101
|
Affiliation(s)
- Christian F Deschepper
- Experimental Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
102
|
Taylor DA, Abdel-Rahman AA. Novel strategies and targets for the management of hypertension. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2009; 57:291-345. [PMID: 20230765 DOI: 10.1016/s1054-3589(08)57008-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hypertension, as the sole or comorbid component of a constellation of disorders of the cardiovascular (CV) system, is present in over 90% of all patients with CV disease and affects nearly 74 million individuals in the United States. The number of medications available to treat hypertension has dramatically increased during the past 3 decades to some 50 medications as new targets involved in the normal regulation of blood pressure have been identified, resulting in the development of new agents in those classes with improved therapeutic profiles (e.g., renin-angiotensin-aldosterone system; RAAS). Despite these new agents, hypertension is not adequately managed in approximately 30% of patients, who are compliant with prescriptive therapeutics, suggesting that new agents and/or strategies to manage hypertension are still needed. Some of the newest classes of agents have targeted other components of the RAS, for example, the selective renin inhibitors, but recent advances in vascular biology have provided novel potential targets that may provide avenues for new agent development. These newer targets include downstream signaling participants in pathways involved in contraction, growth, hypertrophy, and relaxation. However, perhaps the most unique approach to the management of hypertension is a shift in strategy of using existing agents with respect to the time of day at which the agent is taken. This new strategy, termed "chronotherapy," has shown considerable promise in effectively managing hypertensive patients. Therefore, there remains great potential for future development of safe and effective agents and strategies to manage a disorder of the CV system of epidemic proportion.
Collapse
Affiliation(s)
- David A Taylor
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | | |
Collapse
|
103
|
Yang Y, Parsons KK, Chi L, Malakauskas SM, Le TH. Glutathione S-transferase-micro1 regulates vascular smooth muscle cell proliferation, migration, and oxidative stress. Hypertension 2009; 54:1360-8. [PMID: 19822795 DOI: 10.1161/hypertensionaha.109.139428] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glutathione S-transferase-micro1, GSTM1, belongs to a superfamily of glutathione S-transferases that metabolizes a broad range of reactive oxygen species and xenobiotics. Across species, genetic variants that result in decreased expression of the Gstm1 gene are associated with increased susceptibility for vascular diseases, including atherosclerosis in humans. We previously identified Gstm1 as a positional candidate in our gene mapping study for susceptibility to renal vascular injury characterized by medial hypertrophy and hyperplasia of the renal vessels. To determine the role of Gstm1 in vascular smooth muscle cells (VSMCs), we isolated VSMCs from mouse aortas. We demonstrate that VSMCs from the susceptible C57BL/6 mice have reduced expression of Gstm1 mRNA and its protein product compared with that of the resistant 129 mice. After serum stimulation, C57BL/6 VSMCs proliferate and migrate at a much faster rate than 129 VSMCs. Furthermore, C57BL/6 VSMCs have higher levels of reactive oxygen species and exhibit exaggerated p38 mitogen-activated protein kinase phosphorylation after exposure to H(2)O(2). To establish causality, we show that knockdown of Gstm1 by small interfering RNA results in increased proliferation of VSMCs in a dose-dependent manner, as well as in increased reactive oxygen species levels and VSMC migration. Moreover, Gstm1 small interfering RNA causes increased p38 mitogen-activated protein kinase phosphorylation and attenuates the antiproliferative effect of Tempol. Our data suggest that Gstm1 is a novel regulator of VSMC proliferation and migration through its role in handling reactive oxygen species. Genetic variants that cause a decremental change in expression of Gstm1 may permit an environment of exaggerated oxidative stress, leading to susceptibility to vascular remodeling and atherosclerosis.
Collapse
Affiliation(s)
- Yanqiang Yang
- University of Virginia, Box 800133, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
104
|
Renal and vascular glutathione S-transferase mu is not affected by pharmacological intervention to reduce systolic blood pressure. J Hypertens 2009; 27:1575-84. [PMID: 19531963 DOI: 10.1097/hjh.0b013e32832cc5a1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Our previous studies demonstrated reduced rat glutathione S-transferase mu type 1 (Gstm1) expression in stroke-prone spontaneously hypertensive rats (SHRSPs), when compared with the normotensive Wistar-Kyoto rat. METHODS This study investigated the effects of angiotensin II type 1 receptor blocker (ARB) and a diuretic/vasodilator combination on the expression levels of rat Gstm1 and other Gstm isoforms. RESULTS Antihypertensive treatments of young and mature SHRSPs with an ARB and a diuretic/vasodilator combination improved SBP but did not affect the expression levels of Gstm1. Although Gstm1 is a member of a family of highly homologous genes, with the exception of Gstm2, there was no evidence for compensatory increase in expression of other Gstm isoforms. In contrast, we observed reduced expression of several other Gstm isoforms in untreated SHRSPs. Untreated SHRSPs demonstrated increased renal and vascular oxidative stress, both of which were not significantly affected by the antihypertensive treatments. Untreated SHRSPs scored significantly higher when assessed for renal histopathological damage, and this was improved by antihypertensive treatments. CONCLUSION These results suggest that reduced Gstm1 expression in SHRSPs is due to strain-dependent genetic abnormalities, playing a causative role in the development of hypertension, probably through oxidative stress pathway. Renal changes occur as a consequence of increased blood pressure and can be improved when treated with antihypertensive drugs. In silico comparative genome analysis combined with expression studies in rat and human vascular tissue revealed that there are possible four human homologues (GSTM1, GSTM2, GSTM4 and GSTM5) for rat Gstm1.
Collapse
|
105
|
Silvani A, Bastianini S, Berteotti C, Franzini C, Lenzi P, Lo Martire V, Zoccoli G. Central and baroreflex control of heart period during the wake-sleep cycle in consomic rats with different genetic susceptibility to hypertension. Clin Exp Pharmacol Physiol 2009; 37:322-7. [PMID: 19769608 DOI: 10.1111/j.1440-1681.2009.05293.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. In spontaneously hypertensive rats (SHR), the contributions of the baroreflex and central autonomic commands to the control of heart period (HP) vary among wake-sleep states and are impaired during quiet wakefulness and rapid eye movement sleep (REMS), respectively. 2. Dahl salt-sensitive (SS) rats are genetically susceptible to salt-sensitive hypertension, the development of which depends on diet. Substitution of chromosome 13 of SS rats with that of Brown Norway rats confers salt-resistance to consomic SS-13BN rats. 3. In the present study, we tested whether differences in the central and baroreflex contributions to HP control occur among wake-sleep states in SS and SS-13BN rats and reflect genetic susceptibility to hypertension. Rats (n = 5 per group) were fed a prohypertensive diet late during development to minimize hypertension in SS rats and were instrumented with an arterial catheter and electrodes for discriminating wake-sleep states. 4. The cross-correlation function between HP and blood pressure indicated that, in SS and SS-13BN rats, the contributions of the baroreflex and central commands to the control of HP differed significantly among wake-sleep states, with central commands outweighing the baroreflex in REMS. However, these contributions did not differ significantly between SS and SS-13BN rats in any wake-sleep state. 5. The data suggest that differences in the central and baroreflex contributions to HP control among wake-sleep states, which have been demonstrated in SHR, can be generalized to other rat models used in hypertension research. Impairments in the baroreflex and central autonomic control of HP during quiet wakefulness and REMS, respectively, cannot be generalized as an index of genetic susceptibility to hypertension.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
106
|
Johnson MD, He L, Herman D, Wakimoto H, Wallace CA, Zidek V, Mlejnek P, Musilova A, Simakova M, Vorlicek J, Kren V, Viklicky O, Qi NR, Wang J, Seidman CE, Seidman J, Kurtz TW, Aitman TJ, Pravenec M. Dissection of chromosome 18 blood pressure and salt-sensitivity quantitative trait loci in the spontaneously hypertensive rat. Hypertension 2009; 54:639-45. [PMID: 19620519 PMCID: PMC4046892 DOI: 10.1161/hypertensionaha.108.126664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 06/23/2009] [Indexed: 12/13/2022]
Abstract
Hypertension in humans and experimental models has a strong hereditary basis, but identification of causative genes remains challenging. Quantitative trait loci (QTLs) for hypertension and salt sensitivity have been reported on rat chromosome 18. We set out to genetically isolate and prioritize genes within the salt-sensitivity and hypertension QTLs on the spontaneously hypertensive rat (SHR) chromosome 18 by developing and characterizing a series of congenic strains derived from the SHR and normotensive Brown Norway rat strains. The SHR.BN-D18Rat113/D18Rat82 congenic strain exhibits significantly lower blood pressure and is salt resistant compared with the SHR. Transplantation of kidneys from SHR.BN-D18Rat113/D18Rat82 donors into SHR recipients is sufficient to attenuate increased blood pressure but not salt sensitivity. Derivation of congenic sublines allowed for the separation of salt sensitivity from hypertension QTL regions. Renal expression studies with microarray and Solexa-based sequencing in parental and congenic strains identified 4 differentially expressed genes within the hypertension QTL region, one of which is an unannotated transcript encoding a previously undescribed, small, nonprotein coding RNA. Sequencing selected biological candidate genes within the minimal congenic interval revealed a nonsynonymous variant in SHR transcription factor 4. The minimal congenic interval is syntenic to a region of human chromosome 18 where significant linkage to hypertension was observed in family based linkage studies. These congenic lines provide reagents for identifying causative genes that underlie the chromosome 18 SHR QTLs for hypertension and salt sensitivity. Candidate genes identified in these studies merit further investigation as potentially causative hypertension genes in SHR and human hypertension.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/genetics
- Blood Pressure/genetics
- Blood Pressure/physiology
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Mammalian/genetics
- Female
- Gene Expression Profiling
- Genetic Predisposition to Disease/genetics
- Hypertension/etiology
- Hypertension/genetics
- Hypertension/physiopathology
- Kidney/metabolism
- Kidney Transplantation/methods
- Male
- Oligonucleotide Array Sequence Analysis
- Polymorphism, Single Nucleotide
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Quantitative Trait Loci/genetics
- Rats
- Rats, Inbred BN
- Rats, Inbred SHR
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 4/genetics
- Receptors, Melanocortin/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sodium Chloride, Dietary/adverse effects
Collapse
Affiliation(s)
- Michelle D. Johnson
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, UK
| | - Liqun He
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, UK
| | - Daniel Herman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline A. Wallace
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, UK
| | - Vaclav Zidek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Alena Musilova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Miroslava Simakova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jaroslav Vorlicek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Vladimir Kren
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
- Institute of Biology and Medical Genetics, 1 Medical Faculty, Charles University, Prague 12800, Czech Republic
| | - Ondrej Viklicky
- Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Nathan R. Qi
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Jiaming Wang
- Department of Laboratory Medicine, University of California, San Francisco, California 94107, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - J.G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Theodore W. Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, California 94107, USA
| | - Timothy J. Aitman
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, UK
| | - Michal Pravenec
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
- Institute of Biology and Medical Genetics, 1 Medical Faculty, Charles University, Prague 12800, Czech Republic
| |
Collapse
|
107
|
Cox LA, Glenn J, Ascher S, Birnbaum S, VandeBerg JL. Integration of genetic and genomic methods for identification of genes and gene variants encoding QTLs in the nonhuman primate. Methods 2009; 49:63-9. [PMID: 19596448 PMCID: PMC2760456 DOI: 10.1016/j.ymeth.2009.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/01/2009] [Accepted: 06/05/2009] [Indexed: 11/20/2022] Open
Abstract
We have developed an integrated approach, using genetic and genomic methods, in conjunction with resources from the Southwest National Primate Research Center (SNPRC) baboon colony, for the identification of genes and their functional variants that encode quantitative trait loci (QTL). In addition, we use comparative genomic methods to overcome the paucity of baboon specific reagents and to augment translation of our findings in a nonhuman primate (NHP) to the human population. We are using the baboon as a model to study the genetics of cardiovascular disease (CVD). A key step for understanding gene-environment interactions in cardiovascular disease is the identification of genes and gene variants that influence CVD phenotypes. We have developed a sequential methodology that takes advantage of the SNPRC pedigreed baboon colony, the annotated human genome, and current genomic and bioinformatic tools. The process of functional polymorphism identification for genes encoding QTLs involves comparison of expression profiles for genes and predicted genes in the genomic region of the QTL for individuals discordant for the phenotypic trait mapping to the QTL. After comparison, genes of interest are prioritized, and functional polymorphisms are identified in candidate genes by genotyping and quantitative trait nucleotide analysis. This approach reduces the time and labor necessary to prioritize and identify genes and their polymorphisms influencing variation in a quantitative trait compared with traditional positional cloning methods.
Collapse
Affiliation(s)
- Laura A Cox
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227, USA.
| | | | | | | | | |
Collapse
|
108
|
Tian Z, Liu Y, Usa K, Mladinov D, Fang Y, Ding X, Greene AS, Cowley AW, Liang M. Novel role of fumarate metabolism in dahl-salt sensitive hypertension. Hypertension 2009; 54:255-60. [PMID: 19546378 PMCID: PMC2721687 DOI: 10.1161/hypertensionaha.109.129528] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 05/22/2009] [Indexed: 11/16/2022]
Abstract
In a previous proteomic study, we found dramatic differences in fumarase in the kidney between Dahl salt-sensitive rats and salt-insensitive consomic SS-13(BN) rats. Fumarase catalyzes the conversion between fumarate and l-malate in the tricarboxylic acid cycle. Little is known about the pathophysiological significance of fumarate metabolism in cardiovascular and renal functions, including salt-induced hypertension. The fumarase gene is located on the chromosome substituted in the SS-13(BN) rat. Sequencing of fumarase cDNA indicated the presence of lysine at amino acid position 481 in Dahl salt-sensitive rats and glutamic acid in Brown Norway and SS-13(BN) rats. Total fumarase activity was significantly lower in the kidneys of Dahl salt-sensitive rats compared with SS-13(BN) rats, despite an apparent compensatory increase in fumarase abundance in Dahl salt-sensitive rats. Intravenous infusion of a fumarate precursor in SS-13(BN) rats resulted in a fumarate excess in the renal medulla comparable to that seen in Dahl salt-sensitive rats. The infusion significantly exacerbated salt-induced hypertension in SS-13(BN) rats (140+/-3 vs125+/-2 mm Hg in vehicle control at day 5 on a 4% NaCl diet; P<0.05). In addition, the fumarate infusion increased renal medullary tissue levels of H2O2. Treatment of cultured human renal epithelial cells with the fumarate precursor also increased cellular levels of H2O2. These data suggest a novel role for fumarate metabolism in salt-induced hypertension and renal medullary oxidative stress.
Collapse
Affiliation(s)
- Zhongmin Tian
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Biotechnology and Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Biomedical Engineering, Xi’an Jiaotong University, Shanxi, P. R. China
| | - Yong Liu
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Kristie Usa
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Domagoj Mladinov
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Yi Fang
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Andrew S. Greene
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Biotechnology and Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Allen W. Cowley
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mingyu Liang
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
109
|
Delivery of sry1, but not sry2, to the kidney increases blood pressure and sns indices in normotensive wky rats. BMC PHYSIOLOGY 2009; 9:10. [PMID: 19500370 PMCID: PMC2699329 DOI: 10.1186/1472-6793-9-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/05/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Our laboratory has shown that a locus on the SHR Y chromosome increases blood pressure (BP) in the SHR rat and in WKY rats with the SHR Y chromosome (SHR/y rat). A candidate for this Y chromosome hypertension locus is Sry, a gene that encodes a transcription factor responsible for testes determination. The SHR Y chromosome has six divergent Sry loci. The following study examined if exogenous Sry1 or Sry2 delivered to the kidney would elevate renal tyrosine hydroxylase, renal catecholamines, plasma catecholamines and telemetered BP over a 28 day period. We delivered 50 mug of either the expression construct Sry1/pcDNA 3.1, Sry2/pcDNA 3.1, or control vector into the medulla of the left kidney of normotensive WKY rats by electroporation. Weekly air stress was performed to determine BP responsiveness. Separate groups of animals were tested for renal function and plasma hormone patterns and pharmacological intervention using alpha adrenergic receptor blockade. Pre-surgery baseline and weekly blood samples were taken from Sry1 electroporated and control vector males for plasma renin, aldosterone, and corticosterone. BP was measured by telemetry and tyrosine hydroxylase and catecholamines by HPLC with electrochemical detection. RESULTS In the animals receiving the Sry1 plasmid there were significant increases after 21 days in resting plasma norepinephrine (NE, 27%) and renal tyrosine hydroxylase content (41%, p < .05) compared to controls. BP was higher in animals electroporated with Sry1 (143 mmHg, p < .05) compared to controls (125 mmHg) between 2-4 weeks. Also the pressor response to air stress was significantly elevated in males electroporated with Sry1 (41 mmHg) compared to controls (28 mmHg, p < .001). Sry2 did not elevate BP or SNS indices and further tests were not done. The hormone profiles for plasma renin, aldosterone, and corticosterone between electroporated Sry1 and control vector males showed no significant differences over the 28 day period. Alpha adrenergic receptor blockade prevented the air stress pressor response in both strains. Urinary dopamine significantly increased after 7 days post Sry electroporation. CONCLUSION These results are consistent with a role for Sry1 in increasing BP by directly or indirectly activating renal sympathetic nervous system activity.
Collapse
|
110
|
Tapocik JD, Letwin N, Mayo CL, Frank B, Luu T, Achinike O, House C, Williams R, Elmer GI, Lee NH. Identification of candidate genes and gene networks specifically associated with analgesic tolerance to morphine. J Neurosci 2009; 29:5295-307. [PMID: 19386926 PMCID: PMC2933065 DOI: 10.1523/jneurosci.4020-08.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/30/2008] [Accepted: 03/13/2009] [Indexed: 12/27/2022] Open
Abstract
Chronic morphine administration may alter the expression of hundreds to thousands of genes. However, only a subset of these genes is likely involved in analgesic tolerance. In this report, we used a behavior genetics strategy to identify candidate genes specifically linked to the development of morphine tolerance. Two inbred genotypes [C57BL/6J (B6), DBA2/J (D2)] and two reciprocal congenic genotypes (B6D2, D2B6) with the proximal region of chromosome 10 (Chr10) introgressed into opposing backgrounds served as the behavior genetic filter. Tolerance after therapeutically relevant doses of morphine developed most rapidly in the B6 followed by the B6D2 genotype and did not develop in the D2 mice and only slightly in the D2B6 animals indicating a strong influence of the proximal region of Chr10 in the development of tolerance. Gene expression profiling and pattern matching identified 64, 53, 86, and 123 predisposition genes and 81, 96, 106, and 82 tolerance genes in the periaqueductal gray (PAG), prefrontal cortex, temporal lobe, and ventral striatum, respectively. A potential gene network was identified in the PAG in which 19 of the 34 genes were strongly associated with tolerance. Eleven of the network genes were found to reside in quantitative trait loci previously associated with morphine-related behaviors, whereas seven were predictive of tolerance (morphine-naive condition). Overall, the genes modified by chronic morphine administration show a strong presence in canonical pathways representative of neuroadaptation. A potentially significant role for the micro-RNA and epigenetic mechanisms in response to chronic administration of pharmacologically relevant doses of morphine was highlighted by candidate genes Dicer and H19.
Collapse
Affiliation(s)
- Jenica D. Tapocik
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, Baltimore, Baltimore, Maryland 21228, and
| | - Noah Letwin
- Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC 20037
| | - Cheryl L. Mayo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, Baltimore, Baltimore, Maryland 21228, and
| | - Bryan Frank
- Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC 20037
| | - Troung Luu
- Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC 20037
| | - Ovokeraye Achinike
- Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC 20037
| | - Carrie House
- Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC 20037
| | - Russell Williams
- Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC 20037
| | - Greg I. Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, Baltimore, Baltimore, Maryland 21228, and
| | - Norman H. Lee
- Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC 20037
| |
Collapse
|
111
|
RGS proteins: identifying new GAPs in the understanding of blood pressure regulation and cardiovascular function. Clin Sci (Lond) 2009; 116:391-9. [PMID: 19175357 DOI: 10.1042/cs20080272] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the mechanisms that underlie BP (blood pressure) variation in humans and animal models may provide important clues for reducing the burden of uncontrolled hypertension in industrialized societies. High BP is often associated with increased signalling via G-protein-coupled receptors. Three members of the RGS (regulator of G-protein signalling) superfamily RGS2, RGS4 and RGS5 have been implicated in the attenuation of G-protein signalling pathways in vascular and cardiac myocytes, as well as cells of the kidney and autonomic nervous system. In the present review, we discuss the current state of knowledge regarding their differential expression and function in cardiovascular tissues, and the likelihood that one or more of these alleles are candidate hypertension genes. Together, findings from the studies described herein suggest that development of methods to modulate the expression and function of RGS proteins may be a possible strategy for the treatment and prevention of hypertension and cardiovascular disease.
Collapse
|
112
|
Liang M, Liu Y, Mladinov D, Cowley AW, Trivedi H, Fang Y, Xu X, Ding X, Tian Z. MicroRNA: a new frontier in kidney and blood pressure research. Am J Physiol Renal Physiol 2009; 297:F553-8. [PMID: 19339633 DOI: 10.1152/ajprenal.00045.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miRNA) has emerged rapidly as a major new direction in many fields of research including kidney and blood pressure research. A mammalian genome encodes several hundred miRNAs. These miRNAs potentially regulate the expression of thousands of proteins. miRNA expression profiles differ substantially between the kidney and other organs as well as between kidney regions. miRNAs may be functionally important in models of diabetic nephropathy, podocyte development, and polycystic disease. miRNAs may be involved in the regulation of arterial blood pressure, including possible involvement in genetic elements of hypertension. Studies of miRNAs could generate diagnostic biomarkers for kidney disease and new mechanistic insights into the complex regulatory networks underlying kidney disease and hypertension. Further progress in the understanding of miRNA biogenesis and action and technical improvements for target identification and miRNA manipulation will be important for studying miRNAs in renal function and blood pressure regulation.
Collapse
Affiliation(s)
- Mingyu Liang
- Dept. of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Packard M, Saad Y, Gunning WT, Gupta S, Shapiro J, Garrett MR. Investigating the effect of genetic background on proteinuria and renal injury using two hypertensive strains. Am J Physiol Renal Physiol 2009; 296:F839-46. [PMID: 19176703 PMCID: PMC3973645 DOI: 10.1152/ajprenal.90370.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 01/21/2009] [Indexed: 12/21/2022] Open
Abstract
An earlier linkage analysis conducted on a population derived from the Dahl salt-sensitive hypertensive (S) and the spontaneously hypertensive rat (SHR) identified 10 genomic regions linked to several renal and/or cardiovascular traits. In particular, loci on rat chromosomes (RNO) 8 and 13 were linked to proteinuria, albuminuria, and renal damage. At both loci, the S allele was associated with increased proteinuria and renal damage. The current study aimed to confirm the linkage analysis and to evaluate the effect of genetic background on the ability of each locus (either RNO8 or RNO13) to exert a phenotypic difference when placed on a genetic background either susceptible (S rat) or resistant (SHR) to the development of renal disease. Congenic strains developed to transfer genomic segments from either RNO8 or RNO13 from the SHR onto the S genetic background [S.SHR(8) or S.SHR(13)] demonstrated significantly reduced proteinuria and improved renal function. Both congenic strains demonstrated significantly reduced glomerular and tubular injury, with renal interstitial fibrosis as the predominant pathological difference compared with the S. In contrast, transfer of RNO8 or RNO13 genomic regions from the S onto the resistant SHR genetic background [SHR.S(8) or SHR.S(13)] yielded no significant difference in proteinuria or glomerular, tubular, or interstitial injury compared with SHR. These findings demonstrate that genetic context plays a significant and important role in the phenotypic expression of genes influencing proteinuria on RNO8 and RNO13.
Collapse
Affiliation(s)
- Matthew Packard
- Dept. of Medicine and Kidney Disease Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., HRC 4150, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
114
|
Cicila GT, Morgan EE, Lee SJ, Farms P, Yerga-Woolwine S, Toland EJ, Ramdath RS, Gopalakrishnan K, Bohman K, Nestor-Kalinoski AL, Khuder SA, Joe B. Epistatic genetic determinants of blood pressure and mortality in a salt-sensitive hypertension model. Hypertension 2009; 53:725-32. [PMID: 19255363 PMCID: PMC2697613 DOI: 10.1161/hypertensionaha.108.126649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
Abstract
Although genetic determinants protecting against the development of elevated blood pressure (BP) are well investigated, less is known regarding their impact on longevity. We concomitantly assessed genomic regions of rat chromosomes 3 and 7 (RNO3 and RNO7) carrying genetic determinants of BP without known epistasis, for their independent and combinatorial effects on BP and the presence of genetic determinants of survival using Dahl salt-sensitive (S) strains carrying congenic segments from Dahl salt-resistant (R) rats. Although congenic and bicongenic S.R strains carried independent BP quantitative trait loci within the RNO3 and RNO7 congenic regions, only the RNO3 allele(s) independently affected survival. The bicongenic S.R strain showed epistasis between R-rat RNO3 and RNO7 alleles for BP under salt-loading conditions, with less-than-additive effects observed on a 2% NaCl diet and greater-than-additive effects observed after prolonged feeding on a 4% NaCl diet. These RNO3 and RNO7 congenic region alleles had more-than-additive effects on survival. Increased survival of bicongenic compared with RNO3 congenic rats was attributable, in part, to maintaining lower BP despite chronic exposure to an increased dietary salt (4% NaCl) intake, with both strains showing delays in reaching highest BP. R-rat RNO3 alleles were also associated with superior systolic function, with the S.R bicongenic strain showing epistasis between R-rat RNO3 and RNO7 alleles leading to compensatory hypertrophy. Whether these alleles affect survival by additional actions within other BP-regulating tissues/organs remains unexplored. This is the first report of simultaneous detection of independent and epistatic loci dictating, in part, longevity in a hypertensive rat strain.
Collapse
Affiliation(s)
- George T. Cicila
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Eric E. Morgan
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Soon Jin Lee
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Phyllis Farms
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Shane Yerga-Woolwine
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Edward J. Toland
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Ramona S. Ramdath
- Department of Surgery, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Kathirvel Gopalakrishnan
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Keith Bohman
- Department of Pathology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Andrea L. Nestor-Kalinoski
- Department of Surgery, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Sadik A. Khuder
- Department of Medicine, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| |
Collapse
|
115
|
Bilusić M, Moreno C, Barreto NE, Tschannen MR, Harris EL, Porteous WK, Thompson CM, Grigor MR, Weder A, Boerwinkle E, Hunt SC, Curb JD, Jacob HJ, Kwitek AE. Genetically hypertensive Brown Norway congenic rat strains suggest intermediate traits underlying genetic hypertension. Croat Med J 2009; 49:586-99. [PMID: 18925692 DOI: 10.3325/cmj.2008.5.586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM To determine the independent and combined effects of three quantitative trait loci (QTL) for blood pressure in the Genetically Hypertensive (GH/Omr) rat by generating and characterizing single and combined congenic strains that have QTL on rat chromosomes (RNO) 2, 6, and 18 from the GH rat introduced into a hypertension resistant Brown Norway (BN) background. METHODS Linkage analysis and QTL identification (genome wide QTL scan) were performed with MapMaker/EXP to build the genetic maps and MapMaker/QTL for linking the phenotypes to the genetic map. The congenic strains were derived using marker-assisted selection strategy from a single male F1 offspring of an intercross between the male GH/Omr and female BN/Elh, followed by 10 generations of selective backcrossing to the female BN progenitor strain. Single congenic strains generated were BN.GH-(D2Rat22-D2Mgh11)/Mcwi (BN.GH2); BN.GH-(D6Mit12-D6Rat15)/Mcwi (BN.GH6); and BN.GH-(D18Rat41-D18Mgh4)/Mcwi (BN.GH18). Blood pressure measurements were obtained either via a catheter placed in the femoral artery or by radiotelemetry. Responses to angiotensin II (ANGII), norepinephrine (NE), and baroreceptor sensitivity were measured in the single congenics. RESULTS Transferring one or more QTL from the hypertensive GH into normotensive BN strain was not sufficient to cause hypertension in any of the developed congenic strains. There were no differences between the parental and congenic strains in their response to NE. However, BN.GH18 rats revealed significantly lower baroreceptor sensitivity (beta=-1.25-/+0.17), whereas BN.GH2 (beta=0.66-/+0.09) and BN.GH18 (beta=0.71-/+0.07) had significantly decreased responses to ANGII from those observed in the BN (beta=0.88-/+0.08). CONCLUSION The failure to alter blood pressure levels by introducing the hypertensive QTL from the GH into the hypertension resistant BN background suggests that the QTL effects are genome background-dependent in the GH rat. BN.GH2 and BN.GH18 rats reveal significant differences in response to ANGII and impaired baroreflex sensitivity, suggesting that we may have captured a locus responsible for the genetic control of baroreceptor sensitivity, which would be considered an intermediate phenotype of blood pressure.
Collapse
Affiliation(s)
- Marijo Bilusić
- Trinitas Hospital, Department of Internal Medicine, Seton Hall University, Elizabeth, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Hypertension represents a global public health burden. In addition to the rarer Mendelian forms of hypertension, classic genetic studies have documented a significant heritable component to the most common form, essential hypertension (EH). Extensive efforts are under way to elucidate the genetic basis of this disease. Recently, a new form of Mendelian hypertension has been identified, pharmacogenetic association studies in hypertensive patients have identified novel gene-by-drug interactions, and the first genome-wide association studies of EH have been published. New findings in consomic and congenic rat models also offer new clues to the genetic architecture of this complex phenotype. In this review, the authors summarize and evaluate the most recent findings related to hypertension gene identification.
Collapse
|
117
|
Abstract
Selective genotyping and phenotyping strategies are used to lower the cost of quantitative trait locus studies. Their efficiency has been studied primarily in simplified contexts--when a single locus contributes to the phenotype, and when the residual error (phenotype conditional on the genotype) is normally distributed. It is unclear how these strategies will perform in the context of complex traits where multiple loci, possibly linked or epistatic, may contribute to the trait. We also do not know what genotyping strategies should be used for nonnormally distributed phenotypes. For time-to-event phenotypes there is the additional question of choosing follow-up time duration. We use an information perspective to examine these experimental design issues in the broader context of complex traits and make recommendations on their use.
Collapse
|
118
|
Aneas I, Rodrigues MV, Pauletti BA, Silva GJJ, Carmona R, Cardoso L, Kwitek AE, Jacob HJ, Soler JMP, Krieger JE. Congenic strains provide evidence that four mapped loci in chromosomes 2, 4, and 16 influence hypertension in the SHR. Physiol Genomics 2009; 37:52-7. [PMID: 19126752 DOI: 10.1152/physiolgenomics.90299.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To dissect the genetic architecture controlling blood pressure (BP) regulation in the spontaneously hypertensive rat (SHR) we derived congenic rat strains for four previously mapped BP quantitative trait loci (QTLs) in chromosomes 2, 4, and 16. Target chromosomal regions from the Brown Norway rat (BN) averaging 13-29 cM were introgressed by marker-assisted breeding onto the SHR genome in 12 or 13 generations. Under normal salt intake, QTLs on chromosomes 2a, 2c, and 4 were associated with significant changes in systolic BP (13, 20, and 15 mmHg, respectively), whereas the QTL on chromosome 16 had no measurable effect. On high salt intake (1% NaCl in drinking water for 2 wk), the chromosome 16 QTL had a marked impact on SBP, as did the QTLs on chromosome 2a and 2c (18, 17, and 19 mmHg, respectively), but not the QTL on chromosome 4. Thus these four QTLs affected BP phenotypes differently: 1) in the presence of high salt intake (chromosome 16), 2) only associated with normal salt intake (chromosome 4), and 3) regardless of salt intake (chromosome 2c and 2a). Moreover, salt sensitivity was abrogated in congenics SHR.BN2a and SHR.BN16. Finally, we provide evidence for the influence of genetic background on the expression of the mapped QTLs individually or as a group. Collectively, these data reveal previously unsuspected nuances of the physiological roles of each of the four mapped BP QTLs in the SHR under basal and/or salt loading conditions unforeseen by the analysis of the F2 cross.
Collapse
Affiliation(s)
- Ivy Aneas
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Malanjum J, Nicolantonio RD. Absence of Correlation Between the Spontaneously Hypertensive Rat's Exaggerated Preference for Sweet and Alcohol Drinking Solutions. Clin Exp Hypertens 2009; 31:287-97. [DOI: 10.1080/10641960802404060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
120
|
Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL. Germline competent embryonic stem cells derived from rat blastocysts. Cell 2008; 135:1299-310. [PMID: 19109898 PMCID: PMC2735113 DOI: 10.1016/j.cell.2008.12.006] [Citation(s) in RCA: 510] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/21/2008] [Accepted: 12/08/2008] [Indexed: 12/28/2022]
Abstract
Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. The lack of rat embryonic stem (ES) cells has restricted the availability of transgenic technologies to create genetic models in this species. Here, we show that rat ES cells can be efficiently derived, propagated, and genetically manipulated in the presence of small molecules that specifically inhibit GSK3, MEK, and FGF receptor tyrosine kinases. These rat ES cells express pluripotency markers and retain the capacity to differentiate into derivatives of all three germ layers. Most importantly, they can produce high rates of chimerism when reintroduced into early stage embryos and can transmit through the germline. Establishment of authentic rat ES cells will make possible sophisticated genetic manipulation to create models for the study of human diseases.
Collapse
Affiliation(s)
- Ping Li
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Chang Tong
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC
| | - Ruty Mehrian-Shai
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Custom Microarray Core Facility, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Jia
- Department of Urology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nancy Wu
- USC/Norris Cancer Center Transgenic/Knockout Core Facility, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Youzhen Yan
- USC/Norris Cancer Center Transgenic/Knockout Core Facility, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert E. Maxson
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/Norris Cancer Center Transgenic/Knockout Core Facility, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Eric N. Schulze
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC
| | - Houyan Song
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai 20032, P.R. China
| | - Chih-Lin Hsieh
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Urology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Martin F. Pera
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
121
|
Redina OE, Smolenskaya SE, Maslova LN, Sakharov DG, Markel' AL. The characteristics of motor activity in ISIAH rats in an open field test are controlled by genes on chromosomes 2 and 16. ACTA ACUST UNITED AC 2008; 39:57-64. [PMID: 19089625 DOI: 10.1007/s11055-008-9100-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 05/16/2007] [Indexed: 11/26/2022]
Affiliation(s)
- O E Redina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | |
Collapse
|
122
|
Turner ME, Farkas J, Dunmire J, Ely D, Milsted A. Which Sry locus is the hypertensive Y chromosome locus? Hypertension 2008; 53:430-5. [PMID: 19075093 DOI: 10.1161/hypertensionaha.108.124131] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Y chromosome of the spontaneously hypertensive rat (SHR) contains a genetic component that raises blood pressure compared with the Wistar-Kyoto (WKY) Y chromosome. This research tests the Sry gene complex as the hypertensive component of the SHR Y chromosome. The Sry loci were sequenced in 1 strain with a hypertensive Y chromosome (SHR/Akr) and 2 strains with a normotensive Y chromosome (SHR/Crl and WKY/Akr). Both SHR strains have 7 Sry loci, whereas the WKY strain has 6. The 6 loci in common between SHR and WKY strains were identical in the sequence compared (coding region, 392-bp 5' prime flanking, 1200-bp 3' flanking). Both SHR strains have a locus (Sry3) not found in WKY rats, but this locus is different between SHR/Akr and SHR/Crl rats. Six mutations have accumulated in Sry3 between the SHR strains, whereas the other 6 Sry loci are identical. This pattern of an SHR-specific locus and mutation in this locus in SHR/Crl coinciding with the loss of Y chromosome hypertension is an expected pattern if Sry3 is the Y chromosome-hypertensive component. The SHR/y strain showed a significant increase in total Sry expression in the kidney between 4 and 15 weeks of age. There are significant differences in Sry expression between adrenal glands and the kidney (15 to 30 times higher in kidneys) but no significant differences between strains. These results, along with previous studies demonstrating an interaction of Sry with the tyrosine hydroxylase promoter and increased blood pressure with exogenous Sry expression, suggest the Sry loci as the hypertensive component of the SHR Y chromosome.
Collapse
Affiliation(s)
- Monte E Turner
- Department of Biology, University of Akron, Akron, OH 44325-3908, USA.
| | | | | | | | | |
Collapse
|
123
|
Blizard DA, Lionikas A, Vandenbergh DJ, Vasilopoulos T, Gerhard GS, Griffith JW, Klein LC, Stout JT, Mack HA, Lakoski JM, Larsson L, Spicer JM, Vogler GP, McClearn GE. Blood pressure and heart rate QTL in mice of the B6/D2 lineage: sex differences and environmental influences. Physiol Genomics 2008; 36:158-66. [PMID: 19066325 DOI: 10.1152/physiolgenomics.00035.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A quantitative trait locus (QTL) approach was used to define the genetic architecture underlying variation in systolic blood pressure (SBP) and heart rate (HR), measured indirectly on seven occasions by the tail cuff procedure. The tests were conducted in 395 F(2) adult mice (197 males, 198 females) derived from a cross of the C57BL/6J (B6) and DBA/2J (D2) strains and in 22 BXD recombinant-inbred (RI) strains. Interval mapping of F(2) data for the first 5 days of measurement nominated one statistically significant and one suggestive QTL for SBP on chromosomes (Chr) 4 and 14, respectively, and two statistically significant QTL for HR on Chr 1 (which was specific to female mice) and Chr 5. New suggestive QTL emerged for SBP on Chr 3 (female-specific) and 8 and for HR on Chr 11 for measurements recorded several weeks after mice had undergone stressful blood sampling procedures. The two statistically significant HR QTL were confirmed by analyses of BXD RI strain means. Male and female F(2) mice did not differ in SBP or HR but RI strain analyses showed pronounced strain-by-sex interactions and a negative genetic correlation between the two measures in both sexes. Evidence for a role for mitochondrial DNA was found for both HR and SBP. QTL for HR and SBP may differ in males and females and may be sensitive to different environmental contexts.
Collapse
Affiliation(s)
- David A Blizard
- Center for Developmental & Health Genetics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
|
125
|
Iigaya K, Kumagai H, Nabika T, Harada Y, Onimaru H, Oshima N, Takimoto C, Kamayachi T, Saruta T, Itoh H. Relation of blood pressure quantitative trait locus on rat chromosome 1 to hyperactivity of rostral ventrolateral medulla. Hypertension 2008; 53:42-8. [PMID: 19047583 DOI: 10.1161/hypertensionaha.108.117804] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic factors that induce essential hypertension have been examined using genome-wide linkage analyses. A quantitative trait locus (QTL) region that is closely linked to hypertension has been found on chromosome 1 in stroke-prone spontaneously hypertensive rats (SHRSPs). We used 2 congenic rats in which the blood pressure QTL on rat chromosome 1 was introgressed from SHRSP/Izm to Wistar-Kyoto (WKY)/Izm (WKYpch1.0) and from WKY/Izm to SHRSP/Izm (SHRSPwch1.0) rats by repeated backcrossing. Previous studies reported that the intermediate phenotype of this QTL for hypertension is characterized by the hyperactivity of the sympathetic nervous system in response to physiological and psychological stress. We performed intracellular patch-clamp recordings of rostral ventrolateral medulla (RVLM) neurons from WKY, WKYpch1.0, SHRSPwch1.0, and SHRSPs and compared the basal electrophysiological activities of RVLM neurons and the responses of these neurons to angiotensin II. The basal membrane potential of RVLM neurons from WKYpch1.0 was significantly "shallower" than that of the neurons from WKY. The depolarization of RVLM neurons from WKYpch1.0 in response to angiotensin II was significantly larger than that in neurons from WKY rats, whereas the depolarization of RVLM neurons from SHRSPwch1.0 was significantly smaller than that in neurons from SHRSPs. The response to angiotensin II of RVLM neurons from WKYpch1.0 and SHRSPs was sustained even after the blockade of all of the synaptic transmissions using tetrodotoxin. The QTL on rat chromosome 1 was primarily related to the postsynaptic response of RVLM bulbospinal neurons to brain angiotensin II, whereas both the QTL and other genomic regions influenced the basal activity of RVLM neurons.
Collapse
Affiliation(s)
- Kamon Iigaya
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Blood pressure and proteinuria effects of multiple quantitative trait loci on rat chromosome 9 that differentiate the spontaneously hypertensive rat from the Dahl salt-sensitive rat. J Hypertens 2008; 26:2134-41. [PMID: 18854752 DOI: 10.1097/hjh.0b013e32830ef95c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A blood pressure (BP) quantitative trait locus (QTL) was previously located within 117 kb on rat chromosome 9 (RNO9) using hypertensive Dahl salt-sensitive and normotensive Dahl salt-resistant rats. An independent study between two hypertensive rat strains, the Dahl salt-sensitive rat and the spontaneously hypertensive rat (SHR), also detected a QTL encompassing this 117 kb region. Dahl salt-sensitive alleles in both of these studies were associated with increased BP. To map SHR alleles that decrease BP in the Dahl salt-sensitive rat, a panel of eight congenic strains introgressing SHR alleles onto the Dahl salt-sensitive genetic background were constructed and characterized. S.SHR(9)x3B, S.SHR(9)x3A and S.SHR(9)x2B, the congenic regions of which span a portion or all of the 1 logarithm of odds (LOD) interval identified by linkage analysis, did not significantly alter BP. However, S.SHR(9), S.SHR(9)x4A, S.SHR(9)x7A, S.SHR(9)x8A and S.SHR(9)x10A, the introgressed segments of which extend distal to the 1 LOD interval, significantly reduced BP. The shortest genomic segment, BP QTL1, to which this BP-lowering effect can be traced is the differential segment of S.SHR(9)x4A and S.SHR(9)x2B, to which an urinary protein excretion QTL also maps. However, the introgressed segment of S.SHR(9)x10A, located outside of this QTL1 region, represented a second BP QTL (BP QTL2) having no detectable effects on urinary protein excretion. In summary, the data suggest that there are multiple RNO9 alleles of the SHR that lower BP of the Dahl salt-sensitive rat with or without detectable effects on urinary protein excretion and that only one of these BP QTLs, QTL1, overlaps with the 117 kb BP QTL region identified using Dahl salt-sensitive and Dahl salt-resistant rats.
Collapse
|
127
|
Delles C, McBride MW, Padmanabhan S, Dominiczak AF. The genetics of cardiovascular disease. Trends Endocrinol Metab 2008; 19:309-16. [PMID: 18819818 DOI: 10.1016/j.tem.2008.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
Recent advances in genotyping technology and insights into disease mechanisms have increased interest in the genetics of cardiovascular disease. Several candidate genes involved in cardiovascular diseases were identified from studies using animal models, and the translation of these findings to human disease is an exciting challenge. There is a trend towards large-scale genome-wide association studies that are subject to strict quality criteria with regard to both genotyping and phenotyping. Here, we review some of the strategies that have been developed to translate findings from experimental models to human disease and outline the need for optimizing global approaches to analyze such results. Findings from ongoing studies are interpreted in the context of disease pathways instead of the more traditional focus on single genetic variants.
Collapse
Affiliation(s)
- Christian Delles
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | | | | | | |
Collapse
|
128
|
Liu Y, Singh RJ, Usa K, Netzel BC, Liang M. Renal medullary 11 beta-hydroxysteroid dehydrogenase type 1 in Dahl salt-sensitive hypertension. Physiol Genomics 2008; 36:52-8. [PMID: 18826995 DOI: 10.1152/physiolgenomics.90283.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Dahl salt-sensitive rat is a widely used model of human salt-sensitive forms of hypertension. The kidney plays an important role in the pathogenesis of Dahl salt-sensitive hypertension, but the molecular mechanisms involved remain a subject of intensive investigation. Gene expression profiling studies suggested that 11 beta-hydroxysteroid dehydrogenase type 1 might be dysregulated in the renal medulla of Dahl salt-sensitive rats. Additional analysis confirmed that renal medullary expression of 11 beta-hydroxysteroid dehydrogenase type 1 was downregulated by a high-salt diet in SS-13BN rats, a consomic rat strain with reduced blood pressure salt sensitivity, but not in Dahl salt-sensitive rats. 11 beta-Hydroxysteroid dehydrogenase type 1 is known to convert inactive 11-dehydrocorticosterone to active corticosterone. The urinary corticosterone/11-dehydrocorticosterone ratio as well as urinary excretion of corticosterone was higher in Dahl salt-sensitive rats than in SS-13BN rats. Knockdown of renal medullary 11 beta-hydroxysteroid dehydrogenase type 1 with small-interfering RNA attenuated the early phase of salt-induced hypertension in Dahl salt-sensitive rats and reduced urinary excretion of corticosterone. Knockdown of 11 beta-hydroxysteroid dehydrogenase type 1 did not affect blood pressure in SS-13BN rats. Long-term attenuation of salt-induced hypertension was achieved with small hairpin RNA targeting renal medullary 11 beta-hydroxysteroid dehydrogenase type 1. In summary, we have demonstrated that suppression of 11 beta-hydroxysteroid dehydrogenase type 1 expression in the renal medulla attenuates salt-induced hypertension in Dahl salt-sensitive rats.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
129
|
Abstract
Enhancing survival to hemorrhage of both civilian and military patients is a major emphasis for trauma research. Previous observations in humans and outbred rats show differential survival to similar levels of hemorrhage. In an initial attempt to determine potential genetic components of such differential outcomes, survival time after a controlled hemorrhage was measured in 15 inbred strains of rats. Anesthetized rats were catheterized, and approximately 24 h later, 55% of the calculated blood volume was removed during a 26-min period from conscious unrestrained animals. Rats were observed for a maximum of 6 h. Survival time was 7.7-fold longer in the longest-lived strain (Brown Norway/Medical College of Wisconsin; 306 +/- 36 min; mean +/- SEM) than in the shortest-lived strain (DA; 40 +/- 5 min; P < or = 0.01). Mean survival times for the remaining inbred strains ranged from 273 +/- 44 to 49 +/- 4 min (Dahl-Salt Sensitive > Brown Norway > Munich Wistar Fromter> Dahl-Salt Resistant > Copenhagen > Noble > Spontaneous-hypertensive > Lewis > BDIX > Fawn Hooded Hypertensive > FISCHER 344 > Black agouti > PVG). The variance in the hazard of death attributable to different strains was estimated to be 1.22 log-hazard units, corresponding to a heritability of approximately 48%. Graded and divergent survival times to hemorrhage in inbred rat strains are remarkable and suggest multiple genetic components for this characteristic. However, this interpretation of differential responses to hemorrhage may be confounded by potential strain-associated differences related to the surgical preparation. Identification of inbred strains divergent in survival time to hemorrhage provides the opportunity for future use of these strains to identify genes associated with this complex response.
Collapse
|
130
|
Wallis RH, Collins SC, Kaisaki PJ, Argoud K, Wilder SP, Wallace KJ, Ria M, Ktorza A, Rorsman P, Bihoreau MT, Gauguier D. Pathophysiological, genetic and gene expression features of a novel rodent model of the cardio-metabolic syndrome. PLoS One 2008; 3:e2962. [PMID: 18698428 PMCID: PMC2500170 DOI: 10.1371/journal.pone.0002962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 07/24/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Complex etiology and pathogenesis of pathophysiological components of the cardio-metabolic syndrome have been demonstrated in humans and animal models. METHODOLOGY/PRINCIPAL FINDINGS We have generated extensive physiological, genetic and genome-wide gene expression profiles in a congenic strain of the spontaneously diabetic Goto-Kakizaki (GK) rat containing a large region (110 cM, 170 Mb) of rat chromosome 1 (RNO1), which covers diabetes and obesity quantitative trait loci (QTL), introgressed onto the genetic background of the normoglycaemic Brown Norway (BN) strain. This novel disease model, which by the length of the congenic region closely mirrors the situation of a chromosome substitution strain, exhibits a wide range of abnormalities directly relevant to components of the cardio-metabolic syndrome and diabetes complications, including hyperglycaemia, hyperinsulinaemia, enhanced insulin secretion both in vivo and in vitro, insulin resistance, hypertriglyceridemia and altered pancreatic and renal histological structures. Gene transcription data in kidney, liver, skeletal muscle and white adipose tissue indicate that a disproportionately high number (43-83%) of genes differentially expressed between congenic and BN rats map to the GK genomic interval targeted in the congenic strain, which represents less than 5% of the total length of the rat genome. Genotype analysis of single nucleotide polymorphisms (SNPs) in strains genetically related to the GK highlights clusters of conserved and strain-specific variants in RNO1 that can assist the identification of naturally occurring variants isolated in diabetic and hypertensive strains when different phenotype selection procedures were applied. CONCLUSIONS Our results emphasize the importance of rat congenic models for defining the impact of genetic variants in well-characterised QTL regions on in vivo pathophysiological features and cis-/trans- regulation of gene expression. The congenic strain reported here provides a novel and sustainable model for investigating the pathogenesis and genetic basis of risks factors for the cardio-metabolic syndrome.
Collapse
Affiliation(s)
- Robert H. Wallis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephan C. Collins
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Pamela J. Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karène Argoud
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Steven P. Wilder
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karin J. Wallace
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Massimiliano Ria
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Alain Ktorza
- Laboratory of Pathophysiology of Nutrition, CNRS UMR 7059, University of Paris 7, Paris, France
- Servier International Research Institute, Courbevoie, France
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Marie-Thérèse Bihoreau
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dominique Gauguier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
131
|
Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Jacob HJ, Cowley AW. Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. Am J Physiol Renal Physiol 2008; 295:F837-42. [PMID: 18653478 DOI: 10.1152/ajprenal.90341.2008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study examined the genetic basis of hypertension and renal disease in Dahl SS/Mcwi (Dahl Salt-Sensitive) rats using a complete chromosome substitution panel of consomic rats in which each of the 20 autosomes and the X and Y chromosomes were individually transferred from the Brown Norway (BN) rat onto the Dahl SS/Mcwi genetic background. Male and female rats of each of the two parental and 22 consomic strains (10-12 rats/group) were fed a high-salt (8.0% NaCl) diet for 3 wk. Mean arterial blood pressure rose by 60 mmHg and urinary protein and albumin excretion increased 3- and 20-fold, respectively, in male SS/Mcwi rats compared with BN controls. Substitution of chromosomes 1, 5, 7, 8, 13, or 18 from the BN onto the SS/Mcwi background attenuated the development of hypertension, proteinuria, and albuminuria in male rats. In female rats, substitution of chromosomes 1 and 5 also decreased blood pressure, protein excretion, and albumin excretion. These studies also identified several chromosomes in male (6, 11, Y) and female (4, 6, 11, 19, 20) rats that reduced albuminuria without altering blood pressure. These data indicate that genes contributing to salt-sensitive hypertension are found on multiple chromosomes of the Dahl SS/Mcwi rat. Furthermore, this consomic rat panel provides a stable genetic platform that can facilitate further gene mapping by either linkage studies or the breeding of congenic and subcongenic rats.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
132
|
Response to genetic manipulations of liver angiotensinogen in the physiological range. J Hum Genet 2008; 53:775-788. [PMID: 18600297 DOI: 10.1007/s10038-008-0311-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Genetic variation in the human angiotensinogen gene (AGT) influences plasma AGT concentration and susceptibility to essential hypertension by a mechanism that remains to be clarified. When one or two additional copies of the gene were inserted by gene titration (by homologous recombination with gap-repair at the AGT locus), both plasma AGT and arterial pressure were elevated in the physiological range in the mouse. The causal dependency between plasma AGT and blood pressure and the relative contribution of the various tissues that express AGT to these two phenotypic parameters remained to be determined. To address these issues, we generated a transgenic mouse with overexpression of the mouse AGT gene restricted to the liver. The transgene was examined in two contrasted genetic backgrounds, the sodium-sensitive C57BL/6J and the sodium-resistant A/J. Transgenic and control male animals underwent continuous cardiovascular monitoring by telemetry for 14 days while under a standard sodium diet (0.2%). Moderate but significant increases in plasma AGT (40%, p = 0.01) and systolic blood pressure (4-6 mmHg, p ranging from 0.01 to <0.001) were observed in the sodium-sensitive background, but not in the sodium-resistant animals. Statistical analysis of a large number of consecutive, repeated measurements of blood pressure afforded power to detect small effects in the physiological range by use of advanced mixed models of analysis of variances and covariances. Although plasma renin activity was increased in the sodium-sensitive background, it did not reach statistical significance. These observations underline a potential contribution of systemic AGT to the mechanism of AGT-mediated hypertension, but the significance of sodium sensitivity in the genetic background suggests participation of the kidney in expression of the elevated blood pressure phenotype, a matter that will warrant further studies. They also highlight the challenge of identifying the contribution of individual genes in complex inheritance, as their effects are modulated by other genetic and environmental determinants.
Collapse
|
133
|
Wang T, Takabatake T, Kobayashi Y, Nabika T. Sympathetic regulation of renal function in stroke-prone spontaneously hypertensive rats congenic for chromosome 1 blood pressure quantitative trait loci. Clin Exp Pharmacol Physiol 2008; 35:1365-70. [PMID: 18565192 DOI: 10.1111/j.1440-1681.2008.04990.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Two reciprocal congenic strains, WKYpch1.0 and SHRSPwch1.0, were constructed, respectively, by introgressing the stroke-prone spontaneously hypertensive rat (SHRSP)-derived fragment for the chromosome 1 blood pressure (BP) quantitative trait locus (QTL) into Wistar-Kyoto (WKY) rats and vice versa. 2. Under basal conditions with intact renal sympathetic nerves, the renal noradrenaline content and renal vascular resistance (RVR) were decreased in the order of SHRSP, SHRSPwch1.0, WKYpch1.0 and WKY, exhibiting reciprocal changes in the congenic strains according to the genotype of the chromosome 1 QTL. 3. Renal denervation resulted in significant effects on RVR and the fractional excretion of sodium only in SHRSP and WKYpch1.0, both of which harboured the SHRSP-derived fragment of chromosome 1 QTL. 4. Thus, chromosome 1 QTL may influence both renal sympathetic nervous activity and the regulatory role of the sympathetic nervous system in vascular and tubular functions. The reciprocal congenic strains are thereby unique models that may help in the search for intermediate phenotypes and empower functional deduction of candidate genes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | | | | | | |
Collapse
|
134
|
Candidate gene studies in cardiovascular medicine: complex diseases and even more complex intermediate phenotypes. J Hypertens 2008; 26:1069-71. [DOI: 10.1097/hjh.0b013e32830004f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
135
|
Jensen V, Rinholm JE, Johansen TJ, Medin T, Storm-Mathisen J, Sagvolden T, Hvalby O, Bergersen LH. N-methyl-D-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience 2008; 158:353-64. [PMID: 18571865 DOI: 10.1016/j.neuroscience.2008.05.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/13/2008] [Accepted: 05/15/2008] [Indexed: 11/15/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most common neurobehavioural disorder among children. ADHD children are hyperactive, impulsive and have problems with sustained attention. These cardinal features are also present in the best validated animal model of ADHD, the spontaneously hypertensive rat (SHR), which is derived from the Wistar Kyoto rat (WKY). Current theories of ADHD relate symptom development to factors that alter learning. N-methyl-D-aspartate receptor (NMDAR) dependent long term changes in synaptic efficacy in the mammalian CNS are thought to represent underlying cellular mechanisms for some forms of learning. We therefore hypothesized that synaptic abnormality in excitatory, glutamatergic synaptic transmission might contribute to the altered behavior in SHRs. We studied physiological and anatomical aspects of hippocampal CA3-to-CA1 synapses in age-matched SHR and WKY (controls). Electrophysiological analysis of these synapses showed reduced synaptic transmission (reduced field excitatory postsynaptic potential for a defined fiber volley size) in SHR, whereas short-term forms of synaptic plasticity, like paired-pulse facilitation, frequency facilitation, and delayed response enhancement were comparable in the two genotypes, and long-term potentiation (LTP) of synaptic transmission was of similar magnitude. However, LTP in SHR was significantly reduced (by 50%) by the NR2B specific blocker CP-101,606 (10 microM), whereas the blocker had no effect on LTP magnitude in the control rats. This indicates that the SHR has a functional predominance of NR2B, a feature characteristic of early developmental stages in these synapses. Quantitative immunofluorescence and electron microscopic postembedding immunogold cytochemistry of the three major NMDAR subunits (NR1, NR2A; and NR2B) in stratum radiatum spine synapses revealed no differences between SHR and WKY. The results indicate that functional impairments in glutamatergic synaptic transmission may be one of the underlying mechanisms leading to the abnormal behavior in SHR, and possibly in human ADHD.
Collapse
Affiliation(s)
- V Jensen
- Molecular Neurobiology Research Group, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Liang M, Lee NH, Wang H, Greene AS, Kwitek AE, Kaldunski ML, Luu TV, Frank BC, Bugenhagen S, Jacob HJ, Cowley AW. Molecular networks in Dahl salt-sensitive hypertension based on transcriptome analysis of a panel of consomic rats. Physiol Genomics 2008; 34:54-64. [PMID: 18430809 DOI: 10.1152/physiolgenomics.00031.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Dahl salt-sensitive (SS) rat is a widely used model of human salt-sensitive hypertension and renal injury. We studied the molecular networks that underlie the complex disease phenotypes in the SS model, using a design that involved two consomic rat strains that were protected from salt-induced hypertension and one that was not protected. Substitution of Brown Norway (BN) chromosome 13 or 18, but not 20, into the SS genome was found to significantly attenuate salt-induced hypertension and albuminuria. Gene expression profiles were examined in the kidneys of SS and consomic SS-13(BN), SS-18(BN), and SS-20(BN) rats with a total of 240 cDNA microarrays. The substituted chromosome was overrepresented in genes differentially expressed between a consomic strain and SS rats on a 0.4% salt diet. F5, Serpinc1, Slc19a2, and genes represented by three other expressed sequence tags (ESTs), which are located on chromosome 13, were found to be differentially expressed between SS-13(BN) and all other strains examined. Likewise, Acaa2, B4galt6, Colec12, Hsd17b4, and five other ESTs located on chromosome 18 exhibited expression patterns unique to SS-18(BN). On exposure to a 4% salt diet, there were 184 ESTs in the renal cortex and 346 in the renal medulla for which SS-13(BN) and SS-18(BN) shared one expression pattern, while SS and SS-20(BN) shared another, mirroring the phenotypic segregation among the four strains. Molecular networks that might contribute to the development of Dahl salt-sensitive hypertension and albuminuria were constructed with an approach that merged biological knowledge-driven analysis and data-driven Bayesian probabilistic analysis.
Collapse
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Tian Z, Greene AS, Usa K, Matus IR, Bauwens J, Pietrusz JL, Cowley AW, Liang M. Renal regional proteomes in young Dahl salt-sensitive rats. Hypertension 2008; 51:899-904. [PMID: 18316652 DOI: 10.1161/hypertensionaha.107.109173] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We performed an extensive proteomic analysis of the Dahl model of salt-sensitive hypertension. The consomic SS-13(BN) rat, genetically similar to the Dahl salt-sensitive rat, while exhibiting a significant amelioration of salt-induced hypertension, was used as a control. Proteomic analysis, using differential in-gel electrophoresis and mass spectrometry techniques, was performed in the renal cortex and the renal medulla of 6-week-old SS and SS-13(BN) rats before significant differences in blood pressure were developed between the 2 strains of rat. Several dozen proteins were identified as differentially expressed between SS and SS-13(BN) rats fed the 0.4% NaCl diet or switched to the 4% NaCl diet for 3 days (n=4). The identified proteins were involved in cellular functions or structures including signal transduction, energy metabolism, and the cytoskeleton. The proteomic analysis and subsequent Western blotting indicated that heterogeneous nuclear ribonucleoprotein K in the renal medulla was upregulated by the 4% NaCl diet in SS-13(BN) rats but downregulated in SS rats. The level of angiotensinogen mRNA in the renal medulla was regulated in an opposite manner. Silencing of heterogeneous nuclear ribonucleoprotein K resulted in an upregulation of angiotensinogen in cultured human kidney cells. In summary, we identified significant differences in kidney regional proteomic profiles between SS and SS-13(BN) rats and demonstrated a potential role of heterogeneous nuclear ribonucleoprotein K in the regulation of angiotensinogen expression in the renal medulla.
Collapse
Affiliation(s)
- Zhongmin Tian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Mokry M, Cuppen E. The Atp1a1 gene from inbred Dahl salt sensitive rats does not contain the A1079T missense transversion. Hypertension 2008; 51:922-7. [PMID: 18285611 DOI: 10.1161/hypertensionaha.107.108415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The existence of the A1079T transversion in the alpha1 isoform of the Na(+), K(+)-ATPase (Atp1a1) gene in Dahl salt-sensitive rat (SS/Jr) strain, discovered by Herrera and Ruiz-Opazo and proposed to underlay hypertension sensitivity, represents one of the most controversial topics in hypertension research. As our research group did not have any previous connection to any party in this dispute nor to hypertension-related research, we were asked (J Hypertens. 2006;24:2312-2313) to definitively adjudge the existence of the A1079T transversion. Hence, different state-of-the art SNP detection technologies that depend on a variety of mechanisms and enzymes to detect the transversion in genomic DNA as well as cDNA derived from different tissues were used. Although it was possible to readily detect other silent polymorphisms between SS and SR strains in the Atp1a1 gene by all methods used, no evidence for the existence of the A1079T transversion in SS/Jr rats was found.
Collapse
Affiliation(s)
- Michal Mokry
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
139
|
Rose P, Bond J, Tighe S, Toth MJ, Wellman TL, de Montiano EMB, Lewinter MM, Lounsbury KM. Genes overexpressed in cerebral arteries following salt-induced hypertensive disease are regulated by angiotensin II, JunB, and CREB. Am J Physiol Heart Circ Physiol 2008; 294:H1075-85. [DOI: 10.1152/ajpheart.00913.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although changes in gene expression are necessary for arterial remodeling during hypertension, the genes altered and their mechanisms of regulation remain uncertain. The goal of this study was to identify cerebral artery genes altered by hypertension and define signaling pathways important in their regulation. Intact cerebral arteries from Dahl salt-sensitive normotensive and hypertensive high-salt (HS) rats were examined by immunostaining, revealing an increased phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and expression of the proliferative marker Ki-67 in arteries from hypertensive animals. Arterial RNA analyzed by microarray and validated with RT-quantitative PCR revealed that jun family member junB and matricellular genes plasminogen activator inhibitor-1 (PAI-1) and osteopontin (OPN) were significantly overexpressed in HS arteries. Fisher exact test and annotation-based gene subsets showed that genes upregulated by Jun and Ca2+/cAMP-response element-binding protein (CREB) were overrepresented. A model of cultured rat cerebrovascular smooth muscle cells was used to test the hypothesis that angiotensin II (ANG II), JunB, and CREB are important in the regulation of genes identified in the rat hypertension model. ANG II induced a transient induction of junB and a delayed induction of PAI-1 and OPN mRNA levels, which were reduced by ERK inhibition with U-0126. Silencing junB using small-interfering RNA reduced mRNA levels of OPN but not PAI-1. The silencing of CREB reduced PAI-1 induction by ANG II but enhanced the transcription of OPN. Together, these results suggest that salt-induced hypertensive disease promotes changes in matricellular genes that are stimulated by ANG II, regulated by ERK, and selectively regulated by JunB and CREB.
Collapse
|
140
|
Abstract
PURPOSE OF REVIEW To integrate recent studies showing that abnormal Na transport in the central nervous system plays a pivotal role in genetic models of salt-sensitive hypertension. RECENT FINDINGS Na transport-regulating mechanisms classically considered to reflect renal control of the blood pressure, i.e. aldosterone-mineralocorticoid receptors-epithelial sodium channels-Na/K-ATPase, have now been demonstrated to be present in the central nervous system contributing to regulation of cerebrospinal fluid [Na] by the choroid plexus and to neuronal responsiveness to cerebrospinal fluid/brain [Na]. Dysfunction of either or both can activate central nervous system pathways involving 'ouabain' and angiotensin type 1 receptor stimulation. The latter causes sympathetic hyperactivity and adrenal release of marinobufagenin - a digitalis-like inhibitor of the alpha1 Na/K-ATPase isoform - both contributing to hypertension on high salt intake. Conversely, specific central nervous system blockade of mineralocorticoid receptors or epithelial sodium channels prevents the development of hypertension on high salt intake, irrespective of the presence of a 'salt-sensitive kidney'. Variants in the coding regions of some of the genes involved in Na transport have been identified, but sodium sensitivity may be mainly determined by abnormal regulation of expression, pointing to primary abnormalities in regulation of transcription. SUMMARY Looking beyond the kidney is providing new insights into mechanisms contributing to salt-sensitive hypertension, which will help to dissect the genetic factors involved and to discover novel strategies to prevent and treat salt-sensitive hypertension.
Collapse
Affiliation(s)
- Bing S Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ontario, Canada
| | | | | |
Collapse
|
141
|
Saad Y, Toland EJ, Yerga-Woolwine S, Farms P, Joe B. Congenic mapping of a blood pressure QTL region on rat chromosome 10 using the Dahl salt-sensitive rat with introgressed alleles from the Milan normotensive strain. Mamm Genome 2008; 19:85-91. [PMID: 18175179 DOI: 10.1007/s00335-007-9084-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
Multiple blood pressure (BP) quantitative trait loci (QTLs) are reported on rat chromosome 10 (RNO10). Of these, QTLs detected by contrasting the genome of the hypertensive Dahl salt-sensitive (S) rat with two different relatively normotensive strains, Lewis (LEW) and the Milan normotensive strain (MNS), are reported. Because the deduced QTL regions of both S vs. LEW and S vs. MNS comparisons are within large genomic segments encompassing more than 2 cM, there was a need to further localize these QTLs and determine whether the QTLs are unique to specific strain comparisons. Previously, the S.MNS QTL1 was mapped to less than 2.6 cM as a differential segment between two congenic strains. In this study, multiple congenic strains spanning the projected interval were studied. The BP effect of each strain was interpreted as the net effect of alleles introgressed within that congenic strain. The results suggest that the MNS alleles within the previously proposed differential segment (D10Rat27-D10Rat24) do not independently lower BP of the S rat. However, another congenic strain, S.MNS(10) x 9, containing introgressed MNS alleles that are outside of the previously proposed differential segment is of interest because (1) it demonstrated a BP-lowering effect, (2) it is contained within a single congenic strain and is not based on the observed effect of a differential segment, and, more importantly, (3) it overlaps with the previously identified S.LEW BP QTL region. Identification of the same QTL affecting BP in multiple rat strains will provide further support for the QTL's involvement and importance in human essential hypertension.
Collapse
Affiliation(s)
- Yasser Saad
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, Ohio, 43614-5804, USA
| | | | | | | | | |
Collapse
|
142
|
Moreno C, Lazar J, Jacob HJ, Kwitek AE. Comparative genomics for detecting human disease genes. ADVANCES IN GENETICS 2008; 60:655-97. [PMID: 18358336 DOI: 10.1016/s0065-2660(07)00423-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Originally, comparative genomics was geared toward defining the synteny of genes between species. As the human genome project accelerated, there was an increase in the number of tools and means to make comparisons culminating in having the genomic sequence for a large number of organisms spanning the evolutionary tree. With this level of resolution and a long history of comparative biology and comparative genetics, it is now possible to use comparative genomics to build or select better animal models and to facilitate gene discovery. Comparative genomics takes advantage of the functional genetic information from other organisms, (vertebrates and invertebrates), to apply it to the study of human physiology and disease. It allows for the identification of genes and regulatory regions, and for acquiring knowledge about gene function. In this chapter, the current state of comparative genomics and the available tools are discussed in the context of developing animal model systems that reflect the clinical picture.
Collapse
Affiliation(s)
- Carol Moreno
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
143
|
Rohrwasser A, Lott P, Weiss RB, Lalouel JM. From genetics to mechanism of disease liability. ADVANCES IN GENETICS 2008; 60:701-26. [PMID: 18358337 DOI: 10.1016/s0065-2660(07)00424-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
With each advance in genomic technology, new statistical methods have regularly emerged to test genetic hypotheses in complex inheritance, as evidenced throughout this book. Notwithstanding the approach used, the greatest challenge in the genetics of complex traits remains the identification of the gene(s) and the molecular variant(s) accounting for a genetic inference based on statistical testing. We take the example of quantitative trait locus (QTL) mapping for blood pressure (BP) and related phenotypes in rodents to review the current landscape. Traditional approaches to refined mapping are typically hampered by the small effect and the small proportion of the variance attached to individual QTLs. The alternative of functional screens in intact animals, whether by chemical mutagenesis or gene targeting, remains a daunting undertaking. Such limitations account for the slow progress to date of inferences from QTL to gene(s). We select a QTL for differential sodium sensitivity between two mouse inbred lines to propose an approach that can be used in relatively large genomic regions (1) by optimizing the selection of candidate genes and (2) by subjecting such genes to high-throughput functional screens. While this is still work in progress, we think it abundantly illustrates what is ahead of us in delineating genetic variation that underlie complex disease.
Collapse
Affiliation(s)
- Andreas Rohrwasser
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
144
|
Carey RM. Pathophysiology of Primary Hypertension. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
145
|
Lee NH, Haas BJ, Letwin NE, Frank BC, Luu TV, Sun Q, House CD, Yerga-Woolwine S, Farms P, Manickavasagam E, Joe B. Cross-Talk of Expression Quantitative Trait Loci Within 2 Interacting Blood Pressure Quantitative Trait Loci. Hypertension 2007; 50:1126-33. [DOI: 10.1161/hypertensionaha.107.093138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Norman H. Lee
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Brian J. Haas
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Noah E. Letwin
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bryan C. Frank
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Truong V. Luu
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Qiang Sun
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Carrie D. House
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Shane Yerga-Woolwine
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Phyllis Farms
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Ezhilarasi Manickavasagam
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bina Joe
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
146
|
Szpirer C, Szpirer J. Mammary cancer susceptibility: human genes and rodent models. Mamm Genome 2007; 18:817-31. [PMID: 18060458 DOI: 10.1007/s00335-007-9073-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 10/14/2007] [Indexed: 01/18/2023]
|
147
|
Thifault S, Ondrej S, Sun Y, Fortin A, Skamene E, Lalonde R, Tremblay J, Hamet P. Genetic determinants of emotionality and stress response in AcB/BcA recombinant congenic mice and in silico evidence of convergence with cardiovascular candidate genes. Hum Mol Genet 2007; 17:331-44. [PMID: 17913702 DOI: 10.1093/hmg/ddm277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic loci bearing stress-related phenotypes were dissected in recombinant congenic strains (RCS) of mice with C57BL/6J (B6) and A/J progenitors. Adult male mice from 14 A/J and 22 B6 background lines were evaluated for emotional reactivity in open-field (OF) and elevated plus-maze tests. Core temperature was monitored by radio telemetry during immobilization and on standard as well as salt-enriched diets. In addition, urinary electrolytes were measured. Genome-wide linkage analysis of the parameters revealed over 20 significant quantitative trait loci (QTL). The highest logarithm of odds (LOD) scores were within the previously-reported OF emotionality locus on Chr 1 (LOD = 4.6), in the dopa decarboxylase region on Chr 11 for the plus-maze (LOD = 4.7), and within a novel region of calmodulin 1 on Chr 12 for Ca++ excretion after a 24-h salt load (LOD = 4.6). RCS stress QTL overlapped with several candidate loci for cardiovascular (CV) disease. In silico evidence of functional polymorphisms by comparative sequence analysis of progenitor strains assisted to ascertain this convergence. The anxious BcA70 strain showed down regulation of Atp1a2 gene expression in the heart (P < 0.001) and brain (P < 0.05) compared with its parental B6 strain, compatible with the enhanced emotionality described in knock out animals for this gene, also involved in the salt-sensitive component of hypertension. Functional polymorphisms in regulatory elements of candidate genes of the CV/inflammatory/immune systems support the hypothesis of genetically-altered environmental susceptibility in CV disease development.
Collapse
Affiliation(s)
- Stéphane Thifault
- Centre de recherche, Centre hospitalier de l'Université de Montréal-Technopôle Angus, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Moreno C, Kaldunski ML, Wang T, Roman RJ, Greene AS, Lazar J, Jacob HJ, Cowley AW. Multiple blood pressure loci on rat chromosome 13 attenuate development of hypertension in the Dahl S hypertensive rat. Physiol Genomics 2007; 31:228-35. [PMID: 17566075 DOI: 10.1152/physiolgenomics.00280.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have indicated that substitution of chromosome 13 of the salt-resistant Brown Norway BN/SsNHsdMcwi (BN) rat into the genomic background of the Dahl salt-sensitive SS/JrHsdMcwi (SS) rat attenuates the development of salt-sensitive hypertension and renal damage. To identify the regions within chromosome 13 that attenuate the development of hypertension during a high-salt diet in the SS rat, we phenotyped a series of overlapping congenic lines covering chromosome 13, generated from an intercross between the consomic SS-13BN rat and the SS rat. Blood pressure was determined in chronically catheterized rats after 2 wk of high-salt diet (8% NaCl) together with microalbuminuria as an index of renal damage. Four discrete regions were identified, ranging in size from 4.5 to 16 Mbp, each of which independently provided significant protection from hypertension during high-salt diet, reducing blood pressure by 20–29 mmHg. Protection was more robust in female than male rats in some of the congenic strains, suggesting a sex interaction with some of the genes determining blood pressure during high-salt diet. Among the 23 congenic strains, several regions overlapped. When three of the “protective” regions were combined onto one broad congenic strain, no summation effect was seen, obtaining the same decrease in blood pressure as with each one independently. We conclude from these studies that there are four regions within chromosome 13 containing genes that interact epistatically and influence arterial pressure.
Collapse
Affiliation(s)
- Carol Moreno
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53266, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Cowley AW, Jacob HJ. Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. Am J Physiol Renal Physiol 2007; 293:F1905-14. [PMID: 17898042 DOI: 10.1152/ajprenal.00012.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the genetic basis for hypertension and renal disease phenotypes in Fawn Hooded hypertensive (FHH) rats using chromosome substitution strains (consomic rats) in which each of the 20 autosomes as well as the X and Y chromosomes were transferred from the normal Brown Norway (BN) rat onto the FHH genetic background. Male and female rats of each of the parental and consomic strains were maintained for 2 wk on high-salt (8.0% NaCl) chow with N(G)-nitro-l-arginine methyl ester (l-NAME) in the drinking water (12.5 mg/l) to induce hypertension and renal disease. Mean arterial blood pressure (MAP) was significantly higher (by over 60 mmHg) in the male FHH compared with BN rats. Urinary protein and albumin excretion rates were increased by 15- and 40-fold, respectively, in the male FHH compared with the BN. Plasma renin activity was 10-fold higher in the FHH than the BN. Similar significant differences were observed between the female FHH and BN, but the degree of hypertension and proteinuria was of a lesser magnitude. Substitution of chromosome 20 from the BN to the FHH attenuated the development of l-NAME-induced hypertension, normalized plasma renin activity, and decreased plasma creatinine in male rats. In female rats, substitution of chromosome 15 decreased MAP and urinary protein excretion. Urinary excretion of albumin in males was decreased by substitution of chromosomes 1, 15, 16, and 18 from the BN into the FHH genetic background. The present data indicate that genes that can modify l-NAME-induced hypertension and proteinuria are on chromosomes 1, 15, 16, 18, and 20.
Collapse
Affiliation(s)
- David L Mattson
- Dept. of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
High salt consumption contributes to the development of hypertension and is considered an independent risk factor for vascular remodeling, cardiac hypertrophy, and stroke incidence. In this review, we discuss the molecular origins of primary sensors involved in the phenomenon of salt sensitivity. Based on the analysis of literature data, we conclude that the kidneys and central nervous system (CNS) are two major sites for salt sensing via several distinct mechanisms: 1) [Cl(-)] sensing in renal tubular fluids, primarily by Na(+)-K(+)-Cl(-) cotransporter (NKCC) isoforms NKCC2B and NKCC2A, whose expression is mainly limited to macula densa cells; 2) [Na(+)] sensing in cerebrospinal fluid (CSF) by a novel isoform of Na(+) channels, Na(x), expressed in subfornical organs; 3) sensing of CSF osmolality by mechanosensitive, nonselective cation channels (transient receptor potential vanilloid type 1 channels), expressed in neuronal cells of supraoptic and paraventricular nuclei; and 4) osmolarity sensing by volume-regulated anion channels in glial cells of supraoptic and paraventricular nuclei. Such multiplicity of salt-sensing mechanisms likely explains the differential effects of Na(+) and Cl(-) loading on the long-term maintenance of elevated blood pressure that is documented in experimental models of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sergei N Orlov
- Department of Medicine and Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|