101
|
A Review of Potential Therapeutic Strategies for COVID-19. Viruses 2022; 14:v14112346. [PMID: 36366444 PMCID: PMC9696587 DOI: 10.3390/v14112346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 02/01/2023] Open
Abstract
Coronavirus disease 2019 is a rather heterogeneous disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing pandemic is a global threat with increasing death tolls worldwide. SARS-CoV-2 belongs to lineage B β-CoV, a subgroup of Sarbecovirus. These enveloped, large, positive-sense single-stranded RNA viruses are easily spread among individuals, mainly via the respiratory system and droplets. Although the disease has been gradually controlled in many countries, once social restrictions are relaxed the virus may rebound, leading to a more severe and uncontrollable situation again, as occurred in Shanghai, China, in 2022. The current global health threat calls for the urgent development of effective therapeutic options for the treatment and prevention of SARS-CoV-2 infection. This systematic overview of possible SARS-CoV-2 therapeutic strategies from 2019 to 2022 indicates three potential targets: virus entry, virus replication, and the immune system. The information provided in this review will aid the development of more potent and specific antiviral compounds.
Collapse
|
102
|
Vergara A, Wang K, Colombo D, Gheblawi M, Rasmuson J, Mandal R, Del Nonno F, Chiu B, Scholey JW, Soler MJ, Wishart DS, Oudit GY. Urinary angiotensin-converting enzyme 2 and metabolomics in COVID-19-mediated kidney injury. Clin Kidney J 2022; 16:272-284. [PMID: 36751625 PMCID: PMC9494506 DOI: 10.1093/ckj/sfac215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the kidneys. Beyond serving as a crucial endogenous regulator of the renin-angiotensin system, ACE2 also possess a unique function to facilitate amino acid absorption. Our observational study sought to explore the relationship between urine ACE2 (uACE2) and renal outcomes in coronavirus disease 2019 (COVID-19). Methods In a cohort of 104 patients with COVID-19 without acute kidney injury (AKI), 43 patients with COVID-19-mediated AKI and 36 non-COVID-19 controls, we measured uACE2, urine tumour necrosis factor receptors I and II (uTNF-RI and uTNF-RII) and neutrophil gelatinase-associated lipocalin (uNGAL). We also assessed ACE2 staining in autopsy kidney samples and generated a propensity score-matched subgroup of patients to perform a targeted urine metabolomic study to describe the characteristic signature of COVID-19. Results uACE2 is increased in patients with COVID-19 and further increased in those that developed AKI. After adjusting uACE2 levels for age, sex and previous comorbidities, increased uACE2 was independently associated with a >3-fold higher risk of developing AKI [odds ratio 3.05 (95% confidence interval 1.23‒7.58), P = .017]. Increased uACE2 corresponded to a tubular loss of ACE2 in kidney sections and strongly correlated with uTNF-RI and uTNF-RII. Urine quantitative metabolome analysis revealed an increased excretion of essential amino acids in patients with COVID-19, including leucine, isoleucine, tryptophan and phenylalanine. Additionally, a strong correlation was observed between urine amino acids and uACE2. Conclusions Elevated uACE2 is related to AKI in patients with COVID-19. The loss of tubular ACE2 during SARS-CoV-2 infection demonstrates a potential link between aminoaciduria and proximal tubular injury.
Collapse
Affiliation(s)
- Ander Vergara
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kaiming Wang
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniele Colombo
- Department of Pathology, National Institute for Infectious Diseases “Lazzaro Spallanzani,” IRCCS, Rome, Italy
| | - Mahmoud Gheblawi
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jaslyn Rasmuson
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Franca Del Nonno
- Department of Pathology, National Institute for Infectious Diseases “Lazzaro Spallanzani,” IRCCS, Rome, Italy
| | - Brian Chiu
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - James W Scholey
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - María José Soler
- Department of Nephrology, Vall d’Hebron University Hospital, Barcelona, Spain,Nephrology and Transplantation Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - David S Wishart
- Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
103
|
Yu S, Li X, Xin Z, Sun L, Shi J. Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods. Front Immunol 2022; 13:923387. [PMID: 36203586 PMCID: PMC9530739 DOI: 10.3389/fimmu.2022.923387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
At the end of 2019, the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, seriously damaged world public health security. Several protein markers associated with virus infection have been extensively explored to combat the ever-increasing challenge posed by SARS-CoV-2. The proteomics of COVID-19 deepened our understanding of viral particles and their mechanisms of host invasion, providing us with information on protein changes in host tissues, cells and body fluids following infection in COVID-19 patients. In this review, we summarize the proteomic studies of SARS-CoV-2 infection and review the current understanding of COVID-19 in terms of the quantitative and qualitative proteomics of viral particles and host entry factors from the perspective of protein pathological changes in the organism following host infection.
Collapse
Affiliation(s)
- Shengman Yu
- Department of Laboratory Medicine Center, China-Japan Union Hospital, Jilin University, Changchun, China
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Xiaoyan Li
- Department of Infection Control Department, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhuoyuan Xin
- The Key Laboratory of Zoonosis Research, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Liyuan Sun
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Jingwei Shi
- Department of Laboratory Medicine Center, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
104
|
Palazzuoli A, Metra M, Collins SP, Adamo M, Ambrosy AP, Antohi LE, Ben Gal T, Farmakis D, Gustafsson F, Hill L, Lopatin Y, Tramonte F, Lyon A, Masip J, Miro O, Moura B, Mullens W, Radu RI, Abdelhamid M, Anker S, Chioncel O. Heart failure during the COVID-19 pandemic: clinical, diagnostic, management, and organizational dilemmas. ESC Heart Fail 2022; 9:3713-3736. [PMID: 36111511 PMCID: PMC9773739 DOI: 10.1002/ehf2.14118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2023] Open
Abstract
The coronavirus 2019 (COVID-19) infection pandemic has affected the care of patients with heart failure (HF). Several consensus documents describe the appropriate diagnostic algorithm and treatment approach for patients with HF and associated COVID-19 infection. However, few questions about the mechanisms by which COVID can exacerbate HF in patients with high-risk (Stage B) or symptomatic HF (Stage C) remain unanswered. Therefore, the type of HF occurring during infection is poorly investigated. The diagnostic differentiation and management should be focused on the identification of the HF phenotype, underlying causes, and subsequent tailored therapy. In this framework, the relationship existing between COVID and onset of acute decompensated HF, isolated right HF, and cardiogenic shock is questioned, and the specific management is mainly based on local hospital organization rather than a standardized model. Similarly, some specific populations such as advanced HF, heart transplant, patients with left ventricular assist device (LVAD), or valve disease remain under investigated. In this systematic review, we examine recent advances regarding the relationships between HF and COVID-19 pandemic with respect to epidemiology, pathogenetic mechanisms, and differential diagnosis. Also, according to the recent HF guidelines definition, we highlight different clinical profile identification, pointing out the main concerns in understudied HF populations.
Collapse
Affiliation(s)
- Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, S. Maria alle Scotte HospitalUniversity of Siena53100SienaItaly
| | - Marco Metra
- Cardiology, Cardio‐Thoracic Department, Civil Hospitals, Brescia, Italy; Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Sean P. Collins
- Department of Emergency MedicineVanderbilt University Medical CentreNashvilleTNUSA
| | - Marianna Adamo
- Cardiology, Cardio‐Thoracic Department, Civil Hospitals, Brescia, Italy; Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Andrew P. Ambrosy
- Department of CardiologyKaiser Permanente San Francisco Medical CenterSan FranciscoCAUSA,Division of ResearchKaiser Permanente Northern CaliforniaOaklandCAUSA
| | - Laura E. Antohi
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C.C.Iliescu” BucharestBucharestRomania
| | - Tuvia Ben Gal
- Department of Cardiology, Rabin Medical Center (Beilinson Campus), Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Dimitrios Farmakis
- Cardio‐Oncology Clinic, Heart Failure Unit, “Attikon” University HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece,University of Cyprus Medical SchoolNicosiaCyprus
| | | | - Loreena Hill
- School of Nursing and MidwiferyQueen's UniversityBelfastUK
| | - Yuri Lopatin
- Volgograd Medical UniversityCardiology CentreVolgogradRussia
| | - Francesco Tramonte
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, S. Maria alle Scotte HospitalUniversity of Siena53100SienaItaly
| | - Alexander Lyon
- Cardio‐Oncology ServiceRoyal Brompton Hospital and Imperial College LondonLondonUK
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari IntegralUniversity of BarcelonaBarcelonaSpain,Department of CardiologyHospital Sanitas CIMABarcelonaSpain
| | - Oscar Miro
- Emergency Department, Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - Brenda Moura
- Armed Forces Hospital, Porto, & Faculty of MedicineUniversity of PortoPortoPortugal
| | - Wilfried Mullens
- Cardiovascular PhysiologyHasselt University, Belgium, & Heart Failure and Cardiac Rehabilitation Specialist, Ziekenhuis Oost‐LimburgGenkBelgium
| | - Razvan I. Radu
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C.C.Iliescu” BucharestBucharestRomania
| | - Magdy Abdelhamid
- Cardiology Department, Kasr Alainy School of MedicineCairo UniversityNew Cairo, 5th settlementCairo11865Egypt
| | - Stefan Anker
- Department of Cardiology (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin BerlinBerlinGermany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases “Prof. Dr. C.C. Iliescu” Bucharest; University for Medicine and Pharmacy “Carol Davila” BucharestBucharestRomania
| |
Collapse
|
105
|
Keikha M, Karbalaei M. Global distribution of ACE1 (rs4646994) and ACE2 (rs2285666) polymorphisms associated with COVID-19: A systematic review and meta-analysis. Microb Pathog 2022; 172:105781. [PMID: 36116608 PMCID: PMC9476369 DOI: 10.1016/j.micpath.2022.105781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recent studies emphasize the significant impact of the renin-angiotensin aldosterone system (RAAS) as a risk factor associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, according to the literature, the effect of rs4646994 and rs2285666 polymorphisms on susceptibility and progression to severe clinical outcomes is still controversial. Our aim was to investigate the effect of polymorphisms such as rs4646994 and rs2285666 on susceptibility to coronavirus disease-2019 (COVID-19). METHODS We conducted a comprehensive literature search using databases such as ISI Web of Science, PubMed, Scopus, and Google Scholar to retrieve studies on the effect of two polymorphisms (rs4646994 and rs2285666) of the angiotensin-converting enzyme (ACE) gene on COVID-19. Finally, the effect of each polymorphism on SARS-CoV-2 infection was measured based on the odds ratio with 95% confidence intervals. RESULTS Analysis of the rs4646994 polymorphism showed that the frequency of the D allele in patients infected with COVID-19 was higher than that the I allele. Moreover, the authors found that the DD genotype increased the risk of severe disease by 1.7-fold in Asian population, whereas, this was not the case in the Western population. However, the rs4646994 II genotype plays a protective role against COVID-19 in Western countries. In the case of the rs2285666 polymorphism based on patient ethnicity, the C allele had the highest frequency. Interestingly, in people harboring the GG and TT genotypes, the risk of progression to severe disease significantly increased, while people with genotypes such as GA, AA and CC seem to be more resistant to severe Covid-19. CONCLUSIONS Based on geographical region, the rs4646994 DD genotype may be considered as a predictive biomarker to identify the susceptibility of human to SARS-CoV-2 infection and severe COVID-19 outcomes. We also concluded that individuals with GG and TT genotypes are significantly more susceptible to severe outcomes of disease, while conversely, individuals with GA, AA, and CC genotypes are less susceptible to severe COVID-19.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
106
|
Khaledi M, Sameni F, Yahyazade S, Radandish M, Owlia P, Bagheri N, Afkhami H, Mahjoor M, Esmaelpour Z, Kohansal M, Aghaei F. COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Front Med (Lausanne) 2022; 9:961027. [PMID: 36111104 PMCID: PMC9469902 DOI: 10.3389/fmed.2022.961027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recent evidence proposed that the severity of the coronavirus disease 2019 (COVID-19) in patients is a consequence of cytokine storm, characterized by increased IL-1β, IL-6, IL-18, TNF-α, and IFN-γ. Hence, managing the cytokine storm by drugs has been suggested for the treatment of patients with severe COVID-19. Several of the proinflammatory cytokines involved in the pathogenesis of COVID-19 infection recruit a distinct intracellular signaling pathway mediated by JAKs. Consequently, JAK inhibitors, including baricitinib, pacritinib, ruxolitinib, and tofacitinib, may represent an effective therapeutic strategy for controlling the JAK to treat COVID-19. This study indicates the mechanism of cytokine storm and JAK/STAT pathway in COVID-19 as well as the medications used for JAK/STAT inhibitors.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Sheida Yahyazade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
- *Correspondence: Parviz Owlia ;
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Nader Bagheri
| | | | - Mohamad Mahjoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaelpour
- Reference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzad Aghaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
107
|
Shyam-Sundar V, Stein DF, Spazzapan M, Sullivan A, Qin C, Voon V. Troponin and short-term mortality in hospitalised patients with COVID-19 infection: a retrospective study in an inner-city London hospital. BMJ Open 2022; 12:e061426. [PMID: 36002216 PMCID: PMC9412041 DOI: 10.1136/bmjopen-2022-061426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To investigate the association between troponin positivity in patients hospitalised with COVID-19 and increased mortality in the short term. SETTING Homerton University Hospital, an inner-city district general hospital in East London. DESIGN A single-centre retrospective observational study. PARTICIPANTS All adults admitted with swab-proven RT-PCR COVID-19 to Homerton University Hospital from 4 February 2020 to 30 April 2020 (n=402). OUTCOME MEASURES We analysed demographic and biochemical data collected from the patient record according to the primary outcome of death at 28 days during hospital admission. METHODS Troponin positivity was defined above the upper limit of normal according to our local laboratory assay (>15.5 ng/L for females, >34 ng/L for males). Univariate and multivariate logistical regression analyses were performed to evaluate the link between troponin positivity and death. RESULTS Mean age was 65.3 years for men compared with 63.8 years for women. A χ2 test showed survival of patients with COVID-19 was significantly higher in those with a negative troponin (p=3.23×10-10) compared with those with a positive troponin. In the multivariate logistical regression, lung disease, age, troponin positivity and continuous positive airway pressure were all significantly associated with death, with an area under the curve of 0.889, sensitivity of 0.886 and specificity of 0.629 for the model. Within this model, troponin positivity was independently associated with short-term mortality (OR 2.97, 95% CI 1.34 to 6.61, p=0.008). CONCLUSIONS We demonstrated an independent association between troponin positivity and increased short-term mortality in COVID-19 in a London district general hospital.
Collapse
Affiliation(s)
- Vijay Shyam-Sundar
- Centre for Advanced Cardiovascular Imaging, Queen Mary University of London, London, UK
| | - Dan Fredman Stein
- Institute of Health Informatics, University College London, London, UK
| | - Martina Spazzapan
- Urology Department, King's College Hospital NHS Foundation Trust, London, UK
| | - Andrew Sullivan
- Department of Cardiology, North Middlesex University Hospital, London, UK
| | - Cathy Qin
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Victor Voon
- Department of Cardiology, Homerton University Hospital, London, UK
| |
Collapse
|
108
|
Martin K, Deleveaux S, Cunningham M, Ramaswamy K, Thomas B, Lerma E, Madariaga H. The presentation, etiologies, pathophysiology, and treatment of pulmonary renal syndrome: A review of the literature. Dis Mon 2022; 68:101465. [PMID: 36008166 DOI: 10.1016/j.disamonth.2022.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Pulmonary renal syndrome (PRS) is a constellation of different disorders that cause both rapidly progressive glomerulonephritis and diffuse alveolar hemorrhage. While antineutrophil cytoplasmic antibody associated vasculitis and anti-glomerular basement membrane disease are the predominant causes of PRS, numerous other mechanisms have been shown to cause this syndrome, including thrombotic microangiopathies, drug exposures, and infections, among others. This syndrome has high morbidity and mortality, and early diagnosis and treatment is imperative to improve outcomes. Treatment generally involves glucocorticoids and immunosuppressive agents, but treatment targeted to the underlying disorder can improve outcomes and mitigate side effects. Familiarity with the wide range of possible causes of PRS can aid the clinician in workup, diagnosis and early initiation of treatment. This review provides a summary of the clinical presentation, etiologies, pathophysiology, and treatment of PRS.
Collapse
Affiliation(s)
| | | | | | | | - Beje Thomas
- Medstar Georgetown University Hospital, United States
| | - Edgar Lerma
- Advocate Christ Medical Center, United States
| | | |
Collapse
|
109
|
Severino P, D’Amato A, Prosperi S, Myftari V, Labbro Francia A, Önkaya M, Notari C, Papisca I, Canuti ES, Yarden Revivo M, Birtolo LI, Celli P, Galardo G, Maestrini V, d’Ettorre G, Mancone M, Fedele F. The Mutual Relationship among Cardiovascular Diseases and COVID-19: Focus on Micronutrients Imbalance. Nutrients 2022; 14:3439. [PMID: 36014944 PMCID: PMC9416353 DOI: 10.3390/nu14163439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 12/16/2022] Open
Abstract
Micronutrients are ions and vitamins humbly required by the human body. They play a main role in several physiological mechanisms and their imbalance is strongly associated with potentially-fatal complications. Micronutrient imbalance is associated with many cardiovascular diseases, such as arrythmias, heart failure, and ischemic heart disease. It has been also observed in coronavirus disease 2019 (COVID-19), particularly in most severe patients. The relationship between cardiovascular diseases and COVID-19 is mutual: the latter triggers cardiovascular disease onset and worsening while patients with previous cardiovascular disease may develop a more severe form of COVID-19. In addition to the well-known pathophysiological mechanisms binding COVID-19 and cardiovascular diseases together, increasing importance is being given to the impact of micronutrient alterations, often present during COVID-19 and able to affect the balance responsible for a good functioning of the cardiovascular system. In particular, hypokalemia, hypomagnesemia, hyponatremia, and hypocalcemia are strongly associated with worse outcome, while vitamin A and D deficiency are associated with thromboembolic events in COVID-19. Thus, considering how frequent the cardiovascular involvement is in patients with COVID-19, and how it majorly affects their prognosis, this manuscript provides a comprehensive review on the role of micronutrient imbalance in the interconnection between COVID-19 and cardiovascular diseases.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Aurora Labbro Francia
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Merve Önkaya
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Claudia Notari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Ilaria Papisca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Elena Sofia Canuti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Mia Yarden Revivo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paola Celli
- Anesthesiology and Intensive Care Unit, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Gioacchino Galardo
- Medical Emergency Unit, Sapienza University of Rome, Policlinico Umberto I, 00185 Rome, Italy
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
110
|
Increased mRNA Levels of ADAM17, IFITM3, and IFNE in Peripheral Blood Cells Are Present in Patients with Obesity and May Predict Severe COVID-19 Evolution. Biomedicines 2022; 10:biomedicines10082007. [PMID: 36009555 PMCID: PMC9406212 DOI: 10.3390/biomedicines10082007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Gene expression patterns in blood cells from SARS-CoV-2 infected individuals with different clinical phenotypes and body mass index (BMI) could help to identify possible early prognosis factors for COVID-19. We recruited patients with COVID-19 admitted in Hospital Universitari Son Espases (HUSE) between March 2020 and November 2021, and control subjects. Peripheral blood cells (PBCs) and plasma samples were obtained on hospital admission. Gene expression of candidate transcriptomic biomarkers in PBCs were compared based on the patients’ clinical status (mild, severe and critical) and BMI range (normal weight, overweight, and obesity). mRNA levels of ADAM17, IFITM3, IL6, CXCL10, CXCL11, IFNG and TYK2 were increased in PBCs of COVID-19 patients (n = 73) compared with controls (n = 47), independently of sex. Increased expression of IFNE was observed in the male patients only. PBC mRNA levels of ADAM17, IFITM3, CXCL11, and CCR2 were higher in those patients that experienced a more serious evolution during hospitalization. ADAM17, IFITM3, IL6 and IFNE were more highly expressed in PBCs of patients with obesity. Interestingly, the expression pattern of ADAM17, IFITM3 and IFNE in PBCs was related to both the severity of COVID-19 evolution and obesity status, especially in the male patients. In conclusion, gene expression in PBCs can be useful for the prognosis of COVID-19 evolution.
Collapse
|
111
|
Incident Atrial Fibrillation and In-Hospital Mortality in SARS-CoV-2 Patients. Biomedicines 2022; 10:biomedicines10081940. [PMID: 36009487 PMCID: PMC9406191 DOI: 10.3390/biomedicines10081940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Among the different cardiovascular (CV) manifestations of the coronavirus disease 2019 (COVID-19), arrhythmia and atrial fibrillation (AF) in particular have recently received special attention. The aims of our study were to estimate the incidence of AF in patients hospitalized for COVID-19, and to evaluate its role as a possible predictor of in-hospital all-cause mortality. (2) Methods: We enrolled 3435 people with SARS-CoV2 infection admitted to three hospitals in Northern Italy from February 2020 to May 2021. We collected data on their clinical history, laboratory tests, pharmacological treatment and intensive care unit (ICU) admission. Incident AF and all-cause in-hospital mortality were considered as outcomes. (3) Results: 145 (4.2%) patients developed AF during hospitalization, with a median time since admission of 3 days (I-III quartile: 0, 12). Patients with incident AF were admitted more frequently to the ICU (39.3 vs. 12.4%, p < 0.001), and more frequently died (37.2 vs. 16.9%, p < 0.001). In the Cox regression model, the significant determinants of incident AF were age (HR: 1.041; 95% CI: 1.022, 1.060 per year), a history of AF (HR: 2.720; 95% CI: 1.508, 4.907), lymphocyte count (HR: 0.584; 95% CI: 0.384, 0.888 per 103/µL), estimated glomerular filtration rate (eGFR, HR: 0.988; 95% CI: 0.980, 0.996 per mL/min) and ICU admission (HR: 5.311; 95% CI: 3.397, 8.302). Incident AF was a predictor of all-cause mortality (HR: 1.405; 95% CI: 1.027, 1.992) along with age (HR: 1.057; 95% CI: 1.047, 1.067), male gender (HR: 1.315; 95% CI: 1.064; 1.626), dementia (HR: 1.373; 95% CI: 1.045, 1.803), lower platelet (HR: 0.997; 95% CI: 0.996, 0.998 per 103/µL) and lymphocyte counts (HR: 0.843; 95% CI: 0.725, 0.982 per 103/µL), C-Reactive protein values (HR: 1.004; 95% CI: 1.003, 1.005 per mg/L), eGFR (HR: 0.990; 95% CI: 0.986, 0.994 per mL/min), and ICU admission (HR: 1.759; 95% CI: 1.292, 2.395). (4) Conclusions: Incident AF is a common complication in COVID-19 patients during hospitalization, and its occurrence strongly predicts in-hospital mortality.
Collapse
|
112
|
Campos D, Girgis M, Sanda M. Site-specific glycosylation of SARS-CoV-2: Big challenges in mass spectrometry analysis. Proteomics 2022; 22:e2100322. [PMID: 35700310 PMCID: PMC9349404 DOI: 10.1002/pmic.202100322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022]
Abstract
Glycosylation of viral proteins is required for the progeny formation and infectivity of virtually all viruses. It is increasingly clear that distinct glycans also play pivotal roles in the virus's ability to shield and evade the host's immune system. Recently, there has been a great advancement in structural identification and quantitation of viral glycosylation, especially spike proteins. Given the ongoing pandemic and the high demand for structure analysis of SARS-CoV-2 densely glycosylated spike protein, mass spectrometry methodologies have been employed to accurately determine glycosylation patterns. There are still many challenges in the determination of site-specific glycosylation of SARS-CoV-2 viral spike protein. This is compounded by some conflicting results regarding glycan site occupancy and glycan structural characterization. These are probably due to differences in the expression systems, form of expressed spike glycoprotein, MS methodologies, and analysis software. In this review, we recap the glycosylation of spike protein and compare among various studies. Also, we describe the most recent advancements in glycosylation analysis in greater detail and we explain some misinterpretation of previously observed data in recent publications. Our study provides a comprehensive view of the spike protein glycosylation and highlights the importance of consistent glycosylation determination.
Collapse
Affiliation(s)
- Diana Campos
- Max‐Planck‐Institut fuer Herz‐ und LungenforschungBad NauheimGermany
| | - Michael Girgis
- Department of BioengineeringVolgenau School of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
| | - Miloslav Sanda
- Max‐Planck‐Institut fuer Herz‐ und LungenforschungBad NauheimGermany
- Clinical and Translational Glycoscience Research CenterGeorgetown UniversityWashingtonDCUSA
| |
Collapse
|
113
|
Identification of Differential Expression Genes between Volume and Pressure Overloaded Hearts Based on Bioinformatics Analysis. Genes (Basel) 2022; 13:genes13071276. [PMID: 35886059 PMCID: PMC9318830 DOI: 10.3390/genes13071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Volume overload (VO) and pressure overload (PO) are two common pathophysiological conditions associated with cardiac disease. VO, in particular, often occurs in a number of diseases, and no clinically meaningful molecular marker has yet been established. We intend to find the main differential gene expression using bioinformatics analysis. GSE97363 and GSE52796 are the two gene expression array datasets related with VO and PO, respectively. The LIMMA algorithm was used to identify differentially expressed genes (DEGs) of VO and PO. The DEGs were divided into three groups and subjected to functional enrichment analysis, which comprised GO analysis, KEGG analysis, and the protein–protein interaction (PPI) network. To validate the sequencing data, cardiomyocytes from AR and TAC mouse models were used to extract RNA for qRT-PCR. The three genes with random absolute values of LogFC and indicators of heart failure (natriuretic peptide B, NPPB) were detected: carboxylesterase 1D (CES1D), whirlin (WHRN), and WNK lysine deficient protein kinase 2 (WNK2). The DEGs in VO and PO were determined to be 2761 and 1093, respectively, in this study. Following the intersection, 305 genes were obtained, 255 of which expressed the opposing regulation and 50 of which expressed the same regulation. According to the GO and pathway enrichment studies, DEGs with opposing regulation are mostly common in fatty acid degradation, propanoate metabolism, and other signaling pathways. Finally, we used Cytoscape’s three techniques to identify six hub genes by intersecting 255 with the opposite expression and constructing a PPI network. Peroxisome proliferator-activated receptor (PPARα), acyl-CoA dehydrogenase medium chain (ACADM), patatin-like phospholipase domain containing 2 (PNPLA2), isocitrate dehydrogenase 3 (IDH3), heat shock protein family D member 1 (HSPD1), and dihydrolipoamide S-acetyltransferase (DLAT) were identified as six potential genes. Furthermore, we predict that the hub genes PPARα, ACADM, and PNPLA2 regulate VO myocardial changes via fatty acid metabolism and acyl-Coa dehydrogenase activity, and that these genes could be employed as basic biomarkers for VO diagnosis and treatment.
Collapse
|
114
|
Hochuli J, Jain S, Melo-Filho C, Sessions ZL, Bobrowski T, Choe J, Zheng J, Eastman R, Talley DC, Rai G, Simeonov A, Tropsha A, Muratov EN, Baljinnyam B, Zakharov AV. Allosteric Binders of ACE2 Are Promising Anti-SARS-CoV-2 Agents. ACS Pharmacol Transl Sci 2022; 5:468-478. [PMID: 35821746 PMCID: PMC9236207 DOI: 10.1021/acsptsci.2c00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for acute treatment of the disease. We investigate whether compounds that bind the human angiotensin-converting enzyme 2 (ACE2) protein can decrease SARS-CoV-2 replication without impacting ACE2's natural enzymatic function. Initial screening of a diversity library resulted in hit compounds active in an ACE2-binding assay, which showed little inhibition of ACE2 enzymatic activity (116 actives, success rate ∼4%), suggesting they were allosteric binders. Subsequent application of in silico techniques boosted success rates to ∼14% and resulted in 73 novel confirmed ACE2 binders with K d values as low as 6 nM. A subsequent SARS-CoV-2 assay revealed that five of these compounds inhibit the viral life cycle in human cells. Further effort is required to completely elucidate the antiviral mechanism of these ACE2-binders, but they present a valuable starting point for both the development of acute treatments for COVID-19 and research into the host-directed therapy.
Collapse
Affiliation(s)
- Joshua
E. Hochuli
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Curriculum
in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sankalp Jain
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Cleber Melo-Filho
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zoe L. Sessions
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Tesia Bobrowski
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jun Choe
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Johnny Zheng
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Richard Eastman
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel C. Talley
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexander Tropsha
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Eugene N. Muratov
- Molecular
Modeling Laboratory, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Bolormaa Baljinnyam
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexey V. Zakharov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
115
|
Necrotizing Epididymo-Orchitis: A Rare Manifestation of COVID-19. Case Rep Urol 2022; 2022:1891429. [PMID: 35795005 PMCID: PMC9250965 DOI: 10.1155/2022/1891429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
Epididymo-orchitis is an infection of the epididymis and testis, one of the most common urogenital infections. It can be seen at any age. It is caused by sexually transmitted microorganisms and nonsexual transmitted pathogens. Viruses such as mumps and cytomegalovirus can also cause epididymo-orchitis. During the COVID-19 pandemic, in case of abnormal clinical manifestations of COVID infection and inadequate therapeutic response to the routine therapies, this disease with unusual manifestations should be considered. The case introduced in this paper is a 55-year-old man referred to a urology clinic with typical clinical presentations of epididymo-orchitis. Diagnosis by color Doppler examination and ultrasound also confirmed epididymo-orchitis. The patient underwent appropriate and routine treatment for epididymo-orchitis. Because of the lack of adequate clinical response and the continuation of fever and the development of scrotal lesions and the results of the control ultrasound, which suggested rupture of the tunica albuginea capsule, he underwent surgical exploration and subsequent orchiectomy. Due to the unconventional conditions and the usual culture and pathology, COVID-19 PCR was also performed on the tissues. The PCR showed tissue infection with COVID-19. The patient’s clinical condition improved with an orchiectomy, the fever stopped, and he was discharged in a good general condition. It should be noted that before referral to the urology clinic and during hospitalization, evaluation, and treatment, the patient had no evidence in favor of respiratory tract infection with the coronavirus.
Collapse
|
116
|
Gupta A, Al-Tamimi AO, Halwani R, Alsaidi H, Kannan M, Ahmad F. Lipocalin-2, S100A8/A9, and cystatin C: Potential predictive biomarkers of cardiovascular complications in COVID-19. Exp Biol Med (Maywood) 2022; 247:1205-1213. [PMID: 35466734 PMCID: PMC9379606 DOI: 10.1177/15353702221091990] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Severe coronavirus (SARS-COV-2) infection often leads to systemic inflammation accompanied by cardiovascular complications including venous thromboembolism (VTE). However, it is largely undefined if inflammatory markers such as lipocalin-2 (LNC2), calprotectin (S100A8/A9), and cystatin C (CST3), previously linked with VTE, play roles in cardiovascular complications and advancement of COVID-19 severity. To investigate the same, hospitalized moderate and severe (presented pneumonia and required intensive care) COVID-19 patients were recruited. The levels of plasma LNC2, S100A8/A9, CST3, myoglobin, and cardiac Troponin I (cTnI) were assessed through enzyme-linked immunosorbent assay (ELISA). The investigation revealed a significantly upregulated level of plasma LNC2 at the moderate stage of SARS-CoV-2 infection. In contrast, the levels of S100A8/A9 and CST3 in moderate patients were comparable to healthy controls; however, a profound induction was observed only in severe COVID-19 patients. The tissue injury marker myoglobin was unchanged in moderate patients; however, a significantly elevated level was observed in the critically ill COVID-19 patients. In contrast, cTnI level was unchanged both in moderate and severe patients. Analysis revealed a positive correlation between the levels of S100A8/A9 and CST3 with myoglobin in COVID-19. In silico analysis predicted interactions of S100A8/A9 with toll-like receptor 4 (TLR-4), MyD88 LY96, and LCN2 with several other inflammatory mediators including MMP2, MMP9, TIMP1, and interleukins (IL-6, IL-17A, and IL-10). In summary, early induction of LCN2 likely plays a role in advancing the COVID-19 severity. A positive correlation of S100A8/A9 and CST3 with myoglobin suggests that these proteins may serve as predictive biomarkers for thromboembolism and tissue injury in COVID-19.
Collapse
Affiliation(s)
- Anamika Gupta
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Abaher O Al-Tamimi
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Rabih Halwani
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE
| | - Hend Alsaidi
- Department of Internal Medicine, Rashid Hospital, Dubai 4545, UAE
| | - Meganathan Kannan
- Blood and Vascular Biology Research Lab, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Firdos Ahmad
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE,Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE,Firdos Ahmad.
| |
Collapse
|
117
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a global pandemic impacting 254 million people in 190 countries. Comorbidities, particularly cardiovascular disease, diabetes, and hypertension, increase the risk of infection and poor outcomes. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme-2 receptor, generating inflammation and cytokine storm, often resulting in multiorgan failure. The mechanisms and effects of COVID-19 on patients with high-risk diabetes are not yet completely understood. In this review, we discuss the variety of coronaviruses, structure of SARS-CoV-2, mutations in SARS-CoV-2 spike proteins, receptors associated with viral host entry, and disease progression. Furthermore, we focus on possible mechanisms of SARS-CoV-2 in diabetes, leading to inflammation and heart failure. Finally, we discuss existing therapeutic approaches, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
118
|
Liu Q, Ruan H, Sheng Z, Sun X, Li S, Cui W, Li C. Nanoantidote for repression of acidosis pH promoting COVID-19 infection. VIEW 2022; 3:20220004. [PMID: 35937939 PMCID: PMC9347551 DOI: 10.1002/viw.20220004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/08/2023] Open
Abstract
Acidosis, such as respiratory acidosis and metabolic acidosis, can be induced by coronavirus disease 2019 (COVID-19) infection and is associated with increased mortality in critically ill COVID-19 patients. It remains unclear whether acidosis further promotes SARS-CoV-2 infection in patients, making virus removal difficult. For antacid therapy, sodium bicarbonate poses great risks caused by sodium overload, bicarbonate side effects, and hypocalcemia. Therefore, new antacid antidote is urgently needed. Our study showed that an acidosis-related pH of 6.8 increases SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression on the cell membrane by regulating intracellular microfilament polymerization, promoting SARS-CoV-2 pseudovirus infection. Based on this, we synthesized polyglutamic acid-PEG materials, used complexation of calcium ions and carboxyl groups to form the core, and adopted biomineralization methods to form a calcium carbonate nanoparticles (CaCO3-NPs) nanoantidote to neutralize excess hydrogen ions (H+), and restored the pH from 6.8 to approximately 7.4 (normal blood pH). CaCO3-NPs effectively prevented the heightened SARS-CoV-2 infection efficiency due to pH 6.8. Our study reveals that acidosis-related pH promotes SARS-CoV-2 infection, which suggests the existence of a positive feedback loop in which SARS-CoV-2 infection-induced acidosis enhances SARS-CoV-2 infection. Therefore, antacid therapy for acidosis COVID-19 patients is necessary. CaCO3-NPs may become an effective antacid nanoantidote superior to sodium bicarbonate.
Collapse
Affiliation(s)
- Qidong Liu
- Department of Anesthesiology and Perioperative MedicineShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopedic Department, Tongji Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| | - Huitong Ruan
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhihao Sheng
- Department of AnesthesiologyShanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| | - Xiaoru Sun
- Department of Anesthesiology and Perioperative MedicineShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopedic Department, Tongji Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Cheng Li
- Department of Anesthesiology and Perioperative MedicineShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| |
Collapse
|
119
|
Liu C, Yan W, Shi J, Wang S, Peng A, Chen Y, Huang K. Biological Actions, Implications, and Cautions of Statins Therapy in COVID-19. Front Nutr 2022; 9:927092. [PMID: 35811982 PMCID: PMC9257176 DOI: 10.3389/fnut.2022.927092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) showed worse prognosis and higher mortality in individuals with obesity. Dyslipidemia is a major link between obesity and COVID-19 severity. Statins as the most common lipid regulating drugs have shown favorable effects in various pathophysiological states. Importantly, accumulating observational studies have suggested that statin use is associated with reduced risk of progressing to severe illness and in-hospital death in COVID-19 patients. Possible explanations underlie these protective impacts include their abilities of reducing cholesterol, suppressing viral entry and replication, anti-inflammation and immunomodulatory effects, as well as anti-thrombosis and anti-oxidative properties. Despite these benefits, statin therapies have side effects that should be considered, such as elevated creatinine kinase, liver enzyme and serum glucose levels, which are already elevated in severe COVID-19. Concerns are also raised whether statins interfere with the efficacy of COVID-19 vaccines. Randomized controlled trials are being conducted worldwide to confirm the values of statin use for COVID-19 treatment. Generally, the results suggest no necessity to discontinue statin use, and no evidence suggesting interference between statins and COVID-19 vaccines. However, concomitant administration of statins and COVID-19 antiviral drug Paxlovid may increase statin exposure and the risk of adverse effects, because most statins are metabolized mainly through CYP3A4 which is potently inhibited by ritonavir, a major component of Paxlovid. Therefore, more clinical/preclinical studies are still warranted to understand the benefits, harms and mechanisms of statin use in the context of COVID-19.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Wang
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anlin Peng
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
120
|
Mousa SI, Nyberg F, Hajiebrahimi M, Bertilsson R, Nåtman J, Santosa A, Wettermark B. Initiation of antihypertensive drugs to patients with confirmed COVID-19 - a population-based cohort study in Sweden. Basic Clin Pharmacol Toxicol 2022; 131:196-204. [PMID: 35726121 PMCID: PMC9349802 DOI: 10.1111/bcpt.13766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Purpose Hypertension is an important risk factor for severe outcomes in patients with COVID‐19, and antihypertensive drugs may have a protective effect. However, the pandemic may have negatively impacted health care services for chronic diseases. The aim of this study was to assess initiations of antihypertensive medicines in patients infected by COVID‐19. Methods A cohort study including all Swedish residents 20–80 years old with a COVID‐19 positive test compared with an unexposed group without COVID‐19 matched for age, sex, and index date (date of confirmed COVID‐19). Data were collected within SCIFI‐PEARL, a study including linked data on COVID tests, hospital diagnoses, dispensed prescriptions, and socioeconomic data from Swedish national registers. Initiations of different antihypertensive drugs were studied from March 2020 until October 2020. Associations between COVID‐19 and initiation of antihypertensives were assessed by a multivariable Cox proportional hazards model. Results A total of 224 582 patients (exposed and unexposed) were included. After adjusting for cardiovascular comorbidities and education level, ACEi was the most commonly initiated antihypertensive agent to patients with COVID‐19. Hazard ratio and 95% confidence interval for initiation of drug therapy was 1.83 [1.53–2.19] for ACEi, followed by beta‐blockers 1.74 [1.55–1.95], calcium channel blockers 1.61 [1.41–1.83], angiotensin receptor blockers 1.61 [1.40–1.86], and diuretics 1.53 [1.32–1.77]. Conclusion All antihypertensive medicines were initiated more frequently in COVID‐19 patients. This can either be associated with hypertension caused by the COVID‐19 infection, more frequent diagnosis of hypertension among people with COVID‐19 since they consult health care, or residual confounding factors not adjusted for in the study.
Collapse
Affiliation(s)
- Salar Issa Mousa
- Pharmacoepidemiology & Social Pharmacy, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Fredrik Nyberg
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Rebecka Bertilsson
- National Diabetes Register, Centre of Registers Västra Götaland, Gothenburg, Sweden
| | - Jonatan Nåtman
- National Diabetes Register, Centre of Registers Västra Götaland, Gothenburg, Sweden
| | - Ailiana Santosa
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Wettermark
- Pharmacoepidemiology & Social Pharmacy, Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Pharmacy Centre, Faculty of Medicine, Vilnius university, Vilnius, Lithuania
| |
Collapse
|
121
|
Tekale S, Gore V, Kendrekar P, Thore S, Kótai L, Pawar R. COVID-19 Global Pandemic Fight by Drugs: A Mini-Review on Hope and Hype. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666210629103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Coronavirus disease 2019 (Covid-19), a serious disease caused by the Severe Acute Respiratory
Syndrome-Corona Virus-2 (SARS-CoV-2), was firstly identified in the city of Wuhan of
China in December 2019, which then spread and became a global issue due to its high transmission
rate. To date, the outbreak of COVID-19 has resulted in infection to 230,868,745 people and the death
of 4,732,669 patients. It has paralyzed the economy of all the countries worldwide. Considering the
possible mutations of SARS-CoV-2, the current medical emergency requires a longer time for drug
design and vaccine development. Drug repurposing is a promising option for potent therapeutics
against the pandemic. The present review encompasses various drugs or appropriate combinations of
already FDA-approved antimalarial, antiviral, anticancer, anti-inflammatory, and antibiotic therapeutic
candidates for use in the clinical trials as a ray of hope against COVID-19. It is expected to deliver
better clinical and laboratory outcomes of drugs as a prevention strategy for the eradication of the disease.
Collapse
Affiliation(s)
- Sunil Tekale
- Department of Chemistry, Deogiri College, Aurangabad-431005, Maharashtra, India
| | - Vishnu Gore
- Department of Chemistry, Deogiri College, Aurangabad-431005, Maharashtra, India
| | - Pravin Kendrekar
- Unit for Drug Discovery Research (UDDR), Department of Health and Environmental Sciences, Central University of Technology, Free State (CUT) Private Bag X20539, Bloemfontein, 9300, South Africa
| | - Shivaji Thore
- Department of Chemistry, Deogiri College, Aurangabad-431005, Maharashtra, India
| | - László Kótai
- Research Centre for Natural Sciences, ELKH, H-1117, Budapest, Hungary
| | - Rajendra Pawar
- Department of Chemistry, Shiv Chhatrapati College, Cidco, Aurangabad-431005, Maharashtra, India
| |
Collapse
|
122
|
Chen X, Qiao WH, Cao H, Shi JW, Du XL, Dong NG. Role of Neuroimmune Interactions in COVID-19-related Cardiovascular Damage. Curr Med Sci 2022; 42:555-560. [PMID: 35678914 PMCID: PMC9178934 DOI: 10.1007/s11596-022-2529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a global pandemic impacting over 200 countries/regions and more than 200 million patients worldwide. Among the infected patients, there is a high prevalence of COVID-19-related cardiovascular injuries. However, the specific mechanisms linking cardiovascular damage and COVID-19 remain unclear. The COVID-19 pandemic also has exacerbated the mental health burden of humans. Considering the close association between neuroimmune interactions and cardiovascular disease, this review assessed the complex pathophysiological mechanisms connecting neuroimmune interactions and cardiovascular disease. It was revealed that the mental health burden might be a pivotal accomplice causing COVID-19-associated cardiovascular damage. Specifically, the proinflammatory status of patients with a terrible mood state is closely related to overdrive of the hypothalamus-pituitary-adrenal (HPA) axis, sympathovagal imbalance, and endothelial dysfunction, which lead to an increased risk of developing cardiovascular injury during COVID-19. Therefore, during the prevention and treatment of cardiovascular complications in COVID-19 patients, particular attention should be given to relieve the mental health burden of these patients.
Collapse
Affiliation(s)
- Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Wei-hua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jia-wei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xin-ling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Nian-guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
123
|
Yeh JJ, Lai M, Lin CL, Lu KH, Kao CH. Effects of statins on the risks of ischemic stroke and heart disease in human immunodeficiency virus infection, influenza and severe acute respiratory syndrome-associated coronavirus: respiratory virus infection with steroid use. Postgrad Med 2022; 134:589-597. [PMID: 35590450 DOI: 10.1080/00325481.2022.2080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES We sought to fill the research gap on the effects of statins on the risks of ischemic stroke and heart disease among individuals with human immunodeficiency virus infection, influenza, and severe acute respiratory syndrome associated-coronavirus (HIS) disorders. METHODS We enrolled a HIS cohort treated with statins (n = 4921) and a HIS cohort not treated with statins (n = 4921). The cumulative incidence of ischemic stroke and heart disease was analyzed using a time-dependent Cox proportional regression analysis. We analyzed the adjusted hazard ratio (aHR) and 95% confidence interval (CI) of ischemic stroke and heart disease for statins users relative to nonusers based on sex, age, comorbidities and medications. RESULTS The aHR (95% CI) was 0.38 (0.22-0.65) for ischemic stroke. The aHR (95% CI) of heart disease was 0.50 (0.46-0.55). The aHRs (95% CI) of statin users with low, medium, and high adherence (statin use covering <33%, 33%-66%, and >66%, respectively, of the study period) for the risks of ischemic stroke were 0.50 (0.27-0.92), 0.31 (0.10-1.01), and 0.16 (0.04-0.68) and for heart disease were 0.56 (0.51-0.61), 0.40 (0.33-0.48), and 0.44 (0.38-0.51), respectively, compared with statin nonusers. CONCLUSION Statin use was associated with lower aHRs for ischemic stroke and heart disease in those with HIS disorders with comorbidities.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family Medicine, Geriatric Medicine, and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Meichu Lai
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan.,Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Hua Lu
- Department of Family Medicine, Geriatric Medicine, and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.,Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan.,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
124
|
Vargas-Rodriguez JR, Valdés Aguayo JJ, Garza-Veloz I, Martinez-Rendon J, del Refugio Rocha Pizaña M, Cabral-Pacheco GA, Juárez-Alcalá V, Martinez-Fierro ML. Sustained Hyperglycemia and Its Relationship with the Outcome of Hospitalized Patients with Severe COVID-19: Potential Role of ACE2 Upregulation. J Pers Med 2022; 12:805. [PMID: 35629227 PMCID: PMC9147379 DOI: 10.3390/jpm12050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic hyperglycemia increases the risk of developing severe COVID-19 symptoms, but the related mechanisms are unclear. A mean glucose level upon hospital admission >166 mg/dl correlates positively with acute respiratory distress syndrome in patients with hyperglycemia. The objective of this study was to evaluate the relationship between sustained hyperglycemia and the outcome of hospitalized patients with severe COVID-19. We also evaluated the effect of high glucose concentrations on the expression of angiotensin-converting enzyme 2 (ACE2). We carried out a case-control study with hospitalized patients with severe COVID-19 with and without sustained hyperglycemia. In a second stage, we performed in vitro assays evaluating the effects of high glucose concentrations on ACE2 gene expression. Fifty hospitalized patients with severe COVID-19 were included, of which 28 (56%) died and 22 (44%) recovered. Patients who died due to COVID-19 and COVID-19 survivors had a high prevalence of hyperglycemia (96.4% versus 90.9%), with elevated central glucose upon admission (197.7 mg/dl versus 155.9 mg/dl, p = 0.089) and at discharge (185.2 mg/dl versus 134 mg/dl, p = 0.038). The mean hypoxemia level upon hospital admission was 81% in patients who died due to COVID-19 complications and 88% in patients who survived (p = 0.026); at the time of discharge, hypoxemia levels were also different between the groups (68% versus 92%, p ≤ 0.001). In vitro assays showed that the viability of A549 cells decreased (76.41%) as the glucose concentration increased, and the ACE2 gene was overexpressed 9.91-fold after 72 h (p ≤ 0.001). The relationship between hyperglycemia and COVID-19 in hospitalized patients with COVID-19 plays an important role in COVID-19-related complications and the outcome for these patients. In patients with chronic and/or sustained hyperglycemia, the upregulation of ACE2, and its potential glycation and malfunction, could be related to complications observed in patients with COVID-19.
Collapse
Affiliation(s)
- Jose R. Vargas-Rodriguez
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - José J. Valdés Aguayo
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - Jacqueline Martinez-Rendon
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | | | - Griselda A. Cabral-Pacheco
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - Vladimir Juárez-Alcalá
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| |
Collapse
|
125
|
A Elrayess M, T Zedan H, A Alattar R, Abusriwil H, Al-Ruweidi MKAA, Almuraikhy S, Parengal J, Alhariri B, Yassine HM, A Hssain A, Nair A, Al Samawi M, Abdelmajid A, Al Suwaidi J, Omar Saad M, Al-Maslamani M, Omrani AS, Yalcin HC. Soluble ACE2 and angiotensin II levels are modulated in hypertensive COVID-19 patients treated with different antihypertension drugs. Blood Press 2022; 31:80-90. [PMID: 35548940 DOI: 10.1080/08037051.2022.2055530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PURPOSE This study examines the effect of antihypertensive drugs on ACE2 and Angiotensin II levels in hypertensive COVID-19 patients. INTRODUCTION Hypertension is a common comorbidity among severe COVID-19 patients. ACE2 expression can be modulated by antihypertensive drugs such as ACEis and ARBs, which may affect COVID-19's prognosis. BB and CCB reduce mortality, according to some evidence. Their effect on circulating levels of ACE2 and angiotensin II, as well as the severity of COVID-19, is less well studied. MATERIALS AND METHODS The clinical data were collected from 200 patients in four different antihypertensive medication classes (ACEi, ARB, BB, and CCB). Angiotensin II and ACE2 levels were determined using standard ELISA kits. ACE2, angiotensin II, and other clinical indices were evaluated by linear regression models. RESULTS Patients on ACEi (n = 57), ARB (n = 68), BB (n = 15), or CCB (n = 30) in this study had mild (n = 76), moderate (n = 76), or severe (n = 52) COVID-19. ACE2 levels were higher in COVID-19 patients with severe disease (p = 0.04) than mild (p = 0.07) and moderate (p = 0.007). The length of hospital stay is correlated with ACE2 levels (r = 0.3, p = 0.003). Angiotensin II levels decreased with severity (p = 0.04). Higher ACE2 levels are associated with higher CRP and D-dimer levels. Elevated Angiotensin II was associated with low levels of CRP, D-dimer, and troponin. ACE2 levels increase with disease severity in patients taking an ARB (p = 0.01), patients taking ACEi, the degree of disease severity was associated with a decrease in angiotensin II. BB patients had the lowest disease severity. CONCLUSION We found different levels of soluble ACE2, and angiotensin II are observed among COVID-19 patients taking different antihypertensive medications and exhibiting varying levels of disease severity. COVID-19 severity increases with elevated ACE2 levels and lower angiotensin II levels indicating that BB treatment reduces severity regardless of levels of ACE2 and angiotensin II.
Collapse
Affiliation(s)
| | - Hadeel T Zedan
- Biomedical Research Center, Qatar University, Doha, Qatar.,Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Rand A Alattar
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Hatem Abusriwil
- Department of Internal Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Jabeed Parengal
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Bassem Alhariri
- Department of Internal Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ali A Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | - Arun Nair
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Musaed Al Samawi
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Alaaeldin Abdelmajid
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Muna Al-Maslamani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Ali S Omrani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
126
|
Alirezaei T, Hooshmand S, Irilouzadian R, Hajimoradi B, Montazeri S, Shayegh A. The role of blood urea nitrogen to serum albumin ratio in the prediction of severity and 30‐day mortality in patients with COVID‐19. Health Sci Rep 2022; 5:e606. [PMID: 35572169 PMCID: PMC9075606 DOI: 10.1002/hsr2.606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022] Open
Abstract
Background Considering the role of higher blood urea nitrogen and lower serum albumin (SA) levels in deceased coronavirus disease 2019 (COVID‐19) patients, an increased blood urea nitrogen to SA (B/A) ratio may help to determine those at higher risk of critical illness. This study aimed to evaluate the correlation of the B/A ratio with severity and 30‐day mortality in COVID‐19 patients. Methods A total of 433 adult patients with COVID‐19 were enrolled. The laboratory markers were measured on admission. Disease severity was categorized into mild disease, severe pneumonia, acute respiratory distress syndrome (ARDS), sepsis, and septic shock. The mortality was followed for 30 days after admission. χ2 test, Fisher's exact test, and Mann–Whitney U test were performed, as appropriate. Also, logistic regression and the receiver operating characteristic (ROC) curve for the B/A ratio are included. Results Thirty‐day mortality rate was 27.25%. The frequency of mild, severe pneumonia, ARDS, sepsis, and septic shock was 30.72%, 36.95%, 24.02%, 6.00%, and 2.31%, respectively. B/A ratio and SA levels were statistically different between alive and deceased patients. The mean B/A ratio was different among classified disease severities, except for mild disease. Logistic regression revealed the B/A ratio as an independent risk factor for sepsis after adjusting for age and sex. ROC analysis showed B/A ratio had an area under the curve (AUC) of 0.733 for mortality at the cutpoint of 4.944. AUC for sepsis was 0.617 which was greater than other disease severities. Conclusion The results showed that B/A ratio and SA levels are associated with mortality of COVID‐19 patients. A higher B/A ratio is, additionally, associated with COVID‐19 severity, except in mild cases and it can act as an independent risk factor in sepsis. However, a greater B/A ratio is not a significant predictor of COVID‐19 severity, but it can predict mortality. Therefore, we suggest this marker for clinical assessment of patients with severe COVID‐19.
Collapse
Affiliation(s)
| | - Saeede Hooshmand
- Department of Cardiology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Rana Irilouzadian
- School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Behzad Hajimoradi
- Men's Health and Reproductive Health Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sadra Montazeri
- School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Arash Shayegh
- School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
127
|
Alimohamadi Y, Sepandi M, Rashti R, Nezhad HS, Afrashteh S. COVID-19: Clinical features, case fatality, and the effect of symptoms on mortality in hospitalized cases in Iran. J Taibah Univ Med Sci 2022; 17:725-731. [PMID: 35571593 PMCID: PMC9088159 DOI: 10.1016/j.jtumed.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022] Open
Abstract
Objective Identifying the epidemiological characteristics of COVID-19 could help to control the pandemic. The aim of this study was to characterize the epidemiological features of hospitalized COVID-19 patients in Iran. Methods Data were collected on patients admitted to a military referral hospital in Tehran, Iran, from February 8, 2020 to July 28, 2021. Sex, age, clinical symptoms, outcome, type of comorbidities, level of blood Spo2, time of admission, and time of discharge were investigated. Sex ratio, case fatality rate (CFR), and daily trends of hospital admissions and deaths were also determined. Descriptive statistics and multiple logistic regression with 95% confidence intervals were used for data analysis. The statistical significance level was set at 0.05. STATA16.0 and Excel 2010 were used for data analysis. Results The median hospital length of stay (LOS) was 6 days. The following symptoms were most common: cough (63.5%), fever (50%), respiratory distress (46.1%), and muscular pain (40.8%). Hypertension (29.5%), diabetes (24.7%), and cardiovascular diseases (21.8%) were the most prevalent comorbidities. The CFR was calculated at 8.30%. Respiratory symptoms increased the odds of death by 45% (OR 1.45, 95% CI 1.03–2.06). Gastrointestinal symptoms were associated with a reduction in the mortality of COVID-19 cases, but this association was not statistically significant (OR 0.94, 95% CI 0.73–1.21). Conclusions The results of this study emphasize higher mortality rates among older age groups, male patients, and patients with underlying diseases.
Collapse
|
128
|
Sarkar S, Sen R. Insights into Cardiovascular Defects and Cardiac Epigenome in the Context of COVID-19. EPIGENOMES 2022; 6:epigenomes6020013. [PMID: 35645252 PMCID: PMC9150012 DOI: 10.3390/epigenomes6020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Although few in number, studies on epigenome of the heart of COVID-19 patients show that epigenetic signatures such as DNA methylation are significantly altered, leading to changes in expression of several genes. It contributes to pathogenic cardiac phenotypes of COVID-19, e.g., low heart rate, myocardial edema, and myofibrillar disarray. DNA methylation studies reveal changes which likely contribute to cardiac disease through unknown mechanisms. The incidence of severe COVID-19 disease, including hospitalization, requiring respiratory support, morbidity, and mortality, is disproportionately higher in individuals with co-morbidities. This poses unprecedented strains on the global healthcare system. While their underlying conditions make patients more susceptible to severe COVID-19 disease, strained healthcare systems, lack of adequate support, or sedentary lifestyles from ongoing lockdowns have proved detrimental to their underlying health conditions, thus pushing them to severe risk of congenital heart disease (CHD) itself. Prophylactic vaccines against COVID-19 have ushered new hope for CHD. A common connection between COVID-19 and CHD is SARS-CoV-2’s host receptor ACE2, because ACE2 regulates and protects organs, including the heart, in various ways. ACE2 is a common therapeutic target against cardiovascular disease and COVID-19 which damages organs. Hence, this review explores the above regarding CHDs, cardiovascular damage, and cardiac epigenetics, in COVID-19 patients.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB E2L 4L2, Canada;
| | - Rwik Sen
- Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
- Correspondence:
| |
Collapse
|
129
|
de Medeiros SF, Yamamoto MMW, de Medeiros MAS, Yamamoto AKLW, Barbosa BB. Polycystic ovary syndrome and risks for COVID-19 infection: A comprehensive review : PCOS and COVID-19 relationship. Rev Endocr Metab Disord 2022; 23:251-264. [PMID: 35218458 PMCID: PMC8881900 DOI: 10.1007/s11154-022-09715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 01/08/2023]
Abstract
This comprehensive review aimed to evaluate the relationship between SARS-CoV-2 infection (the cause of coronavirus disease 2019, or COVID-19) and the metabolic and endocrine characteristics frequently found in women with polycystic ovary syndrome (PCOS). In the general population, COVID-19 is more severe in subjects with dyslipidemia, obesity, diabetes mellitus, and arterial hypertension. Because these conditions are comorbidities commonly associated with PCOS, it was hypothesized that women with PCOS would be at higher risk for acquiring COVID-19 and developing more severe clinical presentations. This hypothesis was confirmed in several epidemiological studies. The present review shows that women with PCOS are at 28%-50% higher risk of being infected with the SARS-CoV-2 virus at all ages and that, in these women, COVID-19 is associated with increased rates of hospitalization, morbidity, and mortality. We summarize the mechanisms of the higher risk of COVID-19 infection in women with PCOS, particularly in those with carbohydrate and lipid abnormal metabolism, hyperandrogenism, and central obesity.
Collapse
Affiliation(s)
- Sebastião Freitas de Medeiros
- Department of Gynecology and Obstetrics, Medical School, Federal University of Mato Grosso, Cuiabá, MT, Brazil.
- Tropical Institute of Reproductive Medicine, Cuiabá, MT, Brazil.
| | | | | | | | | |
Collapse
|
130
|
Chiner-Vives E, Cordovilla-Pérez R, de la Rosa-Carrillo D, García-Clemente M, Izquierdo-Alonso JL, Otero-Candelera R, Pérez-de Llano L, Sellares-Torres J, de Granda-Orive JI. Short and Long-Term Impact of COVID-19 Infection on Previous Respiratory Diseases. Arch Bronconeumol 2022; 58 Suppl 1:39-50. [PMID: 35501222 PMCID: PMC9012323 DOI: 10.1016/j.arbres.2022.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic. Till now, it affected 452.4 million (Spain, 11.18 million) persons all over the world with a total of 6.04 million of deaths (Spain, 100,992). It is observed that 75% of hospitalized COVID-19 patients have at least one COVID-19 associated comorbidity. It was shown that people with underlying chronic illnesses are more likely to get it and grow seriously ill. Individuals with COVID-19 who have a past medical history of cardiovascular disorder, cancer, obesity, chronic lung disease, diabetes, or neurological disease had the worst prognosis and are more likely to develop acute respiratory distress syndrome or pneumonia. COVID-19 can affect the respiratory system in a variety of ways and across a spectrum of levels of disease severity, depending on a person's immune system, age and comorbidities. Symptoms can range from mild, such as cough, shortness of breath and fever, to critical disease, including respiratory failure, shock and multi-organ system failure. So, COVID-19 infection can cause overall worsening of these previous respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease, etc. This review aims to provide information on the impact of the COVID-19 disease on pre-existing lung comorbidities.
Collapse
Affiliation(s)
- Eusebi Chiner-Vives
- Multidisciplinary Sleep Unit, Respiratory Department, Sant Joan University Hospital, Sant Joan d'Alacant, Alicante, Spain
| | - Rosa Cordovilla-Pérez
- Respiratory Department, Salamanca University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Marta García-Clemente
- Lung Management Area, HUCA, Institute for Health Research of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - José Luis Izquierdo-Alonso
- Department of Medicine and Medical Specialties, University of Alcalá, Madrid, Spain; Respiratory Medicine, University Hospital of Guadalajara, Guadalajara, Spain
| | | | - Luis Pérez-de Llano
- Respiratory Department, Lucus Augusti University Hospital, EOXI Lugo, Monforte, CERVO, Lugo, Spain
| | - Jacobo Sellares-Torres
- Interstitial Lung Diseases Working Group, Respiratory Department, Clinic-University Hospital-IDIBAPS, Barcelona, Spain
| | | |
Collapse
|
131
|
Association between Mineralocorticoid Receptor Antagonist and Mortality in SARS-CoV-2 Patients: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2022; 10:healthcare10040645. [PMID: 35455823 PMCID: PMC9027687 DOI: 10.3390/healthcare10040645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Since the onset of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, various potential targeted therapies for SARS-CoV-2 infection have been proposed. The protective effects of mineralocorticoid receptor antagonists (MRA) against tissue fibrosis, pulmonary and systemic vasoconstriction, and inflammation have been implicated in potentially attenuating the severity of SARS-CoV-2 infection by inhibiting the deleterious effects of aldosterone. Furthermore, spironolactone, a type of MRA, has been suggested to have a beneficial effect on SARS-CoV-2 outcomes through its dual action as an MRA and antiandrogen, resulting in reduced transmembrane protease receptor serine type 2 (TMPRSS2)-related viral entry to host cells. In this study, we sought to investigate the association between MRA antagonist therapy and mortality in SARS-CoV-2 patients via systematic review and meta-analysis. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. MEDLINE and EMBASE databases were searched for studies that reported the incidence of mortality in patients on MRA with SARS-CoV-2 infection. Pooled odds ratio (OR) and 95% confidence interval (CI) of the outcome were obtained using the random-effects model. Five studies with a total of 1,388,178 subjects (80,903 subjects receiving MRA therapy) met the inclusion criteria. We included studies with all types of MRA therapy including spironolactone and canrenone and found no association between MRA therapy and mortality in SARS-CoV-2 infection (OR = 0.387, 95% CI: 0.134–1.117, p = 0.079).
Collapse
|
132
|
Carmona-Pírez J, Ioakeim-Skoufa I, Gimeno-Miguel A, Poblador-Plou B, González-Rubio F, Muñoyerro-Muñiz D, Rodríguez-Herrera J, Goicoechea-Salazar JA, Prados-Torres A, Villegas-Portero R. Multimorbidity Profiles and Infection Severity in COVID-19 Population Using Network Analysis in the Andalusian Health Population Database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073808. [PMID: 35409489 PMCID: PMC8997853 DOI: 10.3390/ijerph19073808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023]
Abstract
Identifying the population at risk of COVID-19 infection severity is a priority for clinicians and health systems. Most studies to date have only focused on the effect of specific disorders on infection severity, without considering that patients usually present multiple chronic diseases and that these conditions tend to group together in the form of multimorbidity patterns. In this large-scale epidemiological study, including primary and hospital care information of 166,242 patients with confirmed COVID-19 infection from the Spanish region of Andalusia, we applied network analysis to identify multimorbidity profiles and analyze their impact on the risk of hospitalization and mortality. Our results showed that multimorbidity was a risk factor for COVID-19 severity and that this risk increased with the morbidity burden. Individuals with advanced cardio-metabolic profiles frequently presented the highest infection severity risk in both sexes. The pattern with the highest severity associated in men was present in almost 28.7% of those aged ≥ 80 years and included associations between cardiovascular, respiratory, and metabolic diseases; age-adjusted odds ratio (OR) 95% confidence interval (1.71 (1.44–2.02)). In women, similar patterns were also associated the most with infection severity, in 7% of 65–79-year-olds (1.44 (1.34–1.54)) and in 29% of ≥80-year-olds (1.35 (1.18–1.53)). Patients with mental health patterns also showed one of the highest risks of COVID-19 severity, especially in women. These findings strongly recommend the implementation of personalized approaches to patients with multimorbidity and SARS-CoV-2 infection, especially in the population with high morbidity burden.
Collapse
Affiliation(s)
- Jonás Carmona-Pírez
- EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (I.I.-S.); (A.G.-M.); (B.P.-P.); (F.G.-R.); (A.P.-T.)
- Health Services Research on Chronic Patients Network (REDISSEC), ISCIII, 28029 Madrid, Spain
- Delicias-Sur Primary Care Health Centre, Aragon Health Service (SALUD), 50009 Zaragoza, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), ISCIII, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-976-765-500 (ext. 5371/5375)
| | - Ignatios Ioakeim-Skoufa
- EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (I.I.-S.); (A.G.-M.); (B.P.-P.); (F.G.-R.); (A.P.-T.)
- WHO Collaborating Centre for Drug Statistics Methodology, Norwegian Institute of Public Health, NO-0213 Oslo, Norway
- Department of Drug Statistics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, NO-0213 Oslo, Norway
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (SEMFYC), 08009 Barcelona, Spain
| | - Antonio Gimeno-Miguel
- EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (I.I.-S.); (A.G.-M.); (B.P.-P.); (F.G.-R.); (A.P.-T.)
- Health Services Research on Chronic Patients Network (REDISSEC), ISCIII, 28029 Madrid, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), ISCIII, 28029 Madrid, Spain
| | - Beatriz Poblador-Plou
- EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (I.I.-S.); (A.G.-M.); (B.P.-P.); (F.G.-R.); (A.P.-T.)
- Health Services Research on Chronic Patients Network (REDISSEC), ISCIII, 28029 Madrid, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), ISCIII, 28029 Madrid, Spain
| | - Francisca González-Rubio
- EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (I.I.-S.); (A.G.-M.); (B.P.-P.); (F.G.-R.); (A.P.-T.)
- Health Services Research on Chronic Patients Network (REDISSEC), ISCIII, 28029 Madrid, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), ISCIII, 28029 Madrid, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (SEMFYC), 08009 Barcelona, Spain
| | - Dolores Muñoyerro-Muñiz
- Subdirección Técnica Asesora de Gestión de la Información, Servicio Andaluz de Salud (SAS), 41071 Seville, Spain; (D.M.-M.); (J.R.-H.); (J.A.G.-S.); (R.V.-P.)
| | - Juliana Rodríguez-Herrera
- Subdirección Técnica Asesora de Gestión de la Información, Servicio Andaluz de Salud (SAS), 41071 Seville, Spain; (D.M.-M.); (J.R.-H.); (J.A.G.-S.); (R.V.-P.)
| | - Juan Antonio Goicoechea-Salazar
- Subdirección Técnica Asesora de Gestión de la Información, Servicio Andaluz de Salud (SAS), 41071 Seville, Spain; (D.M.-M.); (J.R.-H.); (J.A.G.-S.); (R.V.-P.)
| | - Alexandra Prados-Torres
- EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (I.I.-S.); (A.G.-M.); (B.P.-P.); (F.G.-R.); (A.P.-T.)
- Health Services Research on Chronic Patients Network (REDISSEC), ISCIII, 28029 Madrid, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), ISCIII, 28029 Madrid, Spain
| | - Román Villegas-Portero
- Subdirección Técnica Asesora de Gestión de la Información, Servicio Andaluz de Salud (SAS), 41071 Seville, Spain; (D.M.-M.); (J.R.-H.); (J.A.G.-S.); (R.V.-P.)
| |
Collapse
|
133
|
Li S, Wang J, Yan Y, Zhang Z, Gong W, Nie S. Clinical Characterization and Possible Pathological Mechanism of Acute Myocardial Injury in COVID-19. Front Cardiovasc Med 2022; 9:862571. [PMID: 35387441 PMCID: PMC8979292 DOI: 10.3389/fcvm.2022.862571] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a respiratory disease that can cause damage to multiple organs throughout the body. Cardiovascular complications related to COVID-19 mainly include acute myocardial injury, heart failure, acute coronary syndrome, arrhythmia, myocarditis. Among them, myocardial injury is the most common complication in COVID-19 hospitalized patients, and is associated with poor prognosis such as death and arrhythmias. There is a continuous relationship between myocardial injury and the severity of COVID-19. The incidence of myocardial injury is higher in critically ill patients and dead patients, and myocardial injury is more likely to occur in the elderly critically ill patients with comorbidities. Myocardial injury is usually accompanied by more electrocardiogram abnormalities, higher inflammation markers and more obvious echocardiographic abnormalities. According to reports, COVID-19 patients with a history of cardiovascular disease have a higher in-hospital mortality, especially in the elder patients. At present, the mechanism of myocardial injury in COVID-19 is still unclear. There may be direct injury of myocardial cells, systemic inflammatory response, hypoxia, prethrombotic and procoagulant state, myocardial interstitial fibrosis, interferon-mediated immune response and coronary artery plaque instability and other related factors, and angiotensin-converting enzyme-2 receptor may play a key role in the myocardial injury in COVID-19.
Collapse
Affiliation(s)
- Siyi Li
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jinan Wang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Yan
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Zekun Zhang
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Wei Gong
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Shaoping Nie
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
134
|
Baron MV, dos Santos MP, Werle TM, Scherer GD, Santos MMD, Dominguez LML, Brandenburg C, Feltez G, Sampaio AR, de Mello Pinto MV, Carvalho S, Meyer PF, Picariello F, Pacheco EF, Reinheimer IC, Sancho AG, da Costa BEP. Does COVID-19 infection increase the risk of pressure injury in critically ill patients?: A narrative review. Medicine (Baltimore) 2022; 101:e29058. [PMID: 35356924 PMCID: PMC10513310 DOI: 10.1097/md.0000000000029058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/24/2022] [Indexed: 02/02/2023] Open
Abstract
ABSTRACT Patients with severe COVID-19 may have endothelial dysfunction and a hypercoagulable state that can cause skin damage. In the presence of external pressure on the tissues, the local inflammatory process regulated by inflammatory cytokines can increase and prolong itself, contributing to the formation of pressure injury (PI). PI is defined as localized damage to the skin or underlying tissues. It usually occurs as a result of intense and/or prolonged pressure in combination with shear. The aim of the study is to perform a narrative review on the physiological evidence of increased risk in the development of PI in critically ill patients with COVID-19.In patients with severe COVID-19 a pattern of tissue damage consistent with complement-mediated microvascular injury was found in the lungs and skin of critically ill COVID-19 patients, suggesting sustained systemic activation of complement pathways. Theoretically, the same thrombogenic vascular changes related to COVID-19 that occur in the skin also occur in the underlying tissues, making patients less tolerant to the harmful effects of pressure and shear. Unlike the syndromes typical of acute respiratory illnesses and other pathologies that commonly lead to intensive care unit admission, COVID-19 and systemic viral spread show that local and systemic factors overlap. This fact may be justified by current epidemiological data showing that the prevalence of PI among intensive care unit patients with COVID-19 was 3 times higher than in those without COVID-19. This narrative review presents physiological evidence to suggesting an increased risk of developing PI in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Miriam Viviane Baron
- Correspondence: Miriam Viviane Baron, Graduate Program in Medicine and Health Sciences of the Pontifical Catholic University of Rio Grande do Sul (PUC/RS), Porto Alegre, Rio Grande do Sul 90619-900, Brazil (e-mail: ).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Hochuli JE, Jain S, Melo-filho C, Sessions ZL, Bobrowski T, Choe J, Zheng J, Eastman R, Talley DC, Rai G, Simeonov A, Tropsha A, Muratov EN, Baljinnyam B, Zakharov AV. Allosteric binders of ACE2 are promising anti-SARS-CoV-2 agents.. [PMID: 35313579 PMCID: PMC8936107 DOI: 10.1101/2022.03.15.484484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AbstractThe COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for an acute treatment for the disease. We investigate whether compounds that bind the human ACE2 protein can interrupt SARS-CoV-2 replication without damaging ACE2’s natural enzymatic function. Initial compounds were screened for binding to ACE2 but little interruption of ACE2 enzymatic activity. This set of compounds was extended by application of quantitative structure-activity analysis, which resulted in 512 virtual hits for further confirmatory screening. A subsequent SARS-CoV-2 replication assay revealed that five of these compounds inhibit SARS-CoV-2 replication in human cells. Further effort is required to completely determine the antiviral mechanism of these compounds, but they serve as a strong starting point for both development of acute treatments for COVID-19 and research into the mechanism of infection.Abstract FigureTOC Graphic: Overall study design.
Collapse
|
136
|
Evaluation of Natural Peptides to Prevent and Reduce the Novel SARS-CoV-2 Infection. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2102937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In a preventive context, natural peptides can play a major role against SARS-CoV-2, so their character of GRAS (generally recognized as safe) means they would not need innocuity analyses to be employed. This study analyses the potential of pea peptides, LSDRFS and SDRFSY, and amaranth peptides, GGV, IGV, IVG, VGVL, and VIKP, against the SARS-CoV-2 hosts, ACE2 (angiotensin-converting enzyme 2), ACE (angiotensin-converting enzyme), and CD26 (cluster of differentiation 26), and SARS-CoV-2 enzymes, spike glycoprotein and 3CLpro (3-chymotrypsin-like protease). Also, currently used drugs were analysed to contrast drug and peptide behaviour. Employing docking, virtual screening, and molecular dynamics assays, SDRFSY, LSDRFS, and VIKP were detected as potential bioactive peptides by blocking ACE2 and CD26 or reducing the inflammation associated with COVID-19. Enzyme inhibition analyses were also performed, proving the ability of SDRFSY and LSDRFS as ACE2-blocking agents against the spike glycoprotein with inhibition capacities above 80%.
Collapse
|
137
|
Reyes-Alcaraz A, Lucero Garcia-Rojas EY, Merlinsky EA, Seong JY, Bond RA, McConnell BK. A NanoBiT assay to monitor membrane proteins trafficking for drug discovery and drug development. Commun Biol 2022; 5:212. [PMID: 35260793 PMCID: PMC8904512 DOI: 10.1038/s42003-022-03163-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Internalization of membrane proteins plays a key role in many physiological functions; however, highly sensitive and versatile technologies are lacking to study such processes in real-time living systems. Here we describe an assay based on bioluminescence able to quantify membrane receptor trafficking for a wide variety of internalization mechanisms such as GPCR internalization/recycling, antibody-mediated internalization, and SARS-CoV2 viral infection. This study represents an alternative drug discovery tool to accelerate the drug development for a wide range of physiological processes, such as cancer, neurological, cardiopulmonary, metabolic, and infectious diseases including COVID-19. Membrane protein trafficking is monitored using split nanoluciferase. Receptor internalization leads to complementation on the early endosome and a bioluminescent response, and is applied to receptor internalization/recycling, antibody-mediated internalization and SARS-CoV2 entry.
Collapse
Affiliation(s)
- Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA.
| | - Emilio Y Lucero Garcia-Rojas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Elizabeth A Merlinsky
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Jae Young Seong
- Korea University, College of Medicine, Anam-dong, Seongbuk-gu, Seol, 136-701, Republic of Korea
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA.
| |
Collapse
|
138
|
Perrin EC, South AM. Correlation between kidney sodium and potassium handling and the renin-angiotensin-aldosterone system in children with hypertensive disorders. Pediatr Nephrol 2022; 37:633-641. [PMID: 34499251 PMCID: PMC8904647 DOI: 10.1007/s00467-021-05204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Urine sodium and potassium are used as surrogate markers for dietary consumption in adults with hypertension, but their role in youth with hypertension and their association with components of the renin-angiotensin-aldosterone system (RAAS) are incompletely characterized. Some individuals with hypertension may have an abnormal RAAS response to dietary sodium and potassium intake, though this is incompletely described. Our objective was to investigate if plasma renin activity and serum aldosterone are associated with urine sodium and potassium in youth referred for hypertensive disorders. METHODS This pilot study was a cross-sectional analysis of baseline data from 44 youth evaluated for hypertensive disorders in a Hypertension Clinic. We recorded urine sodium and potassium concentrations normalized to urine creatinine, plasma renin activity, and serum aldosterone and calculated the sodium/potassium (UNaK) and aldosterone/renin ratios. We used multivariable generalized linear models to estimate the associations of renin and aldosterone with urine sodium and potassium. RESULTS Our cohort was diverse (37% non-Hispanic Black, 14% Hispanic), 66% were male, and median age was 15.3 years; 77% had obesity and 9% had a secondary etiology. Aldosterone was associated inversely with urine sodium/creatinine (β: -0.34, 95% CI -0.62 to -0.06) and UNaK (β: -0.09, 95% CI -0.16 to -0.03), and adjusted for estimated glomerular filtration rate and serum potassium. CONCLUSIONS Higher serum aldosterone levels, but not plasma renin activity, were associated with lower urine sodium/creatinine and UNaK at baseline in youth referred for hypertensive disorders. Further characterization of the RAAS could help define hypertension phenotypes and guide management. A higher resolution version of the Graphical abstract is available as supplementary information.
Collapse
Affiliation(s)
- Ella C Perrin
- Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Andrew M South
- Department of Pediatrics, Section of Nephrology, Brenner Children's Hospital, Wake Forest School of Medicine, One Medical Center Boulevard, Winston Salem, NC, 27157, USA. .,Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston Salem, NC, USA. .,Department of Surgery-Hypertension and Vascular Research, Wake Forest School of Medicine, Winston Salem, NC, USA. .,Center for Biomedical Informatics, Wake Forest School of Medicine, Winston Salem, NC, USA.
| |
Collapse
|
139
|
Puskarich MA, Ingraham NE, Merck LH, Driver BE, Wacker DA, Black LP, Jones AE, Fletcher CV, South AM, Murray TA, Lewandowski C, Farhat J, Benoit JL, Biros MH, Cherabuddi K, Chipman JG, Schacker TW, Guirgis FW, Voelker HT, Koopmeiners JS, Tignanelli CJ. Efficacy of Losartan in Hospitalized Patients With COVID-19-Induced Lung Injury: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e222735. [PMID: 35294537 PMCID: PMC8928006 DOI: 10.1001/jamanetworkopen.2022.2735] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/23/2022] [Indexed: 12/14/2022] Open
Abstract
Importance SARS-CoV-2 viral entry may disrupt angiotensin II (AII) homeostasis, contributing to COVID-19 induced lung injury. AII type 1 receptor blockade mitigates lung injury in preclinical models, although data in humans with COVID-19 remain mixed. Objective To test the efficacy of losartan to reduce lung injury in hospitalized patients with COVID-19. Design, Setting, and Participants This blinded, placebo-controlled randomized clinical trial was conducted in 13 hospitals in the United States from April 2020 to February 2021. Hospitalized patients with COVID-19 and a respiratory sequential organ failure assessment score of at least 1 and not already using a renin-angiotensin-aldosterone system (RAAS) inhibitor were eligible for participation. Data were analyzed from April 19 to August 24, 2021. Interventions Losartan 50 mg orally twice daily vs equivalent placebo for 10 days or until hospital discharge. Main Outcomes and Measures The primary outcome was the imputed arterial partial pressure of oxygen to fraction of inspired oxygen (Pao2:Fio2) ratio at 7 days. Secondary outcomes included ordinal COVID-19 severity; days without supplemental o2, ventilation, or vasopressors; and mortality. Losartan pharmacokinetics and RAAS components (AII, angiotensin-[1-7] and angiotensin-converting enzymes 1 and 2)] were measured in a subgroup of participants. Results A total of 205 participants (mean [SD] age, 55.2 [15.7] years; 123 [60.0%] men) were randomized, with 101 participants assigned to losartan and 104 participants assigned to placebo. Compared with placebo, losartan did not significantly affect Pao2:Fio2 ratio at 7 days (difference, -24.8 [95%, -55.6 to 6.1]; P = .12). Compared with placebo, losartan did not improve any secondary clinical outcomes and led to fewer vasopressor-free days than placebo (median [IQR], 9.4 [9.1-9.8] vasopressor-free days vs 8.7 [8.2-9.3] vasopressor-free days). Conclusions and Relevance This randomized clinical trial found that initiation of orally administered losartan to hospitalized patients with COVID-19 and acute lung injury did not improve Pao2:Fio2 ratio at 7 days. These data may have implications for ongoing clinical trials. Trial Registration ClinicalTrials.gov Identifier: NCT04312009.
Collapse
Affiliation(s)
- Michael A. Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Nicholas E. Ingraham
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis
| | - Lisa H. Merck
- Department of Emergency Medicine, University of Florida College of Medicine, Gainesville
| | - Brian E. Driver
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota
| | - David A. Wacker
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis
| | - Lauren Page Black
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville
| | - Alan E. Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson
| | | | - Andrew M. South
- Section of Nephrology, Department of Pediatrics, Wake Forest School of Medicine and Brenner Children's Hospital, Winston Salem, North Carolina
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston Salem, North Carolina
- Department of Surgery-Hypertension and Vascular Research, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Thomas A. Murray
- Department of Biostatistics, School of Public Health, University of Minnesota, Minneapolis
| | - Christopher Lewandowski
- Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, Michigan
| | - Joseph Farhat
- Department of Surgery, North Memorial Medical Center, Minneapolis, Minnesota
| | - Justin L. Benoit
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Michelle H. Biros
- Department of Emergency Medicine, University of Minnesota, Minneapolis
| | - Kartik Cherabuddi
- Department of Emergency Medicine, University of Florida College of Medicine, Gainesville
| | | | - Timothy W. Schacker
- Division of Infectious Disease, Department of Medicine, University of Minnesota, Minneapolis
| | - Faheem W. Guirgis
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville
| | - Helen T. Voelker
- Department of Biostatistics, School of Public Health, University of Minnesota, Minneapolis
| | - Joseph S. Koopmeiners
- Department of Biostatistics, School of Public Health, University of Minnesota, Minneapolis
| | | |
Collapse
|
140
|
Centurión OA. Cardiac injury and COVID-19 associated coagulopathy assessed by rotational thromboelastometry tests: Keep on searching for the right path. Adv Med Sci 2022; 67:139-141. [PMID: 35227984 PMCID: PMC8860710 DOI: 10.1016/j.advms.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
|
141
|
Labandeira-Garcia JL, Labandeira CM, Valenzuela R, Pedrosa MA, Quijano A, Rodriguez-Perez AI. Drugs Modulating Renin-Angiotensin System in COVID-19 Treatment. Biomedicines 2022; 10:502. [PMID: 35203711 PMCID: PMC8962306 DOI: 10.3390/biomedicines10020502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
A massive worldwide vaccination campaign constitutes the main tool against the COVID-19 pandemic. However, drug treatments are also necessary. Antivirals are the most frequently considered treatments. However, strategies targeting mechanisms involved in disease aggravation may also be effective. A major role of the tissue renin-angiotensin system (RAS) in the pathophysiology and severity of COVID-19 has been suggested. The main link between RAS and COVID-19 is angiotensin-converting enzyme 2 (ACE2), a central RAS component and the primary binding site for SARS-CoV-2 that facilitates the virus entry into host cells. An initial suggestion that the susceptibility to infection and disease severity may be enhanced by angiotensin type-1 receptor blockers (ARBs) and ACE inhibitors (ACEIs) because they increase ACE2 levels, led to the consideration of discontinuing treatments in thousands of patients. More recent experimental and clinical data indicate that ACEIs and, particularly, ARBs can be beneficial for COVID-19 outcome, both by reducing inflammatory responses and by triggering mechanisms (such as ADAM17 inhibition) counteracting viral entry. Strategies directly activating RAS anti-inflammatory components such as soluble ACE2, Angiotensin 1-7 analogues, and Mas or AT2 receptor agonists may also be beneficial. However, while ACEIs and ARBs are cheap and widely used, the second type of strategies are currently under study.
Collapse
Affiliation(s)
- Jose L. Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Carmen M. Labandeira
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Neurology Service, Hospital Alvaro Cunqueiro, University Hospital Complex, 36213 Vigo, Spain
| | - Rita Valenzuela
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Maria A. Pedrosa
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Aloia Quijano
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
| | - Ana I. Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
142
|
Real world data on cardiometabolic diseases in U.S. adults during the SARS-CoV-2 pandemic: a decentralized registry study. Cardiovasc Diabetol 2022; 21:24. [PMID: 35164745 PMCID: PMC8845313 DOI: 10.1186/s12933-022-01462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background Pre-existing cardiometabolic comorbidities place SARS-CoV-2 positive patients at a greater risk for poorer clinical course and mortality than those without it. We aimed to analyze real-world registry data focused primarily on participants with cardiometabolic diseases (CMD), which were remotely obtained via a digital platform. Methods Participants were divided into two groups: CMD or no cardiometabolic disease (non-CMD). They were evaluated based on their medical history, current medications/supplements, COVID-19 status, demographics, and baseline characteristics. The frequency of medications/supplements for CMD were compared using relative risks and 95% confidence intervals. The WHO (Five) Well-Being Index (WHO-5) were collected monthly for 6 months to assess psychological well-being which included cheerfulness, calmness, vigor, rest, and engagement with daily activities of interest. Results The 791 enrollees represented 49 U.S. states. The CMD group had significantly higher (p < 0.0001) BMI (mean + 3.04 kg/m2) and age (mean + 9.15 years) compared to non-CMD group. In the CMD group, participants who tested positive for COVID-19 had lower (p < 0.0001) well-being scores than those without COVID-19. For the 274 participants on CMD medications/supplements, there was no statistical difference in risk of COVID-19 contracture based on medication/supplement type; however, all six participants who were not being treated for CMD were COVID-19 positive (RR ~ 104). For 89 participants who were on treatment for diabetes or insulin resistance, there was a 90% reduced risk of COVID-19 incidence (p = 0.0187). Conclusion The well-being score of the CMD group was dependent on whether they tested positive for COVID-19. Type of CMD treatment did not impact COVID-19 status, but absence of treatment significantly increased COVID-19 incidence. With respect to SARS-CoV-2, our analysis supports continued use of the statins, ACE-I, ARBs, and diabetes medications in CMD patients. Trial registration: ClinicalTrials.gov Identifier: NCT04348942.
Collapse
|
143
|
Shao X, Zhang X, Zhang R, Zhu R, Hou X, Yi W, Wu F, Hao L, Feng R. The atlas of ACE2 expression in fetal and adult human hearts reveals the potential mechanism of heart injured patients infected with SARS-CoV-2. Am J Physiol Cell Physiol 2022; 322:C723-C738. [PMID: 35138176 PMCID: PMC8977135 DOI: 10.1152/ajpcell.00169.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect host cells through binding to angiotensin I converting enzyme 2 (ACE2) expressing in various tissues and organs. In this study, we deeply analyzed the single-cell expression profiles of ACE2 in fetal and adult human hearts to explore the potential mechanism of SARS-CoV-2 harming the heart. The molecular docking software was used to simulate the binding of SARS-CoV-2 and its variant spike protein with ACE2. The genes closely related to ACE2 in renin-angiotensin system (RAS) were identified by constructing a protein-protein interaction network. Through the analysis of single-cell transcription profiles at different stages of human embryos, we found that the expression level of ACE2 in ventricular myocytes was increased with embryonic development. The results of single-cell sequencing analysis showed that the expression of ACE2 in ventricular myocytes was upregulated in heart failure induced by dilated cardiomyopathy compared with normal hearts. The upregulation of ACE2 increases the risk of infection with SARS-CoV-2 in fetal and adult human hearts. We also further confirmed the expression of ACE2 and ACE2-related genes in normal and SARS-CoV-2-infected human pluripotent stem cell-derived cardiomyocytes. In addition, the pathway analysis revealed that ACE2 may regulate the differently expressed genes in heart failure through calcium signaling pathway and Wnt signaling pathway.
Collapse
Affiliation(s)
- Xiuli Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ruijia Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rongli Zhu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiuyang Hou
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Weijue Yi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Fengmin Wu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
144
|
Banerjee A, Kanwar M, Santra D, Maiti S. Global conserved RBD fraction of SARS-CoV-2 S-protein with T500S mutation in silico significantly blocks ACE2 and rejects viral spike. TRANSLATIONAL MEDICINE COMMUNICATIONS 2022; 7:2. [PMID: 35136839 PMCID: PMC8814807 DOI: 10.1186/s41231-022-00109-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND SARS-CoV-2 developed global-pandemic with millions of infections/deaths. As it is urgently necessary it is assumed that some blockers/inhibitors of ACE2 could be helpful to resist the binding of viral-spike Receptor-Binding-Domain (RBD). METHODS Here, conserved RBD from 186-countries were compared with WUHAN-Hu-1 wild-type (CLUSTAL-X2/Pymol). The RBD of ACE2-bound nCOV2 crystal-structure 6VW1 was analyzed by Haddock-PatchDock. Extensive structural study/trial to introduce point/double/triple mutations in the different locations of CUT4 (most-effective from total 4 proposed fragments; CUTs) were tested with Swiss-Model-Expacy. RESULTS Blind-docking of mutated-CUTs in ACE2 completely rejected the nCOV2 binding to ACE2. Further, competitive-docking/binding-analyses (by PRODIGY) demonstrated few more bonding (LYS31-PHE490 and GLN42-GLN498) of CUT4 (than wild) and hindered TYR41-THR500 interaction with ACE2. Moreover, mutated-CUT4 even showed higher blocking effect against spike-ACE2 binding. CONCLUSION In summary, CUT4-mutant rejects whole glycosylated-nCoV2 in all pre-dock, post-dock and competitive-docking conditions. The present work strategy is relevant because it could be able to block at the first level entry of the virus to the host cells. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s41231-022-00109-5.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore, India
| | - Mehak Kanwar
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore, India
- Department of Physiology, Raja Bazar Scienec College, Calcutta University, Calcutta, West Bengal India
| | - Dipannita Santra
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore, India
| | - Smarajit Maiti
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore, India
- Agricure Biotech Research Society, Epidemiology and Human Health Division, 721101 Midnapore, India
| |
Collapse
|
145
|
Ma Z, Li X, Fan RLY, Yang KY, Ng CSH, Lau RWH, Wong RHL, Ng KK, Wang CC, Ye P, Fu Z, Chin AWH, Lai MYA, Huang Y, Tian XY, Poon LLM, Lui KO. A human pluripotent stem cell-based model of SARS-CoV-2 infection reveals an ACE2-independent inflammatory activation of vascular endothelial cells through TLR4. Stem Cell Reports 2022; 17:538-555. [PMID: 35180397 PMCID: PMC8851885 DOI: 10.1016/j.stemcr.2022.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the direct causative mechanism of SARS-CoV-2-induced endotheliitis remains unclear. Here, we report that human ECs barely express surface ACE2, and ECs express less intracellular ACE2 than non-ECs of the lungs. We ectopically expressed ACE2 in hESC-ECs to model SARS-CoV-2 infection. ACE2-deficient ECs are resistant to the infection but are more activated than ACE2-expressing ones. The virus directly induces endothelial activation by increasing monocyte adhesion, NO production, and enhanced phosphorylation of p38 mitogen-associated protein kinase (MAPK), NF-κB, and eNOS in ACE2-expressing and -deficient ECs. ACE2-deficient ECs respond to SARS-CoV-2 through TLR4 as treatment with its antagonist inhibits p38 MAPK/NF-κB/ interleukin-1β (IL-1β) activation after viral exposure. Genome-wide, single-cell RNA-seq analyses further confirm activation of the TLR4/MAPK14/RELA/IL-1β axis in circulating ECs of mild and severe COVID-19 patients. Circulating ECs could serve as biomarkers for indicating patients with endotheliitis. Together, our findings support a direct role for SARS-CoV-2 in mediating endothelial inflammation in an ACE2-dependent or -independent manner. The majority of adult and fetal ECs rarely express surface ACE2 ACE2 is dispensable for SARS-CoV-2-mediated endothelial activation SARS-CoV-2 directly induces endothelial inflammation through TLR4 activation ScRNA-seq reveals TLR4 pathway activation in circulating ECs of COVID-19 patients
Collapse
Affiliation(s)
- Zhangjing Ma
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rebecca L Y Fan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Calvin S H Ng
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rainbow W H Lau
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Randolph H L Wong
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin K Ng
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Peng Ye
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zelong Fu
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - M Y Alison Lai
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
146
|
Kaur R, Singh S, Singh TG, Sood P, Robert J. Covid-19: pharmacotherapeutic insights on various curative approaches in terms of vulnerability, comorbidities, and vaccination. Inflammopharmacology 2022; 30:1-21. [PMID: 34981320 PMCID: PMC8722419 DOI: 10.1007/s10787-021-00904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
A novel coronavirus disease (COVID-19), caused by a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was discovered in Wuhan, China, in December 2019, and the world has suffered from a pandemic. As of 22nd March 2020, at least 185 countries worldwide had been affected by COVID-19. SARS-CoV-2, leading to COVID-19 pneumonia, infects cells through ACE-2 receptors. The disease has different clinical signs and symptoms, including chills, high fever, dyspnea, and cough. Other symptoms including haemoptysis, myalgia, diarrhoea, expectoration, and fatigue may also occur. The rapid rise in confirmation cases is severe in preventing and controlling COVID-19. In this review, the article will explore and evaluate the insights into how COVID influences patients with other comorbid conditions such as cardiovascular disease, diabetes, Parkinson's, and how conditions Urolithiasis, anosmia, and anuria may develop after infection. The virus mutates and the variants are now prevalent in the present scenario where the world stands in eradicating the pandemic by looking into the development of vaccines by several countries and how the vaccination can temporarily help prevent COVID spread.
Collapse
Affiliation(s)
- Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Pragati Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Jiki Robert
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
147
|
Klhůfek J. The role of angiotensin-converting enzyme 2 in the pathogenesis of COVID-19: the villain or the hero? Acta Clin Belg 2022; 77:211-218. [PMID: 32597377 DOI: 10.1080/17843286.2020.1786324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE 2) is the entry receptor for the novel coronavirus SARS-CoV-2, the aetiological agent of COVID-19. At the same time, ACE 2 expression decreases during COVID-19. Two seemingly contradictory relationships between the expression of ACE 2 and COVID-19 have been reported. Increased level of expression of ACE 2 may be a risk factor for the development of COVID-19 infection, while reduced ACE 2 expression during COVID-19 leads to acute respiratory distress syndrome. This article provides a comprehensive overview of available scientific knowledge about the role of ACE 2 in the pathogenesis of COVID-19, which is available up to current day. Also, it discusses unknown factors that we will have to reveal in order to understand the whole role of ACE 2 in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Josef Klhůfek
- Department of Pharmacy, T. Bata Regional Hospital, Zlín, Czech Republic
| |
Collapse
|
148
|
Wu HF, Huang CW, Daga KR, Marklein RA, Ivanova N, Zeltner N. Human pluripotent stem cell-derived functional sympathetic neurons express ACE2 and RAAS components: a framework for studying the effect of COVID-19 on sympathetic responsiveness. Clin Auton Res 2022; 32:59-63. [PMID: 35091835 PMCID: PMC8799422 DOI: 10.1007/s10286-021-00850-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Chia-Wei Huang
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R Daga
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, Rhodes Center for Animal Dairy Science, University of Georgia, Athens, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, Rhodes Center for Animal Dairy Science, University of Georgia, Athens, GA, USA
| | - Natalia Ivanova
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA, 30602, USA
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA, 30602, USA.
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
149
|
Tarnawski AS, Ahluwalia A. Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs. World J Gastroenterol 2022; 28:275-289. [PMID: 35110950 PMCID: PMC8771611 DOI: 10.3748/wjg.v28.i3.275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) infected so far over 250 million people and caused the death of over 5 million worldwide. Aging, diabetes, and cardiovascular diseases, conditions with preexisting impaired endothelial functions predispose to COVID-19. While respiratory epithelium is the main route of virus entry, the endothelial cells (ECs) lining pulmonary blood vessels are also an integral part of lung injury in COVID-19 patients. COVID-19 not only affects the lungs and respiratory system but also gastrointestinal (GI) tract, liver, pancreas, kidneys, heart, brain, and skin. Blood vessels are likely conduits for the virus dissemination to these distant organs. Importantly, ECs are also critical for vascular regeneration during injury/lesions healing and restoration of vascular network. The World Journal of Gastroenterology has published in last two years over 67 outstanding papers on COVID-19 infection with a focus on the GI tract, liver, pancreas, etc., however, the role of the endothelial and vascular components as major targets for COVID-19-induced tissue injury, spreading to various organs, and injury healing have not been sufficiently emphasized. In the present article, we focus on these subjects and on current treatments including the most recent oral drugs molnupiravir and paxlovid that show a dramatic, significant efficacy in controlling severe COVID-19 infection.
Collapse
Affiliation(s)
- Andrzej S Tarnawski
- Gastroenterology Research Department, University of California Irvine and the Veterans Administration Long Beach Healthcare System, Long Beach, CA 90822, United States
| | - Amrita Ahluwalia
- Research Service, Veterans Administration Long Beach Healthcare System, Long Beach, CA 90822, United States
| |
Collapse
|
150
|
Liu X, Lou L, Zhou L. Molecular Mechanisms of Cardiac Injury Associated With Myocardial SARS-CoV-2 Infection. Front Cardiovasc Med 2022; 8:643958. [PMID: 35127841 PMCID: PMC8812276 DOI: 10.3389/fcvm.2021.643958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the world. The development of cardiac injury is a common condition in patients with COVID-19, but the pathogenesis remains unclear. The RNA-Seq dataset (GSE150392) comparing expression profiling of mock human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and SARS-CoV-2-infected hiPSC-CMs was obtained from Gene Expression Omnibus (GEO). We identified 1,554 differentially expressed genes (DEGs) based on GSE150392. Gene set enrichment analysis (GSEA), Gene ontology (GO) analysis, and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that immune-inflammatory responses were activated by SARS-CoV-2, while muscle contraction, cellular respiration, and cell cycle of hiPSC-CMs were inhibited. A total of 15 hub genes were identified according to protein-protein interaction (PPI), among which 11 upregulated genes were mainly involved in cytokine activation related to the excessive inflammatory response. Moreover, we identified potential drugs based on these hub genes. In conclusion, SARS-CoV-2 infection of cardiomyocytes caused a strong defensive response, leading to excessive immune inflammation, cell hypoxia, functional contractility reduction, and apoptosis, ultimately resulting in myocardial injury.
Collapse
Affiliation(s)
- Xianfang Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Longquan Lou
- Department of General Surgery, The Third People's Hospital of Hangzhou, Hangzhou, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|