101
|
Costa TR, Amer AA, Fällman M, Fahlgren A, Francis MS. Coiled-coils in the YopD translocator family: A predicted structure unique to the YopD N-terminus contributes to full virulence of Yersinia pseudotuberculosis. INFECTION GENETICS AND EVOLUTION 2012; 12:1729-42. [DOI: 10.1016/j.meegid.2012.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/12/2012] [Accepted: 07/29/2012] [Indexed: 10/28/2022]
|
102
|
Galle M, Carpentier I, Beyaert R. Structure and function of the Type III secretion system of Pseudomonas aeruginosa. Curr Protein Pept Sci 2012; 13:831-42. [PMID: 23305368 PMCID: PMC3706959 DOI: 10.2174/138920312804871210] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 02/08/2023]
Abstract
Pseudomonas aeruginosa is a dangerous pathogen particularly because it harbors multiple virulence factors. It causes several types of infection, including dermatitis, endocarditis, and infections of the urinary tract, eye, ear, bone, joints and, of particular interest, the respiratory tract. Patients with cystic fibrosis, who are extremely susceptible to Pseudomonas infections, have a bad prognosis and high mortality. An important virulence factor of P. aeruginosa, shared with many other gram-negative bacteria, is the type III secretion system, a hollow molecular needle that transfers effector toxins directly from the bacterium into the host cell cytosol. This complex macromolecular machine works in a highly regulated manner and can manipulate the host cell in many different ways. Here we review the current knowledge of the structure of the P. aeruginosa T3SS, as well as its function and recognition by the immune system. Furthermore, we describe recent progress in the development and use of therapeutic agents targeting the T3SS.
Collapse
Affiliation(s)
- Marlies Galle
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; the
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Isabelle Carpentier
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; the
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; the
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
103
|
Galac MR, Lazzaro BP. Comparative genomics of bacteria in the genus Providencia isolated from wild Drosophila melanogaster. BMC Genomics 2012; 13:612. [PMID: 23145767 PMCID: PMC3542290 DOI: 10.1186/1471-2164-13-612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/05/2012] [Indexed: 02/04/2023] Open
Abstract
Background Comparative genomics can be an initial step in finding the genetic basis for phenotypic differences among bacterial strains and species. Bacteria belonging to the genus Providencia have been isolated from numerous and varied environments. We sequenced, annotated and compared draft genomes of P. rettgeri, P. sneebia, P. alcalifaciens, and P. burhodogranariea. These bacterial species that were all originally isolated as infections of wild Drosophila melanogaster and have been previously shown to vary in virulence to experimentally infected flies. Results We found that these Providencia species share a large core genome, but also possess distinct sets of genes that are unique to each isolate. We compared the genomes of these isolates to draft genomes of four Providencia isolated from the human gut and found that the core genome size does not substantially change upon inclusion of the human isolates. We found many adhesion related genes among those genes that were unique to each genome. We also found that each isolate has at least one type 3 secretion system (T3SS), a known virulence factor, though not all identified T3SS belong to the same family nor are they in syntenic genomic locations. Conclusions The Providencia species examined here are characterized by high degree of genomic similarity which will likely extend to other species and isolates within this genus. The presence of T3SS islands in all of the genomes reveal that their presence is not sufficient to indicate virulence towards D. melanogaster, since some of the T3SS-bearing isolates are known to cause little mortality. The variation in adhesion genes and the presence of T3SSs indicates that host cell adhesion is likely an important aspect of Providencia virulence.
Collapse
Affiliation(s)
- Madeline R Galac
- Field of Genetics and Development, 3125 Comstock Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
104
|
Tomalka AG, Stopford CM, Lee PC, Rietsch A. A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function. Mol Microbiol 2012; 86:1464-81. [PMID: 23121689 DOI: 10.1111/mmi.12069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
Abstract
Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the Pseudomonas aeruginosa translocator protein PopD as a model to identify its export signals. The N-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells.
Collapse
Affiliation(s)
- Amanda G Tomalka
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
105
|
Abby SS, Rocha EPC. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 2012; 8:e1002983. [PMID: 23028376 PMCID: PMC3459982 DOI: 10.1371/journal.pgen.1002983] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/09/2012] [Indexed: 12/20/2022] Open
Abstract
Type 3 secretion systems (T3SSs) are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS), which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.
Collapse
Affiliation(s)
- Sophie S Abby
- Département Génomes et Génétique, Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.
| | | |
Collapse
|
106
|
Gazi AD, Sarris PF, Fadouloglou VE, Charova SN, Mathioudakis N, Panopoulos NJ, Kokkinidis M. Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol 2012; 12:188. [PMID: 22937899 PMCID: PMC3574062 DOI: 10.1186/1471-2180-12-188] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022] Open
Abstract
Background The central role of Type III secretion systems (T3SS) in bacteria-plant interactions is well established, yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T3SS-2) in addition to the well characterized Hrc1 T3SS which is associated with disease lesions in host plants and with the triggering of hypersensitive response in non-host plants. The aim of this study is to perform an in silico analysis of T3SS-2, and to compare it with other known T3SSs. Results Based on phylogenetic analysis and gene organization comparisons, the T3SS-2 cluster of the P. syringae pv. phaseolicola strain is grouped with a second T3SS found in the pNGR234b plasmid of Rhizobium sp. These additional T3SS gene clusters define a subgroup within the Rhizobium T3SS family. Although, T3SS-2 is not distributed as widely as the Hrc1 T3SS in P. syringae strains, it was found to be constitutively expressed in P. syringae pv phaseolicola through RT-PCR experiments. Conclusions The relatedness of the P. syringae T3SS-2 to a second T3SS from the pNGR234b plasmid of Rhizobium sp., member of subgroup II of the rhizobial T3SS family, indicates common ancestry and/or possible horizontal transfer events between these species. Functional analysis and genome sequencing of more rhizobia and P. syringae pathovars may shed light into why these bacteria maintain a second T3SS gene cluster in their genome.
Collapse
Affiliation(s)
- Anastasia D Gazi
- Department of Biology, University of Crete, Vasilika Vouton, P,O, Box 2208, Heraklion, Crete GR 71409, Greece
| | | | | | | | | | | | | |
Collapse
|
107
|
Correa VR, Majerczak DR, Ammar ED, Merighi M, Pratt RC, Hogenhout SA, Coplin DL, Redinbaugh MG. The bacterium Pantoea stewartii uses two different type III secretion systems to colonize its plant host and insect vector. Appl Environ Microbiol 2012; 78:6327-36. [PMID: 22773631 PMCID: PMC3416588 DOI: 10.1128/aem.00892-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/26/2012] [Indexed: 12/30/2022] Open
Abstract
Plant- and animal-pathogenic bacteria utilize phylogenetically distinct type III secretion systems (T3SS) that produce needle-like injectisomes or pili for the delivery of effector proteins into host cells. Pantoea stewartii subsp. stewartii (herein referred to as P. stewartii), the causative agent of Stewart's bacterial wilt and leaf blight of maize, carries phylogenetically distinct T3SSs. In addition to an Hrc-Hrp T3SS, known to be essential for maize pathogenesis, P. stewartii has a second T3SS (Pantoea secretion island 2 [PSI-2]) that is required for persistence in its flea beetle vector, Chaetocnema pulicaria (Melsh). PSI-2 belongs to the Inv-Mxi-Spa T3SS family, typically found in animal pathogens. Mutagenesis of the PSI-2 psaN gene, which encodes an ATPase essential for secretion of T3SS effectors by the injectisome, greatly reduces both the persistence of P. stewartii in flea beetle guts and the beetle's ability to transmit P. stewartii to maize. Ectopic expression of the psaN gene complements these phenotypes. In addition, the PSI-2 psaN gene is not required for P. stewartii pathogenesis of maize and is transcriptionally upregulated in insects compared to maize tissues. Thus, the Hrp and PSI-2 T3SSs play different roles in the life cycle of P. stewartii as it alternates between its insect vector and plant host.
Collapse
Affiliation(s)
- Valdir R. Correa
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Doris R. Majerczak
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
| | - El-Desouky Ammar
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Massimo Merighi
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Richard C. Pratt
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Saskia A. Hogenhout
- Department of Disease and Stress Biology, John Innes Centre, Norwich, United Kingdom
| | - David L. Coplin
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Margaret G. Redinbaugh
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- USDA, ARS, Corn and Soybean Research Unit, Wooster, Ohio, USA
| |
Collapse
|
108
|
Riquelme SA, Bueno SM, Kalergis AM. IgG keeps virulent Salmonella from evading dendritic cell uptake. Immunology 2012; 136:291-305. [PMID: 22352313 DOI: 10.1111/j.1365-2567.2012.03578.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are phagocytic professional antigen-presenting cells that can prime naive T cells and initiate anti-bacterial immunity. However, several pathogenic bacteria have developed virulence mechanisms to impair DC function. For instance, Salmonella enterica serovar Typhimurium can prevent DCs from activating antigen-specific T cells. In addition, it has been described that the Salmonella Pathogenicity Island 1 (SPI-1), which promotes phagocytosis of bacteria in non-phagocytic cells, can suppress this process in DCs in a phosphatidylinositol 3-kinase (PI3K) -dependent manner. Both mechanisms allow Salmonella to evade host adaptive immunity. Recent studies have shown that IgG-opsonization of Salmonella can restore the capacity of DCs to present antigenic peptide-MHC complexes and prime T cells. Interestingly, T-cell activation requires Fcγ receptor III (FcγRIII) expression over the DC surface, suggesting that this receptor could counteract both antigen presentation and phagocytosis evasion by bacteria. We show that, despite IgG-coated Salmonella retaining its capacity to secrete anti-capture proteins, DCs are efficiently capable of engulfing a large number of IgG-coated bacteria. These results suggest that DCs employ another mechanism to engulf IgG-coated Salmonella, different from that used for free bacteria. In this context, we noted that DCs do not employ PI3K, actin cytoskeleton or dynamin to capture IgG-coated bacteria. Likewise, we observed that the capture is an FcγR-independent mechanism. Interestingly, these internalized bacteria were rapidly targeted for degradation within lysosomal compartments. Hence, our results suggest a novel mechanism in DCs that does not employ PI3K/actin cytoskeleton/dynamin/FcγRs to engulf IgG-coated Salmonella, is not affected by anti-capture SPI-1-derived effectors and enhances DC immunogenicity, bacterial degradation and antigen presentation.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
109
|
Shimohata T, Mawatari K, Iba H, Hamano M, Negoro S, Asada S, Aihara M, Hirata A, Su Z, Takahashi A. VopB1 and VopD1 are essential for translocation of type III secretion system 1 effectors of Vibrio parahaemolyticus. Can J Microbiol 2012; 58:1002-7. [PMID: 22827847 DOI: 10.1139/w2012-081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Vibrio parahaemolyticus is a pathogenic Vibrio species that causes food-borne acute gastroenteritis, often related to the consumption of raw or undercooked seafood. Vibrio parahaemolyticus has 2 type III secretion systems (T3SS1 and T3SS2). Here, we demonstrate that VP1657 (VopB1) and VP1656 (VopD1), which share sequence similarity with Pseudomonas genes popB (38%) and popD (36%), respectively, are essential for translocation of T3SS1 effectors into host cells. A VP1680CyaA fusion reporter system was constructed to observe effector translocation. Using this reporter assay we showed that the VopB1 and VopD1 deletion strains were unable to translocate VP1680 to host cell but that the secretion of VP1680 into the culture medium was not affected. VopB1 or VopD1 deletion strains did not enhance cytotoxicity and failed to activate mitogen-activated protein kinases and secretion of interleukin-8, which depend on VP1680. Thus, we conclude that VopB1 and VopD1 are essential components of the translocon. To target VopB1 and VopD1 may have therapeutic potential for the treatment or prevention in V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Takaaki Shimohata
- Department of Preventive Environment and Nutrition Institute of Health Biosciences, University of Tokushima Graduate School Kuromoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Diepold A, Wiesand U, Amstutz M, Cornelis GR. Assembly of theYersiniainjectisome: the missing pieces. Mol Microbiol 2012; 85:878-92. [DOI: 10.1111/j.1365-2958.2012.08146.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
111
|
Erwin DP, Nydam SD, Call DR. Vibrio parahaemolyticus ExsE is requisite for initial adhesion and subsequent type III secretion system 1-dependent autophagy in HeLa cells. MICROBIOLOGY-SGM 2012; 158:2303-2314. [PMID: 22767546 DOI: 10.1099/mic.0.059931-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vibrio parahaemolyticus pandemic serotype O3 : K6 causes acute gastroenteritis, wound infections and septicaemia in humans. This organism encodes two type III secretion systems (T3SS1 and T3SS2); host-cell cytotoxicity has been attributed to T3SS1. Synthesis and secretion of T3SS1 proteins is positively regulated by ExsA, which is presumptively regulated by the ExsCDE pathway, similar to Pseudomonas aeruginosa. Herein we deleted the putative exsE from V. parahaemolyticus and found constitutive expression of the T3SS1 in broth culture as expected. More importantly, however, in a cell culture model, the ΔexsE strain was unable to induce cytotoxicity, as measured by release of lactate dehydrogenase (LDH), or autophagy, as measured by LC3 conversion. This is markedly different from P. aeruginosa, where deletion of exsE has no effect on host-cell cytolysis. Swarming and cytoadhesion were reduced for the deletion mutant and could be recovered along with T3SS1-induced HeLa cell cytotoxicity by in cis expression of exsE in the ΔexsE strain. Loss of adhesion and swarming motility was associated with the loss of flagella biogenesis in the exsE-deficient strain. Mouse mortality was unaffected by the deletion of exsE compared with a wild-type control, suggesting that additional adhesins are important for intoxication in vivo. Based on these data, we conclude that ExsE contributes to the negative regulation of T3SS1 and, in addition, contributes to regulation of an adherence phenotype that is requisite for translocation of effector proteins into HeLa cells.
Collapse
Affiliation(s)
- Daniel P Erwin
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Seth D Nydam
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
112
|
Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS, Pierson EA, Lindow SE, Kobayashi DY, Raaijmakers JM, Weller DM, Thomashow LS, Allen AE, Paulsen IT. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 2012; 8:e1002784. [PMID: 22792073 PMCID: PMC3390384 DOI: 10.1371/journal.pgen.1002784] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022] Open
Abstract
We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45–52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire. We sequenced the genomes of seven strains of the Pseudomonas fluorescens group that colonize plant surfaces and function as biological control agents, protecting plants from disease. In this study, we demonstrated the genomic diversity of the group by comparing these strains to each other and to three other strains that were sequenced previously. Only about half of the genes in each strain are present in all of the other strains, and each strain has hundreds of unique genes that are not present in the other genomes. We mapped the genes that contribute to biological control in each genome and found that most of the biological control genes are in the variable regions of the genome, which are not shared by all of the other strains. This finding is consistent with our knowledge of the distinctive biology of each strain. Finally, we looked for new genes that are likely to confer antimicrobial traits needed to suppress plant pathogens, but have not been identified previously. In each genome, we discovered many of these new genes, which provide avenues for future discovery of new traits with the potential to manage plant diseases in agriculture or natural ecosystems.
Collapse
Affiliation(s)
- Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, Corvallis, Oregon, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Schreiner M, Niemann HH. Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycD in complex with a peptide of the minor translocator YopD. BMC STRUCTURAL BIOLOGY 2012; 12:13. [PMID: 22708907 PMCID: PMC3443056 DOI: 10.1186/1472-6807-12-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/18/2012] [Indexed: 11/23/2022]
Abstract
Background Type III secretion systems are used by Gram-negative bacteria as “macromolecular syringes” to inject effector proteins into eukaryotic cells. Two hydrophobic proteins called translocators form the necessary pore in the host cell membrane. Both translocators depend on binding to a single chaperone in the bacterial cytoplasm to ensure their stability and efficient transport through the secretion needle. It was suggested that the conserved chaperones bind the more divergent translocators via a hexapeptide motif that is found in both translocators and conserved between species. Results We crystallized a synthetic decapeptide from the Yersinia enterocolitica minor type III secretion translocator YopD bound to its cognate chaperone SycD and determined the complex structure at 2.5 Å resolution. The structure of peptide-bound SycD is almost identical to that of apo SycD with an all helical fold consisting of three tetratricopeptide repeats (TPRs) and an additional C-terminal helix. Peptide-bound SycD formed a kinked head-to-head dimer that had previously been observed for the apo form of SycD. The homodimer interface comprises both helices of the first tetratricopeptide repeat. The YopD peptide bound in extended conformation into a mainly hydrophobic groove on the concave side of SycD. TPRs 1 and 2 of SycD form three hydrophobic pockets that accommodated the conserved hydrophobic residues at position 1, 3 and 6 of the translocator hexapeptide sequence. Two tyrosines that are highly conserved among translocator chaperones contribute to the hydrophobic patches but also form hydrogen bonds to the peptide backbone. Conclusions The interaction between SycD and YopD is very similar to the binding of the Pseudomonas minor translocator PopD to its chaperone PcrH and the Shigella major translocator IpaB to its chaperone IpgC. This confirms the prediction made by Kolbe and co-workers that a hexapeptide with hydrophobic residues at three positions is a conserved chaperone binding motif. Because the hydrophobic groove on the concave side of translocator chaperones is involved in binding of the major and the minor translocator, simultaneous binding of both translocators to a single type III secretion class II chaperone appears unlikely.
Collapse
Affiliation(s)
- Madeleine Schreiner
- Department of Chemistry, Bielefeld University, PO Box 10 01 31, 33501 Bielefeld, Germany
| | | |
Collapse
|
114
|
A new means to identify type 3 secreted effectors: functionally interchangeable class IB chaperones recognize a conserved sequence. mBio 2012; 3:mBio.00243-11. [PMID: 22334517 PMCID: PMC3280449 DOI: 10.1128/mbio.00243-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Many Gram-negative bacteria utilize specialized secretion systems to inject proteins (effectors) directly into host cells. Little is known regarding how bacteria ensure that only small subsets of the thousands of proteins they encode are recognized as substrates of the secretion systems, limiting their identification through bioinformatic analyses. Many of these proteins require chaperones to direct their secretion. Here, using the newly described protein interaction platform assay, we demonstrate that type 3 secretion system class IB chaperones from one bacterium directly bind their own effectors as well as those from other species. In addition, we observe that expression of class IB homologs from seven species, including pathogens and endosymbionts, mediate the translocation of effectors from Shigella directly into host cells, demonstrating that class IB chaperones are often functionally interchangeable. Notably, class IB chaperones bind numerous effectors. However, as previously proposed, they are not promiscuous; rather they recognize a defined sequence that we designate the conserved chaperone-binding domain (CCBD) sequence [(LMIF)(1)XXX(IV)(5)XX(IV)(8)X(N)(10)]. This sequence is the first defined amino acid sequence to be identified for any interspecies bacterial secretion system, i.e., a system that delivers proteins directly into eukaryotic cells. This sequence provides a new means to identify substrates of type III secretion systems. Indeed, using a pattern search algorithm for the CCBD sequence, we have identified the first two probable effectors from an endosymbiont, Sodalis glossinidius. IMPORTANCE Many Gram-negative pathogens utilize type 3 secretion systems to deliver tens of effectors into host cells. In order to understand the diverse ways that these organisms cause disease, it is necessary to identify their effectors, many of which require chaperones to be secreted. Here we establish that class IB chaperones are not promiscuous, as previously proposed, but rather recognize a conserved effector sequence. We demonstrate that pattern search algorithms based on this defined sequence can be used to identify previously unknown effectors. Furthermore, we observe that class IB chaperones from at least seven bacterial species are functionally interchangeable. Not only do they bind and mediate the delivery of their own set of effectors into host cells but they also bind to type 3 substrates from other bacteria, suggesting that inhibitors that block chaperone-effector interactions could provide a novel means to effectively treat infections due to Gram-negative pathogens, including organisms resistant to currently available antibiotics.
Collapse
|
115
|
Demba Diallo M, Monteil CL, Vinatzer BA, Clarke CR, Glaux C, Guilbaud C, Desbiez C, Morris CE. Pseudomonas syringae naturally lacking the canonical type III secretion system are ubiquitous in nonagricultural habitats, are phylogenetically diverse and can be pathogenic. ISME JOURNAL 2012; 6:1325-35. [PMID: 22237542 DOI: 10.1038/ismej.2011.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The type III secretion system (T3SS) is an important virulence factor of pathogenic bacteria, but the natural occurrence of variants of bacterial plant pathogens with deficiencies in their T3SS raises questions about the significance of the T3SS for fitness. Previous work on T3SS-deficient plant pathogenic bacteria has focused on strains from plants or plant debris. Here we have characterized T3SS-deficient strains of Pseudomonas syringae from plant and nonplant substrates in pristine nonagricultural contexts, many of which represent recently described clades not yet found associated with crop plants. Strains incapable of inducing a hypersensitive reaction (HR(-)) in tobacco were detected in 65% of 126 samples from headwaters of rivers (mountain creeks and lakes), snowpack, epilithic biofilms, wild plants and leaf litter and constituted 2 to 100% of the P. syringae population associated with each sample. All HR(-) strains lacked at least one gene in the canonical hrp/hrc locus or the associated conserved effector locus, but most lacked all six of the genes tested (hrcC, hrpL, hrpK1, avrE1 and hrpW1) and represented several disparate phylogenetic clades. Although most HR(-) strains were incapable of causing symptoms on cantaloupe seedlings as expected, strains in the recently described TA-002 clade caused severe symptoms in spite of the absence of any of the six conserved genes of the canonical T3SS according to PCR and Southern blot assays. The phylogenetic context of the T3SS variants we observed provides insight into the evolutionary history of P. syringae as a pathogen and as an environmental saprophyte.
Collapse
|
116
|
Lin S, Zhang Z, Xu H, Li L, Chen S, Li J, Hao Z, Chen PR. Site-Specific Incorporation of Photo-Cross-Linker and Bioorthogonal Amino Acids into Enteric Bacterial Pathogens. J Am Chem Soc 2011; 133:20581-7. [DOI: 10.1021/ja209008w] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shixian Lin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhenrun Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Xu
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyang Hao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
117
|
Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 2011; 40:D641-5. [PMID: 22067448 PMCID: PMC3245122 DOI: 10.1093/nar/gkr989] [Citation(s) in RCA: 411] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/) has served as a comprehensive repository of bacterial virulence factors (VFs) for >7 years. Bacterial virulence is an exciting and dynamic field, due to the availability of complete sequences of bacterial genomes and increasing sophisticated technologies for manipulating bacteria and bacterial genomes. The intricacy of virulence mechanisms offers a challenge, and there exists a clear need to decipher the ‘language’ used by VFs more effectively. In this article, we present the recent major updates of VFDB in an attempt to summarize some of the most important virulence mechanisms by comparing different compositions and organizations of VFs from various bacterial pathogens, identifying core components and phylogenetic clades and shedding new light on the forces that shape the evolutionary history of bacterial pathogenesis. In addition, the 2012 release of VFDB provides an improved user interface.
Collapse
Affiliation(s)
- Lihong Chen
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | | | | | | | | |
Collapse
|
118
|
Sait M, Kamneva OK, Fay DS, Kirienko NV, Polek J, Shirasu-Hiza MM, Ward NL. Genomic and Experimental Evidence Suggests that Verrucomicrobium spinosum Interacts with Eukaryotes. Front Microbiol 2011; 2:211. [PMID: 22022322 PMCID: PMC3196152 DOI: 10.3389/fmicb.2011.00211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/30/2011] [Indexed: 01/01/2023] Open
Abstract
Our knowledge of pathogens and symbionts is heavily biased toward phyla containing species that are straightforward to isolate in pure culture. Novel bacterial phyla are often represented by a handful of strains, and the number of species interacting with eukaryotes is likely underestimated. Identification of predicted pathogenesis and symbiosis determinants such as the Type III Secretion System (T3SS) in the genomes of "free-living" bacteria suggests that these microbes participate in uncharacterized interactions with eukaryotes. Our study aimed to test this hypothesis on Verrucomicrobium spinosum (phylum Verrucomicrobia) and to begin characterization of its predicted T3SS. We showed the putative T3SS structural genes to be transcriptionally active, and that expression of predicted effector proteins was toxic to yeast in an established functional screen. Our results suggest that the predicted T3SS genes of V. spinosum could encode a functional T3SS, although further work is needed to determine whether V. spinosum produces a T3SS injectisome that delivers the predicted effectors. In the absence of a known eukaryotic host, we made use of invertebrate infection models. The injection or feeding of V. spinosum to Drosophila melanogaster and Caenorhabditis elegans, respectively, was shown to result in increased mortality rates relative to controls, a phenomenon exaggerated in C. elegans mutants hypersensitive to pathogen infection. This finding, although not conclusively demonstrating pathogenesis, suggests that V. spinosum is capable of pathogenic activity toward an invertebrate host. Symbiotic interactions with a natural host provide an alternative explanation for the results seen in the invertebrate models. Further work is needed to determine whether V. spinosum can establish and maintain interactions with eukaryotic species found in its natural habitat, and whether the predicted T3SS is directly involved in pathogenic or symbiotic activity.
Collapse
Affiliation(s)
- Michelle Sait
- Department of Molecular Biology, University of WyomingLaramie, WY, USA
| | - Olga K. Kamneva
- Department of Molecular Biology, University of WyomingLaramie, WY, USA
| | - David S. Fay
- Department of Molecular Biology, University of WyomingLaramie, WY, USA
| | | | - James Polek
- Department of Molecular Biology, University of WyomingLaramie, WY, USA
| | | | - Naomi L. Ward
- Department of Molecular Biology, University of WyomingLaramie, WY, USA
| |
Collapse
|
119
|
Impact of the N-terminal secretor domain on YopD translocator function in Yersinia pseudotuberculosis type III secretion. J Bacteriol 2011; 193:6683-700. [PMID: 21965570 DOI: 10.1128/jb.00210-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type III secretion systems (T3SSs) secrete needle components, pore-forming translocators, and the translocated effectors. In part, effector recognition by a T3SS involves their N-terminal amino acids and their 5' mRNA. To investigate whether similar molecular constraints influence translocator secretion, we scrutinized this region within YopD from Yersinia pseudotuberculosis. Mutations in the 5' end of yopD that resulted in specific disruption of the mRNA sequence did not affect YopD secretion. On the other hand, a few mutations affecting the protein sequence reduced secretion. Translational reporter fusions identified the first five codons as a minimal N-terminal secretion signal and also indicated that the YopD N terminus might be important for yopD translation control. Hybrid proteins in which the N terminus of YopD was exchanged with the equivalent region of the YopE effector or the YopB translocator were also constructed. While the in vitro secretion profile was unaltered, these modified bacteria were all compromised with respect to T3SS activity in the presence of immune cells. Thus, the YopD N terminus does harbor a secretion signal that may also incorporate mechanisms of yopD translation control. This signal tolerates a high degree of variation while still maintaining secretion competence suggestive of inherent structural peculiarities that make it distinct from secretion signals of other T3SS substrates.
Collapse
|
120
|
Izoré T, Perdu C, Job V, Attree I, Faudry E, Dessen A. Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa. J Mol Biol 2011; 413:236-46. [PMID: 21839744 DOI: 10.1016/j.jmb.2011.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/26/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that employs a finely tuned type III secretion system (T3SS) to inject toxins directly into the cytoplasm of target cells. ExsB is a 15.6-kDa protein encoded in a T3SS transcription regulation operon that displays high sequence similarity to YscW, a lipoprotein from Yersinia spp. whose genetic neighborhood also involves a transcriptional regulator, and has been shown to play a role in the stabilization of the outer membrane ring of the T3SS. Here, we show that ExsB is expressed in P. aeruginosa upon induction of the T3SS, and subcellular fractionation studies reveal that it is associated with the outer membrane. The high-resolution crystal structure of ExsB shows that it displays a compact β-sandwich fold with interdependent β-sheets. ExsB possesses a large patch of basic residues that could play a role in membrane recognition, and its structure is distinct from that of MxiM, a lipoprotein involved in secretin stabilization in Shigella, as well as from those of Pil lipoproteins involved in pilus biogenesis. These results reveal that small lipoproteins involved in formation of the outer membrane secretin ring display clear structural differences that may be related to the different functions they play in these systems.
Collapse
Affiliation(s)
- Thierry Izoré
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, France
| | | | | | | | | | | |
Collapse
|
121
|
Laboratory adaptation of Bordetella pertussis is associated with the loss of type three secretion system functionality. Infect Immun 2011; 79:3677-82. [PMID: 21730086 DOI: 10.1128/iai.00136-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although Bordetella pertussis contains and transcribes loci encoding type III secretion system (TTSS) homologues, expression of TTSS-associated proteins has been reported only for non-laboratory-adapted Irish clinical isolates. Here we confirm such a result for clinical isolates obtained from patients treated in Argentinean hospitals. Moreover, we demonstrate that the expression of TTSS-associated proteins is independent both of the year in which the isolate was obtained and of the types of polymorphic alleles for other virulence factors but is dependent on environmental growth conditions. Interestingly, we observed that TTSS-associated protein expression is lost after successive in vitro passages but becomes operative again when bacteria come into contact with the host. This in vivo activation of TTSS expression was observed not only for clinical isolates previously adapted to the laboratory after successive in vitro passages but also for vaccine strains that did not express the system in vitro. The reversibility of TTSS expression, demonstrated by its switching off-on when the bacterium comes into contact with the host, appears to be an adaptive response of this pathogen.
Collapse
|
122
|
Sato H, Frank DW. Multi-Functional Characteristics of the Pseudomonas aeruginosa Type III Needle-Tip Protein, PcrV; Comparison to Orthologs in other Gram-negative Bacteria. Front Microbiol 2011; 2:142. [PMID: 21772833 PMCID: PMC3131520 DOI: 10.3389/fmicb.2011.00142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 06/15/2011] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa possesses a type III secretion system (T3SS) to intoxicate host cells and evade innate immunity. This virulence-related machinery consists of a molecular syringe and needle assembled on the bacterial surface, which allows delivery of T3 effector proteins into infected cells. To accomplish a one-step effector translocation, a tip protein is required at the top end of the T3 needle structure. Strains lacking expression of the functional tip protein fail to intoxicate host cells. P. aeruginosa encodes a T3S that is highly homologous to the proteins encoded by Yersinia spp. The needle-tip proteins of Yersinia, LcrV, and P. aeruginosa, PcrV, share 37% identity and 65% similarity. Other known tip proteins are AcrV (Aeromonas), IpaD (Shigella), SipD (Salmonella), BipD (Burkholderia), EspA (EPEC, EHEC), Bsp22 (Bordetella), with additional proteins identified from various Gram-negative species, such as Vibrio and Bordetella. The tip proteins can serve as a protective antigen or may be critical for sensing host cells and evading innate immune responses. Recognition of the host microenvironment transcriptionally activates synthesis of T3SS components. The machinery appears to be mechanically controlled by the assemblage of specific junctions within the apparatus. These junctions include the tip and base of the T3 apparatus, the needle proteins and components within the bacterial cytoplasm. The tip proteins likely have chaperone functions for translocon proteins, allowing the proper assembly of translocation channels in the host membrane and completing vectorial delivery of effector proteins into the host cytoplasm. Multi-functional features of the needle-tip proteins appear to be intricately controlled. In this review, we highlight the functional aspects and complex controls of T3 needle-tip proteins with particular emphasis on PcrV and LcrV.
Collapse
Affiliation(s)
- Hiromi Sato
- Center for Infectious Disease Research, Medical College of Wisconsin Milwaukee, WI, USA
| | | |
Collapse
|
123
|
Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100-25. [PMID: 21517912 DOI: 10.1111/j.1574-6976.2011.00271.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.
Collapse
Affiliation(s)
- Paul Dean
- Institute of Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle Upon Tyne, UK.
| |
Collapse
|
124
|
Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae. J Bacteriol 2011; 193:3490-6. [PMID: 21571996 DOI: 10.1128/jb.00203-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Chlamydia pneumoniae CopN protein is a member of the YopN/TyeA/InvE/MxiC family of secreted proteins that function to regulate the secretion of type III secretion system (T3SS) translocator and effector proteins. In this study, the Scc1 (CP0432) and Scc4 (CP0033) proteins of C. pneumoniae AR-39 were demonstrated to function together as a type III secretion chaperone that binds to an N-terminal region of CopN. The Scc1/Scc4 chaperone promoted the efficient secretion of CopN via a heterologous T3SS, whereas, the Scc3 chaperone, which binds to a C-terminal region of CopN, reduced CopN secretion.
Collapse
|
125
|
Modified needle-tip PcrV proteins reveal distinct phenotypes relevant to the control of type III secretion and intoxication by Pseudomonas aeruginosa. PLoS One 2011; 6:e18356. [PMID: 21479247 PMCID: PMC3066235 DOI: 10.1371/journal.pone.0018356] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/27/2011] [Indexed: 12/14/2022] Open
Abstract
The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication.
Collapse
|
126
|
Matteï PJ, Faudry E, Job V, Izoré T, Attree I, Dessen A. Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 2010; 278:414-26. [PMID: 21182592 DOI: 10.1111/j.1742-4658.2010.07974.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection. Three macromolecular partners associate to form the translocon: two are hydrophobic and one is hydrophilic, and the latter also associates with the T3SS needle. In this review, we discuss recent advances on the biochemical and structural characterization of the proteins involved in translocon formation, as well as their participation in the modification of intracellular signalling pathways upon infection. Models of translocon assembly and regulation are also discussed.
Collapse
Affiliation(s)
- Pierre-Jean Matteï
- Bacterial Pathogenesis Group, Institut de Biologie Structurale, UMR 5075 (CNRS/CEA/UJF), Grenoble, France
| | | | | | | | | | | |
Collapse
|
127
|
Gendrin C, Sarrazin S, Bonnaffé D, Jault JM, Lortat-Jacob H, Dessen A. Hijacking of the pleiotropic cytokine interferon-γ by the type III secretion system of Yersinia pestis. PLoS One 2010; 5:e15242. [PMID: 21179438 PMCID: PMC3001473 DOI: 10.1371/journal.pone.0015242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022] Open
Abstract
Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNγ. In addition, we generate specific IFNγ mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNγ. Lastly, we show that the LcrV-IFNγ interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague.
Collapse
Affiliation(s)
- Claire Gendrin
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - Stéphane Sarrazin
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - David Bonnaffé
- Laboratoire de Chimie Organique Multifonctionnelle, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris-Sud 11, Orsay, France
| | - Jean-Michel Jault
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - Andréa Dessen
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
- * E-mail:
| |
Collapse
|
128
|
Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96. J Bacteriol 2010; 193:177-89. [PMID: 20971913 DOI: 10.1128/jb.00895-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas fluorescens Q8r1-96 represents a group of rhizosphere strains responsible for the suppressiveness of agricultural soils to take-all disease of wheat. It produces the antibiotic 2,4-diacetylphloroglucinol and aggressively colonizes the roots of cereal crops. In this study, we analyzed the genome of Q8r1-96 and identified a type III protein secretion system (T3SS) gene cluster that has overall organization similar to that of the T3SS gene cluster of the plant pathogen Pseudomonas syringae. We also screened a collection of 30 closely related P. fluorescens strains and detected the T3SS genes in all but one of them. The Q8r1-96 genome contained ropAA and ropM type III effector genes, which are orthologs of the P. syringae effector genes hopAA1-1 and hopM1, as well as a novel type III effector gene designated ropB. These type III effector genes encoded proteins that were secreted in culture and injected into plant cells by both P. syringae and Q8r1-96 T3SSs. The Q8r1-96 T3SS was expressed in the rhizosphere, but mutants lacking a functional T3SS were not altered in their rhizosphere competence. The Q8r1-96 type III effectors RopAA, RopB, and RopM were capable of suppressing the hypersensitive response and production of reactive oxygen species, two plant immune responses.
Collapse
|
129
|
Betts-Hampikian HJ, Fields KA. The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut. Front Microbiol 2010; 1:114. [PMID: 21738522 PMCID: PMC3125583 DOI: 10.3389/fmicb.2010.00114] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/22/2010] [Indexed: 12/22/2022] Open
Abstract
Present-day members of the Chlamydiaceae contain parasitic bacteria that have been co-evolving with their eukaryotic hosts over hundreds of millions of years. Likewise, a type III secretion system encoded within all genomes has been refined to complement the unique obligate intracellular niche colonized so successfully by Chlamydia spp. All this adaptation has occurred in the apparent absence of the horizontal gene transfer responsible for creating the wide range of diversity in other Gram-negative, type III-expressing bacteria. The result is a system that is, in many ways, uniquely chlamydial. A critical mass of information has been amassed that sheds significant light on how the chlamydial secretion system functions and contributes to an obligate intracellular lifestyle. Although the overall mechanism is certainly similar to homologous systems, an image has emerged where the chlamydial secretion system is essential for both survival and virulence. Numerous apparent differences, some subtle and some profound, differentiate chlamydial type III secretion from others. Herein, we provide a comprehensive review of the current state of knowledge regarding the Chlamydia type III secretion mechanism. We focus on the aspects that are distinctly chlamydial and comment on how this important system influences chlamydial pathogenesis. Gaining a grasp on this fascinating system has been challenging in the absence of a tractable genetic system. However, the surface of this tough nut has been scored and the future promises to be fruitful and revealing.
Collapse
|
130
|
Detection of type III secretion system genes in Aeromonas hydrophila and their relationship with virulence in Nile tilapia. Vet Microbiol 2010; 144:371-6. [DOI: 10.1016/j.vetmic.2010.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 01/15/2010] [Accepted: 01/25/2010] [Indexed: 12/22/2022]
|
131
|
Lee PC, Stopford CM, Svenson AG, Rietsch A. Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol Microbiol 2010; 75:924-41. [PMID: 20487288 DOI: 10.1111/j.1365-2958.2009.07027.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa uses a type III secretion system to inject protein effectors into a targeted host cell. Effector secretion is triggered by host cell contact. How effector secretion is prevented prior to cell contact is not well understood. In all secretion systems studied to date, the needle tip protein is required for controlling effector secretion, but the mechanism by which needle tip proteins control effector secretion is unclear. Here we present data that the P. aeruginosa needle tip protein, PcrV, controls effector secretion by assembling into a functional needle tip complex. PcrV likely does not simply obstruct the secretion channel because the pore-forming translocator proteins can still be secreted while effector secretion is repressed. This finding suggests that PcrV controls effector secretion by affecting the conformation of the apparatus, shifting it from the default, effector secretion 'on' conformation, to the effector secretion 'off' conformation. We also present evidence that PcrG, which can bind to PcrV and is also involved in controlling effector export, is cytoplasmic and that the interaction between PcrG and PcrV is not required for effector secretion control by either protein. Taken together, these data allow us to propose a working model for control of effector secretion by PcrG and PcrV.
Collapse
Affiliation(s)
- Pei-Chung Lee
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
132
|
Rodou A, Ankrah DO, Stathopoulos C. Toxins and secretion systems of Photorhabdus luminescens. Toxins (Basel) 2010; 2:1250-64. [PMID: 22069636 PMCID: PMC3153242 DOI: 10.3390/toxins2061250] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/22/2010] [Accepted: 05/28/2010] [Indexed: 12/31/2022] Open
Abstract
Photorhabdus luminescens is a nematode-symbiotic, gram negative, bioluminescent bacterium, belonging to the family of Enterobacteriaceae. Recent studies show the importance of this bacterium as an alternative source of insecticides, as well as an emerging human pathogen. Various toxins have been identified and characterized in this bacterium. These toxins are classified into four major groups: the toxin complexes (Tcs), the Photorhabdus insect related (Pir) proteins, the “makes caterpillars floppy” (Mcf) toxins and the Photorhabdus virulence cassettes (PVC); the mechanisms however of toxin secretion are not fully elucidated. Using bioinformatics analysis and comparison against the components of known secretion systems, multiple copies of components of all known secretion systems, except the ones composing a type IV secretion system, were identified throughout the entire genome of the bacterium. This indicates that Photorhabdus luminescens has all the necessary means for the secretion of virulence factors, thus it is capable of establishing a microbial infection.
Collapse
Affiliation(s)
- Athina Rodou
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA.
| | | | | |
Collapse
|
133
|
Vp1659 is a Vibrio parahaemolyticus type III secretion system 1 protein that contributes to translocation of effector proteins needed to induce cytolysis, autophagy, and disruption of actin structure in HeLa cells. J Bacteriol 2010; 192:3491-502. [PMID: 20418402 DOI: 10.1128/jb.01493-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Vibrio parahaemolyticus harbors two type III secretion systems (T3SSs; T3SS1 and T3SS2), of which T3SS1 is involved in host cell cytotoxicity. T3SS1 expression is positively regulated by ExsA, and it is negatively regulated by ExsD. We compared the secretion profiles of a wild-type strain (NY-4) of V. parahaemolyticus with those of an ExsD deletion mutant (DeltaexsD) and with a strain of NY-4 that overexpresses T3SS1 (NY-4:pexsA). From this comparison, we detected a previously uncharacterized protein, Vp1659, which shares some sequence homology with LcrV from Yersinia. We show that vp1659 expression is positively regulated by ExsA and is negatively regulated by ExsD. Vp1659 is specifically secreted by T3SS1 of V. parahaemolyticus, and Vp1659 is not required for the successful extracellular secretion of another T3SS1 protein, Vp1656. Mechanical fractionation showed that Vp1659 is translocated into HeLa cells in a T3SS1-dependent manner and that deletion of Vp1659 does not prevent VopS from being translocated into HeLa cells during infection. Deletion of vp1659 significantly reduces cytotoxicity when HeLa cells are infected by V. parahaemolyticus, while complementation of the Deltavp1659 strain restores cytotoxicity. Differential staining showed that Vp1659 is required to induce membrane permeability in HeLa cells. We also show evidence that Vp1659 is required for actin rearrangement and the induction of autophagy. On the basis of these data, we conclude that Vp1659 is a T3SS1-associated protein that is a component of the secretion apparatus and that it is necessary for the efficient translocation of effector proteins into epithelial cells.
Collapse
|
134
|
Job V, Matteï PJ, Lemaire D, Attree I, Dessen A. Structural basis of chaperone recognition of type III secretion system minor translocator proteins. J Biol Chem 2010; 285:23224-32. [PMID: 20385547 DOI: 10.1074/jbc.m110.111278] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3SS is the translocon, a proteinaceous channel that is inserted into the target membrane, which allows passage of toxins into target cells. In most bacterial species, two distinct membrane proteins (the "translocators") are involved in translocon formation, whereas in the bacterial cytoplasm, however, they remain associated to a common chaperone. To date, the strategy employed by a single chaperone to recognize two distinct translocators is unknown. Here, we report the crystal structure of a complex between the Pseudomonas translocator chaperone PcrH and a short region from the minor translocator PopD. PcrH displays a 7-helical tetratricopeptide repeat fold that harbors the PopD peptide within its concave region, originally believed to be involved in recognition of the major translocator, PopB. Point mutations introduced into the PcrH-interacting region of PopD impede translocator-chaperone recognition in vitro and lead to impairment of bacterial cytotoxicity toward macrophages in vivo. These results indicate that T3SS translocator chaperones form binary complexes with their partner molecules, and the stability of their interaction regions must be strictly maintained to guarantee bacterial infectivity. The PcrH-PopD complex displays homologs among a number of pathogenic strains and could represent a novel, potential target for antibiotic development.
Collapse
Affiliation(s)
- Viviana Job
- Bacterial Pathogenesis Group, Institut de Biologie Structurale, UMR 5075, CNRS/Commissariat à l'Enérgie Atomique/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | | | |
Collapse
|
135
|
Shimohata T, Takahashi A. Diarrhea induced by infection of Vibrio parahaemolyticus. THE JOURNAL OF MEDICAL INVESTIGATION 2010; 57:179-82. [DOI: 10.2152/jmi.57.179] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|
136
|
Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF, Charova SN, Kokkinidis M, Panopoulos NJ. Playing the "Harp": evolution of our understanding of hrp/hrc genes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:347-370. [PMID: 20455697 DOI: 10.1146/annurev-phyto-073009-114407] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
With the advent of recombinant DNA techniques, the field of molecular plant pathology witnessed dramatic shifts in the 1970s and 1980s. The new and conventional methodologies of bacterial molecular genetics put bacteria center stage. The discovery in the mid-1980s of the hrp/hrc gene cluster and the subsequent demonstration that it encodes a type III secretion system (T3SS) common to Gram negative bacterial phytopathogens, animal pathogens, and plant symbionts was a landmark in molecular plant pathology. Today, T3SS has earned a central role in our understanding of many fundamental aspects of bacterium-plant interactions and has contributed the important concept of interkingdom transfer of effector proteins determining race-cultivar specificity in plant-bacterium pathosystems. Recent developments in genomics, proteomics, and structural biology enable detailed and comprehensive insights into the functional architecture, evolutionary origin, and distribution of T3SS among bacterial pathogens and support current research efforts to discover novel antivirulence drugs.
Collapse
|
137
|
The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex. PLoS Pathog 2009; 5:e1000579. [PMID: 19750218 PMCID: PMC2734247 DOI: 10.1371/journal.ppat.1000579] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 08/17/2009] [Indexed: 12/24/2022] Open
Abstract
In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone). Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole (“inclusion”). The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection. The obligate intracellular bacteria Chlamydia trachomatis is a common sexually transmitted pathogen and the leading cause of preventable blindness worldwide. Chlamydia co-opts host cells by secreting virulence factors directly into target cells through a multi-protein complex termed a type III secretion system or “injectisome”. The lack of a system for molecular genetic manipulation in these pathogens has hindered our understanding of how the Chlamydia injectisome is assembled and how secreted factors are recognized and translocated. In this study, a yeast two-hybrid approach was used to identify networks of Chlamydia proteins that interact with components of the secretion apparatus. CdsQ, a conserved structural component predicted to be at the base of the injectisome, interacted with multiple proteins, including a new chaperone that binds to and stabilizes secretory cargo destined for the membrane of the pathogenic vacuole. These results suggest that the base of the secretion apparatus serves as a docking site for a chaperone and a subset of chaperone-cargo complexes. Because the chlamydial injectisome represents a unique and ancestral lineage of these virulence-associated secretion systems, findings made in Chlamydia should provide unique insights as to how effector proteins are recognized and stabilized, and how a hierarchy of virulence protein secretion may be established by Gram-negative bacterial pathogens.
Collapse
|
138
|
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa uses a complex type III secretion apparatus to inject effector proteins into host cells. The configuration of this secretion machinery, the activities of the proteins that are injected by it and the consequences of this process for infection are now being elucidated. This Review summarizes our current knowledge of P. aeruginosa type III secretion, including the secretion and translocation machinery, the regulation of this machinery, and the associated chaperones and effector proteins. The features of this interesting secretion system have important implications for the pathogenesis of P. aeruginosa infections and for other type III secretion systems.
Collapse
Affiliation(s)
- Alan R Hauser
- Departments of MicrobiologyImmunology and Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
139
|
Sakk E, Schneider DJ, Myers CR, Cartinhour SW. The effect of target vector selection on the invariance of classifier performance measures. IEEE TRANSACTIONS ON NEURAL NETWORKS 2009; 20:745-57. [PMID: 19342348 DOI: 10.1109/tnn.2008.2011809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, the multiclass supervised training problem is considered when a discrete set of classes is assumed. Upon generating affine models for finite data sets, we have observed the invariance of certain measures of performance after a trained classifier has been presented with test data of unknown classification. Specifically, after constructing mappings between training vectors and their desired targets, the class membership and ranking of test data has been found to remain either invariant or close to invariant under a transformation of the set of target vectors. Therefore, we derive conditions explaining how this type of invariance can arise when the multiclass problem is phrased in the context of linear networks. A bioinformatics example is then presented in order to demonstrate various principles outlined in this work.
Collapse
Affiliation(s)
- Eric Sakk
- Department of Computer Science, Morgan State University, Baltimore, MD 21251, USA.
| | | | | | | |
Collapse
|
140
|
Kline T, Felise HB, Barry KC, Jackson SR, Nguyen HV, Miller SI. Substituted 2-imino-5-arylidenethiazolidin-4-one inhibitors of bacterial type III secretion. J Med Chem 2009; 51:7065-74. [PMID: 18947223 DOI: 10.1021/jm8004515] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diverse species of pathogenic Gram-negative bacteria use secretion systems to export a variety of protein toxins and virulence factors that help establish and maintain infection. Disruption of such secretion systems is a potentially effective therapeutic strategy. We developed a high-throughput screen and identified a tris-aryl substituted 2-imino-5-arylidenethiazolidin-4-one, compound 1, as an inhibitor of the type III secretion system. Expansion of this chemotype enabled us to define the essential pharmacophore for type III secretion inhibition by this structural class. A synthetic diversity set helped us identify N-3 as the most permissive locus and led to the design of a panel of novel N-3-dipeptide-modified congeners with improved activity and physiochemical properties. We now report on the synthesis of these compounds, including a novel solid phase approach to the rapid generation of the dipeptide-thiazolidinone hybrids, and their in vitro characterization as inhibitors of type III secretion in Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Toni Kline
- Departments of Genome Sciences, Microbiology, and Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
141
|
Matsumoto H, Young GM. Translocated effectors of Yersinia. Curr Opin Microbiol 2009; 12:94-100. [PMID: 19185531 DOI: 10.1016/j.mib.2008.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 12/15/2022]
Abstract
Currently, all known translocated effectors of Yersinia are delivered into host cells by type III secretion systems (T3SSs). Pathogenic Yersinia maintain the plasmid-encoded Ysc T3SS for the specific delivery of the well-studied Yop effectors. New horizons for effector biology have opened with the discovery of the Ysps of Y. enterocolitica Biovar 1B, which are translocated into host cells by the chromosome-endoded Ysa T3SS. The reported arsenal of effectors is likely to expand since genomic analysis has revealed gene-clusters in some Yersinia that code for other T3SSs. These efforts also revealed possible type VI secretion (T6S) systems, which may indicate that translocation of effectors occurs by multiple mechanisms.
Collapse
Affiliation(s)
- Hiroyuki Matsumoto
- Department of Food Science and Technology, Robert Mondavi South Laboratory Building, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
142
|
Schmid A, Neumayer W, Trülzsch K, Israel L, Imhof A, Roessle M, Sauer G, Richter S, Lauw S, Eylert E, Eisenreich W, Heesemann J, Wilharm G. Cross-talk between type three secretion system and metabolism in Yersinia. J Biol Chem 2009; 284:12165-77. [PMID: 19244229 DOI: 10.1074/jbc.m900773200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pathogenic yersiniae utilize a type three secretion system (T3SS) to inject Yop proteins into host cells in order to undermine their immune response. YscM1 and YscM2 proteins have been reported to be functionally equivalent regulators of the T3SS in Yersinia enterocolitica. Here, we show by affinity purification, native gel electrophoresis and small angle x-ray scattering that both YscM1 and YscM2 bind to phosphoenolpyruvate carboxylase (PEPC) of Y. enterocolitica. Under in vitro conditions, YscM1, but not YscM2, was found to inhibit PEPC with an apparent IC(50) of 4 mum (K(i) = 1 mum). To analyze the functional roles of PEPC, YscM1, and YscM2 in Yop-producing bacteria, cultures of Y. enterocolitica wild type and mutants defective in the formation of PEPC, YscM1, or YscM2, respectively, were grown under low calcium conditions in the presence of [U-(13)C(6)]glucose. The isotope compositions of secreted Yop proteins and nine amino acids from cellular proteins were analyzed by mass spectrometry. The data indicate that a considerable fraction of oxaloacetate used as precursor for amino acids was derived from [(13)C(3)]phosphoenolpyruvate by the catalytic action of PEPC in the wild-type strain but not in the PEPC(-) mutant. The data imply that PEPC is critically involved in replenishing the oxaloacetate pool in the citrate cycle under virulence conditions. In the YscM1(-) and YscM2(-) mutants, increased rates of pyruvate formation via glycolysis or the Entner-Doudoroff pathway, of oxaloacetate formation via the citrate cycle, and of amino acid biosynthesis suggest that both regulators trigger the central metabolism of Y. enterocolitica. We propose a "load-and-shoot cycle" model to account for the cross-talk between T3SS and metabolism in pathogenic yersiniae.
Collapse
Affiliation(s)
- Annika Schmid
- Department of Bacteriology, Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Pettenkoferstrasse 9a, D-80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Gazi AD, Charova SN, Panopoulos NJ, Kokkinidis M. Coiled-coils in type III secretion systems: structural flexibility, disorder and biological implications. Cell Microbiol 2009; 11:719-29. [PMID: 19215225 DOI: 10.1111/j.1462-5822.2009.01297.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent structural studies and analyses of microbial genomes have consolidated the understanding of the structural and functional versatility of coiled-coil domains in proteins from bacterial type III secretion systems (T3SS). Such domains consist of two or more α-helices forming a bundle structure. The occurrence of coiled-coils in T3SS is considerably higher than the average predicted occurrence in prokaryotic proteomes. T3SS proteins comprising coiled-coil domains are frequently characterized by an increased structural flexibility, which may vary from localized structural disorder to the establishment of molten globule-like state. The propensity for coiled-coil formation and structural disorder are frequently essential requirements for various T3SS functions, including the establishment of protein-protein interaction networks and the polymerization of extracellular components of T3SS appendages. Possible correlations between the frequently observed N-terminal structural disorder of effectors and the T3SS secretion signal are discussed. The results for T3SS are also compared with other Gram-negative secretory systems.
Collapse
Affiliation(s)
- Anastasia D Gazi
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology and Department of Biology, University of Crete, Vasilika Vouton, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
144
|
Persson OP, Pinhassi J, Riemann L, Marklund BI, Rhen M, Normark S, González JM, Hagström A. High abundance of virulence gene homologues in marine bacteria. Environ Microbiol 2009; 11:1348-57. [PMID: 19207573 PMCID: PMC2702493 DOI: 10.1111/j.1462-2920.2008.01861.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marine bacteria can cause harm to single-celled and multicellular eukaryotes. However, relatively little is known about the underlying genetic basis for marine bacterial interactions with higher organisms. We examined whole-genome sequences from a large number of marine bacteria for the prevalence of homologues to virulence genes and pathogenicity islands known from bacteria that are pathogenic to terrestrial animals and plants. As many as 60 out of 119 genomes of marine bacteria, with no known association to infectious disease, harboured genes of virulence-associated types III, IV, V and VI protein secretion systems. Type III secretion was relatively uncommon, while type IV was widespread among alphaproteobacteria (particularly among roseobacters) and type VI was primarily found among gammaproteobacteria. Other examples included homologues of the Yersinia murine toxin and a phage-related ‘antifeeding’ island. Analysis of the Global Ocean Sampling metagenomic data indicated that virulence genes were present in up to 8% of the planktonic bacteria, with highest values in productive waters. From a marine ecology perspective, expression of these widely distributed genes would indicate that some bacteria infect or even consume live cells, that is, generate a previously unrecognized flow of organic matter and nutrients directly from eukaryotes to bacteria.
Collapse
Affiliation(s)
- Olof P Persson
- Marine Microbiology, Department of Natural Sciences, University of Kalmar, Kalmar, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
145
|
McClean AE, Kluepfel DA. Genetic loci involved in rubrifacine production in the walnut pathogen Brenneria rubrifaciens. PHYTOPATHOLOGY 2009; 99:145-151. [PMID: 19159306 DOI: 10.1094/phyto-99-2-0145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Brenneria rubrifaciens produces a unique red pigment known as rubrifacine that has been hypothesized to play a role in pathogenesis on walnut. Analysis of DNA flanking the Tn5 insertion site in 20 rubrifacine minus (pig(-)) mutants identified three regions required for rubrifacine production. The first region was homologous to nonribosomal peptide synthetases (NRPS), the second was homologous to autoinducer synthase genes (expI homologs), and the third region was homologous to the slyA gene of Candidatus blochmania and Escherichia coli. Pigment production was not necessary for elicitation of the hypersensitive response (HR) in tobacco and had little impact on virulence in tissue-cultured walnut plants. The expI-interrupted mutants exhibited reduced virulence on walnut and were HR negative on tobacco. Pigment production was restored in Br-212 when grown in the presence of wild-type B. rubrifaciens, E. coli carrying the cloned expI-like gene, or introduction of the cloned wild-type copy of the expI-like gene. Two Brenneria spp., B. nigrifluens and B. salicis, also restored pigment production in Br-212. These results demonstrate that rubrifacine production and virulence of B. rubrifaciens on walnut are under the control of a quorum-sensing system and are sensitive to signal molecules from other Brenneria spp.
Collapse
Affiliation(s)
- Ali E McClean
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, 259 Hutchison Hall, USA
| | | |
Collapse
|
146
|
Synchronous gene expression of the Yersinia enterocolitica Ysa type III secretion system and its effectors. J Bacteriol 2009; 191:1816-26. [PMID: 19124573 DOI: 10.1128/jb.01402-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type III secretion systems (T3SSs) are complex units that consist of many proteins. Often the proteins are encoded as a cohesive unit on virulence plasmids, but several systems have their various components dispersed around the chromosome. The Yersinia enterocolitica Ysa T3SS is such a system, where the apparatus genes, some regulatory genes, and four genes encoding secreted proteins (ysp genes) are contained in a single locus. The remaining ysp genes and at least one additional regulator are found elsewhere on the chromosome. Expression of ysa genes requires conditions of high ionic strength, neutral/basic pH, and low temperatures (26 degrees C) and is stimulated by exposure to solid surfaces. The AraC-like regulator YsaE and the dual-function chaperone/regulator SycB are required to stimulate the sycB promoter, which transcribes sycB and probably yspBCDA as well. The putative phosphorelay proteins YsrRS (located at the distal end of the ysa locus) and RcsB, the response regulator of the RcsBCD phosphorelay system, are required to initiate transcription at the ysaE promoter, which drives transcription of many apparatus genes. In this work, we sought to determine which ysp genes were coordinately regulated with the genes within the ysa locus. We found that six unlinked ysp genes responded to NaCl and required YsaE/SycB, YsrRS, and RcsB for expression. Three ysp genes had unique patterns, one of which was unaffected by all elements tested except NaCl. Thus, while the ysp genes were likely to have been acquired independently, most have acquired a synchronous regulatory pattern.
Collapse
|
147
|
Gazi AD, Bastaki M, Charova SN, Gkougkoulia EA, Kapellios EA, Panopoulos NJ, Kokkinidis M. Evidence for a coiled-coil interaction mode of disordered proteins from bacterial type III secretion systems. J Biol Chem 2008; 283:34062-8. [PMID: 18836182 PMCID: PMC2662227 DOI: 10.1074/jbc.m803408200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 09/11/2008] [Indexed: 11/06/2022] Open
Abstract
Gene clusters encoding various type III secretion system (T3SS) injectisomes, frequently code downstream of the conserved atpase gene for small hydrophilic proteins whose amino acid sequences display a propensity for intrinsic disorder and coiled-coil formation. These properties were confirmed experimentally for a member of this class, the HrpO protein from the T3SS of Pseudomonas syringae pv phaseolicola: HrpO exhibits high alpha-helical content with coiled-coil characteristics, strikingly low melting temperature, structural properties that are typical for disordered proteins, and a pronounced self-association propensity, most likely via coiled-coil interactions, resulting in heterogeneous populations of quaternary complexes. HrpO interacts in vivo with HrpE, a T3SS protein for which coiled-coil formation is also strongly predicted. Evidence from HrpO analogues from all T3SS families and the flagellum suggests that the extreme flexibility and propensity for coiled-coil interactions of this diverse class of small, intrinsically disordered proteins, whose structures may alter as they bind to their cognate folded protein targets, might be important elements in the establishment of protein-protein interaction networks required for T3SS function.
Collapse
Affiliation(s)
- Anastasia D Gazi
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology, Vasilika Vouton, Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
148
|
Zhou X, Shah DH, Konkel ME, Call DR. Type III secretion system 1 genes in Vibrio parahaemolyticus are positively regulated by ExsA and negatively regulated by ExsD. Mol Microbiol 2008; 69:747-64. [PMID: 18554322 PMCID: PMC2610376 DOI: 10.1111/j.1365-2958.2008.06326.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibrio parahaemolyticus harbours two distinct type III secretion systems (T3SS1 and T3SS2). A subset of 10 T3SS1 genes are transcribed when V. parahaemolyticus is grown in tissue culture medium [Dulbecco's modified Eagle's medium (DMEM)], while transcription of these genes (except exsD) is minimal upon growth in Luria-Bertani-Salt (LB-S). Transcription of T3SS1 genes and cytotoxicity towards HeLa cells was prevented by deletion of exsA while complementation with exsA restored these traits. Overexpression of ExsA in the wild-type strain, NY-4, activated the transcription of T3SS1 genes when bacteria were grown in LB-S. Thus, ExsA is necessary and sufficient to induce the transcription of T3SS1 genes. Deletion of the exsD permitted the transcription of T3SS1 genes when bacteria were grown in the LB-S medium and complementation with the wild-type exsD gene-blocked transcription of T3SS1 genes. Overexpression of ExsD in NY-4 prevented the transcription of T3SS1 gene when bacteria were grown in DMEM. A gel mobility shift assay demonstrated that purified ExsA protein binds a novel motif in the upstream region of vp1668 and vp1687, indicating that ExsA interacts directly with the promoter sequences of T3SS1 genes. ExsA positively regulates the expression and secretion of Vp1656 while ExsD negatively regulates the expression and secretion of Vp1656.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, U.S.A
| | | | | | | |
Collapse
|
149
|
Abstract
Recent work by several groups has significantly expanded our knowledge of the structure, regulation of assembly, and function of components of the extracellular portion of the type III secretion system (T3SS) of Gram-negative bacteria. This perspective presents a structure-informed analysis of functional data and discusses three nonmutually exclusive models of how a key aspect of T3SS biology, the sensing of host cells, may be performed.
Collapse
|
150
|
Abstract
The type III secretion machinery of Gram-negative bacteria, also known as the injectisome or needle complex, is composed of a basal body spanning both bacterial membranes and the periplasm, and an external needle protruding from the bacterial surface. A set of three proteins, two hydrophobic and one hydrophilic, are required to allow translocation of proteins from the bacterium to the host cell cytoplasm. These proteins are involved in the formation of a translocation pore, the translocon, in the host cell membrane. Exciting progress has recently been made on the interaction between the translocators and the injectisome needle and the assembly of the translocon in the host cell membrane. As expected, the two hydrophobic translocators insert into the target cell membrane. Unexpectedly, the third, hydrophilic translocator, forms a complex on the distal end of the injectisome needle, the tip complex, and serves as an assembly platform for the two hydrophobic translocators.
Collapse
Affiliation(s)
- C A Mueller
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | |
Collapse
|