101
|
Polaino S, Villalobos-Escobedo JM, Shakya VPS, Miralles-Durán A, Chaudhary S, Sanz C, Shahriari M, Luque EM, Eslava AP, Corrochano LM, Herrera-Estrella A, Idnurm A. A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Sci Rep 2017; 7:44790. [PMID: 28322269 PMCID: PMC5359613 DOI: 10.1038/srep44790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 02/14/2017] [Indexed: 01/09/2023] Open
Abstract
Light is an environmental signal perceived by most eukaryotic organisms and that can have major impacts on their growth and development. The MadC protein in the fungus Phycomyces blakesleeanus (Mucoromycotina) has been postulated to form part of the photosensory input for phototropism of the fruiting body sporangiophores, but the madC gene has remained unidentified since the 1960s when madC mutants were first isolated. In this study the madC gene was identified by positional cloning. All madC mutant strains contain loss-of-function point mutations within a gene predicted to encode a GTPase activating protein (GAP) for Ras. The madC gene complements the Saccharomyces cerevisiae Ras-GAP ira1 mutant and the encoded MadC protein interacts with P. blakesleeanus Ras homologs in yeast two-hybrid assays, indicating that MadC is a regulator of Ras signaling. Deletion of the homolog in the filamentous ascomycete Neurospora crassa affects the circadian clock output, yielding a pattern of asexual conidiation similar to a ras-1 mutant that is used in circadian studies in N. crassa. Thus, MadC is unlikely to be a photosensor, yet is a fundamental link in the photoresponses from blue light perceived by the conserved White Collar complex with Ras signaling in two distantly-related filamentous fungal species.
Collapse
Affiliation(s)
- Silvia Polaino
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA
| | - José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Irapuato, Guanajuato, Mexico
| | - Viplendra P S Shakya
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA
| | | | - Suman Chaudhary
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA
| | - Catalina Sanz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Mahdi Shahriari
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Eva M Luque
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Arturo P Eslava
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Irapuato, Guanajuato, Mexico
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA.,School of BioSciences, University of Melbourne, Australia
| |
Collapse
|
102
|
The inhibition of mating in Phycomyces blakesleeanus by light is dependent on the MadA-MadB complex that acts in a sex-specific manner. Fungal Genet Biol 2017; 101:20-30. [PMID: 28214601 DOI: 10.1016/j.fgb.2017.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Light is an environmental signal that influences reproduction in the Mucoromycotina fungi, as it does in many other species of fungi. Mating in Phycomyces blakesleeanus is inhibited by light, but the molecular mechanisms for this inhibition are uncharacterized. In this analysis, the role of the light-sensing MadA-MadB complex in mating was tested. The MadA-MadB complex is homologous to the Neurospora crassa White Collar complex. Three genes required for cell type determination in the sex locus or pheromone biosynthesis are transcriptionally-regulated by light and are controlled by MadA and MadB. This regulation acts through the plus partner, indicating that the inhibitory effect of light on mating is executed through only one of the two sexes. These results are an example whereby the mating types of fungi have acquired sex-specific properties beyond their role in conferring cell-type identity, and provide insight into how sex-determining chromosomal regions can expand the traits they control.
Collapse
|
103
|
Osorio-Concepción M, Cristóbal-Mondragón GR, Gutiérrez-Medina B, Casas-Flores S. Histone Deacetylase HDA-2 Regulates Trichoderma atroviride Growth, Conidiation, Blue Light Perception, and Oxidative Stress Responses. Appl Environ Microbiol 2017; 83:e02922-16. [PMID: 27864177 PMCID: PMC5244289 DOI: 10.1128/aem.02922-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/13/2016] [Indexed: 01/14/2023] Open
Abstract
Fungal blue-light photoreceptors have been proposed as integrators of light and oxidative stress. However, additional elements participating in the integrative pathway remain to be identified. In Trichoderma atroviride, the blue-light regulator (BLR) proteins BLR-1 and -2 are known to regulate gene transcription, mycelial growth, and asexual development upon illumination, and recent global transcriptional analysis revealed that the histone deacetylase-encoding gene hda-2 is induced by light. Here, by assessing responses to stimuli in wild-type and Δhda-2 backgrounds, we evaluate the role of HDA-2 in the regulation of genes responsive to light and oxidative stress. Δhda-2 strains present reduced growth, misregulation of the con-1 gene, and absence of conidia in response to light and mechanical injury. We found that the expression of hda-2 is BLR-1 dependent and HDA-2 in turn is essential for the transcription of early and late light-responsive genes that include blr-1, indicating a regulatory feedback loop. When subjected to reactive oxygen species (ROS), Δhda-2 mutants display high sensitivity whereas Δblr strains exhibit the opposite phenotype. Consistently, in the presence of ROS, ROS-related genes show high transcription levels in wild-type and Δblr strains but misregulation in Δhda-2 mutants. Finally, chromatin immunoprecipitations of histone H3 acetylated at Lys9/Lys14 on cat-3 and gst-1 promoters display low accumulation of H3K9K14ac in Δblr and Δhda-2 strains, suggesting indirect regulation of ROS-related genes by HDA-2. Our results point to a mutual dependence between HDA-2 and BLR proteins and reveal the role of these proteins in an intricate gene regulation landscape in response to blue light and ROS. IMPORTANCE Trichoderma atroviride is a free-living fungus commonly found in soil or colonizing plant roots and is widely used as an agent in biocontrol as it parasitizes other fungi, stimulates plant growth, and induces the plant defense system. To survive in various environments, fungi constantly sense and respond to potentially threatening external factors, such as light. In particular, UV light can damage biomolecules by producing free-radical reactions, in most cases involving reactive oxygen species (ROS). In T. atroviride, conidiation is essential for its survival, which is induced by light and mechanical injury. Notably, conidia are typically used as the inoculum in the field during biocontrol. Therefore, understanding the linkages between responses to light and exposure to ROS in T. atroviride is of major basic and practical relevance. Here, the histone deacetylase-encoding gene hda-2 is induced by light and ROS, and its product regulates growth, conidiation, blue light perception, and oxidative stress responses.
Collapse
|
104
|
Photoreceptors in the dark: A functional white collar-like complex and other putative light-sensing components encoded by the genome of the subterranean fungus Tuber melanosporum. Fungal Biol 2017; 121:253-263. [PMID: 28215352 DOI: 10.1016/j.funbio.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
Light is perceived and transduced by fungi, where it modulates processes as diverse as growth and morphogenesis, sexual development and secondary metabolism. A special case in point is that of fungi with a subterranean, light-shielded habitat such as Tuber spp. Using as reference the genome sequence of the black truffle Tuber melanosporum, we used bioinformatic prediction tools and expression data to gain insight on the photoreceptor systems of this hypogeous ectomycorrhizal fungus. These include a chromophore-less opsin, a putative red-light-sensing phytochrome not expressed at detectable levels in any of the examined lifecycle stages, and a nearly canonical two-component (WC-1/WC-2) photoreceptor system similar to the Neurospora white collar complex (WCC). Multiple evidence, including expression at relatively high levels in all lifecycle stages except for fruiting-bodies and the results of heterologous functional complementation experiments conducted in Neurospora, suggests that the Tuber WCC is likely functional and capable of responding to blue-light. The other putative T. melanosporum photoreceptor components, especially the chromophore-less opsin and the likely non-functional phytochrome, may instead represent signatures of adaptation to a hypogeous (light-shielded) lifestyle.
Collapse
|
105
|
Wang S, Park YS, Yang Y, Borrego EJ, Isakeit T, Gao X, Kolomiets MV. Seed-Derived Ethylene Facilitates Colonization but Not Aflatoxin Production by Aspergillus flavus in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:415. [PMID: 28400781 PMCID: PMC5368243 DOI: 10.3389/fpls.2017.00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/10/2017] [Indexed: 05/22/2023]
Abstract
Ethylene (ET) emitted by plant tissues has been broadly reported to play important roles in plant development, response to environmental stresses and defense against certain pathogens. Recent evidence obtained from using in vitro fungal cultures exposed to ET suggested that exogenous ET may regulate the production of aflatoxin by Aspergilli. However, the function of endogenous, seed-derived ET has not been explored. In this study, we found that the maize lipoxygenase lox3 mutant, previously reported to be susceptible to Aspergillus spp., emitted greater levels of ET upon A. flavus infection, suggesting the potential involvement of endogenous ET in the susceptibility of maize to A. flavus. Supporting this idea, both colonization and conidiation of A. flavus were reduced in wild-type (WT) kernels treated with AgNO3, an ET synthesis inhibitor. There was no ET emission from non-viable kernels colonized by A. flavus, suggesting that living seed but not the fungus itself was the primary source of ET released upon infection with A. flavus. The kernels of acs2 and acs6, two ET biosynthetic mutants carrying Mutator transposons in the ACC synthase genes, ACS2 and ACS6, respectively, displayed enhanced seed colonization and conidiation, but not the levels of aflatoxin, upon infection with A. flavus. Surprisingly, both acs2 and acs6 mutant kernels emitted greater levels of ET in response to infection by A. flavus as compared with WT seed. The increased ET in single mutants was found to be due to overexpression of functional ACS genes in response to A. flavus infection. Collectively, these findings suggested that ET emitted by infected seed facilitates colonization by A. flavus but not aflatoxin production.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University,Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University,Nanjing, China
| | - Yong-Soon Park
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station,TX, USA
- Division of Biotechnology, Chonbuk National University,Iksan, South Korea
| | - Yang Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University,Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University,Nanjing, China
| | - Eli J. Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station,TX, USA
| | - Tom Isakeit
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University,Nanjing, China
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station,TX, USA
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University,Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University,Nanjing, China
- *Correspondence: Xiquan Gao, Michael V. Kolomiets,
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station,TX, USA
- *Correspondence: Xiquan Gao, Michael V. Kolomiets,
| |
Collapse
|
106
|
Velazquez Escobar F, Lang C, Takiden A, Schneider C, Balke J, Hughes J, Alexiev U, Hildebrandt P, Mroginski MA. Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. J Phys Chem B 2016; 121:47-57. [DOI: 10.1021/acs.jpcb.6b09600] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco Velazquez Escobar
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Christina Lang
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Aref Takiden
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Constantin Schneider
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jens Balke
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jon Hughes
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
107
|
Abstract
ABSTRACT
Life, as we know it, would not be possible without light. Light is not only a primary source of energy, but also an important source of information for many organisms. To sense light, only a few photoreceptor systems have developed during evolution. They are all based on an organic molecule with conjugated double bonds that allows energy transfer from visible (or UV) light to its cognate protein to translate the primary physical photoresponse to cell-biological actions. The three main classes of receptors are flavin-based blue-light, retinal-based green-light (such as rhodopsin), and linear tetrapyrrole-based red-light sensors. Light not only controls the behavior of motile organisms, but is also important for many sessile microorganisms including fungi. In fungi, light controls developmental decisions and physiological adaptations as well as the circadian clock. Although all major classes of photoreceptors are found in fungi, a good level of understanding of the signaling processes at the molecular level is limited to some model fungi. However, current knowledge suggests a complex interplay between light perception systems, which goes far beyond the simple sensing of light and dark. In this article we focus on recent results in several fungi, which suggest a strong link between light-sensing and stress-activated mitogen-activated protein kinases.
Collapse
|
108
|
Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, Bell CJ, Bharti A, Dyhrman ST, Guida SM, Heidelberg KB, Kaye JZ, Metzner J, Smith SR, Worden AZ. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol 2016; 15:6-20. [DOI: 10.1038/nrmicro.2016.160] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
109
|
Noble LM, Holland LM, McLauchlan AJ, Andrianopoulos A. A Plastic Vegetative Growth Threshold Governs Reproductive Capacity in Aspergillus nidulans. Genetics 2016; 204:1161-1175. [PMID: 27672092 PMCID: PMC5105849 DOI: 10.1534/genetics.116.191122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Ontogenetic phases separating growth from reproduction are a common feature of cellular life. Long recognized for flowering plants and animals, early literature suggests this life-history component may also be prevalent among multicellular fungi. We establish the basis of developmental competence-the capacity to respond to induction of asexual development-in the filamentous saprotroph Aspergillus nidulans, describing environmental influences, including genotype-by-environment interactions among precocious mutants, gene expression associated with wild type and precocious competence acquisition, and the genetics of competence timing. Environmental effects are consistent with a threshold driven by metabolic rate and organism density, with pH playing a particularly strong role in determining competence timing. Gene expression diverges significantly over the competence window, despite a lack of overt morphological change, with differentiation in key metabolic, signaling, and cell trafficking processes. We identify five genes for which mutant alleles advance competence timing, including the conserved GTPase RasB (AN5832) and ambient pH sensor PalH (AN6886). In all cases examined, inheritance of competence timing is complex and non-Mendelian, with F1 progeny showing highly variable transgressive timing and dominant parental effects with a weak contribution from progeny genotype. Competence provides a new model for nutrient-limited life-cycle phases, and their elaboration from unicellular origins. Further work is required to establish the hormonal and bioenergetic basis of the trait across fungi, and underlying mechanisms of variable inheritance.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10012
| | - Linda M Holland
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, D04, Ireland
| | - Alisha J McLauchlan
- Genetics, Genomics and Development, School of BioSciences University of Melbourne, Victoria 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Development, School of BioSciences University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
110
|
Fuller KK, Cramer RA, Zegans ME, Dunlap JC, Loros JJ. Aspergillus fumigatus Photobiology Illuminates the Marked Heterogeneity between Isolates. mBio 2016; 7:e01517-16. [PMID: 27651362 PMCID: PMC5030361 DOI: 10.1128/mbio.01517-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED The given strain of Aspergillus fumigatus under study varies across laboratories, ranging from a few widely used "standards," e.g., Af293 or CEA10, to locally acquired isolates that may be unique to one investigator. Since experiments concerning physiology or gene function are seldom replicated by others, i.e., in a different A. fumigatus background, the extent to which behavioral heterogeneity exists within the species is poorly understood. As a proxy for assessing such intraspecies variability, we analyzed the light response of 15 A. fumigatus isolates and observed striking quantitative and qualitative heterogeneity among them. The majority of the isolates fell into one of two seemingly mutually exclusive groups: (i) "photopigmenters" that robustly accumulate hyphal melanin in the light and (ii) "photoconidiators" that induce sporulation in the light. These two distinct responses were both governed by the same upstream blue light receptor, LreA, indicating that a specific protein's contribution can vary in a strain-dependent manner. Indeed, while LreA played no apparent role in regulating cell wall homeostasis in strain Af293, it was essential in that regard in strain CEA10. The manifest heterogeneity in the photoresponses led us to compare the virulence levels of selected isolates in a murine model; remarkably, the virulence did vary greatly, although not in a manner that correlated with their overt light response. Taken together, these data highlight the extent to which isolates of A. fumigatus can vary, with respect to both broad physiological characteristics (e.g., virulence and photoresponse) and specific protein functionality (e.g., LreA-dependent phenotypes). IMPORTANCE The current picture of Aspergillus fumigatus biology is akin to a collage, patched together from data obtained from disparate "wild-type" strains. In a systematic assessment of 15 A. fumigatus isolates, we show that the species is highly heterogeneous with respect to its light response and virulence. Whereas some isolates accumulate pigments in light as previously reported with strain Af293, most induce sporulation which had not been previously observed. Other photoresponsive behaviors are also nonuniform, and phenotypes of identical gene deletants vary in a background-dependent manner. Moreover, the virulence of several selected isolates is highly variable in a mouse model and apparently does not track with any observed light response. Cumulatively, this work illuminates the fact that data obtained with a single A. fumigatus isolate are not necessarily predictive of the species as whole. Accordingly, researchers should be vigilant when making conclusions about their own work or when interpreting data from the literature.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Michael E Zegans
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA Department of Surgery (Ophthalmology), Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
111
|
Cohrs KC, Simon A, Viaud M, Schumacher J. Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2. Environ Microbiol 2016; 18:4068-4086. [PMID: 27347834 DOI: 10.1111/1462-2920.13431] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Botrytis cinerea is a plant pathogenic fungus known for its utilization of light as environmental cue to regulate asexual differentiation: conidia are formed in the light, while sclerotia are formed in the dark. As no orthologues of known regulators of conidiation (e.g., Aspergillus nidulans BrlA, Neurospora crassa FL) exist in the Leotiomycetes, we initiated a de novo approach to identify the functional counterpart in B. cinerea. The search revealed the light-responsive C2H2 transcription factor BcLTF2 whose expression - usually restricted to light conditions - is necessary and sufficient to induce conidiation and simultaneously to suppress sclerotial development. Light-induced expression of bcltf2 is mediated via a so far unknown pathway, and is attenuated in a (blue) light-dependent fashion by the White Collar complex, BcLTF1 and the VELVET complex. Mutation of either component leads to increased bcltf2 expression and causes light-independent conidiation (always conidia phenotype). Hence, the tight regulation of bcltf2 governs the balance between vegetative growth that allows for the colonization of the substrate and subsequent reproduction via conidia in the light. The orthologue ssltf2 in the closely related species Sclerotinia sclerotiorum is not significantly expressed suggesting that its deregulation may cause the lack of the conidiation program in this fungus.
Collapse
Affiliation(s)
- Kim C Cohrs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU) Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, 78850, France
| | - Muriel Viaud
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, 78850, France
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU) Münster, Schlossplatz 8, Münster, 48143, Germany
| |
Collapse
|
112
|
Rensing SA, Sheerin DJ, Hiltbrunner A. Phytochromes: More Than Meets the Eye. TRENDS IN PLANT SCIENCE 2016; 21:543-546. [PMID: 27270335 DOI: 10.1016/j.tplants.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Phytochromes play a key role in the regulation of plant growth and development. Phytochrome-related proteins also occur in some bacteria, fungi, and algae. We highlight recent findings on the evolution of phytochromes and discuss novel hypotheses on the function of phytochromes in diatoms, a group of mainly pelagic algae.
Collapse
Affiliation(s)
- Stefan A Rensing
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
113
|
Cetz-Chel JE, Balcázar-López E, Esquivel-Naranjo EU, Herrera-Estrella A. The Trichoderma atroviride putative transcription factor Blu7 controls light responsiveness and tolerance. BMC Genomics 2016; 17:327. [PMID: 27142227 PMCID: PMC4855978 DOI: 10.1186/s12864-016-2639-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/22/2016] [Indexed: 11/23/2022] Open
Abstract
Background Most living organisms use sunlight as a source of energy and/or information about their environment. Consequently, they have developed mechanisms to sense light quality and quantity. In the fungus Trichoderma atroviride blue-light is perceived through the Blue Light Regulator Complex, which in turn up-regulates a set of genes (blu) and down-regulates another set (bld), triggering asexual reproduction. To gain insight into this process, we characterized the blu7 gene, which encodes a protein containing a C2H2 zinc finger domain. Results Δblu7 mutants show reduced conidiation at low light fluences, which is still clear even when exposed to saturating light. For the first time we show a genome wide survey of light regulated gene expression in T. atroviride, including RNA-seq analyses of the wild type and the Δblu7 strains after brief exposure to blue-light. Our data show a reduction in the number of induced genes and an increase in down-regulated genes in the mutant. Light activates stress responses and several metabolic processes in the wild type strain that are no longer activated in the mutant. In agreement with the misregulation of metabolic processes, continuous exposure to white light strongly inhibited growth of the ∆blu7 mutant, in a carbon source dependent fashion. RNA-seq analyses under constant white light using glucose as sole carbon source revealed that localization and transport process present the opposite regulation pattern in the ∆blu7 and wild type strains. Genes related to amino acid, sugar and general transporters were enriched in the induced genes in the mutant and the repressed genes of the wild type. Peptone supplemented in the media restored growth of the ∆blu7 mutant in constant light, suggesting a role of Blu7 in the regulation of nitrogen metabolism in the presence of light. Conclusions Blu7 appears to regulate light sensitivity in terms of induction of conidiation, and to play a major role in supporting growth under continuous exposure to light. The diminished conidiation observed in ∆blu7 mutants is likely due to misregulation of the cAMP signaling pathway and ROS production, whereas their low tolerance to continuous exposure to light indicates that Blu7 is required for adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2639-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José E Cetz-Chel
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgar Balcázar-López
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgardo U Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.,Present Address: Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, 76230, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
114
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
115
|
The Fast-Evolving phy-2 Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa. mBio 2016; 7:e02148. [PMID: 26956589 PMCID: PMC4810495 DOI: 10.1128/mbio.02148-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rapid responses to changes in incident light are critical to the guidance of behavior and development in most species. Phytochrome light receptors in particular play key roles in bacterial physiology and plant development, but their functions and regulation are less well understood in fungi. Nevertheless, genome-wide expression measurements provide key information that can guide experiments that reveal how genes respond to environmental signals and clarify their role in development. We performed functional genomic and phenotypic analyses of the two phytochromes in Neurospora crassa, a fungal model adapted to a postfire environment that experiences dramatically variable light conditions. Expression of phy-1 and phy-2 was low in early sexual development and in the case of phy-2 increased in late sexual development. Under light stimulation, strains with the phytochromes deleted exhibited increased expression of sexual development-related genes. Moreover, under red light, the phy-2 knockout strain commenced sexual development early. In the evolution of phytochromes within ascomycetes, at least two duplications have occurred, and the faster-evolving phy-2 gene has frequently been lost. Additionally, the three key cysteine sites that are critical for bacterial and plant phytochrome function are not conserved within fungal phy-2 homologs. Through the action of phytochromes, transitions between asexual and sexual reproduction are modulated by light level and light quality, presumably as an adaptation for fast asexual growth and initiation of sexual reproduction of N. crassa in exposed postfire ecosystems. Environmental signals, including light, play critical roles in regulating fungal growth and pathogenicity, and balance of asexual and sexual reproduction is critical in fungal pathogens’ incidence, virulence, and distribution. Red light sensing by phytochromes is well known to play critical roles in bacterial physiology and plant development. Homologs of phytochromes were first discovered in the fungal model Neurospora crassa and then subsequently in diverse other fungi, including many plant pathogens. Our study investigated the evolution of red light sensors in ascomycetes and confirmed—using the model fungus Neurospora crassa—their roles in modulating the asexual-sexual reproduction balance in fungi. Our findings also provide a key insight into one of the most poorly understood aspects of fungal biology, suggesting that further study of the function of phytochromes in fungi is critical to reveal the genetic basis of the asexual-sexual switch responsible for fungal growth and distribution, including diverse and destructive plant pathogens.
Collapse
|
116
|
A light–dark shift strategy derived from light-responded metabolic behaviors for polyketides production in marine fungus Halorosellinia sp. J Biotechnol 2016; 221:34-42. [DOI: 10.1016/j.jbiotec.2016.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/27/2015] [Accepted: 01/18/2016] [Indexed: 11/21/2022]
|
117
|
Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 2016; 1:16019. [PMID: 27572639 DOI: 10.1038/nmicrobiol.2016.19] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/29/2016] [Indexed: 02/02/2023]
Abstract
Stress-sensing in fungi depends on a signalling cascade comprised of a two-component phosphorylation relay plus a subsequent MAP kinase cascade to trigger gene expression. Besides osmotic or oxidative stress, fungi sense many other environmental factors, one of which is light(1,2). Light controls morphogenetic pathways but also the production of secondary metabolites such as penicillin. Here we show that phytochrome-dependent light signalling in Aspergillus nidulans involves the stress-sensing and osmosensing signalling pathway. In a screening for 'blind' mutants, the MAP kinase SakA (also known as HogA) was identified by whole-genome sequencing. The phytochrome FphA physically interacted with the histidine-containing phosphotransfer protein YpdA and caused light-dependent phosphorylation of the MAP kinase SakA and its shuttling into nuclei. In the absence of phytochrome, SakA still responded to osmotic stress but not to light. The SakA pathway thus integrates several stress factors and can be considered to be a hub for environmental signals.
Collapse
|
118
|
Nitric oxide in fungi: is there NO light at the end of the tunnel? Curr Genet 2016; 62:513-8. [PMID: 26886232 PMCID: PMC4929157 DOI: 10.1007/s00294-016-0574-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is a remarkable gaseous molecule with multiple and important roles in different organisms, including fungi. However, the study of the biology of NO in fungi has been hindered by the lack of a complete knowledge on the different metabolic routes that allow a proper NO balance, and the regulation of these routes. Fungi have developed NO detoxification mechanisms to combat nitrosative stress, which have been mainly characterized by their connection to pathogenesis or nitrogen metabolism. However, the progress on the studies of NO anabolic routes in fungi has been hampered by efforts to disrupt candidate genes that gave no conclusive data until recently. This review summarizes the different roles of NO in fungal biology and pathogenesis, with an emphasis on the alternatives to explain fungal NO production and the recent findings on the involvement of nitrate reductase in the synthesis of NO and its regulation during fungal development.
Collapse
|
119
|
Brancini GTP, Rangel DEN, Braga GÚL. Exposure ofMetarhizium acridummycelium to light induces tolerance to UV-B radiation. FEMS Microbiol Lett 2016; 363:fnw036. [DOI: 10.1093/femsle/fnw036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 01/25/2023] Open
|
120
|
Bayram Ö, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus GH. Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genet Biol 2016; 87:30-53. [DOI: 10.1016/j.fgb.2016.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|
121
|
Fanelli F, Geisen R, Schmidt-Heydt M, Logrieco A, Mulè G. Light regulation of mycotoxin biosynthesis: new perspectives for food safety. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2014.1860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mycotoxins are secondary metabolites produced by toxigenic fungi contaminating foods and feeds in pre-, post-harvest and processing, and represent a great concern worldwide, both for the economic implications and for the health of the consumers. Many environmental conditions are involved in the regulation of mycotoxin biosynthesis. Among these, light represents one of the most important signals for fungi, influencing several physiological responses such as pigmentation, sexual development and asexual conidiation, primary and secondary metabolism, including mycotoxin biosynthesis. In this review we summarise some recent findings on the effect of specific light wavelength and intensity on mycotoxin biosynthesis in the main toxigenic fungal genera. We describe the molecular mechanism underlying light perception and its involvement in the regulation of secondary metabolism, focusing on VeA, global regulator in Aspergillus nidulans, and the White-Collar proteins, key components of light response in Neurospora crassa. Light of specific wavelength and intensity exerts different effects both on growth and on toxin production depending on the fungal genus. In Penicillium spp. red (627 nm) and blue wavelengths (455-470 nm) reduce ochratoxin A (OTA) biosynthesis by modulating the level of expression of the ochratoxin polyketide synthase. Furthermore a mutual regulation between citrinin and OTA production is reported in Penicillium toxigenic species. In Aspergillus spp. the effect of light treatment is strongly dependent on the species and culture conditions. Royal blue wavelength (455 nm) of high intensity (1,700 Lux) is capable of completely inhibit fungal growth and OTA production in Aspergillus stenyii and Penicillum verrucosum. In Fusarium spp. the effect of light exposure is less effective; mycotoxin-producing species, such as Fusarium verticillioides and Fusarium proliferatum, grow better under light conditions, and fumonisin production increased. This review provides a comprehensive picture on light regulation of mycotoxin biosynthesis and discusses possible new applications of this resource in food safety.
Collapse
Affiliation(s)
- F. Fanelli
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| | - R. Geisen
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - M. Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - A.F. Logrieco
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| | - G. Mulè
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| |
Collapse
|
122
|
García-Esquivel M, Esquivel-Naranjo EU, Hernández-Oñate MA, Ibarra-Laclette E, Herrera-Estrella A. The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light. Fungal Biol 2016; 120:500-512. [PMID: 27020152 DOI: 10.1016/j.funbio.2016.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/10/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022]
Abstract
Quantitative transcriptome analysis led to the identification of 331 transcripts regulated by white light. Evaluation of the response to white light in mutants affected in the previously characterized blue-light receptor Blr1, demonstrated the existence of both Blr1-dependent and independent responses. Functional categorization of the light responsive genes indicated the effect of light on regulation of various transcription factors, regulators of chromatin structure, signaling pathways, genes related to different kinds of stress, metabolism, redox adjustment, and cell cycle among others. In order to establish the participation of other photoreceptors, gene expression was validated in response to different wavelengths. Gene regulation by blue and red light suggests the involvement of several photoreceptors in integrating light signals of different wavelengths in Trichoderma atroviride. Functional analysis of potential blue light photoreceptors suggests that several perception systems for different wavelengths are involved in the response to light. Deletion of cry1, one of the potential photoreceptors, resulted in severe reduction in the photoreactivation capacity of the fungus, as well as a change in gene expression under blue and red light.
Collapse
Affiliation(s)
- Mónica García-Esquivel
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico
| | - Edgardo U Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico
| | - Miguel A Hernández-Oñate
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico; Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa 91070, Ver., Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto., Mexico.
| |
Collapse
|
123
|
|
124
|
Fuller K, Dunlap J, Loros J. Fungal Light Sensing at the Bench and Beyond. ADVANCES IN GENETICS 2016; 96:1-51. [DOI: 10.1016/bs.adgen.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
125
|
Brych A, Mascarenhas J, Jaeger E, Charkiewicz E, Pokorny R, Bölker M, Doehlemann G, Batschauer A. White collar 1-induced photolyase expression contributes to UV-tolerance of Ustilago maydis. Microbiologyopen 2015; 5:224-43. [PMID: 26687452 PMCID: PMC4831468 DOI: 10.1002/mbo3.322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Ustilago maydis is a phytopathogenic fungus causing corn smut disease. It also is known for its extreme tolerance to UV‐ and ionizing radiation. It has not been elucidated whether light‐sensing proteins, and in particular photolyases play a role in its UV‐tolerance. Based on homology analysis, U. maydis has 10 genes encoding putative light‐responsive proteins. Four amongst these belong to the cryptochrome/photolyase family (CPF) and one represents a white collar 1 ortholog (wco1). Deletion mutants in the predicted cyclobutane pyrimidine dimer CPD‐ and (6–4)‐photolyase were impaired in photoreactivation. In line with this, in vitro studies with recombinant CPF proteins demonstrated binding of the catalytic FAD cofactor, its photoreduction to fully reduced FADH− and repair activity for cyclobutane pyrimidine dimers (CPDs) or (6–4)‐photoproducts, respectively. We also investigated the role of Wco1. Strikingly, transcriptional profiling showed 61 genes differentially expressed upon blue light exposure of wild‐type, but only eight genes in the Δwco1 mutant. These results demonstrate that Wco1 is a functional blue light photoreceptor in U. maydis regulating expression of several genes including both photolyases. Finally, we show that the Δwco1 mutant is less tolerant against UV‐B due to its incapability to induce photolyase expression.
Collapse
Affiliation(s)
- Annika Brych
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Judita Mascarenhas
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Elaine Jaeger
- Faculty of Biology, Department of Genetics, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Elzbieta Charkiewicz
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Richard Pokorny
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Michael Bölker
- Faculty of Biology, Department of Genetics, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Gunther Doehlemann
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Alfred Batschauer
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| |
Collapse
|
126
|
Rauscher S, Pacher S, Hedtke M, Kniemeyer O, Fischer R. A phosphorylation code of theAspergillus nidulansglobal regulator VelvetA (VeA) determines specific functions. Mol Microbiol 2015; 99:909-24. [DOI: 10.1111/mmi.13275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Rauscher
- Institute for Applied Biosciences; Department of Microbiology; Karlsruhe Institute of Technology; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Sylvia Pacher
- Institute for Applied Biosciences; Department of Microbiology; Karlsruhe Institute of Technology; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Maren Hedtke
- Institute for Applied Biosciences; Department of Microbiology; Karlsruhe Institute of Technology; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology; Hans-Knöll-Institute (HKI); Adolf-Reichwein-Str. 23 07745 Jena Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences; Department of Microbiology; Karlsruhe Institute of Technology; Hertzstrasse 16 D-76187 Karlsruhe Germany
| |
Collapse
|
127
|
Dasgupta A, Fuller KK, Dunlap JC, Loros JJ. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 2015; 18:5-20. [PMID: 26373782 DOI: 10.1111/1462-2920.13055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
Light plays an important role for most organisms on this planet, serving either as a source of energy or information for the adaptation of biological processes to specific times of day. The fungal kingdom is estimated to contain well over a million species, possibly 10-fold more, and it is estimated that a majority of the fungi respond to light, eliciting changes in several physiological characteristics including pathogenesis, development and secondary metabolism. Two model organisms for photobiological studies have taken centre-stage over the last few decades--Neurospora crassa and Aspergillus nidulans. In this review, we will first discuss our understanding of the light response in N. crassa, about which the most is known, and will then juxtapose N. crassa with A. nidulans, which, as will be described below, provides an excellent template for understanding photosensory cross-talk. Finally, we will end with a commentary on the variability of the light response among other relevant fungi, and how our molecular understanding in the aforementioned model organisms still provides a strong base for dissecting light responses in such species.
Collapse
Affiliation(s)
- Arko Dasgupta
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
128
|
Marcos AT, Ramos MS, Marcos JF, Carmona L, Strauss J, Cánovas D. Nitric oxide synthesis by nitrate reductase is regulated during development in Aspergillus. Mol Microbiol 2015; 99:15-33. [PMID: 26353949 PMCID: PMC4982101 DOI: 10.1111/mmi.13211] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a signalling molecule involved in many biological processes in bacteria, plants and mammals. However, little is known about the role and biosynthesis of NO in fungi. Here we show that NO production is increased at the early stages of the transition from vegetative growth to development in Aspergillus nidulans. Full NO production requires a functional nitrate reductase (NR) gene (niaD) that is upregulated upon induction of conidiation, even under N‐repressing conditions in the presence of ammonium. At this stage, NO homeostasis is achieved by balancing biosynthesis (NR) and catabolism (flavohaemoglobins). niaD and flavohaemoglobin fhbA are transiently upregulated upon induction of conidiation, and both regulators AreA and NirA are necessary for this transcriptional response. The second flavohaemoglobin gene fhbB shows a different expression profile being moderately expressed during the early stages of the transition phase from vegetative growth to conidiation, but it is strongly induced 24 h later. NO levels influence the balance between conidiation and sexual reproduction because artificial strong elevation of NO levels reduced conidiation and induced the formation of cleistothecia. The nitrate‐independent and nitrogen metabolite repression‐insensitive transcriptional upregulation of niaD during conidiation suggests a novel role for NR in linking metabolism and development.
Collapse
Affiliation(s)
- Ana T Marcos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - María S Ramos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Jose F Marcos
- Department of Food Science, Institute of Agrochemistry and Food Technology (IATA), Valencia, Spain
| | - Lourdes Carmona
- Department of Food Science, Institute of Agrochemistry and Food Technology (IATA), Valencia, Spain
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria.,Department of Health and Environment, Bioresources, Austrian Institute of Technology (AIT), Vienna, Austria
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
129
|
Hernández CA, Perroni Y, Pérez JAG, Rivera BG, Alarcón E. Light-induced inhibition of laccase in Pycnoporus sanguineus. Folia Microbiol (Praha) 2015; 61:137-42. [DOI: 10.1007/s12223-015-0418-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/15/2015] [Indexed: 01/10/2023]
|
130
|
Buchberger T, Lamparter T. Streptophyte phytochromes exhibit an N-terminus of cyanobacterial origin and a C-terminus of proteobacterial origin. BMC Res Notes 2015; 8:144. [PMID: 25886068 PMCID: PMC4422448 DOI: 10.1186/s13104-015-1082-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Phytochromes are red light-sensitive photoreceptors that control a variety of developmental processes in plants, algae, bacteria and fungi. Prototypical phytochromes exhibit an N-terminal tridomain (PGP) consisting of PAS, GAF and PHY domains and a C-terminal histidine kinase (HK). Results The mode of evolution of streptophyte, fungal and diatom phytochromes from bacteria is analyzed using two programs for sequence alignment and six programs for tree construction. Our results suggest that Bacteroidetes present the most ancient types of phytochromes. We found many examples of lateral gene transfer and rearrangements of PGP and HK sequences. The PGP and HK of streptophyte phytochromes seem to have different origins. In the most likely scenario, PGP was inherited from cyanobacteria, whereas the C-terminal portion originated from a proteobacterial protein with multiple PAS domains and a C-terminal HK. The plant PhyA and PhyB lineages go back to an early gene duplication event before the diversification of streptophytes. Fungal and diatom PGPs could have a common prokaryotic origin within proteobacteria. Early gene duplication is also obvious in fungal phytochromes. Conclusions The dominant question of the origin of plant phytochromes is difficult to tackle because the patterns differ among phylogenetic trees. We could partially overcome this problem by combining several alignment and tree construction algorithms and comparing many trees. A rearrangement of PGP and HK can directly explain the insertion of the two PAS domains by which streptophyte phytochromes are distinguished from all other phytochromes. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1082-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thorsten Buchberger
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, Karlsruhe, D-76128, Germany.
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, Karlsruhe, D-76128, Germany.
| |
Collapse
|
131
|
Lavín JL, Ramírez L, Pisabarro AG, Oguiza JA. Genomewide analysis of phytochrome proteins in the phylum Basidiomycota. J Basic Microbiol 2015; 55:1141-7. [PMID: 25847700 DOI: 10.1002/jobm.201500078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/20/2015] [Indexed: 11/07/2022]
Abstract
Phytochromes are photoreceptor proteins involved in the detection of the red and far-red regions of the visible light spectrum. Fungal phytochromes are hybrid histidine kinases with a conserved domain architecture composed of an N-terminal photosensory module and a C-terminal regulatory output module that includes the histidine kinase and response regulator receiver domains. In this study, we have analyzed the distribution, domain architecture, and phylogenetic analysis of phytochrome proteins in 47 published genome sequences among the phylum Basidiomycota. Genome analysis revealed that almost every genome of basidiomycetes contained at least one gene encoding a phytochrome protein. Domain architecture of fungal phytochromes was completely conserved in the identified phytochromes of basidiomycetes, and phylogenetic analysis clustered these proteins into clades related with the phylogenetic classification of this fungal phylum.
Collapse
Affiliation(s)
- José L Lavín
- Genome Analysis Platform, Functional Genomics Unit, CIC bioGUNE & CIBERehd, Bizkaia Technology Park, Derio, Spain
| | - Lucía Ramírez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Spain
| | - Antonio G Pisabarro
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Spain
| | - José A Oguiza
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Spain
| |
Collapse
|
132
|
Beyond asexual development: modifications in the gene expression profile caused by the absence of the Aspergillus nidulans transcription factor FlbB. Genetics 2015; 199:1127-42. [PMID: 25701285 DOI: 10.1534/genetics.115.174342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/15/2015] [Indexed: 11/18/2022] Open
Abstract
In the model fungus Aspergillus nidulans, asexual development is induced from vegetative hyphae by a set of early regulators including the bZIP-type transcription factor FlbB. To determine the range of genes under the influence of the transcriptional activity of FlbB and to characterize their role in fungal development, we sequenced and compared the transcriptomes of a ΔflbB mutant and its isogenic wild-type strain at different developmental stages. Results confirmed the activating role of FlbB on downstream regulators of conidiation such as flbD and brlA. However, FlbB has additional functions beyond the induction of asexual development. Among the changes observed, absence of a functional FlbB caused induction of the dba cluster and synthesis of a secondary metabolite with bactericidal properties. In addition, a new transcriptional target of FlbB was unveiled, urdA, that codes for a putative transcription factor that represses premature sexual development. Taken together, our results indicate that the activators of asexual development simultaneously exert a role on other cellular functions, including an inhibitory effect on the sexual cycle, and reinforce the hypothesis that mutually exclusive metabolic and cellular patterns are associated with different morphogenetic programs.
Collapse
|
133
|
Fungal Secondary Metabolism in the Light of Animal–Fungus Interactions: From Mechanism to Ecological Function. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
134
|
Fluorescence-Based Methods for the Study of Protein Localization, Interaction, and Dynamics in Filamentous Fungi. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
135
|
Park JH, Kim MK, Lee BJ, Kim H, Lee YH, Cho YS. Diversity of Soil Microbial Communities Formed by Different Light Penetrations in Forests. ACTA ACUST UNITED AC 2014. [DOI: 10.7745/kjssf.2014.47.6.496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
136
|
Fuller KK, Loros JJ, Dunlap JC. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 2014; 61:275-88. [PMID: 25323429 DOI: 10.1007/s00294-014-0451-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022]
Abstract
Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision-making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA,
| | | | | |
Collapse
|
137
|
Marine algae and land plants share conserved phytochrome signaling systems. Proc Natl Acad Sci U S A 2014; 111:15827-32. [PMID: 25267653 DOI: 10.1073/pnas.1416751111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.
Collapse
|
138
|
Kramer A, Paun L, Imhoff JF, Kempken F, Labes A. Development and validation of a fast and optimized screening method for enhanced production of secondary metabolites using the marine Scopulariopsis brevicaulis strain LF580 producing anti-cancer active scopularide A and B. PLoS One 2014; 9:e103320. [PMID: 25079364 PMCID: PMC4117492 DOI: 10.1371/journal.pone.0103320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 12/20/2022] Open
Abstract
Natural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds. The secondary metabolite production of strain LF580 was optimized by random mutagenesis employing UV radiation. For a fast and reliable detection of the intracellular secondary metabolite production level, a miniaturized bioactivity-independent screening method was developed, as the random mutagenesis yielded a large number of mutants to be analysed quantitatively and none of the existing hyphenated bioassay-dependent screening systems could be applied. The method includes decreased cultivation volume, a fast extraction procedure as well as an optimized LC-MS analysis. We show that deviation could be specifically reduced at each step of the process: The measuring deviation during the analysis could be minimized to 5% and technical deviation occurring in the downstream part to 10-15%. Biological variation during the cultivation process still has the major influence on the overall variation. However, the approach led to a 10-fold reduction of time and similar effects on costs and effort compared to standard reference screening methods. The method was applied to screen the UV-mutants library of Scopulariopsis brevicaulis LF580. For validation purposes, the occurring variations in the miniaturized scale were compared to those in the classical Erlenmeyer flask scale. This proof of concept was performed using the wild type strain and 23 randomly selected mutant strains. One specific mutant strain with an enhanced production behavior could be obtained.
Collapse
Affiliation(s)
- Annemarie Kramer
- Kiel Centre for Marine Natural Products at GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Linda Paun
- Department of Genetics and Molecular Biology in Botany, Institute of Botany, Christians-Albrechts-University, Kiel, Germany
| | - Johannes F. Imhoff
- Kiel Centre for Marine Natural Products at GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Frank Kempken
- Department of Genetics and Molecular Biology in Botany, Institute of Botany, Christians-Albrechts-University, Kiel, Germany
| | - Antje Labes
- Kiel Centre for Marine Natural Products at GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
139
|
Sarikaya-Bayram O, Bayram O, Feussner K, Kim JH, Kim HS, Kaever A, Feussner I, Chae KS, Han DM, Han KH, Braus GH. Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. Dev Cell 2014; 29:406-20. [PMID: 24871947 DOI: 10.1016/j.devcel.2014.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/26/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
Epigenetic and transcriptional control of gene expression must be coordinated in response to external signals to promote alternative multicellular developmental programs. The membrane-associated trimeric complex VapA-VipC-VapB controls a signal transduction pathway for fungal differentiation. The VipC-VapB methyltransferases are tethered to the membrane by the FYVE-like zinc finger protein VapA, allowing the nuclear VelB-VeA-LaeA complex to activate transcription for sexual development. Once the release from VapA is triggered, VipC-VapB is transported into the nucleus. VipC-VapB physically interacts with VeA and reduces its nuclear import and protein stability, thereby reducing the nuclear VelB-VeA-LaeA complex. Nuclear VapB methyltransferase diminishes the establishment of facultative heterochromatin by decreasing histone 3 lysine 9 trimethylation (H3K9me3). This favors activation of the regulatory genes brlA and abaA, which promote the asexual program. The VapA-VipC-VapB methyltransferase pathway combines control of nuclear import and stability of transcription factors with histone modification to foster appropriate differentiation responses.
Collapse
Affiliation(s)
- Ozlem Sarikaya-Bayram
- Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, Göttingen 37077, Germany
| | - Ozgür Bayram
- Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, Göttingen 37077, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Georg August University, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Jong-Hwa Kim
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Korea
| | - Hee-Seo Kim
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Korea; Department of Molecular Biology, Chonbuk National University, Jeonju 561-756, Korea
| | - Alexander Kaever
- Department of Bioinformatics, Georg August University, Goldschmidtstrasse 1, Göttingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg August University, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Keon-Sang Chae
- Department of Molecular Biology, Chonbuk National University, Jeonju 561-756, Korea
| | - Dong-Min Han
- Division of Life Sciences, Wonkwang University, Iksan 570-749, Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Korea
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, Göttingen 37077, Germany.
| |
Collapse
|
140
|
Glukhova LB, Sokolyanskaya LO, Plotnikov EV, Gerasimchuk AL, Karnachuk OV, Solioz M, Karnachuk RA. Increased mycelial biomass production by Lentinula edodes intermittently illuminated by green light emitting diodes. Biotechnol Lett 2014; 36:2283-9. [PMID: 25048231 DOI: 10.1007/s10529-014-1605-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
Abstract
Fungi possess a range of light receptors to regulate metabolism and differentiation. To study the effect of light on Lentinula edodes (the shiitake mushroom), mycelial cultures were exposed to blue, green, and red fluorescent lights and light-emitting diodes, as well as green laser light. Biomass production, morphology, and pigment production were evaluated. Exposure to green light at intervals of 1 min/d at 0.4 W/m(2) stimulated biomass production by 50-100 %, depending on the light source. Light intensities in excess of 1.8 W/m(2) or illumination longer than 30 min/d did not affect biomass production. Carotenoid production and morphology remained unaltered during increased biomass production. These observations provide a cornerstone to the study of photoreception by this important fungus.
Collapse
Affiliation(s)
- Lubov B Glukhova
- Dept. of Plant Physiology and Biotechnology, Tomsk State University, Lenin Prospect 36, 634050, Toms, Russian Federation,
| | | | | | | | | | | | | |
Collapse
|
141
|
Kim PW, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Heterogeneous photodynamics of the pfr state in the cyanobacterial phytochrome Cph1. Biochemistry 2014; 53:4601-11. [PMID: 24940993 PMCID: PMC4184438 DOI: 10.1021/bi5005359] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Femtosecond
photodynamics of the Pfr form of the red/far-red
phytochrome N-terminal PAS-GAF-PHY photosensory core module of the
cyanobacterial phytochrome Cph1 (termed Cph1Δ) from Synechocystis were resolved with visible broadband transient
absorption spectroscopy. Multiphasic generation dynamics via global
target analysis revealed parallel evolution of two pathways with distinct
excited- and ground-state kinetics. These measurements resolved two
subpopulations: a majority subpopulation with fast excited-state decay
and slower ground-state dynamics, corresponding to previous descriptions
of Pfr dynamics, and a minority subpopulation with slower
excited-state decay and faster ground-state primary dynamics. Both
excited-state subpopulations generated the isomerized, red-shifted
Lumi-Ff photoproduct (715 nm); subsequent ground-state
evolution to a blue-shifted Meta-Fr population (635 nm)
proceeded on 3 ps and 1.5 ns time scales for the two subpopulations.
Meta-Fr was spectrally similar to a recently described
photoinactive fluorescent subpopulation of Pr (FluorPr). Thus, the reverse Pfr to Pr photoconversion of Cph1Δ involves minor structural deformation
of Meta-Fr to generate the fluorescent, photochemically
refractory form of Pr, with slower subsequent equilibration
with the photoactive Pr subpopulation (PhotoPr).
Collapse
Affiliation(s)
- Peter W Kim
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|
142
|
Qiu L, Wang JJ, Chu ZJ, Ying SH, Feng MG. Phytochrome controls conidiation in response to red/far-red light and daylight length and regulates multistress tolerance inBeauveria bassiana. Environ Microbiol 2014; 16:2316-28. [DOI: 10.1111/1462-2920.12486] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/03/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Qiu
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Juan-Juan Wang
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Zhen-Jian Chu
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Sheng-Hua Ying
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Ming-Guang Feng
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
143
|
Xiang Q, Judelson HS. Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans. PLoS One 2014; 9:e92086. [PMID: 24704821 PMCID: PMC3976263 DOI: 10.1371/journal.pone.0092086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/17/2014] [Indexed: 01/10/2023] Open
Abstract
Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.
Collapse
Affiliation(s)
- Qijun Xiang
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
144
|
Oliveri P, Fortunato AE, Petrone L, Ishikawa-Fujiwara T, Kobayashi Y, Todo T, Antonova O, Arboleda E, Zantke J, Tessmar-Raible K, Falciatore A. The Cryptochrome/Photolyase Family in aquatic organisms. Mar Genomics 2014; 14:23-37. [DOI: 10.1016/j.margen.2014.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/12/2023]
|
145
|
Role of the Alternaria alternata blue-light receptor LreA (white-collar 1) in spore formation and secondary metabolism. Appl Environ Microbiol 2014; 80:2582-91. [PMID: 24532063 DOI: 10.1128/aem.00327-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alternaria alternata is a filamentous fungus that causes considerable loss of crops of economically important feed and food worldwide. It produces more than 60 different secondary metabolites, among which alternariol (AOH) and altertoxin (ATX) are the most important mycotoxins. We found that mycotoxin production and spore formation are regulated by light in opposite ways. Whereas spore formation was largely decreased under light conditions, the production of AOH was stimulated 2- to 3-fold. ATX production was even strictly dependent on light. All light effects observed could be triggered by blue light, whereas red light had only a minor effect. Inhibition of spore formation by light was reversible after 1 day of incubation in the dark. We identified orthologues of genes encoding the Neurospora crassa blue-light-perceiving white-collar proteins, a cryptochrome, a phytochrome, and an opsin-related protein in the genome of A. alternata. Deletion of the white-collar 1 (WC-1) gene (lreA) resulted in derepression of spore formation in dark and in light. ATX formation was strongly induced in the dark in the lreA mutant, suggesting a repressing function of LreA, which appears to be released in the wild type after blue-light exposure. In addition, light induction of AOH formation was partially dependent on LreA, suggesting also an activating function. A. alternata ΔlreA was still able to partially respond to blue light, indicating the action of another blue-light receptor system.
Collapse
|
146
|
The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 2014; 10:e1004040. [PMID: 24415947 PMCID: PMC3886904 DOI: 10.1371/journal.pgen.1004040] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/01/2013] [Indexed: 01/16/2023] Open
Abstract
Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress - even in the absence of light - and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection. Both fungal pathogens and their host plants respond to light, which represents an important environmental cue. Unlike plants using light for energy generation, filamentous fungi use light, or its absence, as a general signal for orientation (night/day, underground/on the surface). Therefore, dependent on the ecological niche of the fungus, light may control the development of reproductive structures (photomorphogenesis), the dispersal of propagules (phototropism of reproductive structures) and the circadian rhythm. As in other organisms, fungi have to protect themselves against the detrimental effects of light, i.e. the damage to macromolecules by emerging singlet oxygen. Adaptive responses are the accumulation of pigments, especially in the reproductive and survival structures such as spores, sclerotia and fruiting bodies. Light is sensed by fungal photoreceptors leading to quick responses on the transcriptional level, and is furthermore considered to result in the accumulation of reactive oxygen species (ROS). In this study, we provide evidence that an unbalanced ROS homoeostasis (generation outweighs detoxification) caused by the deletion of the light-responsive transcription factor BcLTF1 impairs the ability of the necrotrophic pathogen Botrytis cinerea to grow in the presence of additional oxidative stress arising during illumination or during infection of the host.
Collapse
|
147
|
Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex. PLoS One 2013; 8:e84223. [PMID: 24391918 PMCID: PMC3877267 DOI: 10.1371/journal.pone.0084223] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022] Open
Abstract
Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970's reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development--and possibly also connected with virulence--we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans.
Collapse
Affiliation(s)
- Paulo Canessa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität Münster, Münster, Germany
| | - Montserrat A. Hevia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität Münster, Münster, Germany
| | - Luis F. Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
148
|
Cohen Y, Vaknin M, Ben-Naim Y, Rubin AE. Light suppresses sporulation and epidemics of Peronospora belbahrii. PLoS One 2013; 8:e81282. [PMID: 24348919 PMCID: PMC3861544 DOI: 10.1371/journal.pone.0081282] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/18/2013] [Indexed: 11/18/2022] Open
Abstract
Peronospora belbahrii is a biotrophic oomycete attacking sweet basil. It propagates asexually by producing spores on dichotomously branched sporophores emerging from leaf stomata. Sporulation occurs when infected plants are incubated for at least 7.5h in the dark in moisture-saturated atmosphere at 10-27°C. Exposure to light suppresses spore formation but allows sporophores to emerge from stomata. Incandescent or CW fluorescent light of 3.5 or 6 µmoles.m(2).s(-1) respectively, caused 100% inhibition of spore formation on lower leaf surface even when only the upper leaf surface was exposed to light. The inhibitory effect of light failed to translocate from an illuminated part of a leaf to a shaded part of the same leaf. Inhibition of sporulation by light was temperature-dependent. Light was fully inhibitory at 15-27°C but not at 10°C, suggesting that enzyme(s) activity and/or photoreceptor protein re-arrangement induced by light occur at ≥15°C. DCMU or paraquat could not abolish light inhibition, indicating that photosystem I and photosystem II are not involved. Narrow band led illumination showed that red light (λmax 625 nm) was most inhibitory and blue light (λmax 440 nm) was least inhibitory, suggesting that inhibition in P. belbahrii, unlike other oomycetes, operates via a red light photoreceptor. Nocturnal illumination of basil in the field (4-10 µmoles.m(2).s(-1) from 7pm to 7am) suppressed sporulation of P. belbahrii and reduced epidemics of downy mildew, thus reducing the need for fungicide applications. This is the first report on red light inhibition of sporulation in oomycetes and on the practical application of light for disease control in the field.
Collapse
Affiliation(s)
- Yigal Cohen
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Moshe Vaknin
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yariv Ben-Naim
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Avia E Rubin
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
149
|
Kim H, Son H, Lee YW. Effects of light on secondary metabolism and fungal development of Fusarium graminearum. J Appl Microbiol 2013; 116:380-9. [DOI: 10.1111/jam.12381] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 01/07/2023]
Affiliation(s)
- H. Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul Korea
| | - H. Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul Korea
| | - Y.-W. Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul Korea
| |
Collapse
|
150
|
Anders K, Daminelli-Widany G, Mroginski MA, von Stetten D, Essen LO. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling. J Biol Chem 2013; 288:35714-25. [PMID: 24174528 DOI: 10.1074/jbc.m113.510461] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are highly versatile photoreceptors, which occur ubiquitously in plants as well as in many light-responsive microorganisms. Here, photosynthetic cyanobacteria utilize up to three different phytochrome architectures, where only the plant-like and the single-domain cyanobacteriochromes are structurally characterized so far. Cph2 represents a third group in Synechocystis species and affects their capability of phototaxis by controlling c-di-GMP synthesis and degradation. The 2.6-Å crystal structure of its red/far-red responsive photosensory module in the Pr state reveals a tandem-GAF bidomain that lacks the figure-of-eight knot of the plant/cph1 subfamily. Its covalently attached phycocyanobilin chromophore adopts a highly tilted ZZZssa conformation with a novel set of interactions between its propionates and the GAF1 domain. The tongue-like protrusion from the GAF2 domain interacts with the GAF1-bound chromophore via its conserved PRXSF, WXE, and W(G/A)G motifs. Mutagenesis showed that the integrity of the tongue is indispensable for Pr → Pfr photoconversion and involves a swap of the motifs' tryptophans within the tongue-GAF1 interface. This "Trp switch" is supposed to be a crucial element for the photochromicity of all multidomain phytochromes.
Collapse
Affiliation(s)
- Katrin Anders
- From the Department of Chemistry, Biomedical Research Centre, Philipps-Universität, D-35032 Marburg, Germany
| | | | | | | | | |
Collapse
|