101
|
Loss of SynDIG1 Reduces Excitatory Synapse Maturation But Not Formation In Vivo. eNeuro 2016; 3:eN-NWR-0130-16. [PMID: 27800545 PMCID: PMC5073248 DOI: 10.1523/eneuro.0130-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022] Open
Abstract
Modification of the strength of excitatory synaptic connections is a fundamental mechanism by which neural circuits are refined during development and learning. Synapse Differentiation Induced Gene 1 (SynDIG1) has been shown to play a key role in regulating synaptic strength in vitro. Here, we investigated the role of SynDIG1 in vivo in mice with a disruption of the SynDIG1 gene rather than use an alternate loxP-flanked conditional mutant that we find retains a partial protein product. The gene-trap insertion with a reporter cassette mutant mice shows that the SynDIG1 promoter is active during embryogenesis in the retina with some activity in the brain, and postnatally in the mouse hippocampus, cortex, hindbrain, and spinal cord. Ultrastructural analysis of the hippocampal CA1 region shows a decrease in the average PSD length of synapses and a decrease in the number of synapses with a mature phenotype. Intriguingly, the total synapse number appears to be increased in SynDIG1 mutant mice. Electrophysiological analyses show a decrease in AMPA and NMDA receptor function in SynDIG1-deficient hippocampal neurons. Glutamate stimulation of individual dendritic spines in hippocampal slices from SynDIG1-deficient mice reveals increased short-term structural plasticity. Notably, the overall levels of PSD-95 or glutamate receptors enriched in postsynaptic biochemical fractions remain unaltered; however, activity-dependent synapse development is strongly compromised upon the loss of SynDIG1, supporting its importance for excitatory synapse maturation. Together, these data are consistent with a model in which SynDIG1 regulates the maturation of excitatory synapse structure and function in the mouse hippocampus in vivo.
Collapse
|
102
|
Jadhav AD, Wei L, Shi P. Compartmentalized Platforms for Neuro-Pharmacological Research. Curr Neuropharmacol 2016; 14:72-86. [PMID: 26813122 PMCID: PMC4787287 DOI: 10.2174/1570159x13666150516000957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023] Open
Abstract
Dissociated primary neuronal cell culture remains an indispensable approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, drug screening and pharmacological investigation. Compartmentalization, a widely adopted technique since its emergence in 1970s enables spatial segregation of neuronal segments and detailed investigation that is otherwise limited with traditional culture methods. Although these compartmental chambers (e.g. Campenot chamber) have been proven valuable for the investigation of Peripheral Nervous System (PNS) neurons and to some extent within Central Nervous System (CNS) neurons, their utility has remained limited given the arduous manufacturing process, incompatibility with high-resolution optical imaging and limited throughput. The development in the area of microfabrication and microfluidics has enabled creation of next generation compartmentalized devices that are cheap, easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially as well as temporally, and permit highthroughput testing. In this review we briefly evaluate the various compartmentalization tools used for neurobiological research, and highlight application of the emerging microfluidic platforms towards in vitro single cell neurobiology.
Collapse
Affiliation(s)
| | | | - Peng Shi
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
103
|
The Purkinje cell as a model of synaptogenesis and synaptic specificity. Brain Res Bull 2016; 129:12-17. [PMID: 27721030 DOI: 10.1016/j.brainresbull.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 01/03/2023]
Abstract
Since the groundbreaking work of Ramon y Cajal, the cerebellar Purkinje cell has always represented an ideal model for studying the organization, development and function of synaptic circuits. Purkinje cells receive distinct types of glutamatergic and GABAergic synapses, each characterized by exquisite sub-cellular and molecular specificity. The formation and refinement of these connections results from a temporally-regulated sequence of events that involves molecular interactions between distinct sets of secreted and surface proteins, as well as activity-dependent competition between converging inputs. Insights into the mechanisms controlling synaptic specificity in Purkinje cells may help understand synapse development also in other brain regions and disclose circuit abnormalities that underlie neurodevelopmental disorders.
Collapse
|
104
|
Wierenga CJ. Live imaging of inhibitory axons: Synapse formation as a dynamic trial-and-error process. Brain Res Bull 2016; 129:43-49. [PMID: 27720814 DOI: 10.1016/j.brainresbull.2016.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
In this review I discuss recent live imaging studies that demonstrate that synapses, and in particular inhibitory synapses, are highly dynamic structures. The ongoing changes of presynaptic boutons within axons emphasize the stochastic aspect of inhibitory synapse formation and paint a picture of a dynamic trial-and-error process. Furthermore, I discuss recent and previous insights in the molecular and mechanistic pathways that underlie synapse formation, with a specific focus on the formation of inhibitory presynaptic boutons.
Collapse
Affiliation(s)
- Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
105
|
Galati DF, Hiester BG, Jones KR. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation. Front Cell Neurosci 2016; 10:209. [PMID: 27683544 PMCID: PMC5021759 DOI: 10.3389/fncel.2016.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/22/2016] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.
Collapse
Affiliation(s)
- Domenico F Galati
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder Boulder, CO, USA
| | - Brian G Hiester
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder Boulder, CO, USA
| | - Kevin R Jones
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder Boulder, CO, USA
| |
Collapse
|
106
|
SRGAP2 and Its Human-Specific Paralog Co-Regulate the Development of Excitatory and Inhibitory Synapses. Neuron 2016; 91:356-69. [PMID: 27373832 DOI: 10.1016/j.neuron.2016.06.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/12/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
The proper function of neural circuits requires spatially and temporally balanced development of excitatory and inhibitory synapses. However, the molecular mechanisms coordinating excitatory and inhibitory synaptogenesis remain unknown. Here we demonstrate that SRGAP2A and its human-specific paralog SRGAP2C co-regulate the development of excitatory and inhibitory synapses in cortical pyramidal neurons in vivo. SRGAP2A promotes synaptic maturation, and ultimately the synaptic accumulation of AMPA and GABAA receptors, by interacting with key components of both excitatory and inhibitory postsynaptic scaffolds, Homer and Gephyrin. Furthermore, SRGAP2A limits the density of both types of synapses via its Rac1-GAP activity. SRGAP2C inhibits all identified functions of SRGAP2A, protracting the maturation and increasing the density of excitatory and inhibitory synapses. Our results uncover a molecular mechanism coordinating critical features of synaptic development and suggest that human-specific duplication of SRGAP2 might have contributed to the emergence of unique traits of human neurons while preserving the excitation/inhibition balance.
Collapse
|
107
|
Phosphorylation of FEZ1 by Microtubule Affinity Regulating Kinases regulates its function in presynaptic protein trafficking. Sci Rep 2016; 6:26965. [PMID: 27247180 PMCID: PMC4887895 DOI: 10.1038/srep26965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/11/2016] [Indexed: 12/28/2022] Open
Abstract
Adapters bind motor proteins to cargoes and therefore play essential roles in Kinesin-1 mediated intracellular transport. The regulatory mechanisms governing adapter functions and the spectrum of cargoes recognized by individual adapters remain poorly defined. Here, we show that cargoes transported by the Kinesin-1 adapter FEZ1 are enriched for presynaptic components and identify that specific phosphorylation of FEZ1 at its serine 58 regulatory site is mediated by microtubule affinity-regulating kinases (MARK/PAR-1). Loss of MARK/PAR-1 impairs axonal transport, with adapter and cargo abnormally co-aggregating in neuronal cell bodies and axons. Presynaptic specializations are markedly reduced and distorted in FEZ1 and MARK/PAR-1 mutants. Strikingly, abnormal co-aggregates of unphosphorylated FEZ1, Kinesin-1 and its putative cargoes are present in brains of transgenic mice modelling aspects of Alzheimer's disease, a neurodegenerative disorder exhibiting impaired axonal transport and altered MARK activity. Our findings suggest that perturbed FEZ1-mediated synaptic delivery of proteins arising from abnormal signalling potentially contributes to the process of neurodegeneration.
Collapse
|
108
|
NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun 2016; 7:11264. [PMID: 27117477 PMCID: PMC5227094 DOI: 10.1038/ncomms11264] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/04/2016] [Indexed: 01/29/2023] Open
Abstract
How neuronal proteomes self-organize is poorly understood because of their inherent molecular and cellular complexity. Here, focusing on mammalian synapses we use blue-native PAGE and ‘gene-tagging' of GluN1 to report the first biochemical purification of endogenous NMDA receptors (NMDARs) directly from adult mouse brain. We show that NMDARs partition between two discrete populations of receptor complexes and ∼1.5 MDa supercomplexes. We tested the assembly mechanism with six mouse mutants, which indicates a tripartite requirement of GluN2B, PSD93 and PSD95 gate the incorporation of receptors into ∼1.5 MDa supercomplexes, independent of either canonical PDZ-ligands or GluN2A. Supporting the essential role of GluN2B, quantitative gene-tagging revealed a fourfold molar excess of GluN2B over GluN2A in adult forebrain. NMDAR supercomplexes are assembled late in postnatal development and triggered by synapse maturation involving epigenetic and activity-dependent mechanisms. Finally, screening the quaternary organization of 60 native proteins identified numerous discrete supercomplexes that populate the mammalian synapse. NMDARs and MAGUK proteins are capable of forming higher-order protein assemblies, however their organisation in the intact brain is unclear. Here, Frank et al. identify mouse and human supercomplexes and discover their mechanism of assembly using genetic tagging and affinity purification.
Collapse
|
109
|
Hogstrom LJ, Guo SM, Murugadoss K, Bathe M. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales. Interface Focus 2016; 6:20150081. [PMID: 26855758 DOI: 10.1098/rsfs.2015.0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure.
Collapse
Affiliation(s)
- L J Hogstrom
- Department of Biological Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Building 16, Room 255, Cambridge, MA 02139 , USA
| | - S M Guo
- Department of Biological Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Building 16, Room 255, Cambridge, MA 02139 , USA
| | - K Murugadoss
- Department of Biological Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Building 16, Room 255, Cambridge, MA 02139 , USA
| | - M Bathe
- Department of Biological Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, Building 16, Room 255, Cambridge, MA 02139 , USA
| |
Collapse
|
110
|
Ba W, Selten MM, van der Raadt J, van Veen H, Li LL, Benevento M, Oudakker AR, Lasabuda RSE, Letteboer SJ, Roepman R, van Wezel RJA, Courtney MJ, van Bokhoven H, Nadif Kasri N. ARHGAP12 Functions as a Developmental Brake on Excitatory Synapse Function. Cell Rep 2016; 14:1355-1368. [PMID: 26854232 DOI: 10.1016/j.celrep.2016.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/28/2015] [Accepted: 01/09/2016] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms that promote excitatory synapse development have been extensively studied. However, the molecular events preventing precocious excitatory synapse development so that synapses form at the correct time and place are less well understood. Here, we report the functional characterization of ARHGAP12, a previously uncharacterized Rho GTPase-activating protein (RhoGAP) in the brain. ARHGAP12 is specifically expressed in the CA1 region of the hippocampus, where it localizes to the postsynaptic compartment of excitatory synapses. ARHGAP12 negatively controls spine size via its RhoGAP activity and promotes, by interacting with CIP4, postsynaptic AMPA receptor endocytosis. Arhgap12 knockdown results in precocious maturation of excitatory synapses, as indicated by a reduction in the proportion of silent synapses. Collectively, our data show that ARHGAP12 is a synaptic RhoGAP that regulates excitatory synaptic structure and function during development.
Collapse
Affiliation(s)
- W Ba
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, the Netherlands
| | - M M Selten
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, the Netherlands
| | - J van der Raadt
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - H van Veen
- Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80082, 30508 TB Utrecht, the Netherlands
| | - L-L Li
- Molecular Signalling Laboratory, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70210, Finland
| | - M Benevento
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, the Netherlands
| | - A R Oudakker
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, the Netherlands
| | - R S E Lasabuda
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - S J Letteboer
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - R Roepman
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - R J A van Wezel
- Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, the Netherlands; Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, the Netherlands
| | - M J Courtney
- Molecular Signalling Laboratory, Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70210, Finland; Turku Centre for Biotechnology, Abo Akademi University and University of Turku, Turku 20521, Finland
| | - H van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - N Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
111
|
Zhang SX, Duan LH, Qian H, Yu X. Actin Aggregations Mark the Sites of Neurite Initiation. Neurosci Bull 2016; 32:1-15. [PMID: 26779918 DOI: 10.1007/s12264-016-0012-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022] Open
Abstract
A salient feature of neurons is their intrinsic ability to grow and extend neurites, even in the absence of external cues. Compared to the later stages of neuronal development, such as neuronal polarization and dendrite morphogenesis, the early steps of neuritogenesis remain relatively unexplored. Here we showed that redistribution of cortical actin into large aggregates preceded neuritogenesis and determined the site of neurite initiation. Enhancing actin polymerization by jasplakinolide treatment effectively blocked actin redistribution and neurite initiation, while treatment with the actin depolymerizing agents latrunculin A or cytochalasin D accelerated neurite formation. Together, these results demonstrate a critical role of actin dynamics and reorganization in neurite initiation. Further experiments showed that microtubule dynamics and protein synthesis are not required for neurite initiation, but are required for later neurite stabilization. The redistribution of actin during early neuronal development was also observed in the cerebral cortex and hippocampus in vivo.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Hui Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington, 98195, USA
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
112
|
Abstract
UNLABELLED Synapses depend on trafficking of key membrane proteins by lateral diffusion from surface populations and by exocytosis from intracellular pools. The cell adhesion molecule neurexin (Nrxn) plays essential roles in synapses, but the dynamics and regulation of its trafficking are unknown. Here, we performed single-particle tracking and live imaging of transfected, epitope-tagged Nrxn variants in cultured rat and mouse wild-type or knock-out neurons. We observed that structurally larger αNrxn molecules are more mobile in the plasma membrane than smaller βNrxns because αNrxns displayed higher diffusion coefficients in extrasynaptic regions and excitatory or inhibitory terminals. We found that well characterized interactions with extracellular binding partners regulate the surface mobility of Nrxns. Binding to neurexophilin-1 (Nxph1) reduced the surface diffusion of αNrxns when both molecules were coexpressed. Conversely, impeding other interactions by insertion of splice sequence #4 or removal of extracellular Ca(2+) augmented the mobility of αNrxns and βNrxns. We also determined that fast axonal transport delivers Nrxns to the neuronal surface because Nrxns comigrate as cargo on synaptic vesicle protein transport vesicles (STVs). Unlike surface mobility, intracellular transport of βNrxn(+) STVs was faster than that of αNrxns, but both depended on the microtubule motor protein KIF1A and neuronal activity regulated the velocity. Large spontaneous fusion of Nrxn(+) STVs occurred simultaneously with synaptophysin on axonal membranes mostly outside of active presynaptic terminals. Surface Nrxns enriched at synaptic terminals where αNrxns and Nxph1/αNrxns recruited GABAAR subunits. Therefore, our results identify regulated dynamic trafficking as an important property of Nrxns that corroborates their function at synapses. SIGNIFICANCE STATEMENT Synapses mediate most functions in our brains and depend on the precise and timely delivery of key molecules throughout life. Neurexins (Nrxns) are essential synaptic cell adhesion molecules that are involved in synaptic transmission and differentiation of synaptic contacts. In addition, Nrxns have been linked to neuropsychiatric diseases such as autism. Because little is known about the dynamic aspects of trafficking of neurexins to synapses, we investigated this important question using single-molecule tracking and time-lapse imaging. We identify distinct differences between major Nrxn variants both in surface mobility and during intracellular transport. Because their dynamic behavior is highly regulated, for example, by different binding activities, these processes have immediate consequences for the function of Nrxns at synapses.
Collapse
|
113
|
Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity. Neural Plast 2016; 2016:8301737. [PMID: 26881134 PMCID: PMC4736325 DOI: 10.1155/2016/8301737] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022] Open
Abstract
Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases.
Collapse
|
114
|
Kirk LM, Ti SW, Bishop HI, Orozco-Llamas M, Pham M, Trimmer JS, Díaz E. Distribution of the SynDIG4/proline-rich transmembrane protein 1 in rat brain. J Comp Neurol 2015; 524:2266-80. [PMID: 26660156 DOI: 10.1002/cne.23945] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
The modulation of AMPA receptor (AMPAR) content at synapses is thought to be an underlying molecular mechanism of memory and learning. AMPAR content at synapses is highly plastic and is regulated by numerous AMPAR accessory transmembrane proteins such as TARPs, cornichons, and CKAMPs. SynDIG (synapse differentiation-induced gene) defines a family of four genes (SynDIG1-4) expressed in distinct and overlapping patterns in the brain. SynDIG1 was previously identified as a novel transmembrane AMPAR-associated protein that regulates synaptic strength. The related protein SynDIG4 [also known as Prrt1 (proline-rich transmembrane protein 1)] has recently been identified as a component of AMPAR complexes. In this study, we show that SynDIG1 and SynDIG4 have distinct yet overlapping patterns of expression in the central nervous system, with SynDIG4 having especially prominent expression in the hippocampus and particularly within CA1. In contrast to SynDIG1 and other traditional AMPAR auxiliary subunits, SynDIG4 is de-enriched at the postsynaptic density and colocalizes with extrasynaptic GluA1 puncta in primary dissociated neuron culture. These results indicate that, although SynDIG4 shares sequence similarity with SynDIG1, it might act through a unique mechanism as an auxiliary factor for extrasynaptic GluA1-containing AMPARs. J. Comp. Neurol. 524:2266-2280, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lyndsey M Kirk
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| | - Shu W Ti
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | - Hannah I Bishop
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | - Mayra Orozco-Llamas
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| | - Michelle Pham
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616.,Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California, 95616
| | - Elva Díaz
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, 95616
| |
Collapse
|
115
|
Cisternas P, Louveau A, Bueno SM, Kalergis AM, Boudin H, Riedel CA. Gestational Hypothyroxinemia Affects Glutamatergic Synaptic Protein Distribution and Neuronal Plasticity Through Neuron-Astrocyte Interplay. Mol Neurobiol 2015; 53:7158-7169. [PMID: 26687181 DOI: 10.1007/s12035-015-9609-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Abstract
Gestational hypothyroxinemia, characterized by low levels of maternal thyroxine (T4) during gestation, is closely associated with cognitive impairment in offspring. Studies in animal models have shown that this condition alters neuronal glutamatergic synapses in the hippocampus. Given that astrocytes critically contribute to the establishment and functioning of synapses, the aim of this study was to determine the effects of gestational hypothyroxinemia on the capacity of astrocytes to regulate glutamatergic synapses. In an in vitro co-culture model of astrocytes and hippocampal neurons, gestational hypothyroxinemia profoundly affected the synaptic patterns of GluN1 and CD3ζ in an astrocyte-dependent manner. These effects were associated with impaired plasticity that was dependent on both neuronal and astrocyte contributions. These results highlight the importance of neuron-astrocyte interplay in the deleterious effects of gestational hypothyroxinemia and the timely diagnosis and treatment of this condition during gestation to ensure proper central nervous system development in offspring.
Collapse
Affiliation(s)
- Pablo Cisternas
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Antoine Louveau
- INSERM Unité Mixte de Recherche 1064, Institut Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Susan M Bueno
- INSERM Unité Mixte de Recherche 1064, Institut Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire Nantes, Nantes, France.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- INSERM Unité Mixte de Recherche 1064, Institut Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire Nantes, Nantes, France.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hélène Boudin
- INSERM Unité Mixte de Recherche 1064, Institut Transplantation Urologie Nephrologie, Centre Hospitalier Universitaire Nantes, Nantes, France. .,INSERM Unité de Recherche 913, L'Institut des Maladies de l'Appareil Digestif, Université de Nantes, 44035, Nantes, France.
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
116
|
Carnitine palmitoyltransferase 1C: From cognition to cancer. Prog Lipid Res 2015; 61:134-48. [PMID: 26708865 DOI: 10.1016/j.plipres.2015.11.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022]
Abstract
Carnitine palmitoyltransferase 1 (CPT1) C was the last member of the CPT1 family of genes to be discovered. CPT1A and CPT1B were identified as the gate-keeper enzymes for the entry of long-chain fatty acids (as carnitine esters) into mitochondria and their further oxidation, and they show differences in their kinetics and tissue expression. Although CPT1C exhibits high sequence similarity to CPT1A and CPT1B, it is specifically expressed in neurons (a cell-type that does not use fatty acids as fuel to any major extent), it is localized in the endoplasmic reticulum of cells, and it has minimal CPT1 catalytic activity with l-carnitine and acyl-CoA esters. The lack of an easily measurable biological activity has hampered attempts to elucidate the cellular and physiological role of CPT1C but has not diminished the interest of the biomedical research community in this CPT1 isoform. The observations that CPT1C binds malonyl-CoA and long-chain acyl-CoA suggest that it is a sensor of lipid metabolism in neurons, where it appears to impact ceramide and triacylglycerol (TAG) metabolism. CPT1C global knock-out mice show a wide range of brain disorders, including impaired cognition and spatial learning, motor deficits, and a deregulation in food intake and energy homeostasis. The first disease-causing CPT1C mutation was recently described in humans, with Cpt1c being identified as the gene causing hereditary spastic paraplegia. The putative role of CPT1C in the regulation of complex-lipid metabolism is supported by the observation that it is highly expressed in certain virulent tumor cells, conferring them resistance to glucose- and oxygen-deprivation. Therefore, CPT1C may be a promising target in the treatment of cancer. Here we review the molecular, biochemical, and structural properties of CPT1C and discuss its potential roles in brain function, and cancer.
Collapse
|
117
|
Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, Barak B, Zeng M, Li C, Lu C, Wells M, Amaya A, Nguyen S, Lewis M, Sanjana N, Zhou Y, Zhang M, Zhang F, Fu Z, Feng G. Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects. Neuron 2015; 89:147-62. [PMID: 26687841 DOI: 10.1016/j.neuron.2015.11.023] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/27/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
Abstract
Genetic studies have revealed significant overlaps of risk genes among psychiatric disorders. However, it is not clear how different mutations of the same gene contribute to different disorders. We characterized two lines of mutant mice with Shank3 mutations linked to ASD and schizophrenia. We found both shared and distinct synaptic and behavioral phenotypes. Mice with the ASD-linked InsG3680 mutation manifest striatal synaptic transmission defects before weaning age and impaired juvenile social interaction, coinciding with the early onset of ASD symptoms. On the other hand, adult mice carrying the schizophrenia-linked R1117X mutation show profound synaptic defects in prefrontal cortex and social dominance behavior. Furthermore, we found differential Shank3 mRNA stability and SHANK1/2 upregulation in these two lines. These data demonstrate that different alleles of the same gene may have distinct phenotypes at molecular, synaptic, and circuit levels in mice, which may inform exploration of these relationships in human patients.
Collapse
Affiliation(s)
- Yang Zhou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Tobias Kaiser
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patrícia Monteiro
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, 3000-214 Coimbra, Portugal
| | - Xiangyu Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marie S Van der Goes
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dongqing Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boaz Barak
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Menglong Zeng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Life Science, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Chenchen Li
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Congyi Lu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Wells
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aldo Amaya
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shannon Nguyen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Lewis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Neville Sanjana
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yongdi Zhou
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Mingjie Zhang
- Division of Life Science, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Feng Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhanyan Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
118
|
Depolarization of Hippocampal Neurons Induces Formation of Nonsynaptic NMDA Receptor Islands Resembling Nascent Postsynaptic Densities. eNeuro 2015; 2:eN-NWR-0066-15. [PMID: 26665164 PMCID: PMC4672205 DOI: 10.1523/eneuro.0066-15.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/15/2015] [Accepted: 11/03/2015] [Indexed: 01/11/2023] Open
Abstract
Depolarization of neurons in 3-week-old rat hippocampal cultures promotes a rapid increase in the density of surface NMDA receptors (NRs), accompanied by transient formation of nonsynaptic NMDA receptor clusters or NR islands. Islands exhibit cytoplasmic dense material resembling that at postsynaptic densities (PSDs), and contain typical PSD components, including MAGUKS (membrane-associated guanylate kinases), GKAP, Shank, Homer, and CaMKII detected by pre-embedding immunogold electron microscopy. In contrast to mature PSDs, islands contain more NMDA than AMPA receptors, and more SAP102 than PSD-95, features that are shared with nascent PSDs in developing synapses. Islands do not appear to be exocytosed or endocytosed directly as preformed packages because neurons lacked intracellular vacuoles containing island-like structures. Islands form and disassemble upon depolarization of neurons on a time scale of 2-3 min, perhaps representing an initial stage in synaptogenesis.
Collapse
|
119
|
Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19). PLoS One 2015; 10:e0140010. [PMID: 26465886 PMCID: PMC4605768 DOI: 10.1371/journal.pone.0140010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Abstract
The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.
Collapse
|
120
|
Puigdellívol M, Cherubini M, Brito V, Giralt A, Suelves N, Ballesteros J, Zamora-Moratalla A, Martín ED, Eipper BA, Alberch J, Ginés S. A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease. Hum Mol Genet 2015; 24:7265-85. [PMID: 26464483 DOI: 10.1093/hmg/ddv426] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023] Open
Abstract
Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Marta Cherubini
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Verónica Brito
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Albert Giralt
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Núria Suelves
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Jesús Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Jordi Alberch
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Silvia Ginés
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain,
| |
Collapse
|
121
|
Haselwandter CA, Kardar M, Triller A, da Silveira RA. Self-assembly and plasticity of synaptic domains through a reaction-diffusion mechanism. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032705. [PMID: 26465496 DOI: 10.1103/physreve.92.032705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 06/05/2023]
Abstract
Signal transmission across chemical synapses relies crucially on neurotransmitter receptor molecules, concentrated in postsynaptic membrane domains along with scaffold and other postsynaptic molecules. The strength of the transmitted signal depends on the number of receptor molecules in postsynaptic domains, and activity-induced variation in the receptor number is one of the mechanisms of postsynaptic plasticity. Recent experiments have demonstrated that the reaction and diffusion properties of receptors and scaffolds at the membrane, alone, yield spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in neurons. On the basis of these experiments we develop a model describing synaptic receptor domains in terms of the underlying reaction-diffusion processes. Our model predicts that the spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in experiments depends on a few key reactions between receptors and scaffolds. Furthermore, our model suggests novel mechanisms for the alignment of pre- and postsynaptic domains and for short-term postsynaptic plasticity in receptor number. We predict that synaptic receptor domains localize in membrane regions with an increased receptor diffusion coefficient or a decreased scaffold diffusion coefficient. Similarly, we find that activity-dependent increases or decreases in receptor or scaffold diffusion yield a transient increase in the number of receptor molecules concentrated in postsynaptic domains. Thus, the proposed reaction-diffusion model puts forth a coherent set of biophysical mechanisms for the formation, stability, and plasticity of molecular domains on the postsynaptic membrane.
Collapse
Affiliation(s)
- Christoph A Haselwandter
- Departments of Physics & Astronomy and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Antoine Triller
- IBENS, Institute of Biology at Ecole Normale Supérieure, Inserm U1024, CNRS UMR5197, 46 rue d'Ulm, 75005 Paris, France
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
- Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Denis Diderot, France
| |
Collapse
|
122
|
Anderson GW, Deans PJM, Taylor RDT, Raval P, Chen D, Lowder H, Murkerji S, Andreae LC, Williams BP, Srivastava DP. Characterisation of neurons derived from a cortical human neural stem cell line CTX0E16. Stem Cell Res Ther 2015; 6:149. [PMID: 26296747 PMCID: PMC4546258 DOI: 10.1186/s13287-015-0136-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/29/2015] [Accepted: 07/17/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction Conditionally immortalised human neural progenitor cells (hNPCs) represent a robust source of native neural cells to investigate physiological mechanisms in both health and disease. However, in order to recognise the utility of such cells, it is critical to determine whether they retain characteristics of their tissue of origin and generate appropriate neural cell types upon differentiation. To this end, we have characterised the conditionally immortalised, cortically-derived, human NPC line, CTX0E16, investigating the molecular and cellular phenotype of differentiated neurons to determine whether they possess characteristics of cortical glutamatergic neurons. Methods Differentiated CTX0E16 cells were characterised by assessing expression of several neural fates markers, and examination of developing neuronal morphology. Expression of neurotransmitter receptors, signalling proteins and related proteins were assessed by q- and RT-PCR and complemented by Ca2+ imaging, electrophysiology and assessment of ERK signalling in response to neurotransmitter ligand application. Finally, differentiated neurons were assessed for their ability to form putative synapses and to respond to activity-dependent stimulation. Results Differentiation of CTX0E16 hNPCs predominately resulted in the generation of neurons expressing markers of cortical and glutamatergic (excitatory) fate, and with a typical polarized neuronal morphology. Gene expression analysis confirmed an upregulation in the expression of cortical, glutamatergic and signalling proteins following differentiation. CTX0E16 neurons demonstrated Ca2+ and ERK1/2 responses following exogenous neurotransmitter application, and after 6 weeks displayed spontaneous Ca2+ transients and electrophysiological properties consistent with that of immature neurons. Differentiated CTX0E16 neurons also expressed a range of pre- and post-synaptic proteins that co-localized along distal dendrites, and moreover, displayed structural plasticity in response to modulation of neuronal activity. Conclusions Taken together, these findings demonstrate that the CTX0E16 hNPC line is a robust source of cortical neurons, which display functional properties consistent with a glutamatergic phenotype. Thus CTX0E16 neurons can be used to study cortical cell function, and furthermore, as these neurons express a range of disease-associated genes, they represent an ideal platform with which to investigate neurodevelopmental mechanisms in native human cells in health and disease. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0136-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Greg W Anderson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - P J Michael Deans
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ruth D T Taylor
- MRC Centre for Developmental Neurobiology, King's College London, London, SE5 8AF, UK.
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ding Chen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Harrison Lowder
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Srishti Murkerji
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Laura C Andreae
- MRC Centre for Developmental Neurobiology, King's College London, London, SE5 8AF, UK.
| | - Brenda P Williams
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|
123
|
Coordinated Spine Pruning and Maturation Mediated by Inter-Spine Competition for Cadherin/Catenin Complexes. Cell 2015; 162:808-22. [PMID: 26255771 DOI: 10.1016/j.cell.2015.07.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/11/2015] [Accepted: 06/13/2015] [Indexed: 02/04/2023]
Abstract
Dendritic spines are postsynaptic compartments of excitatory synapses that undergo dynamic changes during development, including rapid spinogenesis in early postnatal life and significant pruning during adolescence. Spine pruning defects have been implicated in developmental neurological disorders such as autism, yet much remains to be uncovered regarding its molecular mechanism. Here, we show that spine pruning and maturation in the mouse somatosensory cortex are coordinated via the cadherin/catenin cell adhesion complex and bidrectionally regulated by sensory experience. We further demonstrate that locally enhancing cadherin/catenin-dependent adhesion or photo-stimulating a contacting channelrhodopsin-expressing axon stabilized the manipulated spine and eliminated its neighbors, an effect requiring cadherin/catenin-dependent adhesion. Importantly, we show that differential cadherin/catenin-dependent adhesion between neighboring spines biased spine fate in vivo. These results suggest that activity-induced inter-spine competition for β-catenin provides specificity for concurrent spine maturation and elimination and thus is critical for the molecular control of spine pruning during neural circuit refinement.
Collapse
|
124
|
Structural Components of Synaptic Plasticity and Memory Consolidation. Cold Spring Harb Perspect Biol 2015; 7:a021758. [PMID: 26134321 DOI: 10.1101/cshperspect.a021758] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain.
Collapse
|
125
|
Kurup N, Yan D, Goncharov A, Jin Y. Dynamic microtubules drive circuit rewiring in the absence of neurite remodeling. Curr Biol 2015; 25:1594-605. [PMID: 26051896 DOI: 10.1016/j.cub.2015.04.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
A striking neuronal connectivity change in C. elegans involves the coordinated elimination of existing synapses and formation of synapses at new locations, without altering neuronal morphology. Here, we investigate the tripartite interaction between dynamic microtubules (MTs), kinesin-1, and vesicular cargo during this synapse remodeling. We find that a reduction in the dynamic MT population in motor neuron axons, resulting from genetic interaction between loss of function in the conserved MAPKKK dlk-1 and an α-tubulin mutation, specifically blocks synapse remodeling. Using live imaging and pharmacological modulation of the MT cytoskeleton, we show that dynamic MTs are increased at the onset of remodeling and are critical for new synapse formation. DLK-1 acts during synapse remodeling, and its function involves MT catastrophe factors including kinesin-13/KLP-7 and spastin/SPAS-1. Through a forward genetic screen, we identify gain-of-function mutations in kinesin-1 that can compensate for reduced dynamic MTs to promote synaptic vesicle transport during remodeling. Our data provide in vivo evidence supporting the requirement of dynamic MTs for kinesin-1-dependent axonal transport and shed light on the role of the MT cytoskeleton in facilitating neural circuit plasticity.
Collapse
Affiliation(s)
- Naina Kurup
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Yan
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexandr Goncharov
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
126
|
Mosca TJ. On the Teneurin track: a new synaptic organization molecule emerges. Front Cell Neurosci 2015; 9:204. [PMID: 26074772 PMCID: PMC4444827 DOI: 10.3389/fncel.2015.00204] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
127
|
Dabrowski A, Terauchi A, Strong C, Umemori H. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis. Development 2015; 142:1818-30. [PMID: 25926357 PMCID: PMC4440923 DOI: 10.1242/dev.115568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cells, Cultured
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Mice
- Mice, Knockout
- Neurogenesis/genetics
- Neurogenesis/physiology
- Neurons/cytology
- Neurons/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Ania Dabrowski
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Cameron Strong
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
128
|
Hutsler JJ, Casanova MF. Review: Cortical construction in autism spectrum disorder: columns, connectivity and the subplate. Neuropathol Appl Neurobiol 2015; 42:115-34. [PMID: 25630827 DOI: 10.1111/nan.12227] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 01/28/2023]
Abstract
The cerebral cortex undergoes protracted maturation during human development and exemplifies how biology and environment are inextricably intertwined in the construction of complex neural circuits. Autism spectrum disorders are characterized by a number of pathological changes arising from this developmental process. These include: (i) alterations to columnar structure that have significant implications for the organization of cortical circuits and connectivity; (ii) alterations to synaptic spines on individual cortical units that may underlie specific types of connectional changes; and (iii) alterations within the cortical subplate, a region that plays a role in proper cortical development and in regulating interregional communication in the mature brain. Although the cerebral cortex is not the only structure affected in the disorder, it is a fundamental contributor to the behaviours that characterize autism. These alterations to cortical circuitry likely underlie the behavioural phenotype in autism and contribute to the unique pattern of deficits and strengths that characterize cognitive functioning. Recent findings within the cortical subplate may indicate that alterations to cortical construction begin prenatally, before activity-dependent connections are established, and are in need of further study. A better understanding of cortical development in autism spectrum disorders will draw bridges between the microanatomical computational circuitry and the atypical behaviours that arise when that circuitry is modified. In addition, it will allow us to better exploit the constructional plasticity within the brain to design more targeted interventions that better manage atypical cortical construction and that can be applied very early in postnatal life.
Collapse
Affiliation(s)
- Jeffrey J Hutsler
- Department of Psychology, Program in Neuroscience, University of Nevada, Reno, USA
| | - Manuel F Casanova
- Department of Psychiatry and Behavioral Science, University of Louisville School of Medicine, Louisville, USA
| |
Collapse
|
129
|
Wan G, Corfas G. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear Res 2015; 329:1-10. [PMID: 25937135 DOI: 10.1016/j.heares.2015.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 01/02/2023]
Abstract
Cochlear ribbon synapses are required for the rapid and precise neural transmission of acoustic signals from inner hair cells to the spiral ganglion neurons. Emerging evidence suggests that damage to these synapses represents an important form of cochlear neuropathy that might be highly prevalent in sensorineural hearing loss. In this review, we discuss our current knowledge on how ribbon synapses are damaged by noise and during aging, as well as potential strategies to promote ribbon synapse regeneration for hearing restoration.
Collapse
Affiliation(s)
- Guoqiang Wan
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
130
|
Sellers KJ, Erli F, Raval P, Watson IA, Chen D, Srivastava DP. Rapid modulation of synaptogenesis and spinogenesis by 17β-estradiol in primary cortical neurons. Front Cell Neurosci 2015; 9:137. [PMID: 25926772 PMCID: PMC4396386 DOI: 10.3389/fncel.2015.00137] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/23/2015] [Indexed: 01/06/2023] Open
Abstract
In the mammalian forebrain, the majority of excitatory synapses occur on dendritic spines. Changes in the number of these structures is important for brain development, plasticity and the refinement of neuronal circuits. The formation of excitatory synapses involves the coordinated formation of dendritic spines and targeting of multi-protein complexes to nascent connections. Recent studies have demonstrated that the estrogen 17β-estradiol (E2) can rapidly increase the number of dendritic spines, an effect consistent with the ability of E2 to rapidly influence cognitive function. However, the molecular composition of E2-induced spines and whether these protrusions form synaptic connections has not been fully elucidated. Moreover, which estrogen receptor(s) (ER) mediate these spine-morphogenic responses are not clear. Here, we report that acute E2 treatment results in the recruitment of postsynaptic density protein 95 (PSD-95) to novel dendritic spines. In addition neuroligin 1 (Nlg-1) and the NMDA receptor subunit GluN1 are recruited to nascent synapses in cortical neurons. The presence of these synaptic proteins at nascent synapses suggests that the machinery to allow pre- and post-synapses to form connections are present in E2-induced spines. We further demonstrate that E2 treatment results in the rapid and transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt and the mammalian target of rapamycin (mTOR) signaling pathways. However, only ERK1/2 and Akt are required for E2-mediated spinogenesis. Using synthetic receptor modulators, we further demonstrate that activation of the estrogen receptor beta (ERβ) but not alpha (ERα) mimics rapid E2-induced spinogenesis and synaptogenesis. Taken together these findings suggest that in primary cortical neurons, E2 signaling via ERβ, but not through ERα, is capable of remodeling neuronal circuits by increasing the number of excitatory synapses.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Filippo Erli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK ; Department of Biotechnology and Biosciences, Univeristy of Milano-Bicocca Milano, Italy
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Iain A Watson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Ding Chen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| |
Collapse
|
131
|
Byrne JH, Hawkins RD. Nonassociative learning in invertebrates. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a021675. [PMID: 25722464 DOI: 10.1101/cshperspect.a021675] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The simplicity and tractability of the neural circuits mediating behaviors in invertebrates have facilitated the cellular/molecular dissection of neural mechanisms underlying learning. The review has a particular focus on the general principles that have emerged from analyses of an example of nonassociative learning, sensitization in the marine mollusk Aplysia. Learning and memory rely on multiple mechanisms of plasticity at multiple sites of the neuronal circuits, with the relative contribution to memory of the different sites varying as a function of the extent of training and time after training. The same intracellular signaling cascades that induce short-term modifications in synaptic transmission can also be used to induce long-term changes. Although short-term memory relies on covalent modifications of preexisting proteins, long-term memory also requires regulated gene transcription and translation. Maintenance of long-term cellular memory involves both intracellular and extracellular feedback loops, which sustain the regulation of gene expression and the modification of targeted molecules.
Collapse
Affiliation(s)
- John H Byrne
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032 New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
132
|
Fossati G, Morini R, Corradini I, Antonucci F, Trepte P, Edry E, Sharma V, Papale A, Pozzi D, Defilippi P, Meier JC, Brambilla R, Turco E, Rosenblum K, Wanker EE, Ziv NE, Menna E, Matteoli M. Reduced SNAP-25 increases PSD-95 mobility and impairs spine morphogenesis. Cell Death Differ 2015; 22:1425-36. [PMID: 25678324 DOI: 10.1038/cdd.2014.227] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/22/2014] [Accepted: 11/26/2014] [Indexed: 12/24/2022] Open
Abstract
Impairment of synaptic function can lead to neuropsychiatric disorders collectively referred to as synaptopathies. The SNARE protein SNAP-25 is implicated in several brain pathologies and, indeed, brain areas of psychiatric patients often display reduced SNAP-25 expression. It has been recently found that acute downregulation of SNAP-25 in brain slices impairs long-term potentiation; however, the processes through which this occurs are still poorly defined. We show that in vivo acute downregulation of SNAP-25 in CA1 hippocampal region affects spine number. Consistently, hippocampal neurons from SNAP-25 heterozygous mice show reduced densities of dendritic spines and defective PSD-95 dynamics. Finally, we show that, in brain, SNAP-25 is part of a molecular complex including PSD-95 and p140Cap, with p140Cap being capable to bind to both SNAP-25 and PSD-95. These data demonstrate an unexpected role of SNAP-25 in controlling PSD-95 clustering and open the possibility that genetic reductions of the protein levels - as occurring in schizophrenia - may contribute to the pathology through an effect on postsynaptic function and plasticity.
Collapse
Affiliation(s)
- G Fossati
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - R Morini
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - I Corradini
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Istituto di Neuroscienze del CNR, Milano 20129, Italy
| | - F Antonucci
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Istituto di Neuroscienze del CNR, Milano 20129, Italy
| | - P Trepte
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | - E Edry
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Adult Brain (CGMB), Haifa University, Haifa, Israel
| | - V Sharma
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Adult Brain (CGMB), Haifa University, Haifa, Israel
| | - A Papale
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University, Milano 20132, Italy
| | - D Pozzi
- Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - P Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10124, Italy
| | - J C Meier
- 1] RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany [2] TU Braunschweig, Zoological Institute, Division of Cell Biology and Cell Physiology, Braunschweig, Germany
| | - R Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University, Milano 20132, Italy
| | - E Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10124, Italy
| | - K Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Adult Brain (CGMB), Haifa University, Haifa, Israel
| | - E E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | - N E Ziv
- Network Biology Labs and Faculty of Medicine, Technion, 33000 Haifa, Israel
| | - E Menna
- 1] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy [2] Istituto di Neuroscienze del CNR, Milano 20129, Italy
| | - M Matteoli
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| |
Collapse
|
133
|
Washbourne P. Synapse assembly and neurodevelopmental disorders. Neuropsychopharmacology 2015; 40:4-15. [PMID: 24990427 PMCID: PMC4262893 DOI: 10.1038/npp.2014.163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 12/31/2022]
Abstract
In this review we examine the current understanding of how genetic deficits associated with neurodevelopmental disorders may impact synapse assembly. We then go on to discuss how the critical periods for these genetic deficits will shape the nature of future clinical interventions.
Collapse
Affiliation(s)
- Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA,Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA, Tel: +1 541 346 4138, Fax: +1 541 346 4548, E-mail:
| |
Collapse
|
134
|
Truckenbrodt S, Rizzoli SO. Spontaneous vesicle recycling in the synaptic bouton. Front Cell Neurosci 2014; 8:409. [PMID: 25538561 PMCID: PMC4259163 DOI: 10.3389/fncel.2014.00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/11/2014] [Indexed: 11/13/2022] Open
Abstract
The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.
Collapse
Affiliation(s)
- Sven Truckenbrodt
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany ; International Max Planck Research School for Molecular Biology Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| |
Collapse
|
135
|
Impact of adolescent GluA1 AMPA receptor ablation in forebrain excitatory neurons on behavioural correlates of mood disorders. Eur Arch Psychiatry Clin Neurosci 2014; 264:625-9. [PMID: 24895223 DOI: 10.1007/s00406-014-0509-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/24/2014] [Indexed: 12/27/2022]
Abstract
Glutamatergic dysfunctions have recently been postulated to play a considerable role in mood disorders. However, molecular mechanisms underlying these effects have been poorly deciphered. Previous work demonstrated the contribution of GluA1-containing AMPA receptors (AMPAR) to a depression-like and anxiety-like phenotype. Here we investigated the effect of temporally and spatially restricted gene manipulation of GluA1 on behavioural correlates of mood disorders in mice. Here we show that tamoxifen-induced GluA1 deletion restricted to forebrain glutamatergic neurons of post-adolescent mice does not induce depression- and anxiety-like changes. This differs from the phenotype of mice with global AMPAR deletion suggesting that for mood regulation AMPAR may be particularly important on inhibitory interneurons or already early in development.
Collapse
|
136
|
Regional Diversity and Developmental Dynamics of the AMPA-Receptor Proteome in the Mammalian Brain. Neuron 2014; 84:41-54. [DOI: 10.1016/j.neuron.2014.08.044] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 12/20/2022]
|
137
|
Abstract
The mesofrontal dopaminergic circuit, which connects the midbrain motivation center to the cortical executive center, is engaged in control of motivated behaviors. In addition, deficiencies in this circuit are associated with adolescent-onset psychiatric disorders in humans. Developmental studies suggest that the mesofrontal circuit exhibits a protracted maturation through adolescence. However, whether the structure and function of this circuit are modifiable by activity in dopaminergic neurons during adolescence remains unknown. Using optogenetic stimulation and in vivo two-photon imaging in adolescent mice, we found that phasic, but not tonic, dopamine neuron activity induces the formation of mesofrontal axonal boutons. In contrast, in adult mice, the effect of phasic activity diminishes. Furthermore, our results showed that dopaminergic and glutamatergic transmission regulate this axonal plasticity in adolescence and inhibition of dopamine D2-type receptors restores this plasticity in adulthood. Finally, we found that phasic activation of dopamine neurons also induces greater changes in mesofrontal circuit activity and psychomotor response in adolescent mice than in adult mice. Together, our findings demonstrate that the structure and function of the mesofrontal circuit are modifiable by phasic activity in dopaminergic neurons during adolescence and suggest that the greater plasticity in adolescence may facilitate activity-dependent strengthening of dopaminergic input and improvement in behavioral control.
Collapse
|
138
|
Lamb YN, Thompson JM, Murphy R, Wall C, Kirk IJ, Morgan AR, Ferguson LR, Mitchell EA, Waldie KE. Perceived stress during pregnancy and the catechol-O-methyltransferase (COMT) rs165599 polymorphism impacts on childhood IQ. Cognition 2014; 132:461-70. [DOI: 10.1016/j.cognition.2014.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 01/08/2023]
|
139
|
Osterhout JA, El-Danaf RN, Nguyen PL, Huberman AD. Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Rep 2014; 8:1006-17. [PMID: 25088424 DOI: 10.1016/j.celrep.2014.06.063] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022] Open
Abstract
How axons select their appropriate targets in the brain remains poorly understood. Here, we explore the cellular mechanisms of axon target matching in the developing visual system by comparing four transgenic mouse lines, each with a different population of genetically labeled retinal ganglion cells (RGCs) that connect to unique combinations of brain targets. We find that the time when an RGC axon arrives in the brain is correlated with its target selection strategy. Early-born, early-arriving RGC axons initially innervate multiple targets. Subsequently, most of those connections are removed. By contrast, later-born, later-arriving RGC axons are highly accurate in their initial target choices. These data reveal the diversity of cellular mechanisms that mammalian CNS axons use to pick their targets and highlight the key role of birthdate and outgrowth timing in influencing this precision. Timing-based mechanisms may underlie the assembly of the other sensory pathways and complex neural circuitry in the brain.
Collapse
Affiliation(s)
- Jessica A Osterhout
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rana N El-Danaf
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Phong L Nguyen
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Huberman
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Department, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
140
|
In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons. Mol Cell Neurosci 2014; 61:141-51. [PMID: 24983517 DOI: 10.1016/j.mcn.2014.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 12/31/2022] Open
Abstract
Local synthesis of proteins in the axons participates in axonogenesis and axon guidance to establish appropriate synaptic connections and confer plasticity. To study the transcripts present in the growth cones and axonal shafts of cultured rat hippocampal neurons, two chip devices, differing in their abilities to support axonal growth and branching, are designed and employed here to isolate large quantities of axonal materials. Cone-, shaft- and axon-residing transcripts with amounts higher than that of a somatodendritic transcript, Actg1 (γ-actin), are selected and classified. Since the chips are optically transparent, distribution of transcripts over axons can be studied by fluorescence in situ hybridization. Three transcripts, Cadm1 (cell adhesion molecule 1), Nefl (neurofilament light polypeptide), and Cfl1 (non-muscle cofilin) are confirmed to be preferentially localized to the growth cones, while Pfn2 (profilin2) is preferentially localized to the shafts of those axons growing on the chip that restricts axonal growth. The different growing conditions of axons on chips and on conventional coverslips do not affect the cone-preferred localization of Cadm1 and shaft-preferred localization of Pfn2, but affect the distributions of Nefl and Cfl1 over the axons at 14th day in vitro. Furthermore, the distributions of Cadm1 and Nefl over the axons growing on conventional coverslips undergo changes during in vitro development. Our results suggest a dynamic nature of the mechanisms regulating the distributions of transcripts in axonal substructures in a manner dependent upon both growth conditions and neuronal maturation.
Collapse
|
141
|
Serrano-Velez JL, Rodriguez-Alvarado M, Torres-Vazquez II, Fraser SE, Yasumura T, Vanderpool KG, Rash JE, Rosa-Molinar E. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons. Front Neural Circuits 2014; 8:66. [PMID: 25018700 PMCID: PMC4072101 DOI: 10.3389/fncir.2014.00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/28/2014] [Indexed: 11/13/2022] Open
Abstract
"Dye-coupling", whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35), and freeze-fracture replica immunogold labeling (FRIL) reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish). To study gap junctions' role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in <20 mS) spermatozeugmata into the female reproductive tract. Dye-coupling in the 14th spinal segment controlling the gonopodium reveals coupling between motor neurons and a commissural primary ascending interneuron (CoPA IN) and shows that the 14th segment has an extensive and elaborate dendritic arbor and more gap junctions than do other segments. Whole-mount immunohistochemistry for Cx35 results confirm dye-coupling and show it occurs via gap junctions. Finally, FRIL shows that gap junctions are at mixed synapses and reveals that >50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions' role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.
Collapse
Affiliation(s)
| | | | | | - Scott E Fraser
- Molecular and Computational Biology Section, University of Southern California Los Angeles, CA, USA
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University Fort Collins, CO, USA
| | | | - John E Rash
- Department of Biomedical Sciences, Colorado State University Fort Collins, CO, USA ; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University Fort Collins, CO, USA
| | - Eduardo Rosa-Molinar
- Biological Imaging Group, University of Puerto Rico San Juan, PR, USA ; Institute of Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| |
Collapse
|
142
|
Semaphorins and the dynamic regulation of synapse assembly, refinement, and function. Curr Opin Neurobiol 2014; 27:1-7. [PMID: 24598309 DOI: 10.1016/j.conb.2014.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/21/2014] [Accepted: 02/06/2014] [Indexed: 01/13/2023]
Abstract
Semaphorins are phylogenetically conserved proteins expressed in most organ systems, including the nervous system. Following their description as axon guidance cues, semaphorins have been implicated in multiple aspects of nervous system development. Semaphorins are key regulators of neural circuit assembly, neuronal morphogenesis, assembly of excitatory and inhibitory synapses, and synaptic refinement. Semaphorins contribute to the balance between excitatory and inhibitory synaptic transmission, and electrical activity can modulate semaphorin signaling in neurons. This interplay between guidance cue signaling and electrical activity has the potential to sculpt the wiring of neural circuits and to modulate their function.
Collapse
|
143
|
Chen Y, Wang B, Liu D, Li JJ, Xue Y, Sakata K, Zhu LQ, Heldt SA, Xu H, Liao FF. Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment. J Neurosci 2014; 34:2464-70. [PMID: 24523537 PMCID: PMC3921421 DOI: 10.1523/jneurosci.0151-13.2014] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 11/21/2022] Open
Abstract
The excessive accumulation of soluble amyloid peptides (Aβ) plays a crucial role in the pathogenesis of Alzheimer's disease (AD), particularly in synaptic dysfunction. The role of the two major chaperone proteins, Hsp70 and Hsp90, in clearing misfolded protein aggregates has been established. Despite their abundant presence in synapses, the role of these chaperones in synapses remains elusive. Here, we report that Hsp90 inhibition by 17-AAG elicited not only a heat shock-like response but also upregulated presynaptic and postsynaptic proteins, such as synapsin I, synaptophysin, and PSD95 in neurons. 17-AAG treatment enhanced high-frequency stimulation-evoked LTP and protected neurons from synaptic damage induced by soluble Aβ. In AD transgenic mice, the daily administration of 17-AAG over 7 d resulted in a marked increase in PSD95 expression in hippocampi. 17-AAG treatments in wild-type C57BL/6 mice challenged by soluble Aβ significantly improved contextual fear memory. Further, we demonstrate that 17-AAG activated synaptic protein expression via transcriptional mechanisms through the heat shock transcription factor HSF1. Together, our findings identify a novel function of Hsp90 inhibition in regulating synaptic plasticity, in addition to the known neuroprotective effects of the chaperones against Aβ and tau toxicity, thus further supporting the potential of Hsp90 inhibitors in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yaomin Chen
- Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | | | - Dan Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | - Ling-qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Scott A. Heldt
- Anatomy & Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163, and
| | - Huaxi Xu
- Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | | |
Collapse
|
144
|
Chia PH, Li P, Shen K. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. ACTA ACUST UNITED AC 2013; 203:11-22. [PMID: 24127213 PMCID: PMC3798257 DOI: 10.1083/jcb.201307020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation.
Collapse
Affiliation(s)
- Poh Hui Chia
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | | | | |
Collapse
|
145
|
Sharma K, Choi SY, Zhang Y, Nieland TJF, Long S, Li M, Huganir RL. High-throughput genetic screen for synaptogenic factors: identification of LRP6 as critical for excitatory synapse development. Cell Rep 2013; 5:1330-41. [PMID: 24316074 DOI: 10.1016/j.celrep.2013.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 09/30/2013] [Accepted: 11/04/2013] [Indexed: 01/30/2023] Open
Abstract
Genetic screens in invertebrates have discovered many synaptogenic genes and pathways. However, similar genetic studies have not been possible in mammals. We have optimized an automated high-throughput platform that employs automated liquid handling and imaging of primary mammalian neurons. Using this platform, we have screened 3,200 shRNAs targeting 800 proteins. One of the hits identified was LRP6, a coreceptor for canonical Wnt ligands. LRP6 regulates excitatory synaptogenesis and is selectively localized to excitatory synapses. In vivo knockdown of LRP6 leads to a reduction in the number of functional synapses. Moreover, we show that the canonical Wnt ligand, Wnt8A, promotes synaptogenesis via LRP6. These results provide a proof of principle for using a high-content approach to screen for synaptogenic factors in the mammalian nervous system and identify and characterize a Wnt ligand receptor complex that is critical for the development of functional synapses in vivo.
Collapse
Affiliation(s)
- Kamal Sharma
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Se-Young Choi
- Department of Physiology, Seoul National University School of Dentistry, Seoul 110-749, South Korea
| | - Yong Zhang
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Thomas J F Nieland
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Shunyou Long
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Min Li
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
146
|
Stamatakou E, Salinas PC. Postsynaptic assembly: a role for Wnt signaling. Dev Neurobiol 2013; 74:818-27. [PMID: 24105999 PMCID: PMC4237178 DOI: 10.1002/dneu.22138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/06/2013] [Accepted: 09/25/2013] [Indexed: 01/01/2023]
Abstract
Synapse formation requires the coordinated formation of the presynaptic terminal, containing the machinery for neurotransmitter release, and the postsynaptic side that possesses the machinery for neurotransmitter reception. For coordinated pre- and postsynaptic assembly signals across the synapse are required. Wnt secreted proteins are well-known synaptogenic factors that promote the recruitment of presynaptic components in diverse organisms. However, recent studies demonstrate that Wnts act directly onto the postsynaptic side at both central and peripheral synapses to promote postsynaptic development and synaptic strength. This review focuses on the role of Wnts in postsynaptic development at central synapses and the neuromuscular junction. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 74: 818–827, 2014
Collapse
Affiliation(s)
- Eleanna Stamatakou
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
147
|
Baggio F, Bozzato A, Benna C, Leonardi E, Romoli O, Cognolato M, Tosatto SCE, Costa R, Sandrelli F. 2mit, an intronic gene of Drosophila melanogaster timeless2, is involved in behavioral plasticity. PLoS One 2013; 8:e76351. [PMID: 24098788 PMCID: PMC3786989 DOI: 10.1371/journal.pone.0076351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 08/27/2013] [Indexed: 12/15/2022] Open
Abstract
Background Intronic genes represent ~6% of the total gene complement in Drosophila melanogaster and ~85% of them encode for proteins. We recently characterized the D. melanogastertimeless2 (tim2) gene, showing its active involvement in chromosomal stability and light synchronization of the adult circadian clock. The protein coding gene named 2mit maps on the 11thtim2 intron in the opposite transcriptional orientation. Methodology/Principal Findings Here we report the molecular and functional characterization of 2mit. The 2mit gene is expressed throughout Drosophila development, localizing mainly in the nervous system during embryogenesis and mostly in the mushroom bodies and ellipsoid body of the central complex in the adult brain. Insilico analyses revealed that 2mit encodes a putative leucine-Rich Repeat transmembrane receptor with intrinsically disordered regions, harboring several fully conserved functional interaction motifs in the cytosolic side. Using insertional mutations, tissue-specific over-expression, and down-regulation approaches, it was found that 2mit is implicated in adult short-term memory, assessed by a courtship conditioning assay. In D. melanogaster, tim2 and 2mit do not seem to be functionally related. Bioinformatic analyses identified 2MIT orthologs in 21 Drosophilidae, 4 Lepidoptera and in Apis mellifera. In addition, the tim2-2mit host-nested gene organization was shown to be present in A. mellifera and maintained among Drosophila species. Within the Drosophilidae 2mit-hosting tim2 intron, insilico approaches detected a neuronal specific transcriptional binding site which might have contributed to preserve the specific host-nested gene association across Drosophila species. Conclusions/Significance Taken together, these results indicate that 2mit, a gene mainly expressed in the nervous system, has a role in the behavioral plasticity of the adult Drosophila. The presence of a putative 2mit regulatory enhancer within the 2mit-hosting tim2 intron could be considered an evolutionary constraint potentially involved in maintaining the tim2-2mit host-nested chromosomal architecture during the evolution of Drosophila species.
Collapse
Affiliation(s)
- Francesca Baggio
- Dipartimento di Biologia, Università degli Studi di Padova Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Ontogeny repeats the phylogenetic recruitment of the cargo exporter cornichon into AMPA receptor signaling complexes. Mol Cell Neurosci 2013; 56:10-7. [DOI: 10.1016/j.mcn.2013.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/01/2013] [Indexed: 12/26/2022] Open
|
149
|
The class 4 semaphorin Sema4D promotes the rapid assembly of GABAergic synapses in rodent hippocampus. J Neurosci 2013; 33:8961-73. [PMID: 23699507 DOI: 10.1523/jneurosci.0989-13.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proper circuit function in the mammalian nervous system depends on the precise assembly and development of excitatory and inhibitory synaptic connections between neurons. Through a loss-of-function genetic screen in cultured hippocampal neurons, we previously identified the class 4 Semaphorin Sema4D as being required for proper GABAergic synapse development. Here we demonstrate that Sema4D is sufficient to promote GABAergic synapse formation in rodent hippocampus and investigate the kinetics of this activity. We find that Sema4D treatment of rat hippocampal neurons increases the density of GABAergic synapses as detected by immunocytochemistry within 30 min, much more rapidly than has been previously described for a prosynaptogenic molecule, and show that this effect is dependent on the Sema4D receptor PlexinB1 using PlxnB1(-/-) mice. Live imaging studies reveal that Sema4D elicits a rapid enhancement (within 10 min) in the rate of addition of synaptic proteins. Therefore, we demonstrate that Sema4D, via PlexinB1, acts to initiate synapse formation by recruiting molecules to both the presynaptic and the postsynaptic terminals; these nascent synapses subsequently become fully functional by 2 h after Sema4D treatment. In addition, acute treatment of an organotypic hippocampal slice epilepsy model with Sema4D reveals that Sema4D rapidly and dramatically alters epileptiform activity, which is consistent with a Sema4D-mediated shift in the balance of excitation and inhibition within the circuit. These data demonstrate an ability to quickly assemble GABAergic synapses in response to an appropriate signal and suggest a potential area of exploration for the development of novel antiepileptic drugs.
Collapse
|
150
|
Hammond VE, Gunnersen JM, Goh CP, Low LH, Hyakumura T, Tang MM, Britto JM, Putz U, Howitt JA, Tan SS. Ndfip1 is required for the development of pyramidal neuron dendrites and spines in the neocortex. ACTA ACUST UNITED AC 2013; 24:3289-300. [PMID: 23897647 DOI: 10.1093/cercor/bht191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ubiquitin ligases of the Nedd4 family are important for axon and dendrite development, but little is known about their adaptor, Nedd4 family-interacting protein 1 (Ndfip1), that is responsible for their enzymatic activation. To study the function of Ndfip1 in cortical development, we generated a conditional knock-out (conditional KO) in neurons. The Ndfip1 conditional KO mice were viable; however, cortical neurons in the adult brain exhibited atrophic characteristics, including stunted dendritic arbors, blebbing of dendrites, and fewer dendritic spines. In electron micrographs, these neurons appeared shrunken with compacted somata and involutions of the nuclear membrane. In culture, Ndfip1 KO neurons exhibited exuberant sprouting suggesting loss of developmental control. Biochemical analysis of postsynaptic density (PSD) fractions from Ndfip1 KO cortical and hippocampal neurons showed that the postsynaptic proteins (Arc and PSD-95) were reduced compared with wild-type controls. In addition, the PI3 kinase/Akt signaling pathway was altered. These results indicate that Ndfip1, through its Nedd4 effectors, is important for the development of dendrites and dendritic spines in the cortex.
Collapse
Affiliation(s)
| | - Jenny M Gunnersen
- Florey Institute of Neuroscience and Mental Health and Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Choo-Peng Goh
- Florey Institute of Neuroscience and Mental Health and
| | - Ley-Hian Low
- Florey Institute of Neuroscience and Mental Health and
| | | | | | | | - Ulrich Putz
- Florey Institute of Neuroscience and Mental Health and
| | | | | |
Collapse
|