101
|
Salmier A, de Thoisy B, Crouau-Roy B, Lacoste V, Lavergne A. Spatial pattern of genetic diversity and selection in the MHC class II DRB of three Neotropical bat species. BMC Evol Biol 2016; 16:229. [PMID: 27782798 PMCID: PMC5080761 DOI: 10.1186/s12862-016-0802-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
Background Although bats are natural reservoirs of many pathogens, few studies have been conducted on the genetic variation and detection of selection in major histocompatibility complex (MHC) genes. These genes are critical for resistance and susceptibility to diseases, and host–pathogen interactions are major determinants of their extensive polymorphism. Here we examined spatial patterns of diversity of the expressed MHC class II DRB gene of three sympatric Neotropical bats, Carollia perspicillata and Desmodus rotundus (Phyllostomidae), and Molossus molossus (Molossidae), all of which use the same environments (e.g., forests, edge habitats, urban areas). Comparison with neutral marker (mtDNA D-loop) diversity was performed at the same time. Results Twenty-three DRB alleles were identified in 19 C. perspicillata, 30 alleles in 35 D. rotundus and 20 alleles in 28 M. molossus. The occurrence of multiple DRB loci was found for the two Phyllostomidae species. The DRB polymorphism was high in all sampling sites and different signatures of positive selection were detected depending on the environment. The patterns of DRB diversity were similar to those of neutral markers for C. perspicillata and M. molossus. In contrast, these patterns were different for D. rotundus for which a geographical structure was highlighted. A heterozygote advantage was also identified for this species. No recombination or gene conversion event was found and phylogenetic relationships showed a trans-species mode of evolution in the Phyllostomids. Conclusions This study of MHC diversity demonstrated the strength of the environment and contrasting pathogen pressures in shaping DRB diversity. Differences between positively selected sites identified in bat species highlighted the potential role of gut microbiota in shaping immune responses. Furthermore, multiple geographic origins and/or population admixtures observed in C. perspicillata and M. molossus populations acted as an additional force in shaping DRB diversity. In contrast, DRB diversity of D. rotundus was shaped by environment rather than demographic history. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0802-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arielle Salmier
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, 97306, Cayenne, Cedex, French Guiana
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, 97306, Cayenne, Cedex, French Guiana
| | - Brigitte Crouau-Roy
- CNRS, Université Toulouse 3 UPS, ENFA, UMR 5174 EDB (Laboratoire Évolution et Diversité Biologique), 118 Route de Narbonne, 31062, Toulouse, France
| | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, 97306, Cayenne, Cedex, French Guiana
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, 97306, Cayenne, Cedex, French Guiana.
| |
Collapse
|
102
|
Ishibashi Y, Oi T, Arimoto I, Fujii T, Mamiya K, Nishi N, Sawada S, Tado H, Yamada T. Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0897-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
103
|
MHC class II β exon 2 variation in pardalotes (Pardalotidae) is shaped by selection, recombination and gene conversion. Immunogenetics 2016; 69:101-111. [PMID: 27717988 DOI: 10.1007/s00251-016-0953-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022]
Abstract
The high levels of polymorphism and allelic diversity which characterise genes in the major histocompatibility complex (MHC) are thought to be generated and maintained through the combined effects of different evolutionary processes. Here, we characterised exon 2 of the MHC class II β genes in two congeneric passerine species, the spotted (Pardalotus punctatus) and striated pardalote (Pardalotus striatus). We estimated the levels of allelic diversity and tested for signatures of recombination, gene conversion and balancing selection to determine if these processes have influenced MHC variation in the two species. Both species showed high levels of polymorphism and allelic diversity, as well as evidence of multiple gene loci and putative pseudogenes based on the presence of stop codons. We found higher levels of MHC diversity in the striated pardalote than the spotted pardalote, based on the levels of individual heterozygosity, sequence divergence and number of polymorphic sites. The observed differences may reflect variable selection pressure on the species, resulting from differences in patterns of movement among populations. We identified strong signatures of historical balancing selection, recombination and gene conversion at the sequence level, indicating that MHC variation in the two species has been shaped by a combination of processes.
Collapse
|
104
|
Sin YW, Newman C, Dugdale HL, Buesching C, Mannarelli ME, Annavi G, Burke T, Macdonald DW. No Compensatory Relationship between the Innate and Adaptive Immune System in Wild-Living European Badgers. PLoS One 2016; 11:e0163773. [PMID: 27695089 PMCID: PMC5047587 DOI: 10.1371/journal.pone.0163773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
The innate immune system provides the primary vertebrate defence system against pathogen invasion, but it is energetically costly and can have immune pathological effects. A previous study in sticklebacks found that intermediate major histocompatibility complex (MHC) diversity correlated with a lower leukocyte coping capacity (LCC), compared to individuals with fewer, or many, MHC alleles. The organization of the MHC genes in mammals, however, differs to the highly duplicated MHC genes in sticklebacks by having far fewer loci. Using European badgers (Meles meles), we therefore investigated whether innate immune activity, estimated functionally as the ability of an individual’s leukocytes to produce a respiratory burst, was influenced by MHC diversity. We also investigated whether LCC was influenced by factors such as age-class, sex, body condition, season, year, neutrophil and lymphocyte counts, and intensity of infection with five different pathogens. We found that LCC was not associated with specific MHC haplotypes, MHC alleles, or MHC diversity, indicating that the innate immune system did not compensate for the adaptive immune system even when there were susceptible MHC alleles/haplotypes, or when the MHC diversity was low. We also identified a seasonal and annual variation of LCC. This temporal variation of innate immunity was potentially due to physiological trade-offs or temporal variation in pathogen infections. The innate immunity, estimated as LCC, does not compensate for MHC diversity suggests that the immune system may function differently between vertebrates with different MHC organizations, with implications for the evolution of immune systems in different taxa.
Collapse
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, United States of America
- * E-mail:
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
| | - Hannah L. Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC, Groningen, Netherlands
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Christina Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
| | - Maria-Elena Mannarelli
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom
| | - Geetha Annavi
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
- Faculty of Science, Department of Biology, University of Putra Malaysia, UPM 43400, Serdang, Selangor, Malaysia
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
| |
Collapse
|
105
|
Sallaberry‐Pincheira N, González‐Acuña D, Padilla P, Dantas GPM, Luna‐Jorquera G, Frere E, Valdés‐Velásquez A, Vianna JA. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins. Ecol Evol 2016; 6:7498-7510. [PMID: 28725416 PMCID: PMC5513272 DOI: 10.1002/ece3.2502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/18/2016] [Accepted: 08/28/2016] [Indexed: 12/21/2022] Open
Abstract
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
Collapse
Affiliation(s)
- Nicole Sallaberry‐Pincheira
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
- Escuela de Medicina VeterinariaFacultad Ecología y Recursos NaturalesUniversidad Andrés BelloSantiagoChile
| | | | - Pamela Padilla
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
| | | | - Guillermo Luna‐Jorquera
- Universidad Católica del NorteMillenium Nucleus of Ecology and Sustainable Management of Oceanic Islands ESMOICentro de Estudios Avanzados en Zonas Áridas CEAZACoquimboChile
| | - Esteban Frere
- Centro de Investigaciones de Puerto DeseadoUniversidad Nacional de la Patagonia AustralPuerto DeseadoArgentina
| | - Armando Valdés‐Velásquez
- Laboratorio de Estudios en BiodiversidadFacultad de Ciencias Biológicas y FisiológicasUniversidad Peruana Cayetano HerediaLimaPeru
| | - Juliana A. Vianna
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
106
|
Nishita Y, Abramov AV, Kosintsev PA, Lin LK, Watanabe S, Yamazaki K, Kaneko Y, Masuda R. Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica. ACTA ACUST UNITED AC 2016; 86:431-42. [PMID: 26593752 DOI: 10.1111/tan.12700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023]
Abstract
Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship.
Collapse
Affiliation(s)
- Y Nishita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - A V Abramov
- Zoological Institute, Russian Academy of Sciences, Moscow, Russia
| | - P A Kosintsev
- Institute of Plant & Animal Ecology, Russian Academy of Sciences, Moscow, Russia
| | - L-K Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - S Watanabe
- Seian University of Art and Design, Otsu, Japan
| | - K Yamazaki
- Forest Ecology Laboratory, Department of Forest Science, Faculty of Regional Environmental Science, Tokyo University of Agriculture, Fuchu, Japan
| | - Y Kaneko
- Department of Ecoregion Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - R Masuda
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
107
|
Kikkawa E, Tanaka M, Naruse TK, Tsuda TT, Tsuda M, Murata K, Kimura A. Diversity of MHC class I alleles in Spheniscus humboldti. Immunogenetics 2016; 69:113-124. [PMID: 27654451 DOI: 10.1007/s00251-016-0951-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
Abstract
The major histocompatibility complex locus (MHC) is a gene region related to immune response and exhibits a remarkably great diversity. We deduced that polymorphisms in MHC genes would help to solve several issues on penguins, including classification, phylogenetic relationship, and conservation. This study aimed to elucidate the structure and diversity of the so far unknown MHC class I gene in a penguin species. The structure of an MHC class I gene from the Humboldt penguin (Spheniscus humboldti) was determined by using an inverse PCR method. We designed PCR primers to directly determine nucleotide sequences of PCR products from the MHC class I gene and to obtain recombinant clones for investigating the diversity of the MHC class I gene in Humboldt penguins. A total of 24 MHC class I allele sequences were obtained from 40 individuals. Polymorphisms were mainly found in exons 2 and 3, as expected from the nature of MHC class I genes in vertebrate species including birds and mammals. Phylogenetic analyses of MHC class I alleles have revealed that the Humboldt penguin is closely related to the Red Knot (Calidris canutus) belonging to Charadriiformes.
Collapse
Affiliation(s)
- Eri Kikkawa
- College of Bioresource Sciences, Nihon University, Tokyo, Japan.,Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masafumi Tanaka
- Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Tomi T Tsuda
- Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan.,Human Life Science, Tokushima Bunri University, Tokushima, Japan
| | - Michio Tsuda
- Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Koichi Murata
- College of Bioresource Sciences, Nihon University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
108
|
Yang QL, Huang XY, Zhao SG, Liu LX, Zhang SW, Huang WZ, Gun SB. Effect of swine leukocyte antigen-DQA gene variation on diarrhea in Large White, Landrace, and Duroc piglets. Anim Genet 2016; 47:691-697. [PMID: 27586652 DOI: 10.1111/age.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 11/28/2022]
Abstract
Piglet diarrhea is one of the most common factors that affects the benefits of the swine industry. Although recent studies have shown that exon 2 of SLA-DQA is associated with piglet resistance to diarrhea, contributions of genetic variation in the additional exon coding regions of this gene remain unclear. Here, we investigated variation in exons 1, 3 and 4 of the SLA-DQA gene and evaluated their effects on diarrheal infection in 425 suckling piglets. No variation was identified in exon 1. In exon 3, there were eight alleles detected, generated by 14 single nucleotide polymorphisms (SNPs) and three nucleotide deletions, eight SNPs being newly identified. Four allele sequences and three SNPs were identified in exon 4, only one SNP being newly identified. Statistical analysis showed that the genotypes of exon 3 are significantly associated with piglet diarrhea; indeed, genotypes DQA*wb01/wb02 and wb04/wb05 are clearly associated with resistance to piglet diarrhea, as they have the lowest probabilities of infection (P < 0.05). However, no significant association was found between the genotypes of exon 4 and diarrhea (P > 0.05). These results provide important new information concerning the level of genetic diversity at the SLA-DQA locus and suggest that further genetic association studies of piglet diarrhea resistance should include analyses of both exons 2 and 3 of this locus.
Collapse
Affiliation(s)
- Q L Yang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Lanzhou, 730070, China
| | - X Y Huang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Lanzhou, 730070, China
| | - S G Zhao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Lanzhou, 730070, China
| | - L X Liu
- College of Life Science and Engineering, Northwest University for Nationalities, Northwest Village No.1, Chengguan District, Lanzhou, 730030, China
| | - S W Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Lanzhou, 730070, China
| | - W Z Huang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Lanzhou, 730070, China
| | - S B Gun
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Lanzhou, 730070, China. .,Gansu Research Center for Swine Production Engineering and Technology, No. 1 Yingmen Village, Lanzhou, 730070, China.
| |
Collapse
|
109
|
Egernia stokesii (gidgee skink) MHC I positively selected sites lack concordance with HLA peptide binding regions. Immunogenetics 2016; 69:49-61. [PMID: 27517292 DOI: 10.1007/s00251-016-0947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play an important role in vertebrate disease resistance, kin recognition and mate choice. Mammalian MHC is the most widely characterised of all vertebrates, and attention is often given to the peptide binding regions of the MHC because they are presumed to be under stronger selection than non-peptide binding regions. For vertebrates where the MHC is less well understood, researchers commonly use the amino acid positions of the peptide binding regions of the human leukocyte antigen (HLA) to infer the peptide binding regions within the MHC sequences of their taxon of interest. However, positively selected sites within MHC have been reported to lack correspondence with the HLA in fish, frogs, birds and reptiles including squamates. Despite squamate diversity, the MHC has been characterised in few snakes and lizards. The Egernia group of scincid lizards is appropriate for investigating mechanisms generating MHC variation, as their inclusion will add a new lineage (i.e. Scincidae) to studies of selection on the MHC. We aimed to identify positively selected sites within the MHC of Egernia stokesii and then determine if these sites corresponded with the peptide binding regions of the HLA. Six positively selected sites were identified within E. stokesii MHC I, only two were homologous with the HLA. E. stokesii positively selected sites corresponded more closely to non-lizard than other lizard taxa. The characterisation of the MHC of more intermediate taxa within the squamate order is necessary to understand the evolution of the MHC across all vertebrates.
Collapse
|
110
|
R. Vahdati A, Wagner A. Parallel or convergent evolution in human population genomic data revealed by genotype networks. BMC Evol Biol 2016; 16:154. [PMID: 27484992 PMCID: PMC4969671 DOI: 10.1186/s12862-016-0722-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Genotype networks are representations of genetic variation data that are complementary to phylogenetic trees. A genotype network is a graph whose nodes are genotypes (DNA sequences) with the same broadly defined phenotype. Two nodes are connected if they differ in some minimal way, e.g., in a single nucleotide. RESULTS We analyze human genome variation data from the 1,000 genomes project, and construct haploid genotype (haplotype) networks for 12,235 protein coding genes. The structure of these networks varies widely among genes, indicating different patterns of variation despite a shared evolutionary history. We focus on those genes whose genotype networks show many cycles, which can indicate homoplasy, i.e., parallel or convergent evolution, on the sequence level. CONCLUSION For 42 genes, the observed number of cycles is so large that it cannot be explained by either chance homoplasy or recombination. When analyzing possible explanations, we discovered evidence for positive selection in 21 of these genes and, in addition, a potential role for constrained variation and purifying selection. Balancing selection plays at most a small role. The 42 genes with excess cycles are enriched in functions related to immunity and response to pathogens. Genotype networks are representations of genetic variation data that can help understand unusual patterns of genomic variation.
Collapse
Affiliation(s)
- Ali R. Vahdati
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, USA
| |
Collapse
|
111
|
Lau Q, Igawa T, Komaki S, Satta Y. Characterisation of major histocompatibility complex class I genes in Japanese Ranidae frogs. Immunogenetics 2016; 68:797-806. [PMID: 27418258 PMCID: PMC5056945 DOI: 10.1007/s00251-016-0934-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022]
Abstract
The major histocompatibility complex (MHC) is a key component of adaptive immunity in all jawed vertebrates, and understanding the evolutionary mechanisms that have shaped these genes in amphibians, one of the earliest terrestrial tetrapods, is important. We characterised MHC class I variation in three common Japanese Rana species (Rana japonica, Rana ornativentris and Rana tagoi tagoi) and identified a total of 60 variants from 21 individuals. We also found evolutionary signatures of gene duplication, recombination and balancing selection (including trans-species polymorphism), all of which drive increased MHC diversity. A unique feature of MHC class I from these three Ranidae species includes low synonymous differences per site (dS) within species, which we attribute to a more recent diversification of these sequences or recent gene duplication. The resulting higher dN/dS ratio relative to other anurans studied could be related to stronger selection pressure at peptide binding sites. This is one of the first studies to investigate MHC in Japanese amphibians and permits further exploration of the polygenetic factors associated with resistance to infectious diseases.
Collapse
Affiliation(s)
- Quintin Lau
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan.
| | - Takeshi Igawa
- Global Career Design Center, Hiroshima University, 1-7-1, Higashi-Hiroshima, Hiroshima, 739-8514, Japan
| | - Shohei Komaki
- Division of Developmental Science, Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1, Higashi-Hiroshima, Hiroshima, 739-8529, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
112
|
Liu J, Sun Y, Xu T. Identification of 48 full-length MHC-DAB functional alleles in miiuy croaker and evidence for positive selection. FISH & SHELLFISH IMMUNOLOGY 2016; 54:544-550. [PMID: 27164216 DOI: 10.1016/j.fsi.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Major histocompatibility complex (MHC) molecules play a vital role in the immune response and are a highly polymorphic gene superfamily in vertebrates. As the molecular marker associated with polymorphism and disease susceptibility/resistance, the polymorphism of MHC genes has been investigated in many tetrapods and teleosts. Most studies were focused on the polymorphism of the second exon, which encodes the peptide-binding region (PBR) in the α1- or β1-domain, but few studies have examined the full-length coding region. To comprehensive investigate the polymorphism of MHC gene, we identified 48 full-length miiuy croaker (Miichthys miiuy) MHC class IIB (Mimi-DAB) functional alleles from 26 miiuy croaker individuals. All of the alleles encode 34 amino acid sequences, and a high level of polymorphism was detected in Mimi-DAB alleles. The rate of non-synonymous substitutions (dN) occurred at a significantly higher frequency than that of synonymous substitutions (dS) in the PBR, and this result suggests that balancing selection maintains polymorphisms at the Mimi-DAB locus. Phylogenetic analysis based on the full-length and exon 2 sequences of Mimi-DAB alleles both showed that the Mimi-DAB alleles were clustered into two major groups. A total of 19 positive selected sites were identified on the Mimi-DAB alleles after testing for positive selection, and 14 sites were predicted to be associated with antigen-binding sites, which suggests that most of selected sites are significant for disease resistance. The polymorphism of Mimi-DAB alleles provides an important resource for analyzing the association between the polymorphism of MHC gene and disease susceptibility/resistance, and for researching the molecular selective breeding of miiuy croaker with enhanced disease resistance.
Collapse
Affiliation(s)
- Jiang Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yueyan Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
113
|
Lei W, Zhou X, Fang W, Lin Q, Chen X. Major histocompatibility complex class II DAB alleles associated with intestinal parasite load in the vulnerable Chinese egret (Egretta eulophotes). Ecol Evol 2016; 6:4421-34. [PMID: 27386085 PMCID: PMC4930990 DOI: 10.1002/ece3.2226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 11/09/2022] Open
Abstract
The maintenance of major histocompatibility complex (MHC) polymorphism has been hypothesized to result from many mechanisms such as rare-allele advantage, heterozygote advantage, and allele counting. In the study reported herein, 224 vulnerable Chinese egrets (Egretta eulophotes) were used to examine these hypotheses as empirical results derived from bird studies are rare. Parasite survey showed that 147 (65.63%) individuals were infected with 1-3 helminths, and 82.31% of these infected individuals carried Ascaridia sp. Using asymmetric polymerase chain reaction technique, 10 DAB1, twelve DAB2, and three DAB3 exon 2 alleles were identified at each single locus. A significant association of the rare allele Egeu-DAB2*05 (allele frequency: 0.022) with helminth resistance was found for all helminths, as well as for the most abundant morphotype Ascaridia sp. in the separate analyses. Egeu-DAB2*05 occurred frequently in uninfected individuals, and individuals carrying Egeu-DAB2*05 had significantly lower helminth morphotypes per individual (HMI) (the number of HMI) and the fecal egg count values. Further, the parasite infection measurements were consistently lower in individuals with an intermediate number of different alleles in the duplicated DAB loci. Significantly, heterozygosity within each DAB locus was not correlated with any parasite infection measurements. These results indicate that the diversity in MHC Egeu-DAB gene is associated with intestinal parasite load and maintained by pathogen-driven selection that probably operate through both the rare-allele advantage and the allele counting strategy, and suggest that Egeu-DAB2*05 might be a valuable indicator of better resistance to helminth diseases in the vulnerable Chinese egret.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| |
Collapse
|
114
|
Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants. Immunogenetics 2016; 68:449-460. [DOI: 10.1007/s00251-016-0919-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
|
115
|
Balasubramaniam S, Bray RD, Mulder RA, Sunnucks P, Pavlova A, Melville J. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines. BMC Evol Biol 2016; 16:112. [PMID: 27206579 PMCID: PMC4875725 DOI: 10.1186/s12862-016-0681-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. Results We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Conclusions Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0681-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shandiya Balasubramaniam
- Department of Sciences, Museum Victoria, Melbourne, VIC, 3001, Australia. .,School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Rebecca D Bray
- Terrestrial Vertebrates, Western Australian Museum, Perth, WA, 6986, Australia
| | - Raoul A Mulder
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jane Melville
- Department of Sciences, Museum Victoria, Melbourne, VIC, 3001, Australia
| |
Collapse
|
116
|
Ballingall KT, McIntyre A, Lin Z, Timmerman N, Matthysen E, Lurz PW, Melville L, Wallace A, Meredith AL, Romeo C, Wauters LA, Sainsbury AW, McInnes CJ. Limited diversity associated with duplicated class II MHC-DRB genes in the red squirrel population in the United Kingdom compared with continental Europe. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0852-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
117
|
Nelson CW. Remembering Austin L. Hughes. INFECTION GENETICS AND EVOLUTION 2016; 40:262-265. [PMID: 26976476 DOI: 10.1016/j.meegid.2016.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Chase W Nelson
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA.
| |
Collapse
|
118
|
Grogan KE, McGinnis GJ, Sauther ML, Cuozzo FP, Drea CM. Next-generation genotyping of hypervariable loci in many individuals of a non-model species: technical and theoretical implications. BMC Genomics 2016; 17:204. [PMID: 26957424 PMCID: PMC4782575 DOI: 10.1186/s12864-016-2503-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Across species, diversity at the Major Histocompatibility Complex (MHC) is critical to disease resistance and population health; however, use of MHC diversity to quantify the genetic health of populations has been hampered by the extreme variation found in MHC genes. Next generation sequencing (NGS) technology generates sufficient data to genotype even the most diverse species, but workflows for distinguishing artifacts from alleles are still under development. We used NGS to evaluate the MHC diversity of over 300 captive and wild ring-tailed lemurs (Lemur catta: Primates: Mammalia). We modified a published workflow to address errors that arise from deep sequencing individuals and tested for evidence of selection at the most diverse MHC genes. RESULTS In addition to evaluating the accuracy of 454 Titanium and Ion Torrent PGM for genotyping large populations at hypervariable genes, we suggested modifications to improve current methods of allele calling. Using these modifications, we genotyped 302 out of 319 individuals, obtaining an average sequencing depth of over 1000 reads per amplicon. We identified 55 MHC-DRB alleles, 51 of which were previously undescribed, and provide the first sequences of five additional MHC genes: DOA, DOB, DPA, DQA, and DRA. The additional five MHC genes had one or two alleles each with little sequence variation; however, the 55 MHC-DRB alleles showed a high dN/dS ratio and trans-species polymorphism, indicating a history of positive selection. Because each individual possessed 1-7 MHC-DRB alleles, we suggest that ring-tailed lemurs have four, putatively functional, MHC-DRB copies. CONCLUSIONS In the future, accurate genotyping methods for NGS data will be critical to assessing genetic variation in non-model species. We recommend that future NGS studies increase the proportion of replicated samples, both within and across platforms, particularly for hypervariable genes like the MHC. Quantifying MHC diversity within non-model species is the first step to assessing the relationship of genetic diversity at functional loci to individual fitness and population viability. Owing to MHC-DRB diversity and copy number, ring-tailed lemurs may serve as an ideal model for estimating the interaction between genetic diversity, fitness, and environment, especially regarding endangered species.
Collapse
Affiliation(s)
- Kathleen E Grogan
- University Program in Ecology, Duke University, Durham, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Emory University, Room 2006 O. Wayne Rollins Research Center, 1510 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | | | - Michelle L Sauther
- Department of Anthropology, University of Colorado-Boulder, Boulder, CO, USA
| | - Frank P Cuozzo
- Department of Anthropology, University of North Dakota, Grand Forks, ND, USA
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, USA
| |
Collapse
|
119
|
Ruan R, Ruan J, Wan XL, Zheng Y, Chen MM, Zheng JS, Wang D. Organization and characteristics of the major histocompatibility complex class II region in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Sci Rep 2016; 6:22471. [PMID: 26932528 PMCID: PMC4773811 DOI: 10.1038/srep22471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/16/2016] [Indexed: 11/30/2022] Open
Abstract
Little is known about the major histocompatibility complex (MHC) in the genome of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) (YFP) or other cetaceans. In this study, a high-quality YFP bacterial artificial chromosome (BAC) library was constructed. We then determined the organization and characterization of YFP MHC class II region by screening the BAC library, followed by sequencing and assembly of positive BAC clones. The YFP MHC class II region consists of two segregated contigs (218,725 bp and 328,435 bp respectively) that include only eight expressed MHC class II genes, three pseudo MHC genes and twelve non-MHC genes. The YFP has fewer MHC class II genes than ruminants, showing locus reduction in DRB, DQA, DQB, and loss of DY. In addition, phylogenic and evolutionary analyses indicated that the DRB, DQA and DQB genes might have undergone birth-and-death evolution, whereas the DQB gene might have evolved under positive selection in cetaceans. These findings provide an essential foundation for future work, such as estimating MHC genetic variation in the YFP or other cetaceans. This work is the first report on the MHC class II region in cetaceans and offers valuable information for understanding the evolution of MHC genome in cetaceans.
Collapse
Affiliation(s)
- Rui Ruan
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jue Ruan
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Guangdong 518120, China
| | - Xiao-Ling Wan
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yang Zheng
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The University of Chinese Academy of Sciences, Beijing 100039, China
| | - Min-Min Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jin-Song Zheng
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
120
|
Male-male competition drives sexual selection and group spawning in the Omei treefrog, Rhacophorus omeimontis. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2078-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
121
|
Marshall HD, Langille BL, Hann CA, Whitney HG. Patterns of MHC-DRB1 polymorphism in a post-glacial island canid, the Newfoundland red fox (Vulpes vulpes deletrix), suggest balancing selection at species and population timescales. Immunogenetics 2016; 68:381-9. [PMID: 26894280 PMCID: PMC4842217 DOI: 10.1007/s00251-016-0907-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/04/2016] [Indexed: 11/29/2022]
Abstract
As the only native insular Newfoundland canid between the extinction of the wolf in the 1930s and the recent arrival of coyotes, the red fox (Vulpes vulpes deletrix Bangs 1898) poses interesting questions about genetic distinctiveness and the post-glacial colonization history of the island’s depauperate mammalian fauna. Here, we characterized genetic variability at the major histocompatibility complex (MHC) class II DR β1 domain (DRB1) locus in 28 red foxes from six sampling localities island-wide and compared it with mitochondrial control region (CR) diversity and DRB1 diversity in other canids. Our goals were to describe novel DRB1 alleles in a new canid population and to make inferences about the role of selection in maintaining their diversity. As in numerous studies of vertebrates, we found an order-of-magnitude higher nucleotide diversity at the DRB1 locus compared with the CR and significantly positive nonsynonymous-to-synonymous substitution ratios, indicative of selection in the distant past. Although the evidence is weaker, the Ewens-Watterson test of neutrality and the geographical distribution of variation compared with the CR suggest a role for selection over the evolutionary timescale of populations. We report the first genetic data from the DRB1 locus in the red fox and establish baseline information regarding immunogenetic variation in this island canid population which should inform continued investigations of population demography, adaptive genetic diversity, and wildlife disease in red foxes and related species.
Collapse
Affiliation(s)
- H Dawn Marshall
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada.
| | - Barbara L Langille
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Crystal A Hann
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Hugh G Whitney
- Animal Health Division, Forestry and Agrifoods Agency, Box 7400, St. John's, Newfoundland, A1E 3Y5, Canada
| |
Collapse
|
122
|
Zeng QQ, He K, Sun DD, Ma MY, Ge YF, Fang SG, Wan QH. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes. BMC Evol Biol 2016; 16:42. [PMID: 26892934 PMCID: PMC4758006 DOI: 10.1186/s12862-016-0609-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. RESULTS Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). CONCLUSIONS More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic pattern indicate that interlocus recombination accounts for much of the allelic variation in IA2. Analysis of the population differentiation implied that homogenous balancing selection plays an important part in maintaining an even distribution of MHC variations. The natural barrier of the Yangtze River and heterogeneous balancing selection might help shape the NYR-SYR genetic structure in golden pheasants.
Collapse
Affiliation(s)
- Qian-Qian Zeng
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ke He
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China.
| | - Dan-Dan Sun
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Mei-Ying Ma
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yun-Fa Ge
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Sheng-Guo Fang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Qiu-Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
123
|
Xu T, Liu J, Sun Y, Zhu Z, Liu T. Characterization of 40 full-length MHC class IIA functional alleles in miiuy croaker: Polymorphism and positive selection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:138-143. [PMID: 26598111 DOI: 10.1016/j.dci.2015.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
The major histocompatibility complex is a highly polymorphic gene superfamily in vertebrates that plays an important role in adaptive immune response. In the present study, we identified 40 full-length miiuy croaker MHC class IIA (Mimi-DAA) functional alleles from 26 miiuy croaker individuals and found that the alleles encode 30 amino acid sequences. A high level of polymorphism in Mimi-DAA was detected in miiuy croaker. The rate of non-synonymous substitutions (d(N)) occurred at a significantly higher frequency than that of synonymous substitutions (d(S)) in the peptide-binding region (PBR) and non-PBR. This result suggests that balancing selection maintains polymorphisms at the Mimi-DAA locus. Phylogenetic analysis based on the full-length sequences showed that the Mimi-DAA alleles clustered into three groups. However, the phylogenetic tree constructed using the exon 2 sequences indicated that the Mimi-DAA alleles clustered into two groups. A total of 22 positively selected sites were identified on the Mimi-DAA alleles after testing for positive selection, and five sites were predicted to be associated with the binding of peptide antigen, suggesting that a few selected residues may play a significant role in immune function.
Collapse
Affiliation(s)
- Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Jiang Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yueyan Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhihuang Zhu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianxing Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
124
|
Moreno-Santillán DD, Lacey EA, Gendron D, Ortega J. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus) from the Gulf of California. PLoS One 2016; 11:e0141296. [PMID: 26761201 PMCID: PMC4712016 DOI: 10.1371/journal.pone.0141296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022] Open
Abstract
The genes of the Major Histocompatibility Complex (MHC) play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus) that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω) and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures.
Collapse
Affiliation(s)
- Diana D Moreno-Santillán
- Laboratorio de Bioconservación y Manejo, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eileen A Lacey
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| | - Diane Gendron
- Laboratorio de Ecología de Cetáceos y Quelonios, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, BCS, México
| | - Jorge Ortega
- Laboratorio de Bioconservación y Manejo, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
125
|
Seifertová M, Jarkovský J, Šimková A. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)? Parasitol Res 2015; 115:1401-15. [PMID: 26693717 DOI: 10.1007/s00436-015-4874-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022]
Abstract
The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.
Collapse
Affiliation(s)
- Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| | - Jiří Jarkovský
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| |
Collapse
|
126
|
Heterogeneity of dN/dS Ratios at the Classical HLA Class I Genes over Divergence Time and Across the Allelic Phylogeny. J Mol Evol 2015; 82:38-50. [PMID: 26573803 DOI: 10.1007/s00239-015-9713-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The classical class I HLA loci of humans show an excess of nonsynonymous with respect to synonymous substitutions at codons of the antigen recognition site (ARS), a hallmark of adaptive evolution. Additionally, high polymporphism, linkage disequilibrium, and disease associations suggest that one or more balancing selection regimes have acted upon these genes. However, several questions about these selective regimes remain open. First, it is unclear if stronger evidence for selection on deep timescales is due to changes in the intensity of selection over time or to a lack of power of most methods to detect selection on recent timescales. Another question concerns the functional entities which define the selected phenotype. While most analyses focus on selection acting on individual alleles, it is also plausible that phylogenetically defined groups of alleles ("lineages") are targets of selection. To address these questions, we analyzed how dN/dS (ω) varies with respect to divergence times between alleles and phylogenetic placement (position of branches). We find that ω for ARS codons of class I HLA genes increases with divergence time and is higher for inter-lineage branches. Throughout our analyses, we used non-selected codons to control for possible effects of inflation of ω associated to intra-specific analysis, and showed that our results are not artifactual. Our findings indicate the importance of considering the timescale effect when analysing ω over a wide spectrum of divergences. Finally, our results support the divergent allele advantage model, whereby heterozygotes with more divergent alleles have higher fitness than those carrying similar alleles.
Collapse
|
127
|
Di D, Sanchez-Mazas A, Currat M. Computer simulation of human leukocyte antigen genes supports two main routes of colonization by human populations in East Asia. BMC Evol Biol 2015; 15:240. [PMID: 26530905 PMCID: PMC4632674 DOI: 10.1186/s12862-015-0512-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Recent genetic studies have suggested that the colonization of East Asia by modern humans was more complex than a single origin from the South, and that a genetic contribution via a Northern route was probably quite substantial. Results Here we use a spatially-explicit computer simulation approach to investigate the human migration hypotheses of this region based on one-route or two-route models. We test the likelihood of each scenario by using Human Leukocyte Antigen (HLA) − A, −B, and − DRB1 genetic data of East Asian populations, with both selective and demographic parameters considered. The posterior distribution of each parameter is estimated by an Approximate Bayesian Computation (ABC) approach. Conclusions Our results strongly support a model with two main routes of colonization of East Asia on both sides of the Himalayas, with distinct demographic histories in Northern and Southern populations, characterized by more isolation in the South. In East Asia, gene flow between populations originating from the two routes probably existed until a remote prehistoric period, explaining the continuous pattern of genetic variation currently observed along the latitude. A significant although dissimilar level of balancing selection acting on the three HLA loci is detected, but its effect on the local genetic patterns appears to be minor compared to those of past demographic events. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0512-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Da Di
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling history (AGP lab), University of Geneva, 12 rue Gustave-Revilliod, Geneva, CH-1211, Geneva 4, Switzerland.
| | - Alicia Sanchez-Mazas
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling history (AGP lab), University of Geneva, 12 rue Gustave-Revilliod, Geneva, CH-1211, Geneva 4, Switzerland. .,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), 1 rue Michel-Servet, Geneva, CH-1211, Geneva 4, Switzerland.
| | - Mathias Currat
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling history (AGP lab), University of Geneva, 12 rue Gustave-Revilliod, Geneva, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
128
|
Lau Q, Yasukochi Y, Satta Y. A limit to the divergent allele advantage model supported by variable pathogen recognition across HLA-DRB1 allele lineages. TISSUE ANTIGENS 2015; 86:343-52. [PMID: 26392055 PMCID: PMC5054888 DOI: 10.1111/tan.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
Genetic diversity in human leukocyte antigen (HLA) molecules is thought to have arisen from the co-evolution between host and pathogen and maintained by balancing selection. Heterozygote advantage is a common proposed scenario for maintaining high levels of diversity in HLA genes, and extending from this, the divergent allele advantage (DAA) model suggests that individuals with more divergent HLA alleles bind and recognize a wider array of antigens. While the DAA model seems biologically suitable for driving HLA diversity, there is likely an upper threshold to the amount of sequence divergence. We used peptide-binding and pathogen-recognition capacity of DRB1 alleles as a model to further explore the DAA model; within the DRB1 locus, we examined binding predictions based on two distinct phylogenetic groups (denoted group A and B) previously identified based on non-peptide-binding region (PBR) nucleotide sequences. Predictions in this study support that group A allele and group B allele lineages have contrasting binding/recognition capacity, with only the latter supporting the DAA model. Furthermore, computer simulations revealed an inconsistency in the DAA model alone with observed extent of polymorphisms, supporting that the DAA model could only work effectively in combination with other mechanisms. Overall, we support that the mechanisms driving HLA diversity are non-exclusive. By investigating the relationships among HLA alleles, and pathogens recognized, we can provide further insights into the mechanisms on how humans have adapted to infectious diseases over time.
Collapse
Affiliation(s)
- Q Lau
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan
| | - Y Yasukochi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Y Satta
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan
| |
Collapse
|
129
|
Clozato CL, Mazzoni CJ, Moraes-Barros N, Morgante JS, Sommer S. Spatial pattern of adaptive and neutral genetic diversity across different biomes in the lesser anteater (Tamandua tetradactyla). Ecol Evol 2015; 5:4932-48. [PMID: 26640672 PMCID: PMC4662318 DOI: 10.1002/ece3.1656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 01/03/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) code for proteins involved in antigen recognition and activation of the adaptive immune response and are thought to be regulated by natural selection, especially due to pathogen‐driven selective pressure. In this study, we investigated the spatial distribution of MHC class IIDRB exon 2 gene diversity of the lesser anteater (Tamandua tetradactyla) across five Brazilian biomes using next‐generation sequencing and compared the MHC pattern with that of neutral markers (microsatellites). We found a noticeable high level of diversity in DRB (60 amino acid alleles in 65 individuals) and clear signatures of historical positive selection acting on this gene. Higher allelic richness and proportion of private alleles were found in rain forest biomes, especially Amazon forest, a megadiverse biome, possibly harboring greater pathogen richness as well. Neutral markers, however, showed a similar pattern to DRB, demonstrating the strength of demography as an additional force to pathogen‐driven selection in shaping MHC diversity and structure. This is the first characterization and description of diversity of a MHC gene for any member of the magna‐order Xenarthra, one of the basal lineages of placental mammals.
Collapse
Affiliation(s)
- Camila L Clozato
- Laboratório de Biologia Evolutiva e Conservação de Vertebrados Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo R. do Matão, 277 05508-090 São Paulo Brasil ; Leibniz-Institute for Zoo and Wildlife Research (IZW) Evolutionary Genetics Alfred- Kowalke-Straße 17 D-10315 Berlin Germany
| | - Camila J Mazzoni
- Leibniz-Institute for Zoo and Wildlife Research (IZW) Evolutionary Genetics Alfred- Kowalke-Straße 17 D-10315 Berlin Germany ; Berlin Center for Genomics in Biodiversity Research (BeGenDiv) Koenigin-Luise-Straße. 6-8 D-14195 Berlin Germany
| | - Nadia Moraes-Barros
- Laboratório de Biologia Evolutiva e Conservação de Vertebrados Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo R. do Matão, 277 05508-090 São Paulo Brasil ; CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBio Laboratório Associado Universidade do Porto R. Padre Armando Quintas 4485-661 Vairão Portugal
| | - João S Morgante
- Laboratório de Biologia Evolutiva e Conservação de Vertebrados Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo R. do Matão, 277 05508-090 São Paulo Brasil
| | - Simone Sommer
- Leibniz-Institute for Zoo and Wildlife Research (IZW) Evolutionary Genetics Alfred- Kowalke-Straße 17 D-10315 Berlin Germany ; Evolutionary Ecology and Conservation Genomics University of Ulm Albert-Einstein Strasse 11 D-89069 Ulm Germany
| |
Collapse
|
130
|
Lack of Spatial Immunogenetic Structure among Wolverine (Gulo gulo) Populations Suggestive of Broad Scale Balancing Selection. PLoS One 2015; 10:e0140170. [PMID: 26448462 PMCID: PMC4598017 DOI: 10.1371/journal.pone.0140170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Elucidating the adaptive genetic potential of wildlife populations to environmental selective pressures is fundamental for species conservation. Genes of the major histocompatibility complex (MHC) are highly polymorphic, and play a key role in the adaptive immune response against pathogens. MHC polymorphism has been linked to balancing selection or heterogeneous selection promoting local adaptation. However, spatial patterns of MHC polymorphism are also influenced by gene flow and drift. Wolverines are highly vagile, inhabiting varied ecoregions that include boreal forest, taiga, tundra, and high alpine ecosystems. Here, we investigated the immunogenetic variation of wolverines in Canada as a surrogate for identifying local adaptation by contrasting the genetic structure at MHC relative to the structure at 11 neutral microsatellites to account for gene flow and drift. Evidence of historical positive selection was detected at MHC using maximum likelihood codon-based methods. Bayesian and multivariate cluster analyses revealed weaker population genetic differentiation at MHC relative to the increasing microsatellite genetic structure towards the eastern wolverine distribution. Mantel correlations of MHC against geographical distances showed no pattern of isolation by distance (IBD: r = -0.03, p = 0.9), whereas for microsatellites we found a relatively strong and significant IBD (r = 0.54, p = 0.01). Moreover, we found a significant correlation between microsatellite allelic richness and the mean number of MHC alleles, but we did not observe low MHC diversity in small populations. Overall these results suggest that MHC polymorphism has been influenced primarily by balancing selection and to a lesser extent by neutral processes such as genetic drift, with no clear evidence for local adaptation. This study contributes to our understanding of how vulnerable populations of wolverines may respond to selective pressures across their range.
Collapse
|
131
|
Yao G, Zhu Y, Wan QH, Fang SG. Major histocompatibility complex class II genetic variation in forest musk deer (Moschus berezovskii) in China. Anim Genet 2015; 46:535-43. [PMID: 26370614 DOI: 10.1111/age.12336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2015] [Indexed: 01/18/2023]
Abstract
The major histocompatibility complex (MHC) plays an important role in the immune system of vertebrates. We used the second exon of four MHC class II genes (DRA, DQA1, DQA2 and DRB3) to assess the overall MHC variation in forest musk deer (Moschus berezovskii). We also compared the MHC variation in captive and wild populations. We observed 22 alleles at four loci (four at DRA, four at DQA1, four at DQA2 and 10 at DRB3), 15 of which were newly identified alleles. Results suggest that forest musk deer maintain relatively high MHC variation, which may result from balancing selection. Moreover, considerable diversity was observed at the DRA locus. We found a high frequency of Mobe-DRA*02, Mobe-DQA1*01 and Mobe-DQA2*05 alleles, which may be important for pathogen resistance. A Ewens-Watterson test showed that the DRB3 locus in the wild population had experienced recent balancing selection. We detected a small divergence at the DRA locus, suggesting the effect of weak positive selection on the DRA gene. Alternatively, this locus may be young and not yet adapted a wide spectrum of alleles for pathogen resistance. The significant heterozygosity deficit observed at the DQA1 and DRB3 loci in the captive population and at all four loci in the wild population may be the result of a population bottleneck. Additionally, MHC genetic diversity was higher in the wild population than in the captive, suggesting that the wild population may have the ability to respond to a wider range of pathogens.
Collapse
Affiliation(s)
- Gang Yao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiu-Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Guo Fang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
132
|
Huang ZQ, Sun XM, Dai JJ, Gu ML, Ye YS, Yao YF, Jiang RJ, Ma KL. Sequence diversity of the MHC Ⅱ DRB gene in Chinese tree shrews (Tupaia belangeri chinensis). BIOCHEM SYST ECOL 2015; 61:417-423. [DOI: 10.1016/j.bse.2015.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
133
|
Augusto DG, Petzl-Erler ML. KIR and HLA under pressure: evidences of coevolution across worldwide populations. Hum Genet 2015; 134:929-40. [PMID: 26099314 DOI: 10.1007/s00439-015-1579-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/15/2015] [Indexed: 01/13/2023]
Abstract
KIR (killer cell immunoglobulin-like receptors) and HLA (human leukocyte antigens) are two distinct gene families with remarkable importance for human immune responses. The recognition of HLA molecules by activating and inhibitory KIR promotes a balance of signals that regulates NK cell function and is especially important for the innate defense against pathogens and early placentation. There is no documented gametic association between these two gene families and no evidence of common regulation. However, due to the critical role of KIR recognition for immunity and reproduction, the possibility of KIR-HLA combinations being under selective pressure is not surprising. In this manuscript, we first summarize the HLA-KIR system, the HLA molecules that are the putative ligands for KIR, and then we review the evidences that suggest these two gene families are coevolving as an integrated system.
Collapse
Affiliation(s)
- Danillo G Augusto
- Departamento de Genética, Universidade Federal do Paraná, Caixa Postal 19071, Curitiba, PR, 81531-980, Brazil,
| | | |
Collapse
|
134
|
Lyons AC, Hoostal MJ, Bouzat JL. Characterization of major histocompatibility complex class I loci of the lark sparrow (Chondestes grammacus) and insights into avian MHC evolution. Genetica 2015; 143:521-34. [PMID: 26071093 DOI: 10.1007/s10709-015-9850-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/06/2015] [Indexed: 11/29/2022]
Abstract
The major histocompatibilty complex (MHC) has become increasingly important in the study of the immunocapabilities of non-model vertebrates due to its direct involvement in the immune response. The characterization of MHC class I loci in the lark sparrow (Chondestes grammacus) revealed multiple MHC class I loci with elevated genetic diversity at exon 3, evidence of differential selection between the peptide binding region (PBR) and non-PBR, and the presence of multiple pseudogenes with limited divergence. The minimum number of functional MHC class I loci was estimated at four. Sequence analysis revealed d N /d S ratios significantly less than one at non-PBR sites, indicative of negative selection, whereas PBR sites associated with antigen recognition showed ratios greater than 1 but non-significant. GenBank surveys and phylogenetic analyses of previously reported avian MHC class I sequences revealed variable signatures of evolutionary processes acting upon this gene family, including gene duplication and potential concerted evolution. An increase in the number of class I loci across species coincided with an increase in pseudogene prevalence, revealing the importance of gene duplication in the expansion of multigene families and the creation of pseudogenes.
Collapse
Affiliation(s)
- Amanda C Lyons
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | | | | |
Collapse
|
135
|
Sin YW, Annavi G, Newman C, Buesching C, Burke T, Macdonald DW, Dugdale HL. MHC class II-assortative mate choice in European badgers (Meles meles). Mol Ecol 2015; 24:3138-50. [DOI: 10.1111/mec.13217] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield South Yorkshire S10 2TN UK
- Department of Organismic and Evolutionary Biology; Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Geetha Annavi
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield South Yorkshire S10 2TN UK
- Biology Department; Faculty of Science; Universiti Putra Malaysia; 43400 UPM Serdang Selangor Darul Ehsan Malaysia
| | - Chris Newman
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
| | - Christina Buesching
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
| | - Terry Burke
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield South Yorkshire S10 2TN UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit (WildCRU); Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House Abingdon Road Abingdon Oxfordshire OX13 5QL UK
| | - Hannah L. Dugdale
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield South Yorkshire S10 2TN UK
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; PO Box 11103 9700CC Groningen the Netherlands
| |
Collapse
|
136
|
Jouet A, McMullan M, van Oosterhout C. The effects of recombination, mutation and selection on the evolution of the Rp1 resistance genes in grasses. Mol Ecol 2015; 24:3077-92. [PMID: 25907026 DOI: 10.1111/mec.13213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/25/2015] [Accepted: 04/09/2015] [Indexed: 01/30/2023]
Abstract
Plant immune genes, or resistance genes, are involved in a co-evolutionary arms race with a diverse range of pathogens. In agronomically important grasses, such R genes have been extensively studied because of their role in pathogen resistance and in the breeding of resistant cultivars. In this study, we evaluate the importance of recombination, mutation and selection on the evolution of the R gene complex Rp1 of Sorghum, Triticum, Brachypodium, Oryza and Zea. Analyses show that recombination is widespread, and we detected 73 independent instances of sequence exchange, involving on average 1567 of 4692 nucleotides analysed (33.4%). We were able to date 24 interspecific recombination events and found that four occurred postspeciation, which suggests that genetic introgression took place between different grass species. Other interspecific events seemed to have been maintained over long evolutionary time, suggesting the presence of balancing selection. Significant positive selection (i.e. a relative excess of nonsynonymous substitutions (dN /dS >1)) was detected in 17-95 codons (0.42-2.02%). Recombination was significantly associated with areas with high levels of polymorphism but not with an elevated dN /dS ratio. Finally, phylogenetic analyses show that recombination results in a general overestimation of the divergence time (mean = 14.3%) and an alteration of the gene tree topology if the tree is not calibrated. Given that the statistical power to detect recombination is determined by the level of polymorphism of the amplicon as well as the number of sequences analysed, it is likely that many studies have underestimated the importance of recombination relative to the mutation rate.
Collapse
Affiliation(s)
- Agathe Jouet
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark McMullan
- The Genome Analysis Center, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
137
|
Zhang W, Luo Z, Zhao M, Wu H. High genetic diversity in the endangered and narrowly distributed amphibian species Leptobrachium leishanense. Integr Zool 2015; 10:465-81. [PMID: 26037662 DOI: 10.1111/1749-4877.12142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Threatened species typically have a small or declining population size, which make them highly susceptible to loss of genetic diversity through genetic drift and inbreeding. Genetic diversity determines the evolutionary potential of a species; therefore, maintaining the genetic diversity of threatened species is essential for their conservation. In this study, we assessed the genetic diversity of the adaptive major histocompatibility complex (MHC) genes in an endangered and narrowly distributed amphibian species, Leptobrachium leishanense in Southwest China. We compared the genetic variation of MHC class I genes with that observed in neutral markers (5 microsatellite loci and cytochrome b gene) to elucidate the relative roles of genetic drift and natural selection in shaping the current MHC polymorphism in this species. We found a high level of genetic diversity in this population at both MHC and neutral markers compared with other threatened amphibian species. Historical positive selection was evident in the MHC class I genes. The higher allelic richness in MHC markers compared with that of microsatellite loci suggests that selection rather than genetic drift plays a prominent role in shaping the MHC variation pattern, as drift can affect all the genome in a similar way but selection directly targets MHC genes. Although demographic analysis revealed no recent bottleneck events in L. leishanense, additional population decline will accelerate the dangerous status for this species. We suggest that the conservation management of L. leishanense should concentrate on maximizing the retention of genetic diversity through preventing their continuous population decline. Protecting their living habitats and forbidding illegal hunting are the most important measures for conservation of L. leishanense.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhenhua Luo
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Mian Zhao
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hua Wu
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
138
|
Lei W, Fang W, Lin Q, Zhou X, Chen X. Characterization of a non-classical MHC class II gene in the vulnerable Chinese egret (Egretta eulophotes). Immunogenetics 2015; 67:463-72. [PMID: 26033691 DOI: 10.1007/s00251-015-0846-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/16/2015] [Indexed: 11/28/2022]
Abstract
Genes of the major histocompatibility complex (MHC) are valuable makers of adaptive genetic variation in evolutionary ecology research, yet the non-classical MHC genes remain largely unstudied in wild vertebrates. In this study, we have characterized the non-classical MHC class II gene, Egeu-DAB4, in the vulnerable Chinese egret (Ciconiiformes, Ardeidae, Egretta eulophotes). Gene expression analyses showed that Egeu-DAB4 gene had a restricted tissue expression pattern, being expressed in seven examined tissues including the liver, heart, kidney, esophagus, stomach, gallbladder, and intestine, but not in muscle. With respect to polymorphism, only one allele of exon 2 was obtained from Egeu-DAB4 using asymmetric PCR, indicating that Egeu-DAB4 is genetically monomorphic in exon 2. Comparative analyses showed that Egeu-DAB4 had an unusual sequence, with amino acid differences suggesting that its function may differ from those of classical MHC genes. Egeu-DAB4 gene was only found in 30.56-36.56 % of examined Chinese egret individuals. Phylogenetic analysis showed a closer relationship between Egeu-DAB4 and the DAB2 genes in nine other ardeid species. These new findings provide a foundation for further studies to clarify the immunogenetics of non-classical MHC class II gene in the vulnerable Chinese egret and other ciconiiform birds.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China,
| | | | | | | | | |
Collapse
|
139
|
Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J Immunol Res 2015; 2015:838035. [PMID: 26090501 PMCID: PMC4458282 DOI: 10.1155/2015/838035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.
Collapse
|
140
|
Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun 2015; 6:6916. [PMID: 25903422 PMCID: PMC4423213 DOI: 10.1038/ncomms7916] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/13/2015] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We identify four novel associations at LOC144817, COG6, RUNX1 and TP63, as well as three novel secondary associations within IFIH1 and IL12B. Fine-mapping analysis of MHC region demonstrates an important role for all three HLA class I genes and a complex and heterogeneous pattern of HLA associations between Caucasian and Chinese populations. Further, trans-ethnic comparison suggests population-specific effect or allelic heterogeneity for 11 loci. These population-specific effects contribute significantly to the ethnic diversity of psoriasis prevalence. This study not only provides novel biological insights into the involvement of immune and keratinocyte development mechanism, but also demonstrates a complex and heterogeneous genetic architecture of psoriasis susceptibility across ethnic populations. Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here Yin et al. conduct a large trans-ethnic genome-wide meta-analysis and identify novel loci that contribute to population-specific susceptibility.
Collapse
|
141
|
Tracy KE, Kiemnec-Tyburczy KM, DeWoody JA, Parra-Olea G, Zamudio KR. Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex. Immunogenetics 2015; 67:323-35. [PMID: 25846208 DOI: 10.1007/s00251-015-0835-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
Immune gene evolution can be critical to species survival in the face of infectious disease. In particular, polymorphism in the genes of the major histocompatibility complex (MHC) helps vertebrates combat novel and diverse pathogens by increasing the number of pathogen-derived proteins that can initiate the host's acquired immune response. In this study, we used a combination of presumably adaptive and neutral markers to investigate MHC evolution in populations of five salamander species within the Ambystoma velasci complex, a group consisting of 15 recently diverged species, several of which are endangered. We isolated 31 unique MHC class II β alleles from 75 total individuals from five species in this complex. MHC heterozygosity was significantly lower than expected for all five species, and we found no clear relationship between number of MHC alleles and species range, life history, or level of heterozygosity. We inferred a phylogeny representing the evolutionary history of Ambystoma MHC, with which we found signatures of positive selection on the overall gene, putative peptide-binding residues, and allelic lineages. We identified several instances of trans-species polymorphism, a hallmark of balancing selection observed in other groups of closely related species. In contrast, we did not detect comparable allelic diversity or signatures of selection on neutral loci. Additionally, we identified 17 supertypes among the 44 unique Ambystoma alleles, indicating that these sequences may encode functionally distinct MHC variants. We therefore have strong evidence that positive selection is a major evolutionary force driving patterns of MHC polymorphism in this recently radiated species complex.
Collapse
Affiliation(s)
- Karen E Tracy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA,
| | | | | | | | | |
Collapse
|
142
|
Kohyama TI, Omote K, Nishida C, Takenaka T, Saito K, Fujimoto S, Masuda R. Spatial and temporal variation at major histocompatibility complex class IIB genes in the endangered Blakiston's fish owl. ZOOLOGICAL LETTERS 2015; 1:13. [PMID: 26605058 PMCID: PMC4657285 DOI: 10.1186/s40851-015-0013-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/25/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIβ genes in Blakiston's fish owl, using massively parallel pyrosequencing. RESULTS We found that the Blakiston's fish owl genome contains at least eight MHC class IIβ loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. CONCLUSIONS Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.
Collapse
Affiliation(s)
- Tetsuo I Kohyama
- />Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Keita Omote
- />Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Chizuko Nishida
- />Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Takeshi Takenaka
- />FILIN, Hachiken 2 Jo Nishi 2, Nishi-ku, Sapporo 063-0842 Japan
| | - Keisuke Saito
- />Institute for Raptor Biomedicine, Kushiro, 084-0922 Japan
| | | | - Ryuichi Masuda
- />Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| |
Collapse
|
143
|
Petrov P, Syrjänen R, Smith J, Gutowska MW, Uchida T, Vainio O, Burt DW. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints. PLoS One 2015; 10:e0121672. [PMID: 25803627 PMCID: PMC4372362 DOI: 10.1371/journal.pone.0121672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
"Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.
Collapse
Affiliation(s)
- Petar Petrov
- Institute of Diagnostics, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
- Nordlab Oulu, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Riikka Syrjänen
- Institute of Diagnostics, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
- Nordlab Oulu, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jacqueline Smith
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Maria Weronika Gutowska
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Tatsuya Uchida
- Institute of Diagnostics, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Olli Vainio
- Institute of Diagnostics, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
- Nordlab Oulu, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - David W Burt
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| |
Collapse
|
144
|
|
145
|
Björklund M, Aho T, Behrmann-Godel J. Isolation over 35 years in a heated biotest basin causes selection on MHC class IIß genes in the European perch (Perca fluviatilis L.). Ecol Evol 2015; 5:1440-55. [PMID: 25897384 PMCID: PMC4395174 DOI: 10.1002/ece3.1426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 01/15/2023] Open
Abstract
Genes that play key roles in host immunity such as the major histocompatibility complex (MHC) in vertebrates are expected to be major targets of selection. It is well known that environmental conditions can have an effect on host–parasite interactions and may thus influence the selection on MHC. We analyzed MHC class IIß variability over 35 years in a population of perch (Perca fluviatilis) from the Baltic Sea that was split into two populations separated from each other. One population was subjected to heating from cooling water of a nuclear power plant and was isolated from the surrounding environment in an artificial lake, while the other population was not subjected to any change in water temperature (control). The isolated population experienced a change of the allelic composition and a decrease in allelic richness of MHC genes compared to the control population. The two most common MHC alleles showed cyclic patterns indicating ongoing parasite–host coevolution in both populations, but the alleles that showed a cyclic behavior differed between the two populations. No such patterns were observed at alleles from nine microsatellite loci, and no genetic differentiation was found between populations. We found no indications for a genetic bottleneck in the isolated population during the 35 years. Additionally, differences in parasitism of the current perch populations suggest that a change of the parasite communities has occurred over the isolation period, although the evidence in form of in-depth knowledge of the change of the parasite community over time is lacking. Our results are consistent with the hypothesis of a selective sweep imposed by a change in the parasite community.
Collapse
Affiliation(s)
- Mats Björklund
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University Uppsala, Sweden
| | - Teija Aho
- Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences Skolgatan 6, Öregrund, SE-742 42, Sweden
| | - Jasminca Behrmann-Godel
- Limnological Institute, University of Konstanz Mainaustrasse 252, D-78464, Konstanz, Germany
| |
Collapse
|
146
|
Hunt HD, Dunn JR. The Influence of Major Histocompatibility Complex and Vaccination with Turkey Herpesvirus on Marek's Disease Virus Evolution. Avian Dis 2015; 59:122-9. [DOI: 10.1637/10677-092413-reg] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
147
|
Pechouskova E, Dammhahn M, Brameier M, Fichtel C, Kappeler PM, Huchard E. MHC class II variation in a rare and ecological specialist mouse lemur reveals lower allelic richness and contrasting selection patterns compared to a generalist and widespread sympatric congener. Immunogenetics 2015; 67:229-45. [PMID: 25687337 PMCID: PMC4357647 DOI: 10.1007/s00251-015-0827-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022]
Abstract
The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe’s mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB.
Collapse
Affiliation(s)
- Eva Pechouskova
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|
148
|
Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution. BMC Genomics 2015; 16:87. [PMID: 25765714 PMCID: PMC4333152 DOI: 10.1186/s12864-015-1245-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/15/2015] [Indexed: 11/29/2022] Open
Abstract
Background Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. Results We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos – target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. Conclusion We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the extent of the shared regulatory sequence across TFs and cell types under study. Importantly, a large part of the shared regulatory sequence is repurposed on the other species. This sequence, fueled by turnover events, provides a strong case for exaptation in regulatory elements. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1245-6) contains supplementary material, which is available to authorized users.
Collapse
|
149
|
Jones MR, Cheviron ZA, Carling MD. Spatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine. Ecol Evol 2015; 5:1045-60. [PMID: 25798222 PMCID: PMC4364819 DOI: 10.1002/ece3.1391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/03/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022] Open
Abstract
The environment shapes host-parasite interactions, but how environmental variation affects the diversity and composition of parasite-defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC-parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous-collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra-individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency-dependent selection. We found an MHC variant associated with a ∽26% decrease in infection probability at middle elevations (1501-3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency-dependent selection and fluctuating spatial selection in the evolution of Z. capensisMHC.
Collapse
Affiliation(s)
- Matthew R Jones
- Department of Zoology and Physiology, Berry Biodiversity Conservation Center, University of Wyoming 1000 E. University Ave., Dept. 4304, Laramie, Wyoming, 82071
| | - Zachary A Cheviron
- Department of Animal Biology, School of Integrative Biology, University of Illinois Urbana-Champaign 505 South Goodwin Ave., Urbana, Illinois, 61801
| | - Matthew D Carling
- Department of Zoology and Physiology, Berry Biodiversity Conservation Center, University of Wyoming 1000 E. University Ave., Dept. 4304, Laramie, Wyoming, 82071
| |
Collapse
|
150
|
Du L, Li W, Fan Z, Shen F, Yang M, Wang Z, Jian Z, Hou R, Yue B, Zhang X. First insights into the giant panda (Ailuropoda melanoleuca) blood transcriptome: a resource for novel gene loci and immunogenetics. Mol Ecol Resour 2015; 15:1001-13. [DOI: 10.1111/1755-0998.12367] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Lianming Du
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Wujiao Li
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife; Chengdu Research Base of Giant Panda Breeding; Chengdu Sichuan 610081 China
| | - Mingyu Yang
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Zili Wang
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Zuoyi Jian
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife; Chengdu Research Base of Giant Panda Breeding; Chengdu Sichuan 610081 China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| |
Collapse
|