101
|
Wootz H, Fitzsimons-Kantamneni E, Larhammar M, Rotterman TM, Enjin A, Patra K, André E, Van Zundert B, Kullander K, Alvarez FJ. Alterations in the motor neuron-renshaw cell circuit in the Sod1(G93A) mouse model. J Comp Neurol 2013; 521:1449-69. [PMID: 23172249 DOI: 10.1002/cne.23266] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/14/2012] [Accepted: 11/06/2012] [Indexed: 12/12/2022]
Abstract
Motor neurons become hyperexcitable during progression of amyotrophic lateral sclerosis (ALS). This abnormal firing behavior has been explained by changes in their membrane properties, but more recently it has been suggested that changes in premotor circuits may also contribute to this abnormal activity. The specific circuits that may be altered during development of ALS have not been investigated. Here we examined the Renshaw cell recurrent circuit that exerts inhibitory feedback control on motor neuron firing. Using two markers for Renshaw cells (calbindin and cholinergic nicotinic receptor subunit alpha2 [Chrna2]), two general markers for motor neurons (NeuN and vesicular acethylcholine transporter [VAChT]), and two markers for fast motor neurons (Chondrolectin and calcitonin-related polypeptide alpha [Calca]), we analyzed the survival and connectivity of these cells during disease progression in the Sod1(G93A) mouse model. Most calbindin-immunoreactive (IR) Renshaw cells survive to end stage but downregulate postsynaptic Chrna2 in presymptomatic animals. In motor neurons, some markers are downregulated early (NeuN, VAChT, Chondrolectin) and others at end stage (Calca). Early downregulation of presynaptic VAChT and Chrna2 was correlated with disconnection from Renshaw cells as well as major structural abnormalities of motor axon synapses inside the spinal cord. Renshaw cell synapses on motor neurons underwent more complex changes, including transitional sprouting preferentially over remaining NeuN-IR motor neurons. We conclude that the loss of presynaptic motor axon input on Renshaw cells occurs at early stages of ALS and disconnects the recurrent inhibitory circuit, presumably resulting in diminished control of motor neuron firing. J. Comp. Neurol. 521:1449-1469, 2013. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanna Wootz
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Casas C, Herrando-Grabulosa M, Manzano R, Mancuso R, Osta R, Navarro X. Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis. Brain Behav 2013; 3:145-58. [PMID: 23531559 PMCID: PMC3607155 DOI: 10.1002/brb3.104] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/22/2012] [Accepted: 10/09/2012] [Indexed: 11/20/2022] Open
Abstract
Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1(G93A) ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30-day-old SOD1(G93A) mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC-II)-positive microglia and the accumulation of nuclear Tdp-43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC-I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic-related structures were also revealed with a loss of the presence of sigma-1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis.
Collapse
Affiliation(s)
- Caty Casas
- Group of Neuroplasticity and Regeneration Department of Cell Biology, Physiology and Immunology Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
103
|
Gender-specific perturbations in modulatory inputs to motoneurons in a mouse model of amyotrophic lateral sclerosis. Neuroscience 2012; 226:313-23. [DOI: 10.1016/j.neuroscience.2012.09.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
|
104
|
Wu SN, Yeh CC, Huang HC, So EC, Lo YC. Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells. Acta Physiol (Oxf) 2012; 206:120-34. [PMID: 22533628 DOI: 10.1111/j.1748-1716.2012.02438.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/09/2011] [Accepted: 03/19/2012] [Indexed: 12/13/2022]
Abstract
AIMS The electrical properties of Na(+) -activated K(+) current (I(K(Na)) ) and its contribution to spike firing has not been characterized in motor neurons. METHODS We evaluated how activation of voltage-gated K(+) current (I(K) ) at the cellular level could be coupled to Na(+) influx through voltage-gated Na(+) current (I(N) (a) ) in two motor neuron-like cells (NG108-15 and NSC-34 cells). RESULTS Increasing stimulation frequency altered the amplitudes of both I(Na) and I(K) simultaneously. With changes in stimulation frequency, the kinetics of both I(Na) inactivation and I(K) activation were well correlated at the same cell. Addition of tetrodotoxin or ranolazine reduced the amplitudes of both I(Na) and I(K) simultaneously. Tefluthrin (Tef) increased the amplitudes of both I(Na) and I(K) throughout the voltages ranging from -30 to + 10 mV. In cell-attached recordings, single-channel conductance from a linear current-voltage relation was 94 ± 3 pS (n = 7). Tef (10 μm) enhanced channel activity with no change in single-channel conductance. Tef increased spike firing accompanied by enhanced facilitation of spike-frequency adaptation. Riluzole (10 μm) reversed Tef-stimulated activity of K(Na) channels. In motor neuron-like NSC-34 cells, increasing stimulation frequency altered the kinetics of both I(Na) and I(K) . Modelling studies of motor neurons were simulated to demonstrate that the magnitude of I(K(Na)) modulates AP firing. CONCLUSIONS There is a direct association of Na(+) and K(Na) channels which can provide the rapid activation of K(Na) channels required to regulate AP firing occurring in motor neurons.
Collapse
Affiliation(s)
| | - C.-C. Yeh
- Department of Physiology; National Cheng Kung University Medical College; Tainan City; Taiwan
| | - H.-C. Huang
- Department of Physiology; National Cheng Kung University Medical College; Tainan City; Taiwan
| | - E. C. So
- Department of Anesthesia; Chi Mei Medical Center; Tainan City; Taiwan
| | - Y.-C. Lo
- Department of Pharmacology; Kaohsiung Medical University; Kaohsiung City; Taiwan
| |
Collapse
|
105
|
Takazawa T, Croft GF, Amoroso MW, Studer L, Wichterle H, Macdermott AB. Maturation of spinal motor neurons derived from human embryonic stem cells. PLoS One 2012; 7:e40154. [PMID: 22802953 PMCID: PMC3388990 DOI: 10.1371/journal.pone.0040154] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/01/2012] [Indexed: 01/18/2023] Open
Abstract
Our understanding of motor neuron biology in humans is derived mainly from investigation of human postmortem tissue and more indirectly from live animal models such as rodents. Thus generation of motor neurons from human embryonic stem cells and human induced pluripotent stem cells is an important new approach to model motor neuron function. To be useful models of human motor neuron function, cells generated in vitro should develop mature properties that are the hallmarks of motor neurons in vivo such as elaborated neuronal processes and mature electrophysiological characteristics. Here we have investigated changes in morphological and electrophysiological properties associated with maturation of neurons differentiated from human embryonic stem cells expressing GFP driven by a motor neuron specific reporter (Hb9::GFP) in culture. We observed maturation in cellular morphology seen as more complex neurite outgrowth and increased soma area over time. Electrophysiological changes included decreasing input resistance and increasing action potential firing frequency over 13 days in vitro. Furthermore, these human embryonic stem cell derived motor neurons acquired two physiological characteristics that are thought to underpin motor neuron integrated function in motor circuits; spike frequency adaptation and rebound action potential firing. These findings show that human embryonic stem cell derived motor neurons develop functional characteristics typical of spinal motor neurons in vivo and suggest that they are a relevant and useful platform for studying motor neuron development and function and for modeling motor neuron diseases.
Collapse
Affiliation(s)
- Tomonori Takazawa
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, United States of America
| | | | | | | | | | | |
Collapse
|
106
|
Filipchuk A, Durand J. Postnatal dendritic development in lumbar motoneurons in mutant superoxide dismutase 1 mouse model of amyotrophic lateral sclerosis. Neuroscience 2012; 209:144-54. [DOI: 10.1016/j.neuroscience.2012.01.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 11/25/2022]
|
107
|
Maria P, Lydia K, Jia-Jin JC, Irena HP. Assessment of Human Motoneuron Afterhyperpolarization Duration in Health and Disease. Biocybern Biomed Eng 2012. [DOI: 10.1016/s0208-5216(12)70041-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
108
|
Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol 2011; 45:30-42. [PMID: 22072396 DOI: 10.1007/s12035-011-8217-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/25/2011] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. It causes the degeneration of motoneurons and is fatal due to paralysis, particularly of respiratory muscles. ALS can be inherited, and specific disease-causing genes have been identified, but the mechanisms causing motoneuron death in ALS are not understood. No effective treatments exist for ALS. One well-studied theory of ALS pathogenesis involves faulty RNA editing and abnormal activation of specific glutamate receptors as well as failure of glutamate transport resulting in glutamate excitotoxicity; however, the excitotoxicity theory is challenged by the inability of anti-glutamate drugs to have major disease-modifying effects clinically. Nevertheless, hyperexcitability of upper and lower motoneurons is a feature of human ALS and transgenic (tg) mouse models of ALS. Motoneuron excitability is strongly modulated by synaptic inhibition mediated by presynaptic glycinergic and GABAergic innervations and postsynaptic glycine receptors (GlyR) and GABA(A) receptors; yet, the integrity of inhibitory systems regulating motoneurons has been understudied in experimental models, despite findings in human ALS suggesting that they may be affected. We have found in tg mice expressing a mutant form of human superoxide dismutase-1 (hSOD1) with a Gly93 → Ala substitution (G93A-hSOD1), causing familial ALS, that subsets of spinal interneurons degenerate. Inhibitory glycinergic innervation of spinal motoneurons becomes deficient before motoneuron degeneration is evident in G93A-hSOD1 mice. Motoneurons in these ALS mice also have insufficient synaptic inhibition as reflected by smaller GlyR currents, smaller GlyR clusters on their plasma membrane, and lower expression of GlyR1α mRNA compared to wild-type motoneurons. In contrast, GABAergic innervation of ALS mouse motoneurons and GABA(A) receptor function appear normal. Abnormal synaptic inhibition resulting from dysfunction of interneurons and motoneuron GlyRs is a new direction for unveiling mechanisms of ALS pathogenesis that could be relevant to new therapies for ALS.
Collapse
|
109
|
Mitra P, Brownstone RM. An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse. J Neurophysiol 2011; 107:728-41. [PMID: 22031766 DOI: 10.1152/jn.00558.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The development of central nervous system slice preparations for electrophysiological studies has led to an explosion of knowledge of neuronal properties in health and disease. Studies of spinal motoneurons in these preparations, however, have been largely limited to the early postnatal period, as adult motoneurons are vulnerable to the insults sustained by the preparation. We therefore sought to develop an adult spinal cord slice preparation that permits recording from lumbar motoneurons. To accomplish this, we empirically optimized the composition of solutions used during preparation in order to limit energy failure, reduce harmful ionic fluxes, mitigate oxidative stress, and prevent excitotoxic cell death. In addition to other additives, this involved the use of ethyl pyruvate, which serves as an effective nutrient and antioxidant. We also optimized and incorporated a host of previously published modifications used for other in vitro preparations, such as the use of polyethylene glycol. We provide an in-depth description of the preparation protocol and discuss the rationale underlying each modification. By using this protocol, we obtained stable whole cell patch-clamp recordings from identified fluorescent protein-labeled motoneurons in adult slices; here, we describe the firing properties of these adult motoneurons. We propose that this preparation will allow further studies of how motoneurons integrate activity to produce adult motor behaviors and how pathological processes such as amyotrophic lateral sclerosis affect these neurons.
Collapse
Affiliation(s)
- Pratip Mitra
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
110
|
Nakanishi ST, Whelan PJ. A decerebrate adult mouse model for examining the sensorimotor control of locomotion. J Neurophysiol 2011; 107:500-15. [PMID: 21994265 DOI: 10.1152/jn.00699.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As wild-type and genetically modified mice are progressively becoming the predominant models for studying locomotor physiology, the technical ability to record sensory and motor components from adult mice, in vivo, are expected to contribute to a better understanding of sensorimotor spinal cord networks. Here, specific technical and surgical details are presented on how to produce an adult decerebrate mouse preparation that can reliably produce sustained bouts of stepping, in vivo, in the absence of anesthetic drugs. Data are presented demonstrating the ability of this preparation to produce stepping during treadmill locomotion, adaptability in its responses to changes in the treadmill speed, and left-right alternation. Furthermore, intracellular recordings from motoneurons and interneurons in the spinal cord are presented from preparations where muscle activity was blocked. Intraaxonal recordings are also presented demonstrating that individual afferents can be recorded using this preparation. These data demonstrate that the adult decerebrate mouse is a tractable preparation for the study of sensorimotor systems.
Collapse
Affiliation(s)
- Stan T Nakanishi
- Hotchkiss Brain Institute, Univ. of Calgary, Calgary, Alberta, Canada T2N4N1
| | | |
Collapse
|
111
|
Glycine receptor channels in spinal motoneurons are abnormal in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 2011; 31:2815-27. [PMID: 21414903 DOI: 10.1523/jneurosci.2475-10.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly evolving and fatal adult-onset neurological disease characterized by progressive degeneration of motoneurons. Our previous study showed that glycinergic innervation of spinal motoneurons is deficient in an ALS mouse model expressing a mutant form of human superoxide dismutase-1 with a Gly93→Ala substitution (G93A-SOD1). In this study, we have examined, using whole-cell patch-clamp recordings, glycine receptor (GlyR)-mediated currents in spinal motoneurons from these transgenic mice. We developed a dissociated spinal cord culture model using embryonic transgenic mice expressing enhanced green fluorescent protein (eGFP) driven by the Hb9 promoter. Motoneurons were identified as Hb9-eGFP-expressing (Hb9-eGFP(+)) neurons with a characteristic morphology. To examine GlyRs in ALS motoneurons, we bred G93A-SOD1 mice to Hb9-eGFP mice and compared glycine-evoked currents in cultured Hb9-eGFP(+) motoneurons prepared from G93A-SOD1 embryos and from their nontransgenic littermates. Glycine-evoked current density was significantly smaller in the G93A-SOD1 motoneurons compared with control. Furthermore, the averaged current densities of spontaneous glycinergic miniature IPSCs (mIPSCs) were significantly smaller in the G93A-SOD1 motoneurons than in control motoneurons. No significant differences in GABA-induced currents and GABAergic mIPSCs were observed between G93A-SOD1 and control motoneurons. Quantitative single-cell reverse transcription-PCR found lower GlyRα1 subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the reduction of GlyR current may result from the downregulation of GlyR mRNA expression in motoneurons. Immunocytochemistry demonstrated a decrease of surface postsynaptic GlyR on G93A-SOD1 motoneurons. Our study suggests that selective alterations in GlyR function contribute to inhibitory insufficiency in motoneurons early in the disease process of ALS.
Collapse
|
112
|
Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 2011; 17:4-31. [PMID: 20236142 DOI: 10.1111/j.1755-5949.2009.00116.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of adults which preferentially attacks the neuromotor system. Riluzole has been used as the only approved treatment for amyotrophic lateral sclerosis since 1995, but its mechanism(s) of action in slowing the progression of this disease remain obscure. Searching PubMed for "riluzole" found 705 articles published between January 1996 and June 2009. A systematic review of this literature found that riluzole had a wide range of effects on factors influencing neural activity in general, and the neuromotor system in particular. These effects occurred over a large dose range (<1 μM to >1 mM). Reported neural effects of riluzole included (in approximate ascending order of dose range): inhibition of persistent Na(+) current = inhibition of repetitive firing < potentiation of calcium-dependent K(+) current < inhibition of neurotransmitter release < inhibition of fast Na(+) current < inhibition of voltage-gated Ca(2+) current = promotion of neuronal survival or growth factors < inhibition of voltage-gated K(+) current = modulation of two-pore K(+) current = modulation of ligand-gated neurotransmitter receptors = potentiation of glutamate transporters. Only the first four of these effects commonly occurred at clinically relevant concentrations of riluzole (plasma levels of 1-2 μM with three- to four-fold higher concentrations in brain tissue). Treatment of human ALS patients or transgenic rodent models of ALS with riluzole most commonly produced a modest but significant extension of lifespan. Riluzole treatment was well tolerated in humans and animals. In animals, despite in vitro evidence that riluzole may inhibit rhythmic motor behaviors, in vivo administration of riluzole produced relatively minor effects on normal respiration parameters, but inhibited hypoxia-induced gasping. This effect may have implications for the management of hypoventilation and sleep-disordered breathing during end-stage ALS in humans.
Collapse
Affiliation(s)
- Mark C Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld. 4072, Australia.
| |
Collapse
|
113
|
Increased expression of the beta3 subunit of voltage-gated Na+ channels in the spinal cord of the SOD1G93A mouse. Mol Cell Neurosci 2011; 47:108-18. [PMID: 21458573 DOI: 10.1016/j.mcn.2011.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/14/2011] [Accepted: 03/18/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset disease characterized by the progressive degeneration of motoneurons (MNs). Altered electrical properties have been described in familial and sporadic ALS patients. Cortical and spinal neurons cultured from the mutant Cu,Zn superoxide dismutase 1 (SOD1G93A) mouse, a murine model of ALS, exhibit a marked increase in the persistent Na+ currents. Here, we investigated the effects of the SOD1G93A mutation on the expression of the voltage-gated Na+ channel alpha subunit SCN8A (Nav1.6) and the beta subunits SCN1B (beta1), SCN2B (beta2), and SCN3B (beta3) in MNs of the spinal cord in presymptomatic (P75) and symptomatic (P120) mice. We observed a significant increase, within lamina IX, of the beta3 transcript and protein expression. On the other hand, the beta1 transcript was significantly decreased, in the same area, at the symptomatic stage, while the beta2 transcript levels were unaltered. The SCN8A transcript was significantly decreased at P120 in the whole spinal cord. These data suggest that the SOD1G93A mutation alters voltage-gated Na+ channel subunit expression. Moreover, the increased expression of the beta3 subunit support the hypothesis that altered persistent Na+ currents contribute to the hyperexcitability observed in the ALS-affected MNs.
Collapse
|
114
|
Piotrkiewicz M, Hausmanowa-Petrusewicz I. Motoneuron afterhyperpolarisation duration in amyotrophic lateral sclerosis. J Physiol 2011; 589:2745-54. [PMID: 21486815 DOI: 10.1113/jphysiol.2011.204891] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Motor unit (MU) potentials were registered from 20 ALS patients and 13 age-matched control individuals during isometric constant force contractions of brachial biceps (BB). The registered signals were decomposed into single MU potential trains. The estimates of duration of the afterhyperpolarisation (AHP) in MNs, derived from the interspike interval variability, was compared between ALS patients (124 MNs) and control subjects (111 MNs) and no significant differences were encountered. However, the relationship between TI and age for patients appeared to be qualitatively different from that of the control group. The dependence of patients' AHPs on relative force deficit (RFD), which quantified muscle involvement, was more specific. For RFDs below 30%, the AHP estimate was significantly lower than control values and then increased thereafter with increasing RFDs. Moreover, firing rates of patients with the smallest RFDs were significantly higher while firing rates of patients with the greatest RFDs were significantly lower than control values. The AHP shortening in the early stages of muscle impairment is consistent with the decrease in firing threshold of ‘fast' MNs found in spinal cord slices from neonatal SOD1 mice. The later elongation of the AHP may be caused by the higher vulnerability of ‘fast' MNs to degeneration and by the influence of reinnervation. Our results are comparable to what has been observed in acute experiments in animal models, providing a bridge between animal and clinical research that may be relevant for identification of mechanism(s) underlying neurodegeneration in ALS.
Collapse
Affiliation(s)
- Maria Piotrkiewicz
- Nacz Institute of Biocybernetics and Biomedical Engineering, PAS, Warsaw, Poland.
| | | |
Collapse
|
115
|
Quinlan KA, Schuster JE, Fu R, Siddique T, Heckman CJ. Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis. J Physiol 2011; 589:2245-60. [PMID: 21486770 DOI: 10.1113/jphysiol.2010.200659] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal motoneurons are highly vulnerable in amyotrophic lateral sclerosis (ALS).Previous research using a standard animal model, the mutant superoxide dismutase-1 (SOD1)mouse, has revealed deficits in many cellular properties throughout its lifespan. The electrical properties underlying motoneuron excitability are some of the earliest to change; starting at 1 week postnatal, persistent inward currents (PICs) mediated by Na+ are upregulated and electrical conductance, a measure of cell size, increases. However, during this period these properties and many others undergo large developmental changes which have not been fully analysed.Therefore, we undertook a systematic analysis of electrical properties in more than 100 normal and mutant SOD1 motoneurons from 0 to 12 days postnatal, the neonatal to juvenile period.We compared normal mice with the most severe SOD1 model, the G93A high-expressor line. We found that the Na+ PIC and the conductance increased during development. However, mutant SOD1 motoneurons showed much greater increases than normal motoneurons; the mean Na+PIC in SOD1 motoneurons was double that of wild-type motoneurons. Additionally, in mutant SOD1 motoneurons the PIC mediated by Ca2+ increased, spike width decreased and the time course of the after-spike after-hyperpolarization shortened. These changes were advances of the normal effects of maturation. Thus, our results show that the development of normal and mutant SOD1 motoneurons follows generally similar patterns, but that the rate of development is accelerated in the mutant SOD1 motoneurons. Statistical analysis of all measured properties indicates that approximately 55% of changes attributed to the G93A SOD1 mutation can be attributed to an increased rate of maturation.
Collapse
Affiliation(s)
- K A Quinlan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
116
|
Electrophysiological analysis of a murine model of motoneuron disease. Clin Neurophysiol 2011; 122:1660-70. [PMID: 21354365 DOI: 10.1016/j.clinph.2011.01.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/12/2011] [Accepted: 01/31/2011] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of motoneurons of the primary motor cortex, the brainstem and the spinal cord, for which there are not effective treatments. Several transgenic mice that mimic motoneuron disease have been used to investigate potential treatments. The objective of this work is to characterize electrophysiologically the SOD1(G93A) transgenic mouse model of ALS, and to provide useful markers to improve early detection and monitoring of progression of the disease. METHODS We performed nerve conduction tests, motor unit number estimation (MUNE), H reflex tests and motor evoked potentials (MEPs) in a cohort of transgenic and wild type mice from 4 to 16 weeks of age. RESULTS The results revealed dysfunction of spinal motoneurons evidenced by deficits in motor nerve conduction tests starting at 8 weeks of age, earlier in proximal than in distal muscles of the hindlimb. MUNE demonstrated that spinal motoneurons loss muscle innervation and have a deficit in their sprouting capacity. Motor evoked potentials revealed that, coexisting with peripheral deficits, there was a dysfunction of central motor tracts that started also at 8 weeks, indicating progressive dysfunction of upper motoneurons. CONCLUSIONS These electrophysiological results provide important information about the SOD1(G93A) mouse model, as they demonstrate by the first time alterations of central motor pathways simultaneously to lower motoneuron dysfunction, well before functional abnormalities appear (by 12 weeks of age). SIGNIFICANCE The finding of concomitant dysfunction of upper and lower motoneurons contributes to the validation of the SOD1(G93A) mouse as model of ALS, because this parallel involvement is a diagnostic condition for ALS. Electrophysiological tests can be used as early markers of the disease and to evaluate the potential benefits of new treatments on both upper and lower motoneurons.
Collapse
|
117
|
Abstract
Although often considered as a group, spinal motor neurons are highly diverse in terms of their morphology, connectivity, and functional properties and differ significantly in their response to disease. Recent studies of motor neuron diversity have clarified developmental mechanisms and provided novel insights into neurodegeneration in amyotrophic lateral sclerosis (ALS). Motor neurons of different classes and subtypes--fast/slow, alpha/gamma--are grouped together into motor pools, each of which innervates a single skeletal muscle. Distinct mechanisms regulate their development. For example, glial cell line-derived neurotrophic factor (GDNF) has effects that are pool-specific on motor neuron connectivity, column-specific on axonal growth, and subtype-specific on survival. In multiple degenerative contexts including ALS, spinal muscular atrophy (SMA), and aging, fast-fatigable (FF) motor units degenerate early, whereas motor neurons innervating slow muscles and those involved in eye movement and pelvic sphincter control are strikingly preserved. Extrinsic and intrinsic mechanisms that confer resistance represent promising therapeutic targets in these currently incurable diseases.
Collapse
Affiliation(s)
- Kevin C Kanning
- Department of Pathology, Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
118
|
Manuel M, Heckman CJ. Stronger is not always better: could a bodybuilding dietary supplement lead to ALS? Exp Neurol 2010; 228:5-8. [PMID: 21167830 DOI: 10.1016/j.expneurol.2010.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/11/2022]
Affiliation(s)
- Marin Manuel
- Northwestern University, Department of Physiology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | | |
Collapse
|
119
|
Meehan CF, Moldovan M, Marklund SL, Graffmo KS, Nielsen JB, Hultborn H. Intrinsic properties of lumbar motor neurones in the adult G127insTGGG superoxide dismutase-1 mutant mouse in vivo: evidence for increased persistent inward currents. Acta Physiol (Oxf) 2010; 200:361-76. [PMID: 20874803 DOI: 10.1111/j.1748-1716.2010.02188.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a preferential loss of motor neurones. Previous publications using in vitro neonatal preparations suggest an increased excitability of motor neurones in various superoxide dismutase-1 (SOD1) mutant mice models of ALS which may contribute to excitotoxicity of the motor neurones. METHODS Using intracellular recording, we tested this hypothesis in vivo in the adult presymptomatic G127insTGGG (G127X) SOD1 mutant mouse model of ALS. RESULTS At resting membrane potentials the basic intrinsic properties of lumbar motor neurones in the adult presymptomatic G127X mutant are not significantly different from those of wild type. However, at more depolarized membrane potentials, motor neurones in the G127X SOD1 mutants can sustain higher frequency firing, showing less spike frequency adaption (SFA) and with persistent inward currents (PICs) being activated at lower firing frequencies and being more pronounced. CONCLUSION We demonstrated that, in vivo, at resting membrane potential, spinal motor neurones of the adult G127X mice do not show an increased excitability. However, when depolarized they show evidence of an increased PIC and less SFA which may contribute to excitotoxicity of these neurones as the disease progresses.
Collapse
Affiliation(s)
- C F Meehan
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
120
|
Carunchio I, Curcio L, Pieri M, Pica F, Caioli S, Viscomi MT, Molinari M, Canu N, Bernardi G, Zona C. Increased levels of p70S6 phosphorylation in the G93A mouse model of Amyotrophic Lateral Sclerosis and in valine-exposed cortical neurons in culture. Exp Neurol 2010; 226:218-30. [DOI: 10.1016/j.expneurol.2010.08.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 12/11/2022]
|
121
|
ElBasiouny SM, Schuster JE, Heckman CJ. Persistent inward currents in spinal motoneurons: important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis. Clin Neurophysiol 2010; 121:1669-79. [PMID: 20462789 PMCID: PMC3000632 DOI: 10.1016/j.clinph.2009.12.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/28/2009] [Accepted: 12/14/2009] [Indexed: 10/19/2022]
Abstract
Meaningful body movements depend on the interplay between synaptic inputs to motoneurons and their intrinsic properties. Injury and disease often alter either or both of these factors and cause motoneuron and movement dysfunction. The ability of the motoneuronal membrane to generate persistent inward currents (PICs) is especially potent in setting the intrinsic excitability of motoneurons and can drastically change the motoneuron output to a given input. In this article, we review the role of PICs in modulating the excitability of spinal motoneurons during health, and their contribution to motoneuron excitability after spinal cord injury (SCI) and in amyotrophic lateral sclerosis (ALS) leading to exaggerated long-lasting reflexes and muscle spasms, and contributing to neuronal degeneration, respectively.
Collapse
Affiliation(s)
- S M ElBasiouny
- Physiology, Physical Medicine and Rehabilitation, Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | | | | |
Collapse
|
122
|
Montero F, Sunico CR, Liu B, Paton JFR, Kasparov S, Moreno-López B. Transgenic neuronal nitric oxide synthase expression induces axotomy-like changes in adult motoneurons. J Physiol 2010; 588:3425-43. [PMID: 20660560 DOI: 10.1113/jphysiol.2010.195396] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dysregulation of protein expression, function and/or aggregation is a hallmark of a number of neuropathological conditions. Among them, upregulation and/or de novo expression of the neuronal isoform of nitric oxide (NO) synthase (nNOS) commonly occurs in diverse neurodegenerative diseases and in axotomized motoneurons. We used adenoviral (AVV) and lentiviral (LVV) vectors to study the effects of de novo nNOS expression on the functional properties and synaptic array of motoneurons. AVV-nNOS injection into the genioglossus muscle retrogradely transduced neonatal hypoglossal motoneurons (HMNs). Ratiometric real-time NO imaging confirmed that transduced HMNs generated NO gradients in brain parenchyma (space constant: 12.3 μm) in response to a glutamatergic stimulus. Unilateral AVV-nNOS microinjection in the hypoglossal nucleus of adult rats induced axotomy-like changes in HMNs. Specifically, we found alterations in axonal conduction properties and the recruitment order of motor units and reductions in responsiveness to synaptic drive and in the linear density of synaptophysin-positive puncta opposed to HMN somata. Functional alterations were fully prevented by chronic treatment with nNOS or soluble guanylyl cyclase inhibitors. Synaptic and functional changes were also completely avoided by prior intranuclear injection of a neuron-specific LVV system for miRNA-mediated nNOS knock-down (LVV-miR-shRNA/nNOS). Furthermore, synaptic and several functional changes evoked by XIIth nerve injury were to a large extent prevented by intranuclear administration of LVV-miR-shRNA/nNOS. We suggest that nNOS up-regulation creates a repulsive NO gradient for synaptic boutons underlying most of the functional impairment undergone by injured motoneurons. This further strengthens the case for nNOS targeting as a plausible strategy for treatment of peripheral neuropathies and neurodegenerative disorders.
Collapse
Affiliation(s)
- Fernando Montero
- Grupo de Neurodegeneración y Neuroreparación (GRUNEDERE), Area de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
123
|
Evidence from computer simulations for alterations in the membrane biophysical properties and dendritic processing of synaptic inputs in mutant superoxide dismutase-1 motoneurons. J Neurosci 2010; 30:5544-58. [PMID: 20410108 DOI: 10.1523/jneurosci.0434-10.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A critical step in improving our understanding of the development of amyotrophic lateral sclerosis (ALS) is to identify the factors contributing to the alterations in the excitability of motoneurons and assess their individual contributions. Here we investigated the early alterations in the passive electrical and morphological properties of neonatal spinal motoneurons that occur by 10 d after birth, long before disease onset. We identified some of the factors contributing to these alterations, and estimated their individual contributions. To achieve this goal, we undertook a computer simulation analysis using realistic morphologies of reconstructed wild-type (WT) and mutant superoxide dismutase-1 (mSOD1) motoneurons. Ion channel parameters of these models were then tuned to match the experimental data on electrical properties obtained from these same motoneurons. We found that the reduced excitability of mSOD1 models was accompanied with decreased specific membrane resistance by approximately 25% and efficacy of synaptic inputs (slow and fast) by 12-22%. Linearity of summation of synaptic currents was similar to WT. We also assessed the contribution of the alteration in dendritic morphology alone to this decreased excitability and found that it reduced the input resistance by 10% and the efficacy of synaptic inputs by 7-15%. Our results were also confirmed in models with dendritic active conductances. Our simulations indicated that the alteration in passive electrical properties of mSOD1 models resulted from concurrent alterations in their morphology and membrane biophysical properties, and consequently altered the motoneuronal dendritic processing of synaptic inputs. These results clarify new aspects of spinal motoneurons malfunction in ALS.
Collapse
|
124
|
Meehan CF, Sukiasyan N, Zhang M, Nielsen JB, Hultborn H. Intrinsic properties of mouse lumbar motoneurons revealed by intracellular recording in vivo. J Neurophysiol 2010; 103:2599-610. [PMID: 20164401 DOI: 10.1152/jn.00668.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed an in vivo model for intracellular recording in the adult anesthetized mouse using sharp microelectrode electrodes as a basis for investigations of motoneuron properties in transgenic mouse strains. We demonstrate that it is possible to record postsynaptic potentials underlying identified circuits in the spinal cord. Forty-one motoneurons with antidromic spike potentials (>50 mV) from the sciatic nerve were investigated. We recorded the intrinsic properties of the neurons, including input resistance (mean: 2.4 +/- 1.2 MOmega), rheobase (mean: 7.1 +/- 5.9 nA), and the duration of the afterhyperpolarization (AHP; mean: 55.3 +/- 14 ms). We also measured the minimum firing frequencies (F(min), mean 23.5 +/- 5.7 SD Hz), the maximum firing frequencies (F(max); >300 Hz) and the slope of the current-frequency relationship (f-I slope) with increasing amounts of current injected (mean: 13 +/- 5.7 Hz/nA). Signs of activation of persistent inward currents (PICs) were seen, such as accelerations of firing frequency or jumps in the membrane potential with increasing amounts of injected current. It is likely that the particular anesthetic regime with a mixture of Hypnorm and midazolam is essential for the possibility to evoke PICs. The data demonstrate that mouse spinal motoneurons share many of the same properties that have been demonstrated previously for cat, rat, and human motoneurons. The shorter AHP duration, steeper f-I slopes, and higher F(min) and F(max) than those in rats, cats, and humans are likely to be tailored to the characteristics of the mouse muscle contraction properties.
Collapse
Affiliation(s)
- C F Meehan
- University of Copenhagen, Department of Neuroscience and Pharmacology, Panum Institute, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
125
|
Mazzocchio R, Rossi A. Role of renshaw cells in amyotrophic lateral sclerosis. Muscle Nerve 2010; 41:441-3. [DOI: 10.1002/mus.21602] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
126
|
Progressive changes in synaptic inputs to motoneurons in adult sacral spinal cord of a mouse model of amyotrophic lateral sclerosis. J Neurosci 2009; 29:15031-8. [PMID: 19955354 DOI: 10.1523/jneurosci.0574-09.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motoneurons. One potential mechanism is excitotoxicity. We studied the behaviors of spinal neurons using an in vitro preparation of the sacral cord from the G93A SOD1 mouse model of ALS. Measurements were conducted at presymptomatic [approximately postnatal day 50 (approximately P50)], early (approximately P90), and late (>P120) stages of the disease. Short-latency reflexes (SRs) in ventral roots, presumably monosynaptic, were evoked by electrical stimulation of a dorsal root. The fraction of motoneurons capable of responding to this activation was evaluated by measuring the compound action potential [total motor activity (TMA)] evoked by antidromic stimulation of the distal ventral root. In mutant SOD1 (mSOD1) mice, both the SR and the TMA decreased with age compared with nontransgenic littermates, ruling out the SR as a source of increasing excitotoxicity. Spinal interneuron activity was assessed using the synchronized ventral root bursts generated by both bath application of blockers of inhibitory neurotransmitters (glycine, GABA(A)) and agonists of glutamate receptors (especially NMDA receptors). After symptom onset, a higher percentage of preparations from mSOD1 mice exhibited bursting, and these bursts exhibited more sub-bursts and a more disorganized pattern. In mSOD1 mice with clear muscle tremor, the ventral roots exhibited spontaneous synchronized bursts, which were highly sensitive to the blockade of NMDA receptors. These data suggest that although short-latency sensory input does not increase as symptoms develop, interneuron activity does increase and may contribute to excitotoxicity.
Collapse
|
127
|
Pambo-Pambo A, Durand J, Gueritaud JP. Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-Low) mice. J Neurophysiol 2009; 102:3627-42. [PMID: 19828728 DOI: 10.1152/jn.00482.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This work characterizes the properties of wild-type (WT) mouse motoneurons in the second postnatal week and compares these at the same age and in the same conditions to those of two different SOD1 mutant lines used as models of human amyotrophic lateral sclerosis (ALS), the SOD1(G93A) low expressor line and SOD1(G85R) line, to describe any changes in the functional properties of mutant motoneurons (Mns) that may be related to the pathogenesis of human ALS. We show that very early changes in excitability occur in SOD1 mutant Mns that have different properties from those of WT animals. The SOD1(G93A-Low) low expressor line displays specific differences that are not found in other mutant lines including a more depolarized membrane potential, larger spike width, and slower spike rise slope. With current pulses SOD1(G93A-Low) were hyperexcitable, but both mutants had a lower gain with current ramps stimulation. Changes in the threshold and intensities of Na(+) and Ca(2+) persistent inward currents were also observed. Low expressor mutants show reduced total persistant inward currents compared with WT motoneurons in the same recording conditions and give arguments toward modifications of the balance between Na(+) and Ca(2+) persistent inward currents. During the second week postnatal, SOD1(G93A-Low) lumbar motoneurons appear more immature than those of SOD1(G85R) compared with WT and we propose that different time course of the disease, possibly linked with different toxic properties of the mutated protein in each model, may explain the discrepancies between excitability changes described in the different models.
Collapse
Affiliation(s)
- Arnaud Pambo-Pambo
- Laboratoire de Plasticité et Physio-Pathologie de la Motricité, Unité Mixte de Recherche 6196 Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | | | | |
Collapse
|
128
|
Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J. Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 2009; 120:2040-2054. [PMID: 19783207 DOI: 10.1016/j.clinph.2009.08.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/28/2022]
Abstract
The excitability of spinal motoneurons is both fundamental for motor behavior and essential in diagnosis of neural disorders. There are two mechanisms for altering this excitability. The classic mechanism is mediated by synaptic inputs that depolarize or hyperpolarize motoneurons by generating postsynaptic potentials. This "ionotropic" mechanism works via neurotransmitters that open ion channels in the cell membrane. In the second mechanism, neurotransmitters bind to receptors that activate intracellular signaling pathways. These pathways modulate the properties of the voltage-sensitive channels that determine the intrinsic input-output properties of motoneurons. This "neuromodulatory" mechanism usually does not directly activate motoneurons but instead dramatically alters the neuron's response to ionotropic inputs. We present extensive evidence that neuromodulatory inputs exert a much more powerful effect on motoneuron excitability than ionotropic inputs. The most potent neuromodulators are probably serotonin and norepinephrine, which are released by axons originating in the brainstem and can increase motoneuron excitability fivefold or more. Thus, the standard tests of motoneuron excitability (H-reflexes, tendon taps, tendon vibration and stretch reflexes) are strongly influenced by the level of neuromodulatory input to motoneurons. This insight is likely to be profoundly important for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- C J Heckman
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA.
| | - Carol Mottram
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Kathy Quinlan
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Renee Theiss
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Jenna Schuster
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| |
Collapse
|
129
|
Chang Q, Martin LJ. Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:574-85. [PMID: 19116365 PMCID: PMC2630565 DOI: 10.2353/ajpath.2009.080557] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2008] [Indexed: 12/13/2022]
Abstract
Altered motoneuron excitability is involved in amyotrophic lateral sclerosis pathobiology. To test the hypothesis that inhibitory interneuron innervation of spinal motoneurons is abnormal in an amyotrophic lateral sclerosis mouse model, we measured GABAergic, glycinergic, and cholinergic immunoreactive terminals on spinal motoneurons in mice expressing a mutant form of human superoxide dismutase-1 with a Gly93-->Ala substitution (G93A-SOD1) and in controls at different ages. Glutamic acid decarboxylase, glycine transporter-2, and choline acetyltransferase were used as markers for GABAergic, glycinergic, and cholinergic terminals, respectively. Triple immunofluorescent labeling of boutons contacting motoneurons was visualized by confocal microscopy and analyzed quantitatively. Glycine transporter-2-bouton density on lateral motoneurons was decreased significantly in G93A-SOD1 mice compared with controls. This reduction was absent at 6 weeks of age but present in asymptomatic 8-week-old mice and worsened with disease progression from 12 to 14 weeks of age. Motoneurons lost most glycinergic innervation by 16 weeks of age (end-stage) when there was a significant decrease in the numbers of motoneurons and choline acetyltransferase-positive boutons. No significant differences in glutamic acid decarboxylase-bouton densities were found in G93A-SOD1 mice. Reduction of glycinergic innervation preceded mitochondrial swelling and vacuolization. Calbindin-positive Renshaw cell number was decreased significantly at 12 weeks of age in G93A-SOD1 mice. Thus, either the selective loss of inhibitory glycinergic regulation of motoneuron function or glycinergic interneuron degeneration contributes to motoneuron degeneration in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Qing Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
130
|
Gunasekaran R, Narayani RS, Vijayalakshmi K, Alladi PA, Shobha K, Nalini A, Sathyaprabha TN, Raju TR. Exposure to cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients alters Nav1.6 and Kv1.6 channel expression in rat spinal motor neurons. Brain Res 2008; 1255:170-9. [PMID: 19109933 DOI: 10.1016/j.brainres.2008.11.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 12/14/2022]
Abstract
Cerebro Spinal Fluid (CSF) from patients with ALS has been documented to have a toxic effect on motor neurons both in vivo and in vitro. Here we show that the CSF from Amyotrophic Lateral Sclerosis (ALS) patients (ALS-CSF) has the potential to perturb ion channel expression, specifically the Na(v)1.6, and K(v)1.6 channels in newborn rat spinal motor neurons both in vivo and in vitro. ALS-CSF and CSF from nonALS patients (nonALS-CSF) were intrathecally injected into 3-day-old rat pups at the rate of 1 microl/2.5 min using a microinjector. In addition, embryonic rat spinal cord cultures were also exposed to 10% ALS or nonALS-CSF on the 9th day in vitro (9DIV) in serum free DMEM medium. After 48 h of CSF exposure, the cultures and the spinal cord sections were processed for immunostaining of the above mentioned ion channels. We observed a decrease in the expression of Na(v)1.6 and K(v)1.6 channels in motor neurons in ALS-CSF treated group, and the presence of trophic factors like Brain Derived Neurotrophic Factor (BDNF) and Ciliary Neurotrophic Factor CNTF partially reversed the effects produced by ALS-CSF. Altered expression of these voltage-gated channels may interfere with the electrical activity of motor neurons, and thereby lead to the degeneration of neurons.
Collapse
Affiliation(s)
- R Gunasekaran
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Post Box no: 2900, Hosur Road, Bangalore-560 029, India
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Bilsland LG, Nirmalananthan N, Yip J, Greensmith L, Duchen MR. Expression of mutant SOD1 in astrocytes induces functional deficits in motoneuron mitochondria. J Neurochem 2008; 107:1271-83. [PMID: 18808448 DOI: 10.1111/j.1471-4159.2008.05699.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneuron degeneration resulting in paralysis and eventual death. ALS is regarded as a motoneuron-specific disorder but increasing evidence indicates non-neuronal cells play a significant role in disease pathogenesis. Although the precise aetiology of ALS remains unclear, mutations in the superoxide dismutase (SOD1) gene are known to account for approximately 20% of familial ALS. We examined the influence of SOD1(G93A) expression in astrocytes on mitochondrial homeostasis in motoneurons in a primary astrocyte : motoneuron co-culture model. SOD1(G93A) expression in astrocytes induced changes in mitochondrial function of both SOD1(G93A) and wild-type motoneurons. In the presence of SOD1(G93A) astrocytes, mitochondrial redox state of both wild-type and SOD1(G93A) motoneurons was more reduced and mitochondrial membrane potential decreased. While intra-mitochondrial calcium levels [Ca(2+)](m) were elevated in SOD1(G93A) motoneurons, changes in mitochondrial function did not correlate with [Ca(2+)](m). Thus, expression of SOD1(G93A) in astrocytes directly alters mitochondrial function even in embryonic motoneurons, irrespective of genotype. These early deficits in mitochondrial function induced by surrounding astrocytes may increase the vulnerability of motoneurons to other neurotoxic mechanisms involved in ALS pathogenesis.
Collapse
Affiliation(s)
- Lynsey G Bilsland
- Sobell Department of Movement Disorders and Motor Neuroscience, Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
132
|
van Zundert B, Peuscher MH, Hynynen M, Chen A, Neve RL, Brown RH, Constantine-Paton M, Bellingham MC. Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Neurosci 2008; 28:10864-74. [PMID: 18945894 PMCID: PMC3844745 DOI: 10.1523/jneurosci.1340-08.2008] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 08/07/2008] [Accepted: 09/02/2008] [Indexed: 12/13/2022] Open
Abstract
Distinguishing the primary from secondary effects and compensatory mechanisms is of crucial importance in understanding adult-onset neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Transgenic mice that overexpress the G93A mutation of the human Cu-Zn superoxide dismutase 1 gene (hSOD1(G93A) mice) are a commonly used animal model of ALS. Whole-cell patch-clamp recordings from neurons in acute slice preparations from neonatal wild-type and hSOD1(G93A) mice were made to characterize functional changes in neuronal activity. Hypoglossal motoneurons (HMs) in postnatal day 4 (P4)-P10 hSOD1(G93A) mice displayed hyperexcitability, increased persistent Na(+) current (PC(Na)), and enhanced frequency of spontaneous excitatory and inhibitory transmission, compared with wild-type mice. These functional changes in neuronal activity are the earliest yet reported for the hSOD1(G93A) mouse, and are present 2-3 months before motoneuron degeneration and clinical symptoms appear in these mice. Changes in neuronal activity were not restricted to motoneurons: superior colliculus interneurons also displayed hyperexcitability and synaptic changes (P10-P12). Furthermore, in vivo viral-mediated GFP (green fluorescent protein) overexpression in hSOD1(G93A) HMs revealed precocious dendritic remodeling, and behavioral assays revealed transient neonatal neuromotor deficits compared with controls. These findings underscore the widespread and early onset of abnormal neural activity in this mouse model of the adult neurodegenerative disease ALS, and suggest that suppression of PC(Na) and hyperexcitability early in life might be one way to mitigate or prevent cell death in the adult CNS.
Collapse
Affiliation(s)
- Brigitte van Zundert
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02429
| | - Marieke H. Peuscher
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Meri Hynynen
- Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02429
| | - Adam Chen
- Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02429
| | - Rachael L. Neve
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts 02178, and
| | - Robert H. Brown
- Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02429
| | - Martha Constantine-Paton
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mark C. Bellingham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
133
|
Heckman CJ, Johnson M, Mottram C, Schuster J. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 2008; 14:264-75. [PMID: 18381974 PMCID: PMC3326417 DOI: 10.1177/1073858408314986] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Persistent inward currents (PICs) are present in many types of neurons and likely have diverse functions. In spinal motoneurons, PICs are especially strong, primarily located in dendritic regions, and subject to particularly strong neuromodulation by the monoamines serotonin and norepinephrine. Because motoneurons drive muscle fibers, it has been possible to study the functional role of their PICs in motor output and to identify PIC-mediated effects on motoneuron firing patterns in human subjects. The PIC markedly amplifies synaptic input, up to fivefold or more, depending on the level of monoaminergic input. PICs also tend to greatly prolong input time course, allowing brief inputs to initiate long-lasting self-sustained firing (i.e., bistable behavior). PIC deactivation usually requires inhibitory input and PIC amplitude can increase to repeated activation. All of these behaviors markedly increase motoneuron excitability. Thus, in the absence of monoaminergic input, motoneuron excitability is very low. Yet PICs have another effect: once active, they tend to sharply limit efficacy of additional synaptic input. All of these PIC effects have been detected in motoneuron firing patterns in human subjects and, hence, PICs are likely a fundamental component of normal motor output.
Collapse
Affiliation(s)
- C J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
134
|
Hegedus J, Putman CT, Tyreman N, Gordon T. Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol 2008; 586:3337-51. [PMID: 18467368 DOI: 10.1113/jphysiol.2007.149286] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present study investigated motor unit (MU) loss in a murine model of familial amyotrophic lateral sclerosis (ALS). The fast-twitch tibialis anterior (TA) and medial gastrocnemius (MG) muscles of transgenic SOD1(G93A) and SOD1(WT) mice were studied during the presymptomatic phase of disease progression at 60 days of age. Whole muscle maximum isometric twitch and tetanic forces were 80% lower (P < 0.01) in the TA muscles of SOD1(G93A) compared to SOD1(WT) mice. Enumeration of total MU numbers within TA muscles showed a 60% reduction (P < 0.01) within SOD1(G93A) mice (38 +/- 7) compared with SOD1(WT) controls (95 +/- 12); this was attributed to a lower proportion of the most forceful fast-fatigable (FF) MU in SOD1(G93A) mice, as seen by a significant (P < 0.01) leftward shift in the cumulative frequency histogram of single MU forces. Similar patterns of MU loss and corresponding decreases in isometric twitch force were observed in the MG. Immunocytochemical analyses of the entire cross-sectional area (CSA) of serial sections of TA muscles stained with anti-neural cell adhesion molecule (NCAM) and various monoclonal antibodies for myosin heavy chain (MHC) isoforms showed respective 65% (P < 0.01) and 28% (P < 0.05) decreases in the number of innervated IIB and IID/X muscle fibres in SOD1(G93A), which paralleled the 60% decrease (P < 0.01) in the force generating capacity of individual fibres. The loss of fast MUs was partially compensated by activity-dependent fast-to-slower fibre type transitions, as determined by increases (P < 0.04) in the CSA and proportion of IIA fibres (from 4% to 14%) and IID/X fibres (from 31% to 39%), and decreases (P < 0.001) in the CSA and proportion of type IIB fibres (from 65% to 44%). We conclude that preferential loss of IIB fibres is incomplete at 60 days of age, and is consistent with a selective albeit gradual loss of FF MUs that is not fully compensated by sprouting of the remaining motoneurons that innervate type IIA or IID/X muscle fibres. Our findings indicate that disease progression in fast-twitch muscles of SOD1(G93A) mice involves parallel processes: (1) gradual selective motor axon die-back of the FF motor units that contain large type IIB muscle fibres, and of fatigue-intermediate motor units that innervate type IID/X muscle fibres, and (2) activity-dependent conversion of motor units to those innervated by smaller motor axons innervating type IIA fatigue-resistant muscle fibres.
Collapse
Affiliation(s)
- J Hegedus
- Centre for Neuroscience, 525 Heritage Medical Research Centre, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
135
|
Keating DJ. Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem 2007; 104:298-305. [PMID: 17961149 DOI: 10.1111/j.1471-4159.2007.04997.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A common feature in the early stages of many neurodegenerative diseases lies in mitochondrial dysfunction, oxidative stress, and reduced levels of synaptic transmission. Many genes associated with neurodegenerative diseases are now known to regulate either mitochondrial function, redox state, or the exocytosis of neurotransmitters. Mitochondria are the primary source of reactive oxygen species and ATP and control apoptosis. Mitochondria are concentrated in synapses and significant alterations to synaptic mitochondrial localization, number, morphology, or function can be detrimental to synaptic transmission. Mitochondrial by-products are capable of regulating various steps of neurotransmission and mitochondrial dysfunction and oxidative stress occur in the early stages of many neurodegenerative diseases. This mini-review will highlight the prospect that mitochondria regulates synaptic exocytosis by controlling synaptic ATP and reactive oxygen species levels and that dysfunctional exocytosis caused by mitochondrial abnormalities may be a common underlying phenomenon in the initial stages of some human neurodegenerative diseases.
Collapse
Affiliation(s)
- Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia.
| |
Collapse
|
136
|
Guatteo E, Carunchio I, Pieri M, Albo F, Canu N, Mercuri NB, Zona C. Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels' activation in a genetic model of amyotrophic lateral sclerosis. Neurobiol Dis 2007; 28:90-100. [PMID: 17706428 DOI: 10.1016/j.nbd.2007.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/28/2007] [Accepted: 07/01/2007] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disease characterized by a substantial loss of motor neurons in the spinal cord, brain stem and motor cortex. By combining electrophysiological recordings with imaging techniques, clearance/buffering capacity of cultured spinal cord motor neurons after a calcium accumulation has been analyzed in response to AMPA receptors' (AMPARs') activation and to depolarizing stimuli in a genetic mouse model of ALS (G93A). Our studies demonstrate that the amplitude of the calcium signal in response to AMPARs' or voltage-dependent calcium channels' activation is not significantly different in controls and G93A motor neurons. On the contrary, in G93A motor neurons, the [Ca(2+)](i) recovery to basal level is significantly slower compared to control neurons following AMPARs but not voltage-dependent calcium channels' activation. This difference was not observed in G93A cultured cortical neurons. This observation is the first to indicate a specific alteration of the calcium clearance linked to AMPA receptors' activation in G93A motor neurons and the involvement of AMPA receptor regulatory proteins controlling both AMPA receptor functionality and the sequence of events connected to them.
Collapse
Affiliation(s)
- Ezia Guatteo
- Fondazione S. Lucia, Centro Europeo Ricerca sul Cervello, Via del Fosso di Fiorano, 00173 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
137
|
González-Forero D, Portillo F, Gómez L, Montero F, Kasparov S, Moreno-López B. Inhibition of resting potassium conductances by long-term activation of the NO/cGMP/protein kinase G pathway: a new mechanism regulating neuronal excitability. J Neurosci 2007; 27:6302-12. [PMID: 17554004 PMCID: PMC6672157 DOI: 10.1523/jneurosci.1019-07.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Glutamate-induced excitotoxicity, the most common pathological mechanism leading to neuronal death, may occur even with normal levels of glutamate if it coincides with a persistent enhancement of neuronal excitability. Neurons expressing nitric oxide (NO) synthase (NOS-I), which is upregulated in many human chronic neurodegenerative diseases, are highly susceptible to neurodegeneration. We hypothesized that chronic production of NO in damaged neurons may increase their intrinsic excitability via modulation of resting or "leak" K+ currents. Peripheral XIIth nerve injury in adult rats induced de novo NOS-I expression and an increased incidence of low-threshold motor units, the latter being prevented by chronic inhibition of the neuronal NO/cGMP pathway. Accordingly, sustained synthesis of NO maintained an enhanced basal activity in injured motoneurons that was slowly reverted (over the course of 2-3 h) by NOS-I inhibitors. In slice preparations, persistent, but not acute, activation of the NO/cGMP pathway evoked a robust augment in motoneuron excitability independent of synaptic activity. Furthermore, chronic activation of the NO/cGMP pathway fully suppressed TWIK-related acid-sensitive K+ (TASK) currents through a protein kinase G (PKG)-dependent mechanism. Finally, we found evidence for the involvement of this long-term mechanism in regulating membrane excitability of motoneurons, because their pH-sensitive currents were drastically reduced by nerve injury. This NO/cGMP/PKG-mediated modulation of TASK conductances might represent a new pathological mechanism that leads to hyperexcitability and sensitizes neurons to excitotoxic damage. It could explain why de novo expression of NOS-I and/or its overexpression makes them susceptible to neurodegeneration under pathological conditions.
Collapse
Affiliation(s)
- David González-Forero
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain, and
| | - Federico Portillo
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain, and
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Laura Gómez
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain, and
| | - Fernando Montero
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain, and
| | - Sergey Kasparov
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Bernardo Moreno-López
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain, and
| |
Collapse
|
138
|
Bories C, Amendola J, Lamotte d'Incamps B, Durand J. Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2007; 25:451-9. [PMID: 17284186 DOI: 10.1111/j.1460-9568.2007.05306.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyotrophic lateral sclerosis is a lethal, adult-onset disease characterized by progressive degeneration of motoneurons. Recent data have suggested that the disease could be linked to abnormal development of the motor nervous system. Therefore, we investigated the electrical properties of lumbar motoneurons in an in-vitro neonatal spinal cord preparation isolated from SOD1(G85R) mice, which is a transgenic model of amyotrophic lateral sclerosis. The study was performed on young animals at the beginning of their second week, between postnatal days 6 and 10. Measurements of resting membrane potential and action potential characteristics of motoneurons were similar in wild-type and SOD1(G85R) mice. However, the input resistance of motoneurons from transgenic mice was significantly lower than that of wild-type animals, whereas their membrane capacitance was increased, strongly suggesting larger SOD1(G85R) motoneurons. Furthermore, the slope of the frequency-intensity curve was steeper in motoneurons from wild-type pups. Interestingly, the input resistance as well as the slope of the frequency-intensity curves of other spinal neurons did not show such differences. Finally, the amplitude of dorsal root-evoked potentials following high-intensity stimulation was significantly smaller in SOD1(G85R) motoneurons. The superoxide dismutase 1 mutation thus induces specific alterations of the functional properties of motoneurons early in development.
Collapse
Affiliation(s)
- Cyril Bories
- Laboratoire de Plasticité et Physio-Pathologie de la Motricité, UMR 6196 CNRS, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
139
|
Jankelowitz SK, Howells J, Burke D. Plasticity of inwardly rectifying conductances following a corticospinal lesion in human subjects. J Physiol 2007; 581:927-40. [PMID: 17363389 PMCID: PMC2170828 DOI: 10.1113/jphysiol.2006.123661] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study investigated whether there are changes in the excitability of motor axons in peripheral nerves of patients with corticospinal lesions, reflecting plasticity of the motoneuron due to altered descending drives and/or changes in afferent feedback. The excitability of motor and sensory axons in peripheral nerves of the affected limb of 11 patients with unilateral hemiparesis due to stroke was compared with that for the unaffected limbs and with data for 12 age-matched controls. There was significantly less accommodation to hyperpolarizing currents in motor axons on the affected side. There were small differences between the data for the unaffected side and that of the control subjects but these were not statistically significant. Other findings indicate that there was no change in resting membrane potential. There was no comparable alteration in the excitability of sensory axons. The changes in response of motor axons to hyperpolarizing currents could be reproduced in a computer model of the human motor axon by reducing the hyperpolarization-activated conductance, IH, by 30% and the quantitatively small leak conductance by 77%. The data for the uninvolved side matched the data for control subjects best when IH was increased. These findings are consistent with modulation of IH by activity. They demonstrate a change in the biophysical properties of motor axons not directly affected by the pathology and synaptically remote from the lesion, and have implications for 'trans-synaptic' changes in central nervous system pathways. In human subjects studies of motor axon properties may allow insight into processes affecting the motoneuron.
Collapse
Affiliation(s)
- Stacey K Jankelowitz
- Medical Foundation Building - K25, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
140
|
Quartarone A, Lang N, Rizzo V, Bagnato S, Morgante F, Sant'angelo A, Crupi D, Battaglia F, Messina C, Girlanda P. Motor cortex abnormalities in amyotrophic lateral sclerosis with transcranial direct-current stimulation. Muscle Nerve 2007; 35:620-4. [PMID: 17221883 DOI: 10.1002/mus.20737] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to identify a neurophysiological marker of upper motoneuron involvement in patients with sporadic amyotrophic lateral sclerosis (ALS). For this purpose we evaluated the after-effects of transcranial direct-current stimulation (tDCS) on excitability of the motor cortex of eight ALS patients and eight healthy controls. Healthy controls showed a transient polarity-specific change in corticospinal excitability of about +/-45%, with anodal tDCS inducing facilitation and cathodal tDCS leading to inhibition, whereas no change could be induced in ALS patients after either type of tDCS. It is likely that the lack of tDCS after-effects in ALS is the result of alterations of the motoneuronal membrane or, alternatively, may represent an electrophysiological correlate of disordered glutamate neurotransmission. Further studies are warranted to confirm these results. The present findings may lead to a new, reliable electrophysiological marker of upper motoneuronal involvement in ALS.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Neuroscience, Psychiatric and Anaesthesiological Sciences, University of Messina, Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Zona C, Pieri M, Carunchio I. Voltage-Dependent Sodium Channels in Spinal Cord Motor Neurons Display Rapid Recovery From Fast Inactivation in a Mouse Model of Amyotrophic Lateral Sclerosis. J Neurophysiol 2006; 96:3314-22. [PMID: 16899637 DOI: 10.1152/jn.00566.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a substantial loss of motor neurons in the spinal cord, brain stem, and motor cortex. Previous evidence showed that in a mouse model of a familial form of ALS expressing high levels of the human mutated protein Cu,Zn superoxide dismutase (Gly93→Ala, G93A), the firing properties of single motor neurons are altered to induce neuronal hyperexcitability. To determine whether the functionality of the macroscopic voltage-dependent Na+ currents is modified in G93A motor neurons, in the present work their physiological properties were examined. The voltage-dependent sodium channels were studied in dissociated motor neurons in culture from nontransgenic mice (Control), from transgenic mice expressing high levels of the human wild-type protein [superoxide dismutase 1 (SOD1)], and from G93A mice, using the whole cell configuration of the patch-clamp recording technique. The voltage dependency of activation and of steady-state inactivation, the kinetics of fast inactivation and slow inactivation of the voltage-dependent Na+ channels were not modified in the mutated mice. Conversely, the recovery from fast inactivation was significantly faster in G93A motor neurons than that in Control and SOD1. The recovery from fast inactivation was still significantly faster in G93A motor neurons exposed for different times (3–48 h) and concentrations (5–500 μM) to edaravone, a free-radical scavenger. Clarification of the importance of these changes in membrane ion channel functionality may have diagnostic and therapeutic implications in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Cristina Zona
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | |
Collapse
|
142
|
Kuo JJ, Lee RH, Zhang L, Heckman CJ. Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones. J Physiol 2006; 574:819-34. [PMID: 16728453 PMCID: PMC1817738 DOI: 10.1113/jphysiol.2006.107094] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal motoneurons, like many neurons, respond with repetitive spiking to sustained inputs. The afterhyperpolarization (AHP) that follows each spike, however, decays relatively slowly in motoneurons. The slow depolarization during this decay should allow sodium (Na+) channel inactivation to keep up with its activation and thus should prevent initiation of the next spike. We hypothesized that the persistent component of the total Na+ current provides the mechanism that generates a rate of rise sufficiently rapid to generate a spike. In large cultured spinal neurons, presumed to be primarily motoneurons, inhibition of persistent sodium current (NaP) by the drug riluzole at low concentrations resulted in a loss of repetitive firing. However, cells remained fully capable of producing spikes to transient inputs. These effects of riluzole were not due to insufficient depolarization, enhancement of the AHP, or sustained Na+ channel inactivation. To further test this hypothesis, computer simulations were performed with a kinetic Na+ channel model that provided greater independent control of NaP relative to transient Na+ current (NaT) than that provided by riluzole administration. The model was tuned to generate substantial NaP and exhibited good repetitive firing to slowly rising inputs. When NaP was sharply reduced without significantly altering NaT, the model reproduced the effects of riluzole administration, inducing failure of repetitive firing but allowing single spikes in response to sharp transients. These results strongly support the essential role of NaP in spike initiation to slow inputs in spinal neurons. NaP may play a fundamental role in determining how a neuron responds to sustained inputs.
Collapse
Affiliation(s)
- J J Kuo
- Department of Physiology, Northwestern Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
143
|
Pun S, Santos AF, Saxena S, Xu L, Caroni P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 2006; 9:408-19. [PMID: 16474388 DOI: 10.1038/nn1653] [Citation(s) in RCA: 513] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/25/2006] [Indexed: 11/09/2022]
Abstract
Neurodegenerative diseases can have long preclinical phases and insidious progression patterns, but the mechanisms of disease progression are poorly understood. Because quantitative accounts of neuronal circuitry affected by disease have been lacking, it has remained unclear whether disease progression reflects processes of stochastic loss or temporally defined selective vulnerabilities of distinct synapses or axons. Here we derive a quantitative topographic map of muscle innervation in the hindlimb. We show that in two mouse models of motoneuron disease (G93A SOD1 and G85R SOD1), axons of fast-fatiguable motoneurons are affected synchronously, long before symptoms appear. Fast-fatigue-resistant motoneuron axons are affected at symptom-onset, whereas axons of slow motoneurons are resistant. Axonal vulnerability leads to synaptic vesicle stalling and accumulation of BC12a1-a, an anti-apoptotic protein. It is alleviated by ciliary neurotrophic factor and triggers proteasome-dependent pruning of peripheral axon branches. Thus, motoneuron disease involves predictable, selective vulnerability patterns by physiological subtypes of axons, episodes of abrupt pruning in the target region and compensation by resistant axons.
Collapse
Affiliation(s)
- San Pun
- Friedrich Miescher Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
144
|
Durand J, Amendola J, Bories C, Lamotte d'Incamps B. Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2006; 99:211-20. [PMID: 16448809 DOI: 10.1016/j.jphysparis.2005.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative and fatal human disorder characterized by progressive loss of motor neurons. Transgenic mouse models of ALS are very useful to study the initial mechanisms underlying this neurodegenerative disease. We will focus here on the earlier abnormalities observed in superoxide dismutase 1 (SOD1) mutant mice. Several hypotheses have been advanced to explain the selective loss of motor neurons such as apoptosis, neurofilament disorganisation, oxidative stress, mitochondrial dysfunction, astrogliosis and excitotoxicity. Although disease onset appears at adulthood, recent studies have detected abnormalities during embryonic and postnatal maturation in animal models of ALS. We reported that SOD1(G85R) mutant mice exhibit specific delays in acquiring sensory-motor skills during the first week after birth. In addition, physiological measurements on in vitro spinal cord preparations reveal defects in evoking rhythmic activity with N-methyl-DL-aspartate and serotonin at lumbar, but not sacral roots. This is potentially significant, as functions involving sacral roots are spared at late stages of the disease. Moreover, electrical properties of SOD1 lumbar motoneurons are altered as early as the second postnatal week when mice begin to walk. Alterations concern the input resistance and the gain of SOD1 motoneurons which are lower than in control motoneurons. Whether or not the early changes in discharge firing are responsible for the uncoupling between motor axon terminals and muscles is still an open question. A link between these early electrical abnormalities and the late degeneration of motoneurons is proposed in this short review. Our data suggest that ALS, as other neurodegenerative diseases, could be a consequence of an abnormal development of neurons and network properties. We hypothesize that the SOD1 mutation could induce early changes during the period of maturation of motor systems and that compensatory mechanisms-linked to developmental spinal plasticity-might explain the late onset of the disease.
Collapse
Affiliation(s)
- Jacques Durand
- CNRS UMR 6196, Plasticité et Physiopathologie de la Motricité, Université de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
145
|
Avossa D, Grandolfo M, Mazzarol F, Zatta M, Ballerini L. Early signs of motoneuron vulnerability in a disease model system: Characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Neuroscience 2006; 138:1179-94. [PMID: 16442737 DOI: 10.1016/j.neuroscience.2005.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 11/10/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
Mutations in the SOD1 gene are associated with familial amyotrophic lateral sclerosis. The mechanisms by which these mutations lead to cell loss within the spinal cord ventral horns are unknown. In the present report we used the G93A transgenic mouse model of amyotrophic lateral sclerosis to develop and characterize an in vitro tool for the investigation of subtle alterations of spinal tissue prior to frank neuronal degeneration. To this aim, we developed organotypic slice cultures from wild type and G93A embryonic spinal cords. We combined immunocytochemistry and electron microscopy techniques to compare wild type and G93A spinal cord tissues after 14 days of growth under standard in vitro conditions. By SMI32 and choline acetyl transferase immunostaining, the distribution and morphology of motoneurons were compared in the two culture groups. Wild type and mutant cultures displayed no differences in the analyzed parameters as well as in the number of motoneurons. Similar results were observed when glial fibrillary acidic protein and myelin basic protein-positive cells were examined. Cell types within the G93A slice underwent maturation and slices could be maintained in culture for at least 3 weeks when prepared from embryos. Electron microscopy investigation confirmed the absence of early signs of mitochondria vacuolization or protein aggregate formation in G93A ventral horns. However, a significantly different ratio between inhibitory and excitatory synapses was present in G93A cultures, when compared with wild type ones, suggesting the expression of subtle synaptic dysfunction in G93A cultured tissue. When compared with controls, G93A motoneurons exhibited increased vulnerability to AMPA glutamate receptor-mediated excitotoxic stress prior to clear disease appearance. This in vitro disease model may thus represent a valuable tool to test early mechanisms contributing to motoneuron degeneration and potential therapeutic molecular interventions.
Collapse
Affiliation(s)
- D Avossa
- Neurobiology Sector and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies, via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | |
Collapse
|
146
|
Harvey PJ, Li Y, Li X, Bennett DJ. Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats. J Neurophysiol 2005; 96:1141-57. [PMID: 16282206 PMCID: PMC5726388 DOI: 10.1152/jn.00335.2005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Months after sacral spinal transection in rats (chronic spinal rats), motoneurons below the injury exhibit large, low-threshold persistent inward currents (PICs), composed of persistent sodium currents (Na PICs) and persistent calcium currents (Ca PICs). Here, we studied whether motoneurons of normal adult rats also exhibited Na and Ca PICs when the spinal cord was acutely transected at the sacral level (acute spinal rats) and examined the role of the Na PIC in firing behavior. Intracellular recordings were obtained from motoneurons of acute and chronic spinal rats while the whole sacrocaudal spinal cord was maintained in vitro. Compared with chronic spinal rats, motoneurons of acute spinal rats were more difficult to activate because the input resistance was 22% lower and resting membrane potential was hyperpolarized 4.1 mV further below firing threshold (-50.9 +/- 6.2 mV). In acute spinal rats, during a slow voltage ramp, a PIC was activated subthreshold to the spike (at -57.2 +/- 5.0 mV) and reached a peak current of 1.11 +/- 1.21 nA. This PIC was less than one-half the size of that in chronic spinal rats (2.79 +/- 0.94 nA) and usually was not large enough to produce bistable behavior (plateau potentials and self-sustained firing not present), unlike in chronic spinal rats. The PIC was composed of two components: a TTX-sensitive Na PIC (0.44 +/- 0.36 nA) and a nimodipine-sensitive Ca PIC (0.78 +/- 0.82 nA). Both were smaller than in chronic spinal rats (but with similar Na/Ca ratio). The presence of the Na PIC was critical for normal repetitive firing, because no detectable Na PIC was found in the few motoneurons that could not fire repetitively during a slow ramp current injection and motoneurons that had large Na PICs more readily produced repetitive firing and had lower minimum firing rates compared with neurons with small Na PICs. Furthermore, when the Na PIC was selectively blocked with riluzole, steady repetitive firing was eliminated, even though transient firing could be evoked on a rapid current step and the spike itself was unaffected. In summary, only small Ca and Na PICs occur in acute spinal motoneurons, but the Na PIC is essential for steady repetitive firing. We discuss how availability of monoamines may explain the variability in Na PICs and firing in the normal and spinal animals.
Collapse
Affiliation(s)
- P J Harvey
- Centre for Neuroscience, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
147
|
Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG. Gait dynamics in mouse models of Parkinson's disease and Huntington's disease. J Neuroeng Rehabil 2005; 2:20. [PMID: 16042805 PMCID: PMC1201165 DOI: 10.1186/1743-0003-2-20] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Accepted: 07/25/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gait is impaired in patients with Parkinson's disease (PD) and Huntington's disease (HD), but gait dynamics in mouse models of PD and HD have not been described. Here we quantified temporal and spatial indices of gait dynamics in a mouse model of PD and a mouse model of HD. METHODS Gait indices were obtained in C57BL/6J mice treated with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day for 3 days) for PD, the mitochondrial toxin 3-nitropropionic acid (3NP, 75 mg/kg cumulative dose) for HD, or saline. We applied ventral plane videography to generate digital paw prints from which indices of gait and gait variability were determined. Mice walked on a transparent treadmill belt at a speed of 34 cm/s after treatments. RESULTS Stride length was significantly shorter in MPTP-treated mice (6.6 +/- 0.1 cm vs. 7.1 +/- 0.1 cm, P < 0.05) and stride frequency was significantly increased (5.4 +/- 0.1 Hz vs. 5.0 +/- 0.1 Hz, P < 0.05) after 3 administrations of MPTP, compared to saline-treated mice. The inability of some mice treated with 3NP to exhibit coordinated gait was due to hind limb failure while forelimb gait dynamics remained intact. Stride-to-stride variability was significantly increased in MPTP-treated and 3NP-treated mice compared to saline-treated mice. To determine if gait disturbances due to MPTP and 3NP, drugs affecting the basal ganglia, were comparable to gait disturbances associated with motor neuron diseases, we also studied gait dynamics in a mouse model of amyotrophic lateral sclerosis (ALS). Gait variability was not increased in the SOD1 G93A transgenic model of ALS compared to wild-type control mice. CONCLUSION The distinct characteristics of gait and gait variability in the MPTP model of Parkinson's disease and the 3NP model of Huntington's disease may reflect impairment of specific neural pathways involved.
Collapse
Affiliation(s)
- Ivo Amende
- Division of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Ajit Kale
- The CuraVita Corporation, Boston, MA 02109 USA
| | - Scott McCue
- The CuraVita Corporation, Boston, MA 02109 USA
| | | | - James P Morgan
- Division of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Thomas G Hampton
- Division of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
- The CuraVita Corporation, Boston, MA 02109 USA
| |
Collapse
|
148
|
Sharp PS, Dick JRT, Greensmith L. The effect of peripheral nerve injury on disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neuroscience 2005; 130:897-910. [PMID: 15652988 DOI: 10.1016/j.neuroscience.2004.09.069] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2004] [Indexed: 11/23/2022]
Abstract
Around 20% of familial cases of amyotrophic lateral sclerosis have been shown to carry mutations in Cu/Zn superoxide dismutase 1 (Cu/Zn SOD1). Transgenic mice over-expressing human mutant SOD1 genes have been developed and in this study we examined the effect of nerve injury on disease progression in these mice. Firstly, disease progression in uninjured mice was characterised using physiological methods. Muscle force, contractile characteristics and motor unit survival was established at 90 days, an early symptomatic stage and also at the end-stage of the disease, at 130 days. In addition, muscle histochemistry was examined and the extent of motoneuron survival established morphologically. By 90 days of age, there is a significant reduction in muscle force, and nearly 40% of motoneurons within the sciatic motor pool have already died. By 130 days, the muscles are significantly weaker, and there is a dramatic change in the phenotype of extensor digitorum longus (EDL), which changes from a fast fatigable muscle, to a fatigue resistant muscle with a high oxidative capacity. By this stage of the disease, only 40% of motor units in EDL survive, with only 29% of motoneurons surviving within the sciatic motor pool. Following injury to the sciatic nerve in SOD1(G93A) mice, there is an acceleration in disease progression so that 90 day old mice show deficits that are only seen at the end stage in uninjured SOD1(G93A) mice. It is therefore possible that mutant SOD1 toxicity increases the vulnerability of motoneurons and muscles to stressful stimuli such as nerve injury.
Collapse
Affiliation(s)
- P S Sharp
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, 21 Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
149
|
Turner MR, Hammers A, Al-Chalabi A, Shaw CE, Andersen PM, Brooks DJ, Leigh PN. Distinct cerebral lesions in sporadic and 'D90A' SOD1 ALS: studies with [11C]flumazenil PET. ACTA ACUST UNITED AC 2005; 128:1323-9. [PMID: 15843422 DOI: 10.1093/brain/awh509] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Five to ten percent of amyotrophic lateral sclerosis (ALS) cases are associated with mutations of the superoxide dismutase-1 (SOD1) gene, and the 'D90A' mutation is associated with a unique phenotype and markedly slower disease progression (mean survival time 14 years). Relative sparing of inhibitory cortical neuronal circuits might be one mechanism contributing to the slower progression in patients homozygous for the D90A mutation (homD90A). The GABA(A) receptor PET ligand [11C]flumazenil has demonstrated motor and extra-motor cortical changes in sporadic ALS. In this study, we used [11C]flumazenil PET to explore differences in the pattern of cortical involvement between sporadic and genetically homogeneous ALS groups. Twenty-four sporadic ALS (sALS) and 10 homD90A patients underwent [11C]flumazenil PET of the brain. In addition, two subjects homozygous for the D90A mutation, but without symptoms or signs ('pre-symptomatic', psD90A), also underwent imaging. Results for each group were compared with those for 24 healthy controls of similar age. Decreases in the binding of [11C]flumazenil in the sALS group were found within premotor regions, motor cortex and posterior motor association areas. In the homD90A group of ALS patients, however, decreases were concentrated in the left fronto-temporal junction and anterior cingulate gyrus. In the two psD90A subjects, a small focus of reduced [11C]flumazenil binding at the left fronto-temporal junction was seen, similar to the pattern seen in the clinically affected patients. Within the sALS group, there was no statistically significant association between decreases in cortical [11C]flumazenil binding and revised ALS functional rating scale (ALSFRS-R score), whereas the upper motor neuron (UMN) score correlated with widespread and marked cortical decreases over the dominant hemisphere. In the homD90A group, there was a stronger statistical association between reduced cortical [11C]flumazenil binding and the ALSFRS-R, rather than the UMN, score, and also with disease duration. This study provides evidence for differences in the distribution of reduced cortical [11C]flumazenil binding in homD90A compared with sALS patients. We hypothesize that this might reflect differences in cortical neuronal vulnerability.
Collapse
Affiliation(s)
- M R Turner
- Department of Neurology, Institute of Psychiatry, King's College, De Crespigny Park, London, UK
| | | | | | | | | | | | | |
Collapse
|
150
|
Amendola J, Verrier B, Roubertoux P, Durand J. Altered sensorimotor development in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2005; 20:2822-6. [PMID: 15548226 DOI: 10.1111/j.1460-9568.2004.03745.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most neurodegenerative diseases become manifest at an adult age but abnormalities or pathological symptoms appear earlier. It is important to identify the initial mechanisms underlying such progressive neurodegenerative disease in both humans and animals. Transgenic mice expressing the familial amyotrophic lateral sclerosis (ALS)-linked mutation (G85R) in the enzyme superoxide dismutase 1 (SOD1) develop motor neuron disease at 8-10 months of age. We address the question of whether the mutation has an early impact on spinal motor networks in postnatal mutant mice. Behavioural tests showed a significant delay in righting and hind-paw grasping responses in mutant SOD1G85R mice during the first postnatal week, suggesting a transient motor deficit compared to wild-type mice. In addition, extracellular recordings from spinal ventral roots in an in vitro brainstem-spinal cord preparation demonstrated different pharmacologically induced motor activities between the two strains. Rhythmic motor activity was difficult to evoke with N-methyl-DL-aspartate and serotonin at the lumbar levels in SOD1G85R mice. In contrast to lumbar segments, rhythmic activity was similar in the sacral roots from the two strains. These results strongly support the fact that the G85R mutation may have altered lumbar spinal motor systems much earlier than previously recognized.
Collapse
Affiliation(s)
- Julien Amendola
- CNRS UMR-6196, Plasticité et Physiopathologie de la Motricité, Université de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | |
Collapse
|