction by conducting cationic currents carried primarily by sodium and calcium ions. In olfactory transduction, calcium in combination with calmodulin exerts a negative feedback on CNG channels that is the main molecular mechanism responsible for fast adaptation in olfactory sensory neurons. Six mammalian CNG channel genes are known and some human visual disorders are caused by mutations in retinal rod or cone CNG genes.
Collapse
Affiliation(s)
- Simone Pifferi
- International School for Advanced Studies, S.I.S.S.A., Sector of Neurobiology, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | |
Collapse
|
139
|
French DA, Flannery RJ, Groetsch CW, Krantz WB, Kleene SJ. Numerical Approximation of Solutions of a Nonlinear Inverse Problem Arising in Olfaction Experimentation. ACTA ACUST UNITED AC 2006; 43:945-956. [PMID: 17401452 PMCID: PMC1540452 DOI: 10.1016/j.mcm.2005.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Identification of detailed features of neuronal systems is an important challenge in the biosciences today. Cilia are long thin structures that extend from the olfactory receptor neurons into the nasal mucus. Transduction of an odor into an electrical signal occurs in the membranes of the cilia. The cyclic-nucleotide-gated (CNG) channels which reside in the ciliary membrane and are activated by adenosine 3',5'-cyclic monophosphate (cAMP) allow a depolarizing influx of Ca(2+) and Na(+) and are thought to initiate the electrical signal.In this paper, a mathematical model consisting of two nonlinear differential equations and a constrained Fredholm integral equation of the first kind is developed to model experiments involving the diffusion of cAMP into cilia and the resulting electrical activity. The unknowns in the problem are the concentration of cAMP, the membrane potential and, the quantity of most interest in this work, the distribution of CNG channels along the length of a cilium. A simple numerical method is derived that can be used to obtain estimates of the spatial distribution of CNG ion channels along the length of a cilium. Certain computations indicate that this mathematical problem is ill-conditioned.
Collapse
Affiliation(s)
- Donald A French
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025
| | | | | | | | | |
Collapse
|
140
|
Abstract
Ion channels are membrane proteins, found in virtually all cells, that are of crucial physiological importance. In the past decade, an explosion in the number of crystal structures of ion channels has led to a marked increase in our understanding of how ion channels open and close, and select between permeant ions. There has been a parallel advance in research on channelopathies (diseases resulting from impaired channel function), and mutations in over 60 ion-channel genes are now known to cause human disease. Characterization of their functional consequences has afforded unprecedented and unexpected insights into ion-channel mechanisms and physiological roles.
Collapse
|
141
|
Alexander SPH, Mathie A, Peters JA. Cyclic nucleotide-gated channels. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
142
|
Shi N, Ye S, Alam A, Chen L, Jiang Y. Atomic structure of a Na+- and K+-conducting channel. Nature 2006; 440:570-4. [PMID: 16467789 DOI: 10.1038/nature04508] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 12/05/2005] [Indexed: 11/09/2022]
Abstract
Ion selectivity is one of the basic properties that define an ion channel. Most tetrameric cation channels, which include the K+, Ca2+, Na+ and cyclic nucleotide-gated channels, probably share a similar overall architecture in their ion-conduction pore, but the structural details that determine ion selection are different. Although K+ channel selectivity has been well studied from a structural perspective, little is known about the structure of other cation channels. Here we present crystal structures of the NaK channel from Bacillus cereus, a non-selective tetrameric cation channel, in its Na+- and K+-bound states at 2.4 A and 2.8 A resolution, respectively. The NaK channel shares high sequence homology and a similar overall structure with the bacterial KcsA K+ channel, but its selectivity filter adopts a different architecture. Unlike a K+ channel selectivity filter, which contains four equivalent K+-binding sites, the selectivity filter of the NaK channel preserves the two cation-binding sites equivalent to sites 3 and 4 of a K+ channel, whereas the region corresponding to sites 1 and 2 of a K+ channel becomes a vestibule in which ions can diffuse but not bind specifically. Functional analysis using an 86Rb flux assay shows that the NaK channel can conduct both Na+ and K+ ions. We conclude that the sequence of the NaK selectivity filter resembles that of a cyclic nucleotide-gated channel and its structure may represent that of a cyclic nucleotide-gated channel pore.
Collapse
Affiliation(s)
- Ning Shi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | | | | | |
Collapse
|
143
|
Brown RL, Strassmaier T, Brady JD, Karpen JW. The pharmacology of cyclic nucleotide-gated channels: emerging from the darkness. Curr Pharm Des 2006; 12:3597-613. [PMID: 17073662 PMCID: PMC2467446 DOI: 10.2174/138161206778522100] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide-gated (CNG) ion channels play a central role in vision and olfaction, generating the electrical responses to light in photoreceptors and to odorants in olfactory receptors. These channels have been detected in many other tissues where their functions are largely unclear. The use of gene knockouts and other methods have yielded some information, but there is a pressing need for potent and specific pharmacological agents directed at CNG channels. To date there has been very little systematic effort in this direction - most of what can be termed CNG channel pharmacology arose from testing reagents known to target protein kinases or other ion channels, or by accident when researchers were investigating other intracellular pathways that may regulate the activity of CNG channels. Predictably, these studies have not produced selective agents. However, taking advantage of emerging structural information and the increasing knowledge of the biophysical properties of these channels, some promising compounds and strategies have begun to emerge. In this review we discuss progress on two fronts, cyclic nucleotide analogs as both activators and competitive inhibitors, and inhibitors that target the pore or gating machinery of the channel. We also discuss the potential of these compounds for treating certain forms of retinal degeneration.
Collapse
Affiliation(s)
- R. Lane Brown
- Neurological Sciences Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timothy Strassmaier
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - James D. Brady
- Neurological Sciences Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W. Karpen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
144
|
Hofmann F, Biel M, Kaupp UB. International Union of Pharmacology. LI. Nomenclature and structure-function relationships of cyclic nucleotide-regulated channels. Pharmacol Rev 2005; 57:455-62. [PMID: 16382102 DOI: 10.1124/pr.57.4.8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Biedersteiner StraBe 29, D-80802 München, Germany.
| | | | | |
Collapse
|
145
|
Ribeiro AC, Kapás L. The effects of intracerebroventricular application of 8-Br-cGMP and LY-83,583, a guanylyl cyclase inhibitor, on sleep-wake activity in rats. Brain Res 2005; 1049:25-33. [PMID: 15922313 DOI: 10.1016/j.brainres.2005.04.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/18/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
Cyclic GMP is the second messenger that mediates most of the neuronal effects of nitric oxide (NO). Several lines of evidence suggest that NO-ergic mechanisms play an integral role in the regulation of vigilance. In the present study, we tested the effects of the activation of cGMP-receptive mechanisms and the inhibitor of guanylyl cyclase (GC), LY-83,583, on sleep in rats. Rats were injected intracerebroventricularly (icv) with 0.16, 4, 100, and 500 microg or 2.5 mg 8-Br-cGMP, a membrane-permeable analogue of cGMP, or 1 and 100 microg LY-83,583. Administration of 4 microg-2.5 mg 8-Br-cGMP increased wakefulness and suppressed rapid-eye-movement sleep (REMS) and non-REMS (NREMS) in rats when given before dark onset but not when given before the light period. The GC inhibitor LY-83,583 strongly promoted NREMS and suppressed REMS during the light period of the day. Furthermore, LY-83,583 induced striking increases in the delta-wave activity of the electroencephalogram (EEG) during NREMS, whereas EEG activity above the 4.5 Hz wave range was suppressed in all vigilance states. Our finding that cGMP has an arousal-promoting activity is in line with the hypothesis that NO/cGMP signaling pathway is involved in the regulation of vigilance.
Collapse
Affiliation(s)
- Ana C Ribeiro
- Department of Biological Sciences, Fordham University, 441 E. Fordham Road, Bronx, NY 10458, USA
| | | |
Collapse
|
146
|
Horrigan DM, Tetreault ML, Tsomaia N, Vasileiou C, Borhan B, Mierke DF, Crouch RK, Zimmerman AL. Defining the retinoid binding site in the rod cyclic nucleotide-gated channel. ACTA ACUST UNITED AC 2005; 126:453-60. [PMID: 16230468 PMCID: PMC2266610 DOI: 10.1085/jgp.200509387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Rod vision is initiated when 11-cis-retinal, bound within rhodopsin, absorbs a photon and isomerizes to all-trans-retinal (ATR). This triggers an enzyme cascade that lowers cGMP, thereby closing cyclic nucleotide-gated (CNG) channels. ATR then dissociates from rhodopsin, with bright light releasing millimolar levels of ATR. We have recently shown that ATR is a potent closed-state inhibitor of the rod CNG channel, and that it requires access to the cytosolic face of the channel (McCabe, S.L., D.M. Pelosi, M. Tetreault, A. Miri, W. Nguitragool, P. Kovithvathanaphong, R. Mahajan, and A.L. Zimmerman. 2004. J. Gen. Physiol. 123:521–531). However, the details of the interaction between the channel and ATR have not been resolved. Here, we explore the nature of this interaction by taking advantage of specific retinoids and retinoid analogues, namely, β-ionone, all-trans-C15 aldehyde, all-trans-C17 aldehyde, all-trans-C22 aldehyde, all-trans-retinol, all-trans-retinoic acid, and all-trans-retinylidene-n-butylamine. These retinoids differ in polyene chain length, chemical functionality, and charge. Results obtained from patch clamp and NMR studies have allowed us to better define the characteristics of the site of retinoid–channel interaction. We propose that the cytoplasmic face of the channel contains a retinoid binding site. This binding site likely contains a hydrophobic region that allows the ionone ring and polyene tail to sit in an optimal position to promote interaction of the terminal functional group with residues ∼15 Å away from the ionone ring. Based on our functional data with retinoids possessing either a positive or a negative charge, we speculate that these amino acid residues may be polar and/or aromatic.
Collapse
Affiliation(s)
- Diana M Horrigan
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown Medical School, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 665] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|
148
|
Suzuki N, Yamazaki Y, Fujimoto Z, Morita T, Mizuno H. Crystallization and preliminary X-ray diffraction analyses of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:750-2. [PMID: 16511147 PMCID: PMC1952345 DOI: 10.1107/s1744309105020439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 06/28/2005] [Indexed: 11/10/2022]
Abstract
Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction of retinal and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins are structurally classified as cysteine-rich secretory proteins and exhibit structural features that are quite distinct from those of other known small peptidic channel blockers. This article describes the crystallization and preliminary X-ray diffraction analyses of these toxins. Crystals of PsTx belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 60.30, b = 61.59, c = 251.69 A, and diffraction data were collected to 2.25 A resolution. Crystals of Pdc also belonged to space group P2(1)2(1)2(1), with similar unit-cell parameters a = 60.71, b = 61.67, c = 251.22 A, and diffraction data were collected to 1.90 A resolution.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Yasuo Yamazaki
- Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Zui Fujimoto
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Takashi Morita
- Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Hiroshi Mizuno
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- VALWAY Technology Center, NEC Soft Ltd, Koto-ku, Tokyo 136-8627, Japan
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
149
|
Hüttl S, Michalakis S, Seeliger M, Luo DG, Acar N, Geiger H, Hudl K, Mader R, Haverkamp S, Moser M, Pfeifer A, Gerstner A, Yau KW, Biel M. Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1. J Neurosci 2005; 25:130-8. [PMID: 15634774 PMCID: PMC2885903 DOI: 10.1523/jneurosci.3764-04.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are important mediators in the transduction pathways of rod and cone photoreceptors. Native CNG channels are heterotetramers composed of homologous A and B subunits. In heterologous expression systems, B subunits alone cannot form functional CNG channels, but they confer a number of channel properties when coexpressed with A subunits. To investigate the importance of the CNGB subunits in vivo, we deleted the CNGB1 gene in mice. In the absence of CNGB1, only trace amounts of the CNGA1 subunit were found on the rod outer segment. As a consequence, the vast majority of isolated rod photoreceptors in mice lacking CNGB1 (CNGB1-/-) failed to respond to light. In electroretinograms (ERGs), CNGB1-/- mice showed no rod-mediated responses. The rods also showed a slow-progressing degeneration caused by apoptotic death and concurred by retinal gliosis. Cones were primarily unaffected and showed normal ERG responses up to 6 months, but they started to degenerate in later stages. At the age of approximately 1 year, CNGB1-/- animals were devoid of both rods and cones. Our results show that CNGB1 is a crucial determinant of native CNG channel targeting. As a result of the lack of rod CNG channels, CNGB1-/- mice develop a retinal degeneration that resembles human retinitis pigmentosa.
Collapse
Affiliation(s)
- Sabine Hüttl
- Department Pharmazie, Pharmakologie für Naturwissenschaften, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SPJ, Friedrich B. The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 2005; 187:3122-32. [PMID: 15838039 PMCID: PMC1082810 DOI: 10.1128/jb.187.9.3122-3132.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD(+) at the expense of H(2). We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI(2). Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I).
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|