101
|
Man AWC, Li H, Xia N. The Role of Sirtuin1 in Regulating Endothelial Function, Arterial Remodeling and Vascular Aging. Front Physiol 2019; 10:1173. [PMID: 31572218 PMCID: PMC6751260 DOI: 10.3389/fphys.2019.01173] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Sirtuin1 (SIRT1), which belongs to a highly conserved family of protein deacetylase, is one of the best-studied sirtuins. SIRT1 is involved in a variety of biological processes, including energy metabolism, cell proliferation and survival, chromatin dynamics, and DNA repair. In the vasculature, SIRT1 is ubiquitously expressed in endothelial cells, smooth muscle cells, and perivascular adipose tissues (PVAT). Endothelial SIRT1 plays a unique role in vasoprotection by regulating a large variety of proteins, including endothelial nitric oxide synthase (eNOS). In endothelial cells, SIRT1 and eNOS regulate each other synergistically through positive feedback mechanisms for the maintenance of endothelial function. Recent studies have shown that SIRT1 plays a vital role in modulating PVAT function, arterial remodeling, and vascular aging. In the present article, we summarize recent findings, review the molecular mechanisms and the potential of SIRT1 as a therapeutic target for the treatment of vascular diseases, and discuss future research directions.
Collapse
|
102
|
Salidroside Delays Cellular Senescence by Stimulating Mitochondrial Biogenesis Partly through a miR-22/SIRT-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5276096. [PMID: 31612074 PMCID: PMC6757293 DOI: 10.1155/2019/5276096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Calorie restriction (CR) is a nongenetic intervention with a robust effect on delaying aging in mammals and other organisms. A mild stimulation on mitochondrial biogenesis induced by CR seems to be an important action mode for its benefits. Here, we reported that a component isolated from Rhodiola rosea L., salidroside, delays replicative senescence in human fibroblasts, which is related to its stimulation on mitochondrial biogenesis by activating SIRT1 partly resulted from inhibition on miR-22. Salidroside increased the mitochondrial mass that accompanied an increment of the key regulators of mitochondrial biogenesis including PGC-1α, NRF-1, and TFAM and reversed the mitochondrial dysfunction in presenescent 50PD cells, showing a comparable effect to that of resveratrol. SIRT1 is involved in the inducement of mitochondrial biogenesis by salidroside. The declined expression of SIRT1 in 50PD cells compared with the young 30PD cells was prevented upon salidroside treatment. In addition, pretreatment of EX-527, a selective SIRT1 inhibitor, could block the increased mitochondrial mass and decreased ROS production induced by salidroside in 50PD cells, resulting in an accelerated cellular senescence. We further found that salidroside reversed the elevated miR-22 expression in presenescent cells according to a miRNA array analysis and a subsequent qPCR validation. Enforced miR-22 expression by using a Pre-miR-22 lentiviral construct induced the young fibroblasts (30PD) into a senescence state, accompanied with increased senescence-related molecules including p53, p21, p16, and decreased SIRT1 expression, a known target of miR-22. However, salidroside could partly impede the senescence progression induced by lenti-Pre-miR-22. Taken together, our data suggest that salidroside delays replicative senescence by stimulating mitochondrial biogenesis partly through a miR22/SIRT1 pathway, which enriches our current knowledge of a salidroside-mediated postpone senility effect and provides a new perspective on the antidecrepitude function of this naturally occurring compound in animals and humans.
Collapse
|
103
|
Santini SJ, Cordone V, Mijit M, Bignotti V, Aimola P, Dolo V, Falone S, Amicarelli F. SIRT1-Dependent Upregulation of Antiglycative Defense in HUVECs Is Essential for Resveratrol Protection against High Glucose Stress. Antioxidants (Basel) 2019; 8:antiox8090346. [PMID: 31480513 PMCID: PMC6770647 DOI: 10.3390/antiox8090346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Uncontrolled accumulation of methylglyoxal (MG) and reactive oxygen species (ROS) occurs in hyperglycemia-induced endothelial dysfunction associated with diabetes. Resveratrol (RSV) protects the endothelium upon high glucose (HG); however, the mechanisms underlying such protective effects are still debated. Here we identified key molecular players involved in the glycative/oxidative perturbations occurring in endothelial cells exposed to HG. In addition, we determined whether RSV essentially required SIRT1 to trigger adaptive responses in HG-challenged endothelial cells. We used primary human umbilical vein endothelial cells (HUVECs) undergoing a 24-h treatment with HG, with or without RSV and EX527 (i.e., SIRT1 inhibitor). We found that HG-induced glycative stress (GS) and oxidative stress (OS), by reducing SIRT1 activity, as well as by diminishing the efficiency of MG- and ROS-targeting protection. RSV totally abolished the HG-dependent cytotoxicity, and this was associated with SIRT1 upregulation, together with increased expression of GLO1, improved ROS-scavenging efficiency, and total suppression of HG-related GS and OS. Interestingly, RSV failed to induce effective response to HG cytotoxicity when EX527 was present, thus suggesting that the upregulation of SIRT1 is essential for RSV to activate the major antiglycative and antioxidative defense and avoid MG- and ROS-dependent molecular damages in HG environment.
Collapse
Affiliation(s)
- Silvano Jr Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Mahmut Mijit
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Virginio Bignotti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Pierpaolo Aimola
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| |
Collapse
|
104
|
Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, Balasubramanian P, Gautam T, Csipo T, Nyúl-Tóth Á, Lipecz A, Szabo C, Farkas E, Wren JD, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience 2019; 41:419-439. [PMID: 31463647 PMCID: PMC6815288 DOI: 10.1007/s11357-019-00095-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding molecular mechanisms involved in vascular aging is essential to develop novel interventional strategies for treatment and prevention of age-related vascular pathologies. Recent studies provide critical evidence that vascular aging is characterized by NAD+ depletion. Importantly, in aged mice, restoration of cellular NAD+ levels by treatment with the NAD+ booster nicotinamide mononucleotide (NMN) exerts significant vasoprotective effects, improving endothelium-dependent vasodilation, attenuating oxidative stress, and rescuing age-related changes in gene expression. Strong experimental evidence shows that dysregulation of microRNAs (miRNAs) has a role in vascular aging. The present study was designed to test the hypothesis that age-related NAD+ depletion is causally linked to dysregulation of vascular miRNA expression. A corollary hypothesis is that functional vascular rejuvenation in NMN-treated aged mice is also associated with restoration of a youthful vascular miRNA expression profile. To test these hypotheses, aged (24-month-old) mice were treated with NMN for 2 weeks and miRNA signatures in the aortas were compared to those in aortas obtained from untreated young and aged control mice. We found that protective effects of NMN treatment on vascular function are associated with anti-aging changes in the miRNA expression profile in the aged mouse aorta. The predicted regulatory effects of NMN-induced differentially expressed miRNAs in aged vessels include anti-atherogenic effects and epigenetic rejuvenation. Future studies will uncover the mechanistic role of miRNA gene expression regulatory networks in the anti-aging effects of NAD+ booster treatments and determine the links between miRNAs regulated by NMN and sirtuin activators and miRNAs known to act in the conserved pathways of aging and major aging-related vascular diseases.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Cory B Giles
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre / Theoretical Medicine Doctoral School, Hungarian Academy of Sciences, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Szabo
- Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eszter Farkas
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Jonathan D Wren
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
105
|
Tan X, Li L, Wang J, Zhao B, Pan J, Wang L, Liu X, Liu X, Liu Z. Resveratrol Prevents Acrylamide-Induced Mitochondrial Dysfunction and Inflammatory Responses via Targeting Circadian Regulator Bmal1 and Cry1 in Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8510-8519. [PMID: 31294559 DOI: 10.1021/acs.jafc.9b03368] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acrylamide, mainly formed in Maillard browning reaction during food processing, causes defects in liver circadian clock and mitochondrial function by inducing oxidative stress. Resveratrol is a polyphenol that has powerful antioxidant and anti-inflammatory activity. However, the preventive effects of resveratrol on acrylamide-triggered oxidative damage and circadian rhythm disorders are unclear at the current stage. The present research revealed that resveratrol pretreatment prevented acrylamide-induced cell death, mitochondrial dysfunction, and inflammatory responses in HepG2 liver cells. Acrylamide significantly triggered disorders of circadian genes transcription and protein expressions including Bmal1 and Cry 1 in primary hepatocytes, which were prevented by resveratrol pretreatment. Moreover, we found that the beneficial effects of resveratrol on stimulating Nrf2/NQO-1 pathway and mitochondrial respiration complex expressions in acrylamide-treated cells were Bmal1-dependent. Similarly, the inhibitory effects of resveratrol on inflammation signaling NF-κB were Cry1-dependent. In conclusion, these results demonstrated resveratrol could be a promising compound in suppressing acrylamide-induced hepatotoxicity and balancing the circadian clock.
Collapse
Affiliation(s)
- Xintong Tan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Ling Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jia Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Junru Pan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Leran Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Xiao Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| |
Collapse
|
106
|
Csiszar A, Tarantini S, Yabluchanskiy A, Balasubramanian P, Kiss T, Farkas E, Baur JA, Ungvari Z. Role of endothelial NAD + deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 316:H1253-H1266. [PMID: 30875255 PMCID: PMC6620681 DOI: 10.1152/ajpheart.00039.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 12/23/2022]
Abstract
Age-related alterations in endothelium and the resulting vascular dysfunction critically contribute to a range of pathological conditions associated with old age. To develop therapies rationally that improve vascular health and thereby increase health span and life span in older adults, it will be essential to understand the cellular and molecular mechanisms contributing to vascular aging. Preclinical studies in model organisms demonstrate that NAD+ availability decreases with age in multiple tissues and that supplemental NAD+ precursors can ameliorate many age-related cellular impairments. Here, we provide a comprehensive overview of NAD+-dependent pathways [including the NAD+-using silent information regulator-2-like enzymes and poly(ADP-ribose) polymerase enzymes] and the potential consequences of endothelial NAD+ deficiency in vascular aging. The multifaceted vasoprotective effects of treatments that reverse the age-related decline in cellular NAD+ levels, as well as their potential limitations, are discussed. The preventive and therapeutic potential of NAD+ intermediates as effective, clinically relevant interventions in older adults at risk for ischemic heart disease, vascular cognitive impairment, and other common geriatric conditions and diseases that involve vascular pathologies (e.g., sarcopenia, frailty) are critically discussed. We propose that NAD+ precursors [e.g., nicotinamide (Nam) riboside, Nam mononucleotide, niacin] should be considered as critical components of combination therapies to slow the vascular aging process and increase cardiovascular health span.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
- Department of Pulmonology, Semmelweis University , Budapest , Hungary
- Department of Health Promotion Sciences, Hudson College of Public Health, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
107
|
Abstract
Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Despite broad literature including basic and translational scientific studies, many gaps in our understanding of host-pathogen interactions remain. In this review, pathogen virulence factors that drive lung infection and injury are discussed in relation to their associated host immune pathways. CAP epidemiology is considered, with a focus on Staphylococcus aureus and Streptococcus pneumoniae as primary pathogens. Bacterial factors involved in nasal colonization and subsequent virulence are illuminated. A particular emphasis is placed on bacterial pore-forming toxins, host cell death, and inflammasome activation. Identified host-pathogen interactions are then examined by linking pathogen factors to aberrant host response pathways in the context of acute lung injury in both primary and secondary infection. While much is known regarding bacterial virulence and host immune responses, CAP management is still limited to mostly supportive care. It is likely that improvements in therapy will be derived from combinatorial targeting of both pathogen virulence factors and host immunomodulation.
Collapse
|
108
|
Essack M, Salhi A, Stanimirovic J, Tifratene F, Bin Raies A, Hungler A, Uludag M, Van Neste C, Trpkovic A, Bajic VP, Bajic VB, Isenovic ER. Literature-Based Enrichment Insights into Redox Control of Vascular Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1769437. [PMID: 31223421 PMCID: PMC6542245 DOI: 10.1155/2019/1769437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.
Collapse
Affiliation(s)
- Magbubah Essack
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Adil Salhi
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Julijana Stanimirovic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| | - Faroug Tifratene
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Arwa Bin Raies
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Arnaud Hungler
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Mahmut Uludag
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Christophe Van Neste
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Andreja Trpkovic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| | - Vladan P. Bajic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| |
Collapse
|
109
|
5-Azacytidine and Resveratrol Enhance Chondrogenic Differentiation of Metabolic Syndrome-Derived Mesenchymal Stem Cells by Modulating Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1523140. [PMID: 31214275 PMCID: PMC6535830 DOI: 10.1155/2019/1523140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/16/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Recently, metabolic syndrome (MS) has gained attention in human and animal metabolic medicine. Insulin resistance, inflammation, hyperleptinemia, and hyperinsulinemia are critical to its definition. MS is a complex cluster of metabolic risk factors that together exert a wide range of effects on multiple organs, tissues, and cells in the body. Adipose stem cells (ASCs) are multipotent stem cell population residing within the adipose tissue that is inflamed during MS. Studies have indicated that these cells lose their stemness and multipotency during MS, which strongly reduces their therapeutic potential. They suffer from oxidative stress, apoptosis, and mitochondrial deterioration. Thus, the aim of this study was to rejuvenate these cells in vitro in order to improve their chondrogenic differentiation effectiveness. Pharmacotherapy of ASCs was based on resveratrol and 5-azacytidine pretreatment. We evaluated whether those substances are able to reverse aged phenotype of metabolic syndrome-derived ASCs and improve their chondrogenic differentiation at its early stage using immunofluorescence, transmission and scanning electron microscopy, real-time PCR, and flow cytometry. Obtained results indicated that 5-azacytidine and resveratrol modulated mitochondrial dynamics, autophagy, and ER stress, leading to the enhancement of chondrogenesis in metabolically impaired ASCs. Therefore, pretreatment of these cells with 5-azacytidine and resveratrol may become a necessary intervention before clinical application of these cells in order to strengthen their multipotency and therapeutic potential.
Collapse
|
110
|
Resveratrol and Vascular Function. Int J Mol Sci 2019; 20:ijms20092155. [PMID: 31052341 PMCID: PMC6539341 DOI: 10.3390/ijms20092155] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Resveratrol increases the production of nitric oxide (NO) in endothelial cells by upregulating the expression of endothelial NO synthase (eNOS), stimulating eNOS enzymatic activity, and preventing eNOS uncoupling. At the same time, resveratrol inhibits the synthesis of endothelin-1 and reduces oxidative stress in both endothelial cells and smooth muscle cells. Pathological stimuli-induced smooth muscle cell proliferation, vascular remodeling, and arterial stiffness can be ameliorated by resveratrol as well. In addition, resveratrol also modulates immune cell function, inhibition of immune cell infiltration into the vascular wall, and improves the function of perivascular adipose tissue. All these mechanisms contribute to the protective effects of resveratrol on vascular function and blood pressure in vivo. Sirtuin 1, AMP-activated protein kinase, and estrogen receptors represent the major molecules mediating the vascular effects of resveratrol.
Collapse
|
111
|
Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C, Sun J, Huang H, Huang S, Liang Y, Shen Y, Cong W, Jin L, Zhu Z. Resveratrol Promotes Diabetic Wound Healing via SIRT1-FOXO1-c-Myc Signaling Pathway-Mediated Angiogenesis. Front Pharmacol 2019; 10:421. [PMID: 31068817 PMCID: PMC6491521 DOI: 10.3389/fphar.2019.00421] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background/Aims: Diabetic non-healing skin ulcers represent a serious challenge in clinical practice, in which the hyperglycemia-induced disturbance of angiogenesis, and endothelial dysfunction play a crucial role. Resveratrol (RES), a silent information regulator 1 (SIRT1) agonist, can improve endothelial function and has strong pro-angiogenic properties, and has thus become a research focus for the treatment of diabetic non-healing skin ulcers; however, the underlying mechanism by which RES regulates these processes remains unclear. Therefore, the present study was intended to determine if RES exerts its observed protective role in diabetic wound healing by alleviating hyperglycemia-induced endothelial dysfunction and the disturbance of angiogenesis. Methods: We investigated the effects of RES on cell migration, cell proliferation, apoptosis, tube formation, and the underlying molecular mechanisms in 33 mM high glucose-stimulated human umbilical vein endothelial cells (HUVECs) by semi-quantitative RT-PCR, western blot analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and immunofluorescence in vitro. We further explored the role of RES on endothelial dysfunction and wound healing disturbance in db/db mice by TUNEL staining, immunofluorescence, and photography in vivo. Results: We observed an obvious inhibition of hyperglycemia-triggered endothelial dysfunction and a disturbance of angiogenesis, followed by the promotion of diabetic wound healing via RES, along with restoration of the activity of the hyperglycemia-impaired SIRT1 signaling pathway. Pretreatment with EX-527, a SIRT1 inhibitor, abolished the RES-mediated endothelial protection and pro-angiogenesis action, and then delayed diabetic wound healing. Furthermore, examination of the overexpression of forkhead box O1 (FOXO1), a transcription factor substrate of SIRT1, in HUVECs and db/db mice revealed that RES activated SIRT1 to restore hyperglycemia-triggered endothelial dysfunction and disturbance of angiogenesis, followed by the promotion of diabetic wound healing in a c-Myc-dependent manner. Pretreatment with 10058-F4, a c-Myc inhibitor, repressed RES-mediated endothelial protection, angiogenesis, and diabetic wound healing. Conclusion: Our findings indicate that the positive role of RES in diabetic wound healing via its SIRT1-dependent endothelial protection and pro-angiogenic effects involves the inhibition of FOXO1 and the de-repression of c-Myc expression.
Collapse
Affiliation(s)
- Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Wang
- Department of Pharmacy, Jinhua Women & Children Health Hospital, Jinhua, China
| | - Congcong Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huiya Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuai Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yangzhi Liang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
112
|
Tarantini S, Valcarcel-Ares MN, Toth P, Yabluchanskiy A, Tucsek Z, Kiss T, Hertelendy P, Kinter M, Ballabh P, Süle Z, Farkas E, Baur JA, Sinclair DA, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol 2019; 24:101192. [PMID: 31015147 PMCID: PMC6477631 DOI: 10.1016/j.redox.2019.101192] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/17/2023] Open
Abstract
Adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling (NVC) has an essential role in maintenance of healthy cognitive function. In aging increased oxidative stress and cerebromicrovascular endothelial dysfunction impair NVC, contributing to cognitive decline. There is increasing evidence showing that a decrease in NAD+ availability with age plays a critical role in a range of age-related cellular impairments but its role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis that restoring NAD+ concentration may exert beneficial effects on NVC responses in aging. To test this hypothesis 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, for 2 weeks. NVC was assessed by measuring CBF responses (laser Doppler flowmetry) evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. NMN supplementation rescued NVC responses by increasing endothelial NO-mediated vasodilation, which was associated with significantly improved spatial working memory and gait coordination. These findings are paralleled by the sirtuin-dependent protective effects of NMN on mitochondrial production of reactive oxygen species and mitochondrial bioenergetics in cultured cerebromicrovascular endothelial cells derived from aged animals. Thus, a decrease in NAD+ availability contributes to age-related cerebromicrovascular dysfunction, exacerbating cognitive decline. The cerebromicrovascular protective effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective interventions in patients at risk for vascular cognitive impairment (VCI).
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marta Noa Valcarcel-Ares
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neurosurgery, Medical School, University of Pecs, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zsuzsanna Tucsek
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Hertelendy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael Kinter
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Praveen Ballabh
- Division of Neonatology, Department of Pediatrics, Albert Einstein College of Medicine, USA
| | - Zoltán Süle
- Department of Anatomy, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary; Department of Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
113
|
Kim JS, Park JY. Effects of resveratrol on laminar shear stress-induced mitochondrial biogenesis in human vascular endothelial cells. J Exerc Nutrition Biochem 2019; 23:7-12. [PMID: 31010269 PMCID: PMC6477816 DOI: 10.20463/jenb.2019.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022] Open
Abstract
[Purpose] The purpose of the study was to determine the combined effects of resveratrol supplementation with high-flow LSS on mitochondrial biogenesis in human vascular endothelial cells. [Methods] Cultured human umbilical vein endothelial cells were treated with 20 μM of RSV. For the shear experiments, cells grown to a >90% confluence were exposed to physiological levels of LSS (5 to 20 dyne/cm2) for 12 to 36 hours using a cone and plate shear apparatus. Gene expressions were analyzed by western blotting. [Results] Depletion of mitochondrial integrity was directly associated with increase in endothelial activation/dysfunction. The expressions of mitochondrial biogenesis regulator genes, such as SIRT1, PGC-1α, and TFAM, and the mitochondrial contents were significantly increased after treatment with both resveratrol and high-flow LSS for 12 hours. However, supplementation of resveratrol to high-flow LSS for a prolonged duration had no synergistic effect on the levels of mitochondrial biogenesis regulator gene expressions and mitochondrial content compared to the LSS treatment alone. [Conclusion] The present study demonstrated that the supplementation of resveratrol to high-flow LSS has no synergistic effects on enhancing mitochondrial integrity in human vascular endothelial cells.
Collapse
|
114
|
Breuss JM, Atanasov AG, Uhrin P. Resveratrol and Its Effects on the Vascular System. Int J Mol Sci 2019; 20:E1523. [PMID: 30934670 PMCID: PMC6479680 DOI: 10.3390/ijms20071523] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 12/18/2022] Open
Abstract
Resveratrol, the phenolic substance isolated initially from Veratrum grandiflorum and richly present in grapes, wine, peanuts, soy, and berries, has been attracting attention of scientists and medical doctors for many decades. Herein, we review its effects on the vascular system. Studies utilizing cell cultures and pre-clinical models showed that resveratrol alleviates oxidative stress and inflammation. Furthermore, resveratrol suppresses vascular smooth muscle cell proliferation, promotes autophagy, and has been investigated in the context of vascular senescence. Pre-clinical models unambiguously demonstrated numerous vasculoprotective effects of resveratrol. In clinical trials, resveratrol moderately diminished systolic blood pressure in hypertensive patients, as well as blood glucose in patients with diabetes mellitus. Yet, open questions remain, as exemplified by a recent report which states that the intake of resveratrol might blunt certain positive effects of exercise in older persons, and further research addressing the framework for long-term use of resveratrol as a food supplement, will stay in demand.
Collapse
Affiliation(s)
- Johannes M Breuss
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
115
|
Song X, Rahimnejad S, Zhou W, Cai L, Lu K. Molecular Characterization of Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α (PGC1α) and Its Role in Mitochondrial Biogenesis in Blunt Snout Bream ( Megalobrama amblycephala). Front Physiol 2019; 9:1957. [PMID: 30733687 PMCID: PMC6354234 DOI: 10.3389/fphys.2018.01957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/23/2018] [Indexed: 11/13/2022] Open
Abstract
PGC1α is a transcriptional coactivator that plays key roles in mitochondrial biogenesis, so exploring its molecular characterization contributes to the understanding of mitochondrial function in cultured fish. In the present study, a full-length cDNA coding PGC1α was cloned from the liver of blunt snout bream (Megalobrama amblycephala) which covered 3741 bp with an open reading frame of 2646 bp encoding 881 amino acids. Sequence alignment and phylogenetic analysis revealed high conservation with other fish species, as well as other higher vertebrates. Comparison of the derived amino acid sequences indicates that, as with other fish, there is a proline at position 176 (RIRP) compared to a Thr in the mammalian sequences (RIRT). To investigate PGC1α function, three in vitro tests were carried out using primary hepatocytes of blunt snout bream. The effect of AMPK activity on the expression of PGC1α was determined by the culture of the hepatocytes with an activator (Metformin) or inhibitor (Compound C) of AMPK. Neither AMPK activation nor inhibition altered PGC1α expression. Knockdown of PGC1α expression in hepatocytes using small interfering RNA (si-RNA) was used to determine the role of PGC1α in mitochondrial biogenesis. No significant differences in the expression of NRF1 and TFAM, and mtDNA copy number were found between control and si-RNA groups. Also, hepatocytes were cultured with oleic acid, and the findings showed the significant reduction of mtDNA copy number in oleic acid group compared to control. Moreover, oleic acid down-regulated the expression of NRF1 and TFAM genes, while PGC1α expression remained unchanged. Our findings support the proposal that PGC1α may not play a role in mitochondrial biogenesis in blunt snout bream hepatocytes.
Collapse
Affiliation(s)
- Xiaojun Song
- Laboratory for Animal Nutrition and Immune Molecular Biology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Samad Rahimnejad
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, China.,South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Wenhao Zhou
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, China
| | - Linsen Cai
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, China
| | - Kangle Lu
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
116
|
Ramirez-Sanchez I, Mansour C, Navarrete-Yañez V, Ayala-Hernandez M, Guevara G, Castillo C, Loredo M, Bustamante M, Ceballos G, Villarreal FJ. (-)-Epicatechin induced reversal of endothelial cell aging and improved vascular function: underlying mechanisms. Food Funct 2019; 9:4802-4813. [PMID: 30129961 DOI: 10.1039/c8fo00483h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The consumption of cocoa products rich in (-)-epicatechin is associated with reduced cardiovascular risk and improved vascular function. However, little is known about (-)-epicatechin's effects on aged endothelium. In order to characterize the health restoring effects of (-)-epicatechin on aged endothelium and identify the underlying mechanisms, we utilized high passage number (i.e. aged) bovine coronary artery endothelial cells and aortas of 3 and 18 month old rats. We evaluated cell senescence (β-galactosidase), nitric oxide (NO) production through the endothelial nitric oxide synthase pathway, mitochondria related endpoints, citrate synthase activity and vascular relaxation. Cells were treated with water or (-)-epicatechin (1 μM) for 48 h and rats orally with either water or (-)-epicatechin (1 mg kg-1 day-1) for 15 days. Senescence associated β-galactosidase levels doubled in aged cells while those treated with (-)-epicatechin only evidenced an ∼40% increase. NO levels in cells decreased by ∼33% with aging and (-)-epicatechin normalized them. Endothelial nitric oxide synthase phosphorylation levels paralleled these results. Aging increased total protein and synthase acetylation levels and (-)-epicatechin partially restored them to those of young cells by stimulating sirtuin-1 binding to the synthase. Phosphorylated sirtuin-1, mitofilin, oxidative phosphorylation complexes and transcriptional factor for mitochondria were reduced by ∼40% with aging and were restored by (-)-epicatechin. (-)-Epicatechin enhanced acetylcholine induced aged aorta vasodilation and stimulated NO levels while reducing blood pressure. In conclusion, (-)-epicatechin reverses endothelial cell aging and restores key control elements of vascular function. These actions may partly explain the epidemiological evidence for the beneficial effects of cocoa consumption on the incidence of cardiac and vascular diseases.
Collapse
Affiliation(s)
- Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Saccà SC, Corazza P, Gandolfi S, Ferrari D, Sukkar S, Iorio EL, Traverso CE. Substances of Interest That Support Glaucoma Therapy. Nutrients 2019; 11:E239. [PMID: 30678262 PMCID: PMC6412416 DOI: 10.3390/nu11020239] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a multifactorial disease in which pro-apoptotic signals are directed to retinal ganglion cells. During this disease the conventional outflow pathway becomes malfunctioning. Aqueous humour builds up in the anterior chamber, leading to increased intraocular pressure. Both of these events are related to functional impairment. The knowledge of molecular mechanisms allows us to better understand the usefulness of substances that can support anti-glaucoma therapy. The goal of glaucoma therapy is not simply to lower intraocular pressure; it should also be to facilitate the survival of retinal ganglion cells, as these constitute the real target tissue in this disease, in which the visual pathway is progressively compromised. Indeed, an endothelial dysfunction syndrome affecting the endothelial cells of the trabecular meshwork occurs in both normal-tension glaucoma and high-tension glaucoma. Some substances, such as polyunsaturated fatty acids, can counteract the damage due to the molecular mechanisms - whether ischemic, oxidative, inflammatory or other - that underlie the pathogenesis of glaucoma. In this review, we consider some molecules, such as polyphenols, that can contribute, not only theoretically, to neuroprotection but which are also able to counteract the metabolic pathways that lead to glaucomatous damage. Ginkgo biloba extract, for instance, improves the blood supply to peripheral districts, including the optic nerve and retina and exerts a neuro-protective action by inhibiting apoptosis. Polyunsaturated fatty acids can protect the endothelium and polyphenols exert an anti-inflammatory action through the down-regulation of cytokines such as TNF-α and IL-6. All these substances can aid anti-glaucoma therapy by providing metabolic support for the cells involved in glaucomatous injury. Indeed, it is known that the food we eat is able to change our gene expression.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Ophthalmology Unit, Department of Head/Neck Pathologies, Policlinico San Martino Hospital, IRCCS Hospital-University San Martino, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Paolo Corazza
- Eye Clinic, Department of Neuroscience and Sensory Organs, University of Genoa, Policlinico San Martino Hospital IRCCS Hospital-University San Martino, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, 43121 Parma, Italy.
| | - Daniele Ferrari
- Ophthalmology Unit, Department of Head/Neck Pathologies, Policlinico San Martino Hospital, IRCCS Hospital-University San Martino, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Samir Sukkar
- U.O. di Dietetica e Nutrizione Clinica, Policlinico San Martino Hospital IRCCS Hospital-University San Martino, 35122 Genoa, Italy.
| | - Eugenio Luigi Iorio
- International Observatory of Oxidative Stress, Via Paolo Grisignano 21, 84127 Salerno, Italy.
| | - Carlo Enrico Traverso
- Eye Clinic, Department of Neuroscience and Sensory Organs, University of Genoa, Policlinico San Martino Hospital IRCCS Hospital-University San Martino, Viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|
118
|
Fourny N, Lan C, Sérée E, Bernard M, Desrois M. Protective Effect of Resveratrol against Ischemia-Reperfusion Injury via Enhanced High Energy Compounds and eNOS-SIRT1 Expression in Type 2 Diabetic Female Rat Heart. Nutrients 2019; 11:E105. [PMID: 30621358 PMCID: PMC6356423 DOI: 10.3390/nu11010105] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetic women have a high risk of mortality via myocardial infarction even with anti-diabetic treatments. Resveratrol (RSV) is a natural polyphenol, well-known for its antioxidant property, which has also shown interesting positive effects on mitochondrial function. Therefore, we aim to investigate the potential protective effect of 1 mg/kg/day of RSV on high energy compounds, during myocardial ischemia-reperfusion in type 2 diabetic female Goto-Kakizaki (GK) rats. For this purpose, we used 31P magnetic resonance spectroscopy in isolated perfused heart experiments, with a simultaneous measurement of myocardial function and coronary flow. RSV enhanced adenosine triphosphate (ATP) and phosphocreatine (PCr) contents in type 2 diabetic hearts during reperfusion, in combination with better functional recovery. Complementary biochemical analyses showed that RSV increased creatine, total adenine nucleotide heart contents and citrate synthase activity, which could be involved in better mitochondrial functioning. Moreover, improved coronary flow during reperfusion by RSV was associated with increased eNOS, SIRT1, and P-Akt protein expression in GK rat hearts. In conclusion, RSV induced cardioprotection against ischemia-reperfusion injury in type 2 diabetic female rats via increased high energy compound contents and expression of protein involved in NO pathway. Thus, RSV presents high potential to protect the heart of type 2 diabetic women from myocardial infarction.
Collapse
Affiliation(s)
- Natacha Fourny
- Aix-Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille, CEDEX 05, France.
| | - Carole Lan
- Aix-Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille, CEDEX 05, France.
| | - Eric Sérée
- Aix-Marseille University, INSERM, INRA, Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille, CEDEX 05, France.
| | - Monique Bernard
- Aix-Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille, CEDEX 05, France.
| | - Martine Desrois
- Aix-Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille, CEDEX 05, France.
| |
Collapse
|
119
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
120
|
Pezzuto JM. Resveratrol: Twenty Years of Growth, Development and Controversy. Biomol Ther (Seoul) 2019; 27:1-14. [PMID: 30332889 PMCID: PMC6319551 DOI: 10.4062/biomolther.2018.176] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023] Open
Abstract
Resveratrol was first isolated in 1939 by Takaoka from Veratrum grandiflorum O. Loes. Following this discovery, sporadic descriptive reports appeared in the literature. However, spurred by our seminal paper published nearly 60 years later, resveratrol became a household word and the subject of extensive investigation. Now, in addition to appearing in over 20,000 research papers, resveratrol has inspired monographs, conferences, symposia, patents, chemical derivatives, etc. In addition, dietary supplements are marketed under various tradenames. Once resveratrol was brought to the limelight, early research tended to focus on pharmacological activities related to the cardiovascular system, inflammation, and cancer but, over the years, the horizon greatly expanded. Around 130 human clinical trials have been (or are being) conducted with varying results. This may be due to factors such as disparate doses (ca. 5 to 5,000 mg/day) and variable experimental settings. Further, molecular targets are numerous and a dominant mechanism is elusive or nonexistent. In this context, the compound is overtly promiscuous. Nonetheless, since the safety profile is pristine, and use as a dietary supplement is prevalent, these features are not viewed as detrimental. Given the ongoing history of resveratrol, it is reasonable to advocate for additional development and further clinical investigation. Topical preparations seem especially promising, as do conditions that can respond to anti-inflammatory action and/or direct exposure, such as colon cancer prevention. Although the ultimate fate of resveratrol remains an open question, thus far, the compound has inspired innovative scientific concepts and enhanced public awareness of preventative health care.
Collapse
Affiliation(s)
- John M Pezzuto
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| |
Collapse
|
121
|
Fonseca J, Moradi F, Valente AJF, Stuart JA. Oxygen and Glucose Levels in Cell Culture Media Determine Resveratrol's Effects on Growth, Hydrogen Peroxide Production, and Mitochondrial Dynamics. Antioxidants (Basel) 2018; 7:E157. [PMID: 30400646 PMCID: PMC6262276 DOI: 10.3390/antiox7110157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022] Open
Abstract
Resveratrol is a plant-derived polyphenol that has been widely studied for its putative health promoting effects. Many of those studies have been conducted in cell culture, in supra-physiological levels of oxygen and glucose. Resveratrol interacts with reactive oxygen species (ROS) as an antioxidant or pro-oxidant. Resveratrol affects the expression and activities of ROS-producing enzymes and organelles. It is therefore important to consider how cell culture conditions might determine the effects of resveratrol on cultured cells. We determined the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics in C2C12 mouse myoblasts and PC3 human prostate cancer cells under conditions of physiological (5%) and supra-physiological (18%) oxygen, and normo- (5 mM) and hyper-glycemia (25 mM). Interestingly, most effects of resveratrol on the parameters measured here were dependent upon prevailing oxygen and glucose levels during the experiment. Many of the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics that were seen in 25 mM glucose and/or 18% oxygen were absent under the physiologically relevant conditions of 5 mM glucose with 5% oxygen. These findings emphasize the importance of using physiologically meaningful starting conditions for cell-culture experiments with resveratrol and indeed any manipulation affecting ROS metabolism and mitochondria.
Collapse
Affiliation(s)
- Joao Fonseca
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Fereshteh Moradi
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Andrew J F Valente
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
122
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
123
|
Diao J, Wei J, Yan R, Fan G, Lin L, Chen M. Effects of resveratrol on regulation on UCP2 and cardiac function in diabetic rats. J Physiol Biochem 2018; 75:39-51. [DOI: 10.1007/s13105-018-0648-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
|
124
|
Effects of Polyphenols on Thermogenesis and Mitochondrial Biogenesis. Int J Mol Sci 2018; 19:ijms19092757. [PMID: 30217101 PMCID: PMC6164046 DOI: 10.3390/ijms19092757] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/05/2023] Open
Abstract
Obesity is a health problem worldwide, and energy imbalance has been pointed out as one of the main factors responsible for its development. As mitochondria are a key element in energy homeostasis, the development of obesity has been strongly associated with mitochondrial imbalance. Polyphenols are the largest group of phytochemicals, widely distributed in the plant kingdom, abundant in fruits and vegetables, and have been classically described as antioxidants owing to their well-established ability to eliminate free radicals and reactive oxygen species (ROS). During the last decade, however, growing evidence reports the ability of polyphenols to perform several important biological activities in addition to their antioxidant activity. Special attention has been given to the ability of polyphenols to modulate mitochondrial processes. Thus, some polyphenols are now recognized as molecules capable of modulating pathways that regulate mitochondrial biogenesis, ATP synthesis, and thermogenesis, among others. The present review reports the main benefits of polyphenols in modulating mitochondrial processes that favor the regulation of energy expenditure and offer benefits in the management of obesity, especially thermogenesis and mitochondrial biogenesis.
Collapse
|
125
|
Colica C, Milanović M, Milić N, Aiello V, De Lorenzo A, Abenavoli L. A Systematic Review on Natural Antioxidant Properties of Resveratrol. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyphenols, including anthocyanins, flavonoids and stilbenes, which constitute one of the most abundant and ubiquitous groups of plant metabolites, are an integral part of the human diet. Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring polyphenol produced by some plants as a self-defence agent, has an antifungal activity. Resveratrol has been found in some plants (such as grapevine, pine and peanuts) and is considered to have beneficial effects also on human health. The number of studies on resveratrol greatly increased in PubMed database since 1997, after the anticancer effect of this molecule was first reported. The interest in resveratrol in grape was originally sparked by epidemiological studies indicating an inverse relationship between long-standing moderate consumption of red wine and the risk of coronary heart disease; this effect has been ascribed to resveratrol, which possesses diverse biochemical and physiological properties, including antiplatelet and anti-inflammatory proprieties, and provides a wide range of health benefits ranging from chemoprevention to cardioprotection. Recently, resveratrol has been described as an anti-aging compound. The consumption of resveratrol (red wine) together with a Mediterranean diet or a fast-food meal (“McDonald'sMeal”) had a positive impact on oxidized (ox-) LDL and on the expression of oxidative and inflammatory genes. Therefore, this review summarized the most important scientific data about healing and preventive potential of resveratrol, acting as cardioprotective, neuroprotective, chemopreventive and antioxidant agent.
Collapse
Affiliation(s)
- Carmela Colica
- CNR, IBFM UOS of Germaneto, University “Magna Graecia” of Catanzaro, Italy
| | - Maja Milanović
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Vincenzo Aiello
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
126
|
Wiciński M, Leis K, Szyperski P, Węclewicz M, Mazur E, Pawlak-Osińska K. Impact of resveratrol on exercise performance: A review. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
127
|
Sgarbi G, Liuzzi F, Baracca A, Solaini G. Resveratrol preserves mitochondrial function in a human post-mitotic cell model. J Nutr Biochem 2018; 62:9-17. [PMID: 30216747 DOI: 10.1016/j.jnutbio.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Dysfunctions caused by genetic defects in the mitochondrial DNA (mtDNA) of humans are called mitochondrial diseases; however, mtDNA mutations are also associated with aging and age-related diseases. Here, we present an original cellular model that allows gathering information on molecules that might contrast or prevent mitochondrial dysfunctions and their related diseases. This model allowed us to show that resveratrol (RSV), a phytochemical present in food, exerts protective effects at low concentrations on resting human fibroblasts carrying dysfunctional respiratory chain Complex I. Cells were maintained both in resting condition, to mimic the high energy demanding post-mitotic tissues (serum absence and gramicidin presence), and under glucose deficiency to push the synthesis of ATP via oxidative phosphorylation. Pre-incubation with RSV prolonged the viability of the fibroblasts exposed to rotenone, a well-known specific inhibitor of the respiratory chain Complex I, and decreased mitochondrial fragmentation. It significantly prevented the oxidative phosphorylation impairment indirectly caused by the rotenone-mediated Complex I inhibition, allowing for an almost complete preservation of the cellular ATP level. Indeed, RSV limited the rotenone-induced reactive oxygen species increase, allowing for the maintenance of a functional mitochondrial membrane potential. These findings indicate the potential usage of resveratrol to prevent or possibly treat many disorders, in which the bioenergetic defects and oxidative stress are the primary (mitochondrial encephalomyopathy), or the secondary (age-related diseases) causes of the pathology; and to also assist cell senescence during aging.
Collapse
Affiliation(s)
- Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Francesca Liuzzi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| |
Collapse
|
128
|
Effects of Isorhamnetin on Adipocyte Mitochondrial Biogenesis and AMPK Activation. Molecules 2018; 23:molecules23081853. [PMID: 30044453 PMCID: PMC6222361 DOI: 10.3390/molecules23081853] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 12/18/2022] Open
Abstract
Isorhamnetin (ISOR), 3-O-methylquercetin, is a naturally occurring flavonoid in many plants. It is a metabolite derived from quercetin and is known to exert beneficial effects on the prevention of obesity. However, the molecular mechanism of action involved in ISOR-mediated mitochondrial biogenesis, and AMP-activated protein kinase (AMPK) activation in 3T3-L1 cells remains unclear. The aim of this study was to determine whether ISOR affected mitochondrial biogenesis and AMPK activation, during 3T3-L1 adipocyte differentiation. Intracellular lipid and triglyceride accumulation, and glycerol-3-phosphate dehydrogenase (GPDH) activity decreased in ISOR-treated cells. The mRNA levels of adipogenic genes, such as the proliferator-activated receptor-γ (PPAR-γ), and adipocyte protein 2 (aP2), were inhibited by ISOR. In contrast, mRNA levels of mitochondrial genes, such as peroxisome proliferator-activated reporter gamma coactivator-1α (PGC-1α), nuclear respiratory factor (NRF)-1, transcription factor A (Tfam), and carnitine palmitoyl transferase-1α (CPT-1α), were all stimulated by ISOR treatment. Mitochondria DNA (mtDNA) copy number and AMPK activity were also stimulated by ISOR. The results suggested that the mitochondrial biogenic effect of ISOR in adipocytes might have been associated with stimulation of mitochondrial gene expression, mtDNA replication, and AMPK activation.
Collapse
|
129
|
Hydroxytyrosol Ameliorates Endothelial Function under Inflammatory Conditions by Preventing Mitochondrial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9086947. [PMID: 29849923 PMCID: PMC5932486 DOI: 10.1155/2018/9086947] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
Mitochondria are fundamental organelles producing energy and reactive oxygen species (ROS); their impaired functions play a key role in endothelial dysfunction. Hydroxytyrosol (HT), a well-known olive oil antioxidant, exerts health benefits against vascular diseases by improving endothelial function. However, the HT role in mitochondrial oxidative stress in endothelial dysfunction is not clear yet. To investigate the HT effects on mitochondrial ROS production in the inflamed endothelium, we used an in vitro model of endothelial dysfunction represented by cultured endothelial cells, challenged with phorbol myristate acetate (PMA), an inflammatory, prooxidant, and proangiogenic agent. We found that the pretreatment of endothelial cells with HT (1–30 μmol/L) suppressed inflammatory angiogenesis, a crucial aspect of endothelial dysfunction. The HT inhibitory effect is related to reduced mitochondrial superoxide production and lipid peroxidation and to increased superoxide dismutase activity. HT, in a concentration-dependent manner, improved endothelial mitochondrial function by reverting the PMA-induced reduction of mitochondrial membrane potential, ATP synthesis, and ATP5β expression. In PMA-challenged endothelial cells, HT also promoted mitochondrial biogenesis through increased mitochondrial DNA content and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, nuclear respiratory factor-1, and mitochondrial transcription factor A. These results highlight that HT blunts endothelial dysfunction and pathological angiogenesis by ameliorating mitochondrial function, thus suggesting HT as a potential mitochondria-targeting antioxidant in the inflamed endothelium.
Collapse
|
130
|
Maarman GJ. Natural Antioxidants as Potential Therapy, and a Promising Role for Melatonin Against Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:161-178. [PMID: 29047086 DOI: 10.1007/978-3-319-63245-2_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasma and serum samples, and lung/heart tissue of pulmonary hypertension (PH) patients and animal models of PH display elevated oxidative stress. Moreover, the severity of PH and levels of oxidative stress increase concurrently, which suggests that oxidative stress could be utilized as a biomarker for PH progression. Accumulating evidence has well established that oxidative stress is also key role player in the development of PH. Preclinical studies have demonstrated that natural antioxidants improved PH condition, and, therefore, antioxidant therapy has been proposed as a potential therapeutic strategy against PH. These natural antioxidants include medicinal plant extracts and compounds such as resveratrol and melatonin. Recent studies suggest that melatonin provides health benefit against PH, by enhancing antioxidant capacity, increasing vasodilation, counteracting lung and cardiac fibrosis, and stunting right ventricular (RV) hypertrophy/failure. This chapter comprehensively reviews and discusses a variety of natural antioxidants and their efficacy in modulating experimental PH. This chapter also demonstrates that antioxidant therapy remains a therapeutic strategy for PH, and particularly identifies melatonin as a safe, cost-effective, and promising antioxidant therapy.
Collapse
Affiliation(s)
- Gerald J Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University, Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
131
|
Wu H, Wu J, Zhou S, Huang W, Li Y, Zhang H, Wang J, Jia Y. SRT2104 attenuates diabetes-induced aortic endothelial dysfunction via inhibition of P53. J Endocrinol 2018; 237:1-14. [PMID: 29371235 DOI: 10.1530/joe-17-0672] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 12/28/2022]
Abstract
Endothelial dysfunction contributes to diabetic macrovascular complications. Sirtuin 1 (SIRT1) protects against diabetic vasculopathy. SRT2104 is a novel SIRT1 activator and was not previously studied for its effects on diabetes-induced aortic endothelial dysfunction. Additionally, whether or to what extent deacetylation of P53, a substrate of SIRT1, is required for the effects of SIRT1 activation was unclear, given the fact that SIRT1 has multiple targets. Moreover, little was known about the pathogenic role of P53 in diabetes-induced aortic injury. To these ends, diabetes was induced by streptozotocin in C57BL/6 mice. The diabetic mice developed enhanced aortic contractility, oxidative stress, inflammation, P53 hyperacetylation and a remarkable decrease in SIRT1 protein, the effects of which were rescued by SRT2104. In HG-treated endothelial cells (ECs), P53 siRNA and SRT2104 produced similar effects on the induction of SIRT1 and the inhibition of P53 acetylation, oxidative stress and inflammation. Interestingly, SRT2104 failed to further enhance these effects in the presence of P53 siRNA. Moreover, P53 activation by nutlin3a completely abolished SRT2104's protection against HG-induced oxidative stress and inflammation. Further, forced activation of P53 by nutlin3a increased aortic contractility in the healthy mice and generated endothelial oxidative stress and inflammation in both the normal glucose-cultured ECs and the aortas of the healthy mice. Collectively, the present study demonstrates that P53 deacetylation predominantly mediates SRT2104's protection against diabetes-induced aortic endothelial dysfunction and highlights the pathogenic role of P53 in aortic endothelial dysfunction.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Down-Regulation/drug effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Heterocyclic Compounds, 2-Ring/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Signal Transduction/drug effects
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Hao Wu
- Department of NephrologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
- The '973' National Basic Research Program of ChinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Junduo Wu
- Department of CardiologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shengzhu Zhou
- Department of AnesthesiologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wenlin Huang
- School of Science and TechnologyGeorgia Gwinnett College, Lawrenceville, Georgia, USA
| | - Ying Li
- Department of DermatologyAffiliated Hospital of Beihua University, Jilin, Jilin, People's Republic of China
| | - Huan Zhang
- Operating TheatreChina-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Junnan Wang
- Department of CardiologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Ye Jia
- Department of NephrologyThe First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
132
|
Zhou Y, Wang S, Li Y, Yu S, Zhao Y. SIRT1/PGC-1α Signaling Promotes Mitochondrial Functional Recovery and Reduces Apoptosis after Intracerebral Hemorrhage in Rats. Front Mol Neurosci 2018; 10:443. [PMID: 29375306 PMCID: PMC5767311 DOI: 10.3389/fnmol.2017.00443] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023] Open
Abstract
Silent information regulator 1 (SIRT1) exerts neuroprotection in many neurodegenerative diseases. However, it is not clear if SIRT1 has protective effects after intracerebral hemorrhage (ICH)-induced brain injury in rats. Thus, our goal was to examine the influence of SIRT1 on ICH injuries and any underlying mechanisms of this influence. Brain injury was induced by autologous arterial blood (60 μL) injection into rat brains, and data show that activation of SIRT1 with SRT1720 (5 mg/kg) restored nuclear SIRT1, deacetylation of PGC-1α, and mitochondrial biogenesis and decreased mortality, behavioral deficits, and brain water content without significant changes in phosphorylated AMP-activated protein kinase (pAMPK) induced by ICH. Activation of SIRT1 with SRT1720 also restored mitochondrial electron transport chain proteins and decreased apoptotic proteins in ICH; however, these changes were reversed after ICH. In contrast, treatment with PGC-1α siRNA yielded opposite effects. To explore the protective effects of SIRT1 after ICH, siRNAs were used to knockdown SIRT1. Treatment with SIRT1 siRNA increased mortality, behavioral deficits, brain water content, mitochondrial dysfunction, and neurocyte apoptosis after ICH. Thus, activation of SIRT1 promotes recovery of mitochondrial protein and function by increasing mitochondrial biogenesis and reduces apoptosis after ICH via the PGC-1α mitochondrial pathway. These data may suggest a new therapeutic approach for ICH injuries.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shaohua Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yixin Li
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
133
|
Truong VL, Jun M, Jeong WS. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors 2018; 44:36-49. [PMID: 29193412 DOI: 10.1002/biof.1399] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Resveratrol, a natural polyphenolic compound, is found in various kinds of fruits, plants, and their commercial products such as red wine. It has been demonstrated to exhibit a variety of health-promoting effects including prevention and/or treatment of cardiovascular diseases, inflammation, diabetes, neurodegeneration, aging, and cancer. Cellular defensive properties of resveratrol can be explained through its ability of either directly neutralizing reactive oxygen species/reactive nitrogen species (ROS/RNS) or indirectly upregulating the expression of cellular defensive genes. As a direct antioxidant agent, resveratrol scavenges diverse ROS/RNS as well as secondary organic radicals with mechanisms of hydrogen atom transfer and sequential proton loss electron transfer, thereby protecting cellular biomolecules from oxidative damage. Resveratrol also enhances the expression of various antioxidant defensive enzymes such as heme oxygenase 1, catalase, glutathione peroxidase, and superoxide dismutase as well as the induction of glutathione level responsible for maintaining the cellular redox balance. Such defenses could be achieved by regulating various signaling pathways including sirtuin 1, nuclear factor-erythroid 2-related factor 2 and nuclear factor κB. This review provides current understanding and information on the role of resveratrol in cellular defense system against oxidative stress. © 2017 BioFactors, 44(1):36-49, 2018.
Collapse
Affiliation(s)
- Van-Long Truong
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
| | - Woo-Sik Jeong
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea
| |
Collapse
|
134
|
Gautam N, Sankaran S, Yason JA, Tan KSW, Gascoigne NRJ. A high content imaging flow cytometry approach to study mitochondria in T cells: MitoTracker Green FM dye concentration optimization. Methods 2017; 134-135:11-19. [PMID: 29198814 DOI: 10.1016/j.ymeth.2017.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/03/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondria, the powerhouse of the cell, are known to remodel their membrane structures through the process of fusion or fission. Studies have indicated that T cells adopt different energy metabolic phenotypes, namely oxidative phosphorylation and glycolysis depending on whether they are naïve, effector and memory T cells. It has recently been shown that changes in mitochondrial morphology dictate T cell fate via regulation of their metabolism. Our keen interest in T cell function and metabolism led us to explore and establish a method to study mitochondria in live T cells through a novel high content approach called Imaging Flow Cytometry (IFC). The focus of our current study was on developing a protocol to standardize the concentration of MitoTracker Green FM dye to observe mitochondria in live T cells using IFC. We began the study by using widefield microscopy to confirm the localisation of MitoTracker Green FM labelled mitochondria in live T cells. This was followed by testing various concentrations of the dye to achieve a similar labelling pattern using IFC while eliminating false positive or negative staining. The optimization of the method used to label the mitochondria by IFC for analysis included standardisation of a number of important parameters such as dye concentration, voltage, fluorescence intensity values for acquisition and processing. IFC could potentially be a powerful method to study T cells in a relatively high throughput manner.
Collapse
Affiliation(s)
- Namrata Gautam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme, National University of Singapore, Singapore
| | - Shvetha Sankaran
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme, National University of Singapore, Singapore
| | - John A Yason
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kevin S W Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme, National University of Singapore, Singapore.
| |
Collapse
|
135
|
Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017; 9:nu9111201. [PMID: 29104258 PMCID: PMC5707673 DOI: 10.3390/nu9111201] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RVT) is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT), histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1).
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
- Institute of Chemistry, São Paulo State University (UNESP), 14800060 Araraquara, Brazil.
| | | | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| |
Collapse
|
136
|
Moran CS, Biros E, Krishna SM, Wang Y, Tikellis C, Morton SK, Moxon JV, Cooper ME, Norman PE, Burrell LM, Thomas MC, Golledge J. Resveratrol Inhibits Growth of Experimental Abdominal Aortic Aneurysm Associated With Upregulation of Angiotensin-Converting Enzyme 2. Arterioscler Thromb Vasc Biol 2017; 37:2195-2203. [DOI: 10.1161/atvbaha.117.310129] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Objective—
Recent evidence suggests an important role for angiotensin-converting enzyme 2 (ACE2) in limiting abdominal aortic aneurysm (AAA). This study examined the effect of ACE2 deficiency on AAA development and the efficacy of resveratrol to upregulate ACE2 in experimental AAA.
Approach and Results—
Ace2
deletion in apolipoprotein-deficient mice (
ApoE
−/−
Ace2
−/y
) resulted in increased aortic diameter and spontaneous aneurysm of the suprarenal aorta associated with increased expression of inflammation and proteolytic enzyme markers. In humans, serum ACE2 activity was negatively associated with AAA diagnosis.
ACE2
expression was lower in infrarenal biopsies of patients with AAA than organ donors. AAA was more severe in
ApoE
−/−
Ace2
−/y
mice compared with controls in 2 experimental models. Resveratrol (0.05/100-g chow) inhibited growth of pre-established AAAs in
ApoE
−/−
mice fed high-fat chow and infused with angiotensin II continuously for 56 days. Reduced suprarenal aorta dilatation in mice receiving resveratrol was associated with elevated serum ACE2 and increased suprarenal aorta tissue levels of ACE2 and sirtuin 1 activity. In addition, the relative phosphorylation of Akt and ERK (extracellular signal-regulated kinase) 1/2 within suprarenal aorta tissue and gene expression for nuclear factor of kappa light polypeptide gene enhancer in B cells 1, angiotensin type-1 receptor, and metallopeptidase 2 and 9 were significantly reduced. Upregulation of ACE2 in human aortic smooth muscle cells by resveratrol in vitro was sirtuin 1-dependent.
Conclusions—
This study provides experimental evidence of an important role for ACE2 in limiting AAA development and growth. Resveratrol upregulated ACE2 and inhibited AAA growth in a mouse model.
Collapse
Affiliation(s)
- Corey S. Moran
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Smriti M. Krishna
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Yutang Wang
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Chris Tikellis
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Susan K. Morton
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Joseph V. Moxon
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Mark E. Cooper
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Paul E. Norman
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Louise M. Burrell
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Merlin C. Thomas
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| |
Collapse
|
137
|
Sirt1 Protects Endothelial Cells against LPS-Induced Barrier Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4082102. [PMID: 29209448 PMCID: PMC5676476 DOI: 10.1155/2017/4082102] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/16/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023]
Abstract
Sepsis is a threatening health problem and characterized by microvascular dysfunction. In this study, we verified that LPS caused the downregulation of Sirt1 and the hyperpermeability of endothelial cells. Inhibition of Sirt1 with ex527 or Sirt1 siRNA displayed a higher permeability, while activation of Sirt1 with SRT1720 reversed the LPS-induced hyperpermeability, formation of fiber stress, and disruption of VE-cadherin distribution. In pulmonary microvascular vein endothelial cells isolated from wild-type mice, Sirt1 was attenuated upon LPS, while Sirt1 was preserved in a receptor of advanced glycation end product-knockout mice. The RAGE antibody could also diminish the downregulation and ubiquitination of Sirt1 in LPS-exposed human umbilical vein endothelial cells. An LPS-induced decrease in Sirt1 activity was attenuated by the RAGE antibody and TLR4 inhibitor. In vivo study also demonstrated the attenuating role of Sirt1 and RAGE knockout in LPS-induced increases in dextran leakage of mesenteric venules. Furthermore, activation of Sirt1 prevented LPS-induced decreases in the activity and expression of superoxide dismutase 2, as well as the increases in NADPH oxidase 4 and reactive oxygen species, while inhibition of Sirt1 aggravated the SOD2 decline. It also demonstrated that Sirt1-deacetylated p53 is required for p53 inactivation, which reversed the downregulation of β-catenin caused by LPS.
Collapse
|
138
|
Madreiter-Sokolowski CT, Sokolowski AA, Graier WF. Dosis Facit Sanitatem-Concentration-Dependent Effects of Resveratrol on Mitochondria. Nutrients 2017; 9:nu9101117. [PMID: 29027961 PMCID: PMC5691733 DOI: 10.3390/nu9101117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 01/04/2023] Open
Abstract
The naturally occurring polyphenol, resveratrol (RSV), is known for a broad range of actions. These include a positive impact on lifespan and health, but also pro-apoptotic anti-cancer properties. Interestingly, cell culture experiments have revealed a strong impact of RSV on mitochondrial function. The compound was demonstrated to affect mitochondrial respiration, structure and mass of mitochondria as well as mitochondrial membrane potential and, ultimately, mitochondria-associated cell death pathways. Notably, the mitochondrial effects of RSV show a very strict and remarkable concentration dependency: At low concentrations, RSV (<50 μM) fosters cellular antioxidant defense mechanisms, activates AMP-activated protein kinase (AMPK)- and sirtuin 1 (SIRT1)-linked pathways and enhances mitochondrial network formation. These mechanisms crucially contribute to the cytoprotective effects of RSV against toxins and disease-related damage, in vitro and in vivo. However, at higher concentrations, RSV (>50 μM) triggers changes in (sub-)cellular Ca2+ homeostasis, disruption of mitochondrial membrane potential and activation of caspases selectively yielding apoptotic cancer cell death, in vitro and in vivo. In this review, we discuss the promising therapeutic potential of RSV, which is most probably related to the compound’s concentration-dependent manipulation of mitochondrial function and structure.
Collapse
Affiliation(s)
- Corina T Madreiter-Sokolowski
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Armin A Sokolowski
- Department of Dentistry and Maxillofacial Surgery, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria.
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| |
Collapse
|
139
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is now considered a chronic inflammatory disease. Oxidative stress induced by generation of excess reactive oxygen species has emerged as a critical, final common mechanism in atherosclerosis. Reactive oxygen species (ROS) are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. Although essential for vascular homeostasis, uncontrolled production of ROS is implicated in vascular injury. Endogenous anti-oxidants function as checkpoints to avoid these untoward consequences of ROS, and an imbalance in the oxidant/anti-oxidant mechanisms leads to a state of oxidative stress. In this review, we discuss the role of ROS and anti-oxidant mechanisms in the development and progression of atherosclerosis, the role of oxidized low-density lipoprotein cholesterol, and highlight potential anti-oxidant therapeutic strategies relevant to atherosclerosis. RECENT FINDINGS There is growing evidence on how traditional risk factors translate into oxidative stress and contribute to atherosclerosis. Clinical trials evaluating anti-oxidant supplements had failed to improve atherosclerosis. Current studies focus on newer ROS scavengers that specifically target mitochondrial ROS, newer nanotechnology-based drug delivery systems, gene therapies, and anti-miRNAs. Synthetic LOX-1 modulators that inhibit the effects of Ox-LDL are currently in development. Research over the past few decades has led to identification of multiple ROS generating systems that could potentially be modulated in atherosclerosis. Therapeutic approaches currently being used for atheroslcerotic vascular disease such as aspirin, statins, and renin-angiotensin system inhibitors exert a pleiotropic antioxidative effects. There is ongoing research to identify novel therapeutic modalities to selectively target oxidative stress in atherosclerosis.
Collapse
|
140
|
De Paepe B, Van Coster R. A Critical Assessment of the Therapeutic Potential of Resveratrol Supplements for Treating Mitochondrial Disorders. Nutrients 2017; 9:E1017. [PMID: 28906460 PMCID: PMC5622777 DOI: 10.3390/nu9091017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
Abstract
In human cells, mitochondria provide the largest part of cellular energy in the form of adenosine triphosphate generated by the process of oxidative phosphorylation (OXPHOS). Impaired OXPHOS activity leads to a heterogeneous group of inherited diseases for which therapeutic options today remain very limited. Potential innovative strategies aim to ameliorate mitochondrial function by increasing the total mitochondrial load of tissues and/or to scavenge the excess of reactive oxygen species generated by OXPHOS malfunctioning. In this respect, resveratrol, a compound that conveniently combines mitogenetic with antioxidant activities and, as a bonus, possesses anti-apoptotic properties, has come forward as a promising nutraceutical. We review the scientific evidence gathered so far through experiments in both in vitro and in vivo systems, evaluating the therapeutic effect that resveratrol is expected to generate in mitochondrial patients. The obtained results are encouraging, but clearly show that achieving normalization of OXPHOS function with this strategy alone could prove to be an unattainable goal.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Centre, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Rudy Van Coster
- Department of Pediatrics-Division of Pediatric Neurology and Metabolism, Ghent University Hospital, 9000 Ghent, Belgium.
| |
Collapse
|
141
|
Crooke A, Huete-Toral F, Colligris B, Pintor J. The role and therapeutic potential of melatonin in age-related ocular diseases. J Pineal Res 2017; 63. [PMID: 28658514 DOI: 10.1111/jpi.12430] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022]
Abstract
The eye is continuously exposed to solar UV radiation and pollutants, making it prone to oxidative attacks. In fact, oxidative damage is a major cause of age-related ocular diseases including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. As the nature of lens cells, trabecular meshwork cells, retinal ganglion cells, retinal pigment epithelial cells, and photoreceptors is postmitotic, autophagy plays a critical role in their cellular homeostasis. In age-related ocular diseases, this process is impaired, and thus, oxidative damage becomes irreversible. Other conditions such as low-grade chronic inflammation and angiogenesis also contribute to the development of retinal diseases (glaucoma, age-related macular degeneration and diabetic retinopathy). As melatonin is known to have remarkable qualities such as antioxidant/antinitridergic, mitochondrial protector, autophagy modulator, anti-inflammatory, and anti-angiogenic, it can represent a powerful tool to counteract all these diseases. The present review analyzes the role and therapeutic potential of melatonin in age-related ocular diseases, focusing on nitro-oxidative stress, autophagy, inflammation, and angiogenesis mechanisms.
Collapse
Affiliation(s)
- Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Huete-Toral
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Basilio Colligris
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
142
|
Xia N, Förstermann U, Li H. Effects of resveratrol on eNOS in the endothelium and the perivascular adipose tissue. Ann N Y Acad Sci 2017; 1403:132-141. [DOI: 10.1111/nyas.13397] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/04/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Ning Xia
- Department of Pharmacology; Johannes Gutenberg University Medical Center; Mainz Germany
| | - Ulrich Förstermann
- Department of Pharmacology; Johannes Gutenberg University Medical Center; Mainz Germany
| | - Huige Li
- Department of Pharmacology; Johannes Gutenberg University Medical Center; Mainz Germany
- Center for Translational Vascular Biology (CTVB); Johannes Gutenberg University Medical Center; Mainz Germany
- German Center for Cardiovascular Research (DZHK); Partner Site Rhine-Main; Mainz Germany
| |
Collapse
|
143
|
Xue Y, Du M, Zhu MJ. Quercetin suppresses NLRP3 inflammasome activation in epithelial cells triggered by Escherichia coli O157:H7. Free Radic Biol Med 2017; 108:760-769. [PMID: 28476502 DOI: 10.1016/j.freeradbiomed.2017.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/22/2017] [Accepted: 05/01/2017] [Indexed: 12/28/2022]
Abstract
Inflammatory responses elicited by LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is induced by a wide variety of stress signals including infectious agents and cellular disorders. E. coli O157:H7 causes serious gastrointestinal diseases that results in severe inflammation and oxidative stress, causing host cell damage. In this study, we found that E. coli O157:H7 infection induced NLRP3 assembly, caspase-1 activation and interleukin (IL)-1β and IL-18 release in Caco-2 cells. Infection also resulted in mitochondrial dysfunction with disrupted mitochondrial potential and mitochondrial complex-I activity, as well as the cytosolic release of cytochrome c and altered mitochondrial respiratory chain. The damage of mitochondria led to increased production of reactive oxygen species (ROS) and cytosolic release of mitochondrial DNA. Moreover, ROS was required for E. coli O157:H7 induced NLRP3 assembly as inhibiting mitochondrial ROS release by ROS scavengers Mito-TEMPO and N-acetylcysteine abrogated NLRP3 inflammasome activation in Caco-2 cells in response to E. coli O157:H7. Quercetin, one of the most important flavonoids in plant origin foods, had a protective role in inhibiting NLRP3 activation upon E. coli O157:H7 infection by protecting mitochondrial integrity and inhibiting mitochondrial ROS release. In addition, E. coli O157:H7 infection inhibited the host autophagy while quercetin treatment augmented autophagy activation, which further blocked ROS generation and IL-1β and IL-18 release. In summary, E. coli O157:H7 infection induced mitochondrial ROS release and NLRP3 assembly in host cells, while quercetin exerted a preventive role in host cells upon E. coli O157:H7 infection partially due to prevention of ROS production and activation of autophagy.
Collapse
Affiliation(s)
- Yansong Xue
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
144
|
Jankovic A, Korac A, Buzadzic B, Stancic A, Otasevic V, Ferdinandy P, Daiber A, Korac B. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. Br J Pharmacol 2017; 174:1570-1590. [PMID: 27079449 PMCID: PMC5446578 DOI: 10.1111/bph.13498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О2•- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О2•- ratio 'teetering' as a promising pharmacological target in the metabolic syndrome. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron MicroscopyUniversity of BelgradeBelgradeSerbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Péter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Andreas Daiber
- Center for Cardiology ‐ Cardiology 1, Molecular CardiologyUniversity Medical CenterMainzGermany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| |
Collapse
|
145
|
Sirtuin 1 Stimulation Attenuates Ischemic Liver Injury and Enhances Mitochondrial Recovery and Autophagy. Crit Care Med 2017; 44:e651-63. [PMID: 26963320 DOI: 10.1097/ccm.0000000000001637] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Hepatic ischemia-reperfusion is a major clinical problem with limited treatment options. The pathophysiology of hepatic ischemia-reperfusion is characterized by mitochondrial dysfunction and cellular energy deficits. Sirtuin 1 is an energy-sensing enzyme known to modulate mitochondrial biogenesis. We hypothesized that pharmacologic activation of sirtuin 1 is protective after hepatic ischemia-reperfusion injury. DESIGN Animal study. SETTING University-based experimental laboratory. SUBJECTS Wild-type C57BL/6 mice. INTERVENTIONS C57BL/6 mice were subjected to 60-minute partial hepatic ischemia-reperfusion and posttreated with sirtuin 1 activator, SRT1720 (20 mg/kg), or vehicle. Blood and liver were collected at 24 hours after ischemia-reperfusion for analyses of hepatic injury, adenosine triphosphate levels, mitochondrial mass, autophagy, inflammation, and oxidative stress. H4IIE hepatoma cells and rat primary hepatocytes were incubated with oxyrase to induce hypoxia followed by reoxygenation in the presence or absence of SRT1720 for assessment of mitochondrial mass, mitochondrial membrane potential, and autophagy. MEASUREMENTS AND MAIN RESULTS SRT1720 restored the reduction in mitochondrial mass, enhanced autophagy, and preserved adenosine triphosphate levels in the liver after ischemia-reperfusion, which was associated with a decrease in ischemia-reperfusion-induced hepatic injury, apoptosis, and necrosis. Ischemia-reperfusion-induced inflammation was also significantly reduced by SRT1720 as measured by systemic and hepatic cytokine and chemokine levels, as well as a decrease in neutrophil infiltration to the liver. Furthermore, oxidative stress was markedly attenuated in the SRT1720-treated mice compared with the vehicle. SRT1720 treatment increased adenosine triphosphate levels and survival of cultured hepatocytes after hypoxia-reoxygenation. SRT1720 not only increased the mitochondrial mass but also increased mitochondrial membrane potential per cell in cultured hepatocytes after hypoxia-reoxygenation. Moreover, SRT1720 prevented the hypoxia-reoxygenation-induced mitochondrial depolarization and resulted in an enhancement of autophagy in cultured hepatocytes after hypoxia-reoxygenation. CONCLUSIONS Pharmacologic stimulation of sirtuin 1 attenuates liver injury after hepatic ischemia-reperfusion by restoring mitochondrial mass and membrane potential, which is associated with the enhancement of autophagy.
Collapse
|
146
|
Functional Mitochondria Are Important for the Effect of Resveratrol. Molecules 2017; 22:molecules22050847. [PMID: 28531100 PMCID: PMC6153999 DOI: 10.3390/molecules22050847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Resveratrol (Resv) is a polyphenol reported to modulate mitochondrial activity. The aim was to use HeLa and 143B cells to characterize the action of Resv on mitochondrial activity, cell size and proliferation using wild type (WT) and Rho 0 cells deficient in mitochondrial DNA. In both HeLa WT and Rho 0 cells, the oxygen consumption rate (OCR) was increased at 20 µM Resv after 24 h, whereas only a non-significant increase of OCR was observed in 143B WT cells. Resv decreased cell number concentration-dependently in both WT and Rho 0 cell types. An increased cell diameter was observed in HeLa WT, but not in Rho 0 when treated with Resv. Overall, the findings presented indicate that functional mitochondria are a prerequisite for cell enlargement by Resv.
Collapse
|
147
|
Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7543973. [PMID: 28546854 PMCID: PMC5435972 DOI: 10.1155/2017/7543973] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022]
Abstract
The vascular endothelium is a layer of cells lining the inner surface of vessels, serving as a barrier that mediates microenvironment homeostasis. Deterioration of either the structure or function of endothelial cells (ECs) results in a variety of cardiovascular diseases. Previous studies have shown that reactive oxygen species (ROS) is a key factor that contributes to the impairment of ECs and the subsequent endothelial dysfunction. The longevity regulator Sirt1 is a NAD+-dependent deacetylase that has a potential antioxidative stress activity in vascular ECs. The mechanisms underlying the protective effects involve Sirt1/FOXOs, Sirt1/NF-κB, Sirt1/NOX, Sirt1/SOD, and Sirt1/eNOs pathways. In this review, we summarize the most recent reports in this field to recapitulate the potent mechanisms involving the protective role of Sirt1 in oxidative stress and to highlight the beneficial effects of Sirt1 on cardiovascular functions.
Collapse
|
148
|
Alfaras I, Di Germanio C, Bernier M, Csiszar A, Ungvari Z, Lakatta EG, de Cabo R. Pharmacological Strategies to Retard Cardiovascular Aging. Circ Res 2017; 118:1626-42. [PMID: 27174954 DOI: 10.1161/circresaha.116.307475] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/08/2016] [Indexed: 01/10/2023]
Abstract
Aging is the major risk factor for cardiovascular diseases, which are the leading cause of death in the United States. Traditionally, the effort to prevent cardiovascular disease has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat cardiovascular disease. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the prolongevity benefits of various therapeutic strategies that support cardiovascular health.
Collapse
Affiliation(s)
- Irene Alfaras
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Clara Di Germanio
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Michel Bernier
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Anna Csiszar
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Zoltan Ungvari
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Edward G Lakatta
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Rafael de Cabo
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.).
| |
Collapse
|
149
|
Koltai E, Bori Z, Chabert C, Dubouchaud H, Naito H, Machida S, Davies KJ, Murlasits Z, Fry AC, Boldogh I, Radak Z. SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle. J Physiol 2017; 595:3361-3376. [PMID: 28251652 PMCID: PMC5451718 DOI: 10.1113/jp273774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. ABSTRACT Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P < 0.001). SIRT1-regulated Akt, endothelial nitric oxide synthase and GLUT4 levels were also induced in hypertrophied muscles, and SIRT1 levels correlated with muscle mass, paired box protein 7 (Pax7), proliferating cell nuclear antigen (PCNA) and nicotinamide phosphoribosyltransferase (Nampt) levels. Alternatively, decreased forkhead box O 1 (FOXO1) and increased K48 polyubiquitination also suggest that SIRT1 could be involved in the catabolic process of hypertrophy. Furthermore, increased levels of K63 and muscle RING finger 2 (MuRF2) protein could also be important enhancers of muscle mass. We report here that the levels of miR1 and miR133a decrease in hypertrophy and negatively correlate with muscle mass, SIRT1 and Nampt levels. Our results reveal a strong correlation between SIRT1 levels and activity, SIRT1-regulated pathways and overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload-induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing.
Collapse
Affiliation(s)
- Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zoltán Bori
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Clovis Chabert
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble Cedex, 0938041, France
| | - Hervé Dubouchaud
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble Cedex, 0938041, France
| | - Hisashi Naito
- Department of Exercise Physiology, Graduate School of Health and Sports Science & Medicine, Juntendo University, Japan
| | - Shuichi Machida
- Department of Exercise Physiology, Graduate School of Health and Sports Science & Medicine, Juntendo University, Japan
| | - Kelvin Ja Davies
- Ethel Percy Andrus Gerontology Centre of the Leonard Davis School of Gerontology; and Division of Molecular & Computational Biology, Department of Biological Sciences, of the Dornsife College of Letters, Arts, and Sciences, the University of Southern California, Los Angeles, CA, 90089-0191, USA
| | | | - Andrew C Fry
- Osness Human Performance Laboratories, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary.,Institute of Sport Sciences and Physical Education, University of Pecs, Pecs, Hungary
| |
Collapse
|
150
|
Caja S, Enríquez JA. Mitochondria in endothelial cells: Sensors and integrators of environmental cues. Redox Biol 2017; 12:821-827. [PMID: 28448943 PMCID: PMC5406579 DOI: 10.1016/j.redox.2017.04.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
The involvement of angiogenesis in disease and its potential as a therapeutic target have been firmly established over recent decades. Endothelial cells (ECs) are central elements in vessel homeostasis and regulate the passage of material and cells into and out of the bloodstream. EC proliferation and migration are modified by alterations to mitochondrial biogenesis and dynamics resulting from several signals and environmental cues, such as oxygen, hemodynamics, and nutrients. As intermediary signals, mitochondrial ROS are released as important downstream modulators of the expression of angiogenesis-related genes. In this review, we discuss the physiological actions of these signals and aberrant responses during vascular disorders. Mitochondria in EC act as integrators of environmental cues. Circulating signals modify mitochondrial dynamics, altering EC phenotype. ROS release by EC mitochondria regulates expression of vascular genes.
Collapse
Affiliation(s)
- Sergio Caja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jose Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; Centro de Investigaciones en RED (CIBERFES), Melchor Fernández Almagro, 28029 Madrid, Spain.
| |
Collapse
|