101
|
JEONG DH, YANG JJ, LEE L, YEON SC. Prediction of arterial blood gas values from venous blood gas values in Asiatic black bears (Ursus thibetanus) anesthetized with intramuscular medetomidine and zolazepam-tiletamine. J Vet Med Sci 2017; 79:1757-1763. [PMID: 28890467 PMCID: PMC5658574 DOI: 10.1292/jvms.16-0596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/17/2017] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to measure differences between arterial and venous blood gas parameters and to evaluate whether arterial blood gas values can be estimated from venous blood in Asiatic black bears (ABBs). Twelve healthy captive ABBs (8 males and 4 females; 8-16 years; 76.8-220 kg) were included in this study. The bears were immobilized with medetomidine and zolazepam-tiletamine using a dart gun. Arterial and venous samples were collected simultaneously at 5 and 35 min after recumbency (5- and 35-min points). Partial pressure of oxygen (PO2), partial pressure of carbon dioxide (PCO2), pH, bicarbonate (HCO3-), total carbon dioxide (TCO2), oxygen saturation of hemoglobin (SO2) and base excess (BEecf) were analyzed using a portable blood gas analyzer. There was no marked difference in measured and calculated variables over time in both venous and arterial blood except for PO2. However, arterial PO2, SO2 and pH were significantly higher and arterial PCO2, TCO2 and HCO3- were lower than those of venous samples at both 5- and 35-min points. In the regression analysis to estimate arterial values from venous values, PCO2, TCO2, HCO3-, BEecf and pH significantly showed over 0.45 in coefficient of determination value (R2), and there were little differences between actual and predicted arterial values. Although there were limits in venous gas values replaced those of arterial blood, if we could not get the arterial samples, the regression formulas for arterial values from venous blood in this study would be useful clinically, except for PO2 and SO2.
Collapse
Affiliation(s)
- Dong-Hyuk JEONG
- Species Restoration Technology Institute of Korea National
Park Service, Gurye 542-853, Republic of Korea
| | - Jeong-Jin YANG
- Species Restoration Technology Institute of Korea National
Park Service, Gurye 542-853, Republic of Korea
| | - Lyon LEE
- Laboratory of Veterinary Anesthesia and Pain Management,
College of Veterinary Medicine, Western University, Pormona, CA 91766, U.S.A
| | - Seong-Chan YEON
- Laboratory of Veterinary Surgery and Behavior, College of
Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of
Korea
| |
Collapse
|
102
|
Brauner CJ, Harter TS. Beyond just hemoglobin: Red blood cell potentiation of hemoglobin-oxygen unloading in fish. J Appl Physiol (1985) 2017; 123:935-941. [PMID: 28705992 PMCID: PMC5668442 DOI: 10.1152/japplphysiol.00114.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 11/22/2022] Open
Abstract
Teleosts comprise 95% of fish species, almost one-half of all vertebrate species, and represent one of the most successful adaptive radiation events among vertebrates. This is thought to be in part because of their unique oxygen (O2) transport system. In salmonids, recent in vitro and in vivo studies indicate that hemoglobin-oxygen (Hb-O2) unloading to tissues may be doubled or even tripled under some conditions without changes in perfusion. This is accomplished through the short circuiting of red blood cell (RBC) pH regulation, resulting in a large arterial-venous pH difference within the RBC and induced reduction in Hb-O2 affinity. This system has three prerequisites: 1) highly pH-sensitive hemoglobin, 2) rapid RBC pH regulation, and 3) a heterogeneous distribution of plasma-accessible CA in the cardiovascular system (presence in the tissues and absence at the gills). Although data are limited, these attributes may be general characteristics of teleosts. Although this system is not likely operational to the same degree in other vertebrates, some of these prerequisites do exist, and the generation and elimination of pH disequilibrium states at the RBC will likely enhance Hb-O2 unloading to some degree. In human disease states, there are conditions that may partly satisfy those for enhanced Hb-O2 unloading, tentatively an avenue for future work that may improve treatment efficacy.
Collapse
Affiliation(s)
- Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Till S Harter
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
103
|
Salamin O, Mignot J, Kuuranne T, Saugy M, Leuenberger N. Transcriptomic biomarkers of altered erythropoiesis to detect autologous blood transfusion. Drug Test Anal 2017; 10:604-608. [DOI: 10.1002/dta.2240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Olivier Salamin
- Center of Research and Expertise in anti-Doping sciences - REDs; University of Lausanne; Switzerland
| | - Jonathan Mignot
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Switzerland
| | - Martial Saugy
- Center of Research and Expertise in anti-Doping sciences - REDs; University of Lausanne; Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Switzerland
| |
Collapse
|
104
|
Czuba M, Wilk R, Karpiński J, Chalimoniuk M, Zajac A, Langfort J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS One 2017; 12:e0180380. [PMID: 28763443 PMCID: PMC5538675 DOI: 10.1371/journal.pone.0180380] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
The main objective of this research was to evaluate the efficacy of intermittent hypoxic training (IHT) on anaerobic and aerobic capacity and swimming performance in well-trained swimmers. Sixteen male swimmers were randomly divided into a hypoxia (H) group (n = 8), which trained in a normobaric hypoxia environment, and a control (C) group (n = 8), which exercised under normoxic conditions. However, one participant left the study without explanation. During the experiment group H trained on land twice per week in simulated hypoxia (FiO2 = 15.5%, corresponding to 2,500 m a.s.l); however, they conducted swim training in normoxic conditions. Group C performed the same training program under normoxic conditions. The training program included four weekly microcyles, followed by three days of recovery. During practice sessions on land, the swimmers performed 30 second sprints on an arm-ergometer, alternating with two minute high intensity intervals on a lower limb cycle ergometer. The results showed that the training on land caused a significant (p<0.05) increase in absolute maximal workload (WRmax) by 7.4% in group H and by 3.2% in group C and relative values of VO2max by 6.9% in group H and 3.7% in group C. However, absolute values of VO2max were not significantly changed. Additionally, a significant (p<0.05) increase in mean power (Pmean) during the first (11.7%) and second (11.9%) Wingate tests was only observed in group H. The delta values of lactate concentration (ΔLA) after both Wingate tests were significantly (p<0.05) higher in comparison to baseline levels by 28.8% in group H. Opposite changes were observed in delta values of blood pH (ΔpH) after both Wingate tests in group H, with a significant decrease in values of ΔpH by 33.3%. The IHT caused a significant (p<0.05) improvement in 100m and 200m swimming performance, by 2.1% and 1.8%, respectively in group H. Training in normoxia (group C), resulted in a significant (p<0.05) improvement of swimming performance at 100m and 200m, by 1.1% and 0.8%, respectively. In conclusion, the most important finding of this study includes a significant improvement in anaerobic capacity and swimming performance after high-intensity IHT. However, this training protocol had no effect on absolute values of VO2max and hematological variables.
Collapse
Affiliation(s)
- Miłosz Czuba
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
- * E-mail:
| | - Robert Wilk
- Department of Swimming, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| | - Jakub Karpiński
- Department of Swimming, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biala Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Adam Zajac
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| | - Józef Langfort
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| |
Collapse
|
105
|
Fan Y, Xing C, Yuan H, Chai R, Zhao L, Zhan Y. Conjugated Polyelectrolyte-Based New Strategy for in Situ Detection of Carbon Dioxide. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20313-20317. [PMID: 28594165 DOI: 10.1021/acsami.7b05410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A conjugated polymer centered on fluorene and 2,1,3-benzothia-diazole (PFBT) is prepared for sensing CO2 in situ with high sensitivity and low background. Upon introducing CO2, the weaker electrostatic repulsion and stronger hydrophobic interactions between neighboring PFBT molecules enhance the interchain contacts compared to that without CO2, leading to the energy transfer from fluorene to 2,1,3-benzothia-diazole sites and the emission color shift from blue to green, which is sensitive to sensing CO2 in atmospheric air with a content of ∼400 ppm. Importantly, PFBT is employed to monitor photosynthesis and respiration upon cycling day and night in situ.
Collapse
Affiliation(s)
- Yibing Fan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P.R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P.R. China
- School of Materials Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Hongbo Yuan
- School of Materials Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Ran Chai
- School of Materials Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Linfei Zhao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P.R. China
| | - Yong Zhan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P.R. China
| |
Collapse
|
106
|
Hsu K, Lee TY, Periasamy A, Kao FJ, Li LT, Lin CY, Lin HJ, Lin M. Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO 2 transport. FASEB J 2017; 31:4256-4264. [PMID: 28596233 DOI: 10.1096/fj.201601282r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
Human CO2 respiration requires rapid conversion between CO2 and HCO3- Carbonic anhydrase II facilitates this reversible reaction inside red blood cells, and band 3 [anion exchanger 1 (AE1)] provides a passage for HCO3- flux across the cell membrane. These 2 proteins are core components of the CO2 transport metabolon. Intracellular H2O is necessary for CO2/HCO3- conversion. However, abundantly expressed aquaporin 1 (AQP1) in erythrocytes is thought not to be part of band 3 complexes or the CO2 transport metabolon. To solve this conundrum, we used Förster resonance energy transfer (FRET) measured by fluorescence lifetime imaging (FLIM-FRET) and identified interaction between aquaporin-1 and band 3 at a distance of 8 nm, within the range of dipole-dipole interaction. Notably, their interaction was adaptable to membrane tonicity changes. This suggests that the function of AQP1 in tonicity response could be coupled or correlated to its function in band 3-mediated CO2/HCO3- exchange. By demonstrating AQP1 as a mobile component of the CO2 transport metabolon, our results uncover a potential role of water channel in blood CO2 transport and respiration.-Hsu, K., Lee, T.-Y., Periasamy, A., Kao, F.-J., Li, L.-T., Lin, C.-Y., Lin, H.-J., Lin, M. Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO2 transport.
Collapse
Affiliation(s)
- Kate Hsu
- Transfusion Medicine Laboratory, Mackay Memorial Hospital, Tamsui, Taiwan;
| | - Ting-Ying Lee
- Transfusion Medicine Laboratory, Mackay Memorial Hospital, Tamsui, Taiwan
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Fu-Jen Kao
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Li-Tzu Li
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chuang-Yu Lin
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hui-Ju Lin
- Transfusion Medicine Laboratory, Mackay Memorial Hospital, Tamsui, Taiwan
| | - Marie Lin
- Transfusion Medicine Laboratory, Mackay Memorial Hospital, Tamsui, Taiwan
| |
Collapse
|
107
|
Romano TG, Azevedo LCP, Mendes PV, Costa ELV, Park M. Effect of continuous dialysis on blood ph in acidemic hypercapnic animals with severe acute kidney injury: a randomized experimental study comparing high vs. low bicarbonate affluent. Intensive Care Med Exp 2017; 5:28. [PMID: 28560615 PMCID: PMC5449359 DOI: 10.1186/s40635-017-0141-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background Controlling blood pH during acute ventilatory failure and hypercapnia in individuals suffering from severe acute kidney injury (AKI) and undergoing continuous renal replacement therapy (CRRT) is of paramount importance in critical care settings. In this situation, the optimal concentration of sodium bicarbonate in the dialysate is still an unsolved question in critical care since high concentrations may worsen carbon dioxide levels and low concentrations may not be as effective in controlling pH. Methods We performed a randomized, non-blinded, experimental study. AKI was induced in 12 female pigs via renal hilum ligation and hypoventilation by reducing the tidal volume during mechanical ventilation with the goal of achieving a pH between 7.10–7.15. After achieving the target pH, animals were randomized to undergo isovolemic hemodialysis with one of two bicarbonate concentrations in the dialysate (40 mEq/L [group 40] vs. 20 mEq/L [group 20]). Results Hemodynamic, respiratory, and laboratory data were collected. The median pH value at CRRT initiation was 7.14 [7.12, 7.15] in group 20 and 7.13 [7.09, 7.14] in group 40 (P = ns). The median baseline PaCO2 was 74 [72, 81] mmHg in group 20 vs. 79 [63, 85] mmHg in group 40 (P = ns). After 3 h of CRRT, the pH value was 7.05 [6.95, 7.09] in group 20 and 7.12 [7.1, 7.14] in group 40 (P < 0.05), with corresponding values of PaCO2 of 85 [79, 88] mmHg vs. 81 [63, 100] mmHg (P = ns). The difference in pH after 3 h was due to a metabolic component [standard base excess −10.4 [−12.5, −9.5] mEq/L in group 20 vs. –7.6 [−9.2, −5.1] mEq/L in group 40) (P < 0.05)]. Despite the increased infusion of bicarbonate in group 40, the blood CO2 content did not change during the experiment. The 12-h survival rate was higher in group 40 (67% vs. 0, P = 0.032). Conclusions A higher bicarbonate concentration in the dialysate of animals undergoing hypercapnic respiratory failure was associated with improved blood pH control without increasing the PaCO2 levels. Electronic supplementary material The online version of this article (doi:10.1186/s40635-017-0141-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thiago Gomes Romano
- Nephrology Department, ABC Medical School, Av. Príncipe de Gales, 821, Príncipe de Gales, Santo André, São Paulo, 09060-650, Brazil. .,Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.
| | - Luciano Cesar Pontes Azevedo
- Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.,Emergency Medicine Discipline, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Pedro Vitale Mendes
- Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.,Emergency Medicine Discipline, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Eduardo Leite Vieira Costa
- Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.,Cardio-Pulmonary Department, Pulmonary Division, Heart Institute (Incor), University of São Paulo, São Paulo, Brazil
| | - Marcelo Park
- Research and Education Institute, Hospital Sírio-Libanês, São Paulo, Brazil.,Emergency Medicine Discipline, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
108
|
Nishijima H, Kondo K, Yonezawa K, Hashimoto H, Sakurai M. Quantification and physiological significance of the rightward shift of the V-slope during incremental cardiopulmonary exercise testing. BMC Sports Sci Med Rehabil 2017; 9:9. [PMID: 28435685 PMCID: PMC5397810 DOI: 10.1186/s13102-017-0073-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/01/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ventilatory anaerobic threshold (VAT) is frequently used as a measure of exercise tolerance, with the V-slope method being the standard; however, this needs to be visually determined. Over the years, we have observed that the V-slope itself often appears to shift rightward before the appearance of the VAT (RtShift: rightward shift of V-slope). This phenomenon has long been known to occur during the first 1-2 min of steady-state exercise and disappears thereafter; it is attributed to CO2 storage, presumably in active muscle. However, during incremental exercise, we have observed that the RtShift persists; furthermore, it seems to be related to the level of VAT. Therefore, we attempted to objectively quantify the RtShift, and to confirm its relationship to an index of exercise tolerance (VAT). METHODS This study was based on a retrospective analysis of data from 100 cardiopulmonary ramp exercise tests (submaximal) performed by patients with cardiac disease. VAT was determined with the visual V-slope method. The horizontal distances between the diagonal R = 1 line and each data point on the V-slope plot to the right of R = 1 were measured; the average of these measurements was used as an objectively determined estimate of RtShift. RESULTS The predominant portion of RtShift occurred earlier than VAT. The mean RtShift was 33.9 ± 25.0 mL⋅min-1 VO2, whereas the mean VAT was 635 ± 220 mL⋅min-1. RtShift positively correlated with VAT (r = 718, p < 0.001), confirming previous visual observations. It also significantly correlated with ΔVO2/Δwork rate, a marker of oxygen uptake efficiency (r = 0.531, p < 0.001). CONCLUSIONS We identified that among patients with cardiac disease, V-slope is shifted rightward to varying degrees. The objectively quantified rightward shift of V-slope is significantly correlated with an index of exercise tolerance (VAT). Furthermore, it appears to occur at even lower work rates. This may offer a new objective means of estimating exercise tolerance; however, its exact biological basis still needs to be elucidated.
Collapse
Affiliation(s)
- Hirotaka Nishijima
- Cardiology, Hokko Memorial Hospital, 1-6 Kita-27 Higashi-8, Higashiku, Sapporo, 065-0027 Japan.,Current address: 2-5-16 Sakaigawa, Chuoku, Sapporo, 064-0943 Japan
| | - Kazuo Kondo
- Cardiac Rehabilitation, Hokko Memorial Hospital, 1-6 Kita-27 Higashi-8, Higashiku, Sapporo, 065-0027 Japan
| | - Kazuya Yonezawa
- Department of Clinical Research, National Hospital Organization Hakodate Hospital, 18-16 Kawahara-cho, Hakodate, 041-8512 Japan
| | - Hiroki Hashimoto
- Rehabilitation, Histujigaoka Hospital, 1-10 Aoba-cho 3-Chome, Atsubetsu-ku, Sapporo, 004-0021 Japan
| | - Masayuki Sakurai
- Cardiology, Hokko Memorial Hospital, 1-6 Kita-27 Higashi-8, Higashiku, Sapporo, 065-0027 Japan.,Department of Clinical Research, National Hospital Organization Hakodate Hospital, 18-16 Kawahara-cho, Hakodate, 041-8512 Japan
| |
Collapse
|
109
|
Lee SY, Mustafa S, Ching YW, Shafee N. Zinc induces normoxic accumulation of transcriptionally active hypoxia-inducible factor 1-alpha in mammary epithelial cells. Mol Biol 2017. [DOI: 10.1134/s0026893317010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
110
|
Yuan H, Xing C, Fan Y, Chai R, Niu R, Zhan Y, Peng F, Qi J. Carbon Dioxide-Controlled Assembly of Water-Soluble Conjugated Polymers Catalyzed by Carbonic Anhydrase. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hongbo Yuan
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Yibing Fan
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Ran Chai
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Ruimin Niu
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Yong Zhan
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Fei Peng
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Junjie Qi
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| |
Collapse
|
111
|
Harter TS, Brauner CJ. The O 2 and CO 2 Transport System in Teleosts and the Specialized Mechanisms That Enhance Hb–O 2 Unloading to Tissues. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
112
|
Hostrup M, Bangsbo J. Limitations in intense exercise performance of athletes - effect of speed endurance training on ion handling and fatigue development. J Physiol 2016; 595:2897-2913. [PMID: 27673449 DOI: 10.1113/jp273218] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023] Open
Abstract
Mechanisms underlying fatigue development and limitations for performance during intense exercise have been intensively studied during the past couple of decades. Fatigue development may involve several interacting factors and depends on type of exercise undertaken and training level of the individual. Intense exercise (½-6 min) causes major ionic perturbations (Ca2+ , Cl- , H+ , K+ , lactate- and Na+ ) that may reduce sarcolemmal excitability, Ca2+ release and force production of skeletal muscle. Maintenance of ion homeostasis is thus essential to sustain force production and power output during intense exercise. Regular speed endurance training (SET), i.e. exercise performed at intensities above that corresponding to maximum oxygen consumption (V̇O2, max ), enhances intense exercise performance. However, most of the studies that have provided mechanistic insight into the beneficial effects of SET have been conducted in untrained and recreationally active individuals, making extrapolation towards athletes' performance difficult. Nevertheless, recent studies indicate that only a few weeks of SET enhances intense exercise performance in highly trained individuals. In these studies, the enhanced performance was not associated with changes in V̇O2, max and muscle oxidative capacity, but rather with adaptations in muscle ion handling, including lowered interstitial concentrations of K+ during and in recovery from intense exercise, improved lactate- -H+ transport and H+ regulation, and enhanced Ca2+ release function. The purpose of this Topical Review is to provide an overview of the effect of SET and to discuss potential mechanisms underlying enhancements in performance induced by SET in already well-trained individuals with special emphasis on ion handling in skeletal muscle.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.,Department of Respiratory Research, Bispebjerg University Hospital, Denmark
| | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
113
|
Ngo JP, Ow CP, Gardiner BS, Kar S, Pearson JT, Smith DW, Evans RG. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance. Am J Physiol Regul Integr Comp Physiol 2016; 311:R797-R810. [DOI: 10.1152/ajpregu.00246.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023]
Abstract
Countercurrent systems have evolved in a variety of biological systems that allow transfer of heat, gases, and solutes. For example, in the renal medulla, the countercurrent arrangement of vascular and tubular elements facilitates the trapping of urea and other solutes in the inner medulla, which in turn enables the formation of concentrated urine. Arteries and veins in the cortex are also arranged in a countercurrent fashion, as are descending and ascending vasa recta in the medulla. For countercurrent diffusion to occur, barriers to diffusion must be small. This appears to be characteristic of larger vessels in the renal cortex. There must also be gradients in the concentration of molecules between afferent and efferent vessels, with the transport of molecules possible in either direction. Such gradients exist for oxygen in both the cortex and medulla, but there is little evidence that large gradients exist for other molecules such as carbon dioxide, nitric oxide, superoxide, hydrogen sulfide, and ammonia. There is some experimental evidence for arterial-to-venous (AV) oxygen shunting. Mathematical models also provide evidence for oxygen shunting in both the cortex and medulla. However, the quantitative significance of AV oxygen shunting remains a matter of controversy. Thus, whereas the countercurrent arrangement of vasa recta in the medulla appears to have evolved as a consequence of the evolution of Henle’s loop, the evolutionary significance of the intimate countercurrent arrangement of blood vessels in the renal cortex remains an enigma.
Collapse
Affiliation(s)
- Jennifer P. Ngo
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
| | - Connie P.C. Ow
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
| | - Bruce S. Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, Western Australia
| | - Saptarshi Kar
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - James T. Pearson
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
- Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - Roger G. Evans
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
| |
Collapse
|
114
|
Richardson SL, Swietach P. Red blood cell thickness is evolutionarily constrained by slow, hemoglobin-restricted diffusion in cytoplasm. Sci Rep 2016; 6:36018. [PMID: 27777410 PMCID: PMC5078773 DOI: 10.1038/srep36018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/11/2016] [Indexed: 11/09/2022] Open
Abstract
During capillary transit, red blood cells (RBCs) must exchange large quantities of CO2 and O2 in typically less than one second, but the degree to which this is rate-limited by diffusion through cytoplasm is not known. Gas diffusivity is intuitively assumed to be fast and this would imply that the intracellular path-length, defined by RBC shape, is not a factor that could meaningfully compromise physiology. Here, we evaluated CO2 diffusivity (DCO2) in RBCs and related our results to cell shape. DCO2 inside RBCs was determined by fluorescence imaging of [H+] dynamics in cells under superfusion. This method is based on the principle that H+ diffusion is facilitated by CO2/HCO3- buffer and thus provides a read-out of DCO2. By imaging the spread of H+ ions from a photochemically-activated source (6-nitroveratraldehyde), DCO2 in human RBCs was calculated to be only 5% of the rate in water. Measurements on RBCs containing different hemoglobin concentrations demonstrated a halving of DCO2 with every 75 g/L increase in mean corpuscular hemoglobin concentration (MCHC). Thus, to compensate for highly-restricted cytoplasmic diffusion, RBC thickness must be reduced as appropriate for its MCHC. This can explain the inverse relationship between MCHC and RBC thickness determined from >250 animal species.
Collapse
Affiliation(s)
- Sarah L Richardson
- Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, European Union, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, European Union, United Kingdom
| |
Collapse
|
115
|
Melis C, Meleddu R, Angeli A, Distinto S, Bianco G, Capasso C, Cottiglia F, Angius R, Supuran CT, Maccioni E. Isatin: a privileged scaffold for the design of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2016; 32:68-73. [PMID: 27775452 PMCID: PMC6010117 DOI: 10.1080/14756366.2016.1235042] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The isatin scaffold is the constitutive fragment of several natural and synthetic bioactive molecules. Albeit several benzene sulphonamide-based carbonic anhydrase inhibitors (CAIs) have been reported, only recently isatin benzene sulphonamides have been studied and proposed as CAIs. In this study we have designed, synthesised, and evaluated the biological activity of a series of differently substituted isatin-based benzene sulphonamides which have been designed for the inhibition of carbonic anhydrase isoforms. The activity of all the synthesised compounds was evaluated towards human carbonic anhydrase I, II, IX, and XII isozymes. Our results indicate that the nature and position of substituents on the isatin ring can modulate both activity and isozyme selectivity.
Collapse
Affiliation(s)
- Claudia Melis
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Rita Meleddu
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Andrea Angeli
- b Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Simona Distinto
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Giulia Bianco
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | | | - Filippo Cottiglia
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Rossella Angius
- d Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche , Pula , CA , Italy
| | - Claudiu T Supuran
- b Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Elias Maccioni
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| |
Collapse
|
116
|
Yuan H, Fan Y, Xing C, Niu R, Chai R, Zhan Y, Qi J, An H, Xu J. Conjugated Polymer-Based Hybrid Materials for Turn-On Detection of CO2 in Plant Photosynthesis. Anal Chem 2016; 88:6593-7. [DOI: 10.1021/acs.analchem.6b01489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongbo Yuan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Yibing Fan
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Chengfen Xing
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Ruimin Niu
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Ran Chai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Yong Zhan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Junjie Qi
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Hailong An
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Jialiang Xu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
117
|
Plasma/Serum Zinc Status During Aerobic Exercise Recovery: A Systematic Review and Meta-Analysis. Sports Med 2016; 47:127-134. [DOI: 10.1007/s40279-016-0567-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
118
|
Manap HH, Abdul Wahab AK. Extracorporeal carbon dioxide removal (ECCO 2R) in respiratory deficiency and current investigations on its improvement: a review. J Artif Organs 2016; 20:8-17. [PMID: 27193131 DOI: 10.1007/s10047-016-0905-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 01/27/2023]
Abstract
The implementation of extracorporeal carbon dioxide removal (ECCO2R) as one of the extracorporeal life support system is getting more attention today. Thus, the objectives of this paper are to study the clinical practice of commercial ECCO2R system, current trend of its development and also the perspective on future improvement that can be done to the existing ECCO2R system. The strength of this article lies in its review scope, which focuses on the commercial ECCO2R therapy in the market based on membrane lung and current investigation to improve the efficiency of the ECCO2R system, in terms of surface modification by carbonic anhydrase (CA) immobilization technique and respiratory electrodialysis (R-ED). Our methodology approach involves the identification of relevant published literature from PubMed and Web of Sciences search engine using the terms Extracorporeal Carbon Dioxide Removal (ECCO2R), Extracorporeal life support, by combining terms between ECCO2R and CA and also ECCO2R with R-ED. This identification only limits articles in English language. Overall, several commercial ECCO2R systems are known and proven safe to be used in patients in terms of efficiency, safety and risk of complication. In addition, CA-modified hollow fiber for membrane lung and R-ED are proven to have good potential to be applied in conventional ECCO2R design. The detailed technique and current progress on CA immobilization and R-ED development were also reviewed in this article.
Collapse
Affiliation(s)
- Hany Hazfiza Manap
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Khairi Abdul Wahab
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Centre for Separation Science and Technology (CSST), Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
119
|
Tanaka Y, Inagaki T, Poole DC, Kano Y. pH buffering of single rat skeletal muscle fibers in the in vivo environment. Am J Physiol Regul Integr Comp Physiol 2016; 310:R926-33. [PMID: 26984893 DOI: 10.1152/ajpregu.00501.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/09/2016] [Indexed: 01/12/2023]
Abstract
Homeostasis of intracellular pH (pHi) has a crucial role for the maintenance of cellular function. Several membrane transporters such as lactate/H(+) cotransporter (MCT), Na(+)/H(+) exchange transporter (NHE), and Na(+)/HCO3 (-) cotransporter (NBC) are thought to contribute to pHi regulation. However, the relative importance of each of these membrane transporters to the in vivo recovery from the low pHi condition is unknown. Using an in vivo bioimaging model, we pharmacologically inhibited each transporter separately and all transporters together and then evaluated the pHi recovery profiles following imposition of a discrete H(+) challenge loaded into single muscle fibers by microinjection. The intact spinotrapezius muscle of adult male Wistar rats (n = 72) was exteriorized and loaded with the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl ester (10 μM). A single muscle fiber was then loaded with low-pH solution [piperazine-N,N'-bis(2-ethanesulfonic acid) buffer, pH 6.5, ∼2.33 × 10(-3) μl] by microinjection over 3 s. The rats were divided into groups for the following treatments: 1) no inhibitor (CONT), 2) MCT inhibition (by α-Cyano-4-hydroxyciannamic acid; 4 mM), 3) NHE inhibition (by ethylisopropyl amiloride; 0.5 mM), 4) NBC inhibition (by DIDS; 1 mM), and 5) MCT, NHE, and NBC inhibition (All blockade). The fluorescence ratio (F500 nm/F445 nm) was determined from images captured during 1 min (60 images/min) and at 5, 10, 15, and 20 min after injection. The pHi at 1-2 s after injection significantly decreased from resting pHi (ΔpHi = -0.73 ± 0.03) in CONT. The recovery response profile was biphasic, with an initial rapid and close-to-exponential pHi increase (time constant, τ: 60.0 ± 7.9 s). This initial rapid profile was not affected by any pharmacological blockade but was significantly delayed by carbonic anhydrase inhibition. In contrast, the secondary, more gradual, return toward baseline that restored CONT pHi to 84.2% of baseline was unimpeded by MCT, NHE, and NBC blockade separately but abolished by All blockade (ΔpHi = -0.60 ± 0.07, 72.8% initial pHi, P < 0.05 vs. CONT). After injection of H(+) into, or superfusion onto, an adjacent fiber pHi of the surrounding fibers decreased progressively for the 20-min observation period (∼7.0, P < 0.05 vs. preinjection/superfusion). In conclusion, these results support that, after an imposed H(+) load, the MCT, NHE, and NBC transporters are not involved in the initial rapid phase of pHi recovery. In contrast, the gradual recovery phase was abolished by inhibiting all three membrane transporter systems simultaneously. The alteration of pHi in surrounding fibers suggest that H(+) uptake by neighboring fibers can help alleviate the pH consequences of myocyte H(+) exudation.
Collapse
Affiliation(s)
- Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - Tadakatsu Inagaki
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan; Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan;
| |
Collapse
|
120
|
Retta M, Ho QT, Yin X, Verboven P, Berghuijs HNC, Struik PC, Nicolaï BM. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:37-51. [PMID: 26993234 DOI: 10.1016/j.plantsci.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/31/2015] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants.
Collapse
Affiliation(s)
- Moges Retta
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium; Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Quang Tri Ho
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Pieter Verboven
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Herman N C Berghuijs
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium; Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Bart M Nicolaï
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| |
Collapse
|
121
|
Lamsfus-Prieto JÁ, de Castro-Fernández R, Hernández-García AM, Marcano-Rodriguez G. Prognostic value of gasometric parameters of carbon dioxide in resuscitation of septic patients. A bibliography review. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2016; 63:220-230. [PMID: 26775123 DOI: 10.1016/j.redar.2015.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The anaerobic metabolism is the cornerstone in physiopathology of septic shock. Nowadays we have both the central or mixed venous oxygen saturation and lactate levels to monitoring the metabolism in septic patients. Some studies have shown that normalization of systemic hemodynamic and oxygen metabolism variables not prevent progression to multiorgan damage and death. Recently has been proposed the venous-to-arterial carbon dioxide difference (ΔpvaCO2) as an alternative marker of tissue hypoperfusion, like Cardiac Index. High ΔpvaCO2 predicts adverse outcomes. Also has been proposed both, the ratio between the ΔpvaCO2 and arterial-to-venous oxygen content difference (ΔCavO2): ΔpvaCO2/ΔCavO2; and, the ratio between venous-to-arterial carbon dioxide difference (ΔCvaCO2) and ΔCavO2: ΔCvaCO2/ΔCavO2, as markers of anaerobic metabolism. Both of high ratios are related to high levels of lactate and worse prognosis. Therefore in patients with sepsis the combination of markers of resuscitation could be important to improve the outcomes.
Collapse
Affiliation(s)
- J Á Lamsfus-Prieto
- Servicio de Anestesiología y Cuidados Críticos, Hospital Sierrallana, Servicio Cántabro de Salud, Torrelavega, Cantabria, España.
| | - R de Castro-Fernández
- Servicio de Anestesiología y Cuidados Críticos, Hospital Sierrallana, Servicio Cántabro de Salud, Torrelavega, Cantabria, España
| | - A M Hernández-García
- Servicio de Anestesiología y Cuidados Críticos, Hospital Sierrallana, Servicio Cántabro de Salud, Torrelavega, Cantabria, España
| | - G Marcano-Rodriguez
- Servicio de Anestesiología y Cuidados Críticos, Hospital Sierrallana, Servicio Cántabro de Salud, Torrelavega, Cantabria, España
| |
Collapse
|
122
|
Daschakraborty S, Kiefer PM, Miller Y, Motro Y, Pines D, Pines E, Hynes JT. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution I: Acid and Base Coordinate and Charge Dynamics. J Phys Chem B 2016; 120:2271-80. [PMID: 26879554 DOI: 10.1021/acs.jpcb.5b12742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protonation by carbonic acid H2CO3 of the strong base methylamine CH3NH2 in a neutral contact pair in aqueous solution is followed via Car-Parrinello molecular dynamics simulations. Proton transfer (PT) occurs to form an aqueous solvent-stabilized contact ion pair within 100 fs, a fast time scale associated with the compression of the acid-base hydrogen-bond (H-bond), a key reaction coordinate. This rapid barrierless PT is consistent with the carbonic acid-protonated base pKa difference that considerably favors the PT, and supports the view of intact carbonic acid as potentially important proton donor in assorted biological and environmental contexts. The charge redistribution within the H-bonded complex during PT supports a Mulliken picture of charge transfer from the nitrogen base to carbonic acid without altering the transferring hydrogen's charge from approximately midway between that of a hydrogen atom and that of a proton.
Collapse
Affiliation(s)
- Snehasis Daschakraborty
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - Philip M Kiefer
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - Yair Motro
- Department of Chemistry, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - Dina Pines
- Department of Chemistry, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ehud Pines
- Department of Chemistry, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - James T Hynes
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States.,Ecole Normale Supérieure-PSL Research University, Chemistry Department, Sorbonne Universités-UPMC University Paris 06, CNRS UMR 8640 Pasteur, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
123
|
Alderman SL, Harter TS, Wilson JM, Supuran CT, Farrell AP, Brauner CJ. Evidence for a plasma-accessible carbonic anhydrase in the lumen of salmon heart that may enhance oxygen delivery to the myocardium. J Exp Biol 2016; 219:719-24. [DOI: 10.1242/jeb.130443] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Oxygen supply to the heart of most teleosts, including salmonids, relies in part or in whole on oxygen-depleted venous blood. Given that plasma-accessible carbonic anhydrase (CA) in red muscle of rainbow trout has recently been shown to facilitate oxygen unloading from arterial blood under certain physiological conditions, we tested the hypothesis that plasma-accessible CA is present in the lumen of coho salmon (Oncorhynchus kisutch) hearts, and may therefore assist in the luminal oxygen supply to the spongy myocardium, which has no coronary circulation. We demonstrate a widespread distribution of CA throughout the heart chambers, including lumen-facing cells in the atrium, and confirm that the membrane-bound isoform ca4 is expressed in the atrium and ventricle of the heart. Further, we confirm that CA catalytic activity is available to blood in the atrial lumen using a modified electrometric ΔpH assay in intact atria in combination with either a membrane-impermeable CA inhibitor or specific cleavage of the Ca4 membrane anchor. Combined, these results support our hypothesis of the presence of an enhanced oxygen delivery system in the lumen of a salmonid heart, which could help support oxygen delivery when the oxygen content of venous blood becomes greatly reduced, such as after burst exercise and during environmental hypoxia.
Collapse
Affiliation(s)
- Sarah L. Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Till S. Harter
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jonathan M. Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Anthony P. Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Colin J. Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
124
|
Durussel J, Haile DW, Mooses K, Daskalaki E, Beattie W, Mooses M, Mekonen W, Ongaro N, Anjila E, Patel RK, Padmanabhan N, McBride MW, McClure JD, Pitsiladis YP. Blood transcriptional signature of recombinant human erythropoietin administration and implications for antidoping strategies. Physiol Genomics 2016; 48:202-9. [DOI: 10.1152/physiolgenomics.00108.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/07/2016] [Indexed: 01/18/2023] Open
Abstract
Recombinant human erythropoietin (rHuEPO) is frequently abused by athletes as a performance-enhancing drug, despite being prohibited by the World Anti-Doping Agency. Although the methods to detect blood doping, including rHuEPO injections, have improved in recent years, they remain imperfect. In a proof-of-principle study, we identified, replicated, and validated the whole blood transcriptional signature of rHuEPO in endurance-trained Caucasian males at sea level ( n = 18) and Kenyan endurance runners at moderate altitude ( n = 20), all of whom received rHuEPO injections for 4 wk. Transcriptional profiling shows that hundreds of transcripts were altered by rHuEPO in both cohorts. The main regulated expression pattern, observed in all participants, was characterized by a “rebound” effect with a profound upregulation during rHuEPO and a subsequent downregulation up to 4 wk postadministration. The functions of the identified genes were mainly related to the functional and structural properties of the red blood cell. Of the genes identified to be differentially expressed during and post-rHuEPO, we further confirmed a whole blood 34-transcript signature that can distinguish between samples collected pre-, during, and post-rHuEPO administration. By providing biomarkers that can reveal rHuEPO use, our findings represent an advance in the development of new methods for the detection of blood doping.
Collapse
Affiliation(s)
- Jérôme Durussel
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Kerli Mooses
- Faculty of Sport and Exercise Sciences, University of Tartu, Tartu, Estonia
| | - Evangelia Daskalaki
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Wendy Beattie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martin Mooses
- Faculty of Sport and Exercise Sciences, University of Tartu, Tartu, Estonia
| | - Wondyefraw Mekonen
- Department of Medical Physiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Neford Ongaro
- Department of Medical Physiology, School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya; and
| | - Edwin Anjila
- Department of Medical Physiology, School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya; and
| | - Rajan K. Patel
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neal Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John D. McClure
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Yannis P. Pitsiladis
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Eastbourne, United Kingdom
| |
Collapse
|
125
|
Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 2015; 44:8576-607. [PMID: 26390044 PMCID: PMC4648695 DOI: 10.1039/c5cs00541h] [Citation(s) in RCA: 531] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron oxide nanoparticles (IONPs) have been extensively used during the last two decades, either as effective bio-imaging contrast agents or as carriers of biomolecules such as drugs, nucleic acids and peptides for controlled delivery to specific organs and tissues. Most of these novel applications require elaborate tuning of the physiochemical and surface properties of the IONPs. As new IONPs designs are envisioned, synergistic consideration of the body's innate biological barriers against the administered nanoparticles and the short and long-term side effects of the IONPs become even more essential. There are several important criteria (e.g. size and size-distribution, charge, coating molecules, and plasma protein adsorption) that can be effectively tuned to control the in vivo pharmacokinetics and biodistribution of the IONPs. This paper reviews these crucial parameters, in light of biological barriers in the body, and the latest IONPs design strategies used to overcome them. A careful review of the long-term biodistribution and side effects of the IONPs in relation to nanoparticle design is also given. While the discussions presented in this review are specific to IONPs, some of the information can be readily applied to other nanoparticle systems, such as gold, silver, silica, calcium phosphates and various polymers.
Collapse
Affiliation(s)
- Hamed Arami
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| | - Amit Khandhar
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington, 98195
| | - Kannan M. Krishnan
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
126
|
Chaix E, Guillaume C, Gontard N, Guillard V. Diffusivity and solubility of CO2 in dense solid food products. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
127
|
Bian YZ, Guo C, Chang TMS. Temperature stability of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at −80 °C, 4 °C, 25 °C and 37 °C or pasteurization at 70 °C. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:41-7. [DOI: 10.3109/21691401.2015.1110871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
128
|
GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge. PLoS One 2015; 10:e0143196. [PMID: 26575370 PMCID: PMC4648502 DOI: 10.1371/journal.pone.0143196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/01/2015] [Indexed: 01/08/2023] Open
Abstract
Method Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping. Results I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets.
Collapse
|
129
|
Vallet JL, Rempel LA, Miles JR, Webel SK. Effect of essential fatty acid and zinc supplementation during pregnancy on birth intervals, neonatal piglet brain myelination, stillbirth, and preweaning mortality. J Anim Sci 2015; 92:2422-32. [PMID: 24867930 DOI: 10.2527/jas.2013-7130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Omega fatty acids and zinc contribute to physiological pathways that could affect the farrowing process, stillbirth, preweaning mortality, and postweaning return to estrus. To determine effects of omega fatty acids and zinc on these reproductive traits, gilts were mated and fed either a control diet, a diet supplemented with 1.09% Gromega, a diet supplemented with 0.07% zinc sulfate, or a diet supplemented with both Gromega and zinc sulfate from d 80 of gestation until farrowing. Farrowings were video recorded to obtain birth intervals for each piglet, and the number of live and stillborn piglets was recorded. On d 1 after farrowing, piglets were weighed, and the smallest piglet in each litter was sacrificed. A blood sample was collected to measure the immunoglobulin immunocrit ratio, and brain, cerebellum, brain stem, full and empty stomach (to calculate stomach content weight), and heart weights were recorded. Because myelination of specific brain regions may affect preweaning mortality, brain stem, cerebellum, and spinal cord tissues were measured for content of myelin basic proteins and myelin lipids. For remaining piglets, survival to weaning and weaning weights were recorded. Results indicated a weak positive correlation (r = 0.23, P < 0.05) between immunocrit values and brain stem high molecular weight myelin basic protein. There was also a Gromega × zinc supplementation interaction (P < 0.05) on brain stem high molecular weight myelin basic protein in which the combined treatment was greater than the control or each supplement alone. Zinc treatment decreased stillbirth rate during prolonged farrowing and subsequent preweaning survival of low birth weight piglets. Gromega increased overall stillbirth rate and increased the stillbirth rate during prolonged farrowing. There were no relationships between myelin measurements and preweaning survival. In conclusion, combined Gromega and zinc supplementation appeared to improve myelination, but zinc alone improved stillbirth and preweaning survival.
Collapse
Affiliation(s)
- J L Vallet
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - L A Rempel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - J R Miles
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - S K Webel
- JBS United, Inc., Sheridan, IN 46069
| |
Collapse
|
130
|
Gymnocypris przewalskii decreases cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the saline-alkaline lake Qinghai. J Comp Physiol B 2015; 186:83-95. [DOI: 10.1007/s00360-015-0939-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/27/2015] [Accepted: 10/04/2015] [Indexed: 12/29/2022]
|
131
|
Arazawa DT, Kimmel JD, Finn MC, Federspiel WJ. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood. Acta Biomater 2015; 25:143-9. [PMID: 26159104 PMCID: PMC4562859 DOI: 10.1016/j.actbio.2015.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 11/16/2022]
Abstract
The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (<500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3(-)), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (P<0.05). Using 2.2% SO2 acidic sweep gas increased PMP CO2 removal by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (P<0.05); device outlet blood pH was 7.38 units. When employing both CA-PMP and 2.2% SO2 sweep gas, CO2 removal increased by 109% (411 mL/min/m(2)) (P<0.05); device outlet blood pH was 7.35 units. Dilute acidic sweep gas increases CO2 removal, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. STATEMENT OF SIGNIFICANCE A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (<500 mL/min) to regulate blood CO2 in patients suffering from acute lung failure. Literature has demonstrated approaches to chemically increase hollow fiber membrane (HFM) CO2 removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal efficiency of HFM devices. To our knowledge, this is the first report assessing an acidic sweep gas to increase CO2 removal from blood using HFM devices.
Collapse
Affiliation(s)
- D T Arazawa
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Pittsburgh, PA 15203, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - J D Kimmel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Pittsburgh, PA 15203, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - M C Finn
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - W J Federspiel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Pittsburgh, PA 15203, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
132
|
Feyerabend F, Wendel HP, Mihailova B, Heidrich S, Agha NA, Bismayer U, Willumeit-Römer R. Blood compatibility of magnesium and its alloys. Acta Biomater 2015. [PMID: 26210283 DOI: 10.1016/j.actbio.2015.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. OBJECTIVE The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. METHODS AND RESULTS Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. CONCLUSIONS The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. STATEMENT OF SIGNIFICANCE The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications.
Collapse
Affiliation(s)
- Frank Feyerabend
- Helmholtz-Zentrum Geesthacht, Institute of Material Research, Department for Material Design and Characterisation, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Hans-Peter Wendel
- Department of Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Calwerstr. 7/1, 72076 Tuebingen, Germany
| | - Boriana Mihailova
- University of Hamburg, Department of Earth Sciences, Grindelallee 48, 20146 Hamburg, Germany
| | - Stefanie Heidrich
- University of Hamburg, Department of Earth Sciences, Grindelallee 48, 20146 Hamburg, Germany
| | - Nezha Ahmad Agha
- Helmholtz-Zentrum Geesthacht, Institute of Material Research, Department for Material Design and Characterisation, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Ulrich Bismayer
- University of Hamburg, Department of Earth Sciences, Grindelallee 48, 20146 Hamburg, Germany
| | - Regine Willumeit-Römer
- Helmholtz-Zentrum Geesthacht, Institute of Material Research, Department for Material Design and Characterisation, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
133
|
Dash RK, Korman B, Bassingthwaighte JB. Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions: evaluation and comparison with other models. Eur J Appl Physiol 2015. [PMID: 26298270 DOI: 10.1007/s00421‐015‐3228‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Equations for blood oxyhemoglobin (HbO2) and carbaminohemoglobin (HbCO2) dissociation curves that incorporate nonlinear biochemical interactions of oxygen and carbon dioxide with hemoglobin (Hb), covering a wide range of physiological conditions, are crucial for a number of practical applications. These include the development of physiologically-based computational models of alveolar-blood and blood-tissue O2–CO2 transport, exchange, and metabolism, and the analysis of clinical and in vitro data. METHODS AND RESULTS To this end, we have revisited, simplified, and extended our previous models of blood HbO2 and HbCO2 dissociation curves (Dash and Bassingthwaighte, Ann Biomed Eng 38:1683–1701, 2010), validated wherever possible by available experimental data, so that the models now accurately fit the low HbO2 saturation (SHbO2) range over a wide range of values of PCO2, pH, 2,3-DPG, and temperature. Our new equations incorporate a novel PO2-dependent variable cooperativity hypothesis for the binding of O2 to Hb, and a new equation for P50 of O2 that provides accurate shifts in the HbO2 and HbCO2 dissociation curves over a wide range of physiological conditions. The accuracy and efficiency of these equations in computing PO2 and PCO2 from the SHbO2 and SHbCO2 levels using simple iterative numerical schemes that give rapid convergence is a significant advantage over alternative SHbO2 and SHbCO2 models. CONCLUSION The new SHbO2 and SHbCO2 models have significant computational modeling implications as they provide high accuracy under non-physiological conditions, such as ischemia and reperfusion, extremes in gas concentrations, high altitudes, and extreme temperatures.
Collapse
Affiliation(s)
- Ranjan K Dash
- Department of Physiology, Biotechnology and Bioengineering Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Ben Korman
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, WA, Australia.
| | - James B Bassingthwaighte
- Department of Bioengineering, University of Washington, Box 355061, N210G North Foege Bldg, Seattle, WA, 9895-5061, USA.
| |
Collapse
|
134
|
Dash RK, Korman B, Bassingthwaighte JB. Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions: evaluation and comparison with other models. Eur J Appl Physiol 2015; 116:97-113. [PMID: 26298270 DOI: 10.1007/s00421-015-3228-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Equations for blood oxyhemoglobin (HbO2) and carbaminohemoglobin (HbCO2) dissociation curves that incorporate nonlinear biochemical interactions of oxygen and carbon dioxide with hemoglobin (Hb), covering a wide range of physiological conditions, are crucial for a number of practical applications. These include the development of physiologically-based computational models of alveolar-blood and blood-tissue O2–CO2 transport, exchange, and metabolism, and the analysis of clinical and in vitro data. METHODS AND RESULTS To this end, we have revisited, simplified, and extended our previous models of blood HbO2 and HbCO2 dissociation curves (Dash and Bassingthwaighte, Ann Biomed Eng 38:1683–1701, 2010), validated wherever possible by available experimental data, so that the models now accurately fit the low HbO2 saturation (SHbO2) range over a wide range of values of PCO2, pH, 2,3-DPG, and temperature. Our new equations incorporate a novel PO2-dependent variable cooperativity hypothesis for the binding of O2 to Hb, and a new equation for P50 of O2 that provides accurate shifts in the HbO2 and HbCO2 dissociation curves over a wide range of physiological conditions. The accuracy and efficiency of these equations in computing PO2 and PCO2 from the SHbO2 and SHbCO2 levels using simple iterative numerical schemes that give rapid convergence is a significant advantage over alternative SHbO2 and SHbCO2 models. CONCLUSION The new SHbO2 and SHbCO2 models have significant computational modeling implications as they provide high accuracy under non-physiological conditions, such as ischemia and reperfusion, extremes in gas concentrations, high altitudes, and extreme temperatures.
Collapse
Affiliation(s)
- Ranjan K Dash
- Department of Physiology, Biotechnology and Bioengineering Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Ben Korman
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, WA, Australia.
| | - James B Bassingthwaighte
- Department of Bioengineering, University of Washington, Box 355061, N210G North Foege Bldg, Seattle, WA, 9895-5061, USA.
| |
Collapse
|
135
|
Meleddu R, Maccioni E, Distinto S, Bianco G, Melis C, Alcaro S, Cottiglia F, Ceruso M, Supuran CT. New 4-[(3-cyclohexyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzene-1-sulfonamides, synthesis and inhibitory activity toward carbonic anhydrase I, II, IX, XII. Bioorg Med Chem Lett 2015; 25:3281-4. [PMID: 26073006 DOI: 10.1016/j.bmcl.2015.05.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 11/18/2022]
Abstract
A series of 4-[(3-cyclohexyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzene-1-sulfonamides was synthesised and the activity of the new compounds as inhibitors of hCA I, II, IX, and XII was evaluated. These new derivatives exhibited some peculiarities with respect to previously reported sulfonamide based inhibitors of CA. We observed that the nature of the substituents in the position 3 and 4 of the dihydro-thiazole ring was relevant in determining both activity and selectivity profiles.
Collapse
Affiliation(s)
- Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Giulia Bianco
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Claudia Melis
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus 'S. Venuta', Viale Europa, 88100 Catanzaro, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Mariangela Ceruso
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
136
|
Lau J, Liu Z, Lin KS, Pan J, Zhang Z, Vullo D, Supuran CT, Perrin DM, Bénard F. Trimeric Radiofluorinated Sulfonamide Derivatives to Achieve In Vivo Selectivity for Carbonic Anhydrase IX–Targeted PET Imaging. J Nucl Med 2015. [DOI: 10.2967/jnumed.114.153288] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
137
|
Arazawa DT, Kimmel JD, Federspiel WJ. Kinetics of CO2 exchange with carbonic anhydrase immobilized on fiber membranes in artificial lungs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:193. [PMID: 26032115 PMCID: PMC5973791 DOI: 10.1007/s10856-015-5525-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/14/2015] [Indexed: 05/12/2023]
Abstract
Artificial lung devices comprised of hollow fiber membranes (HFMs) coated with the enzyme carbonic anhydrase (CA), accelerate removal of carbon dioxide (CO2) from blood for the treatment of acute respiratory failure. While previous work demonstrated CA coatings increase HFM CO2 removal by 115 % in phosphate buffered saline (PBS), testing in blood revealed a 36 % increase compared to unmodified HFMs. In this work, we sought to characterize the CO2 mass transport processes within these biocatalytic devices which impede CA coating efficacy and develop approaches towards improving bioactive HFM efficiency. Aminated HFMs were sequentially reacted with glutaraldehyde (GA), chitosan, GA and afterwards incubated with a CA solution, covalently linking CA to the surface. Bioactive CA-HFMs were potted in model gas exchange devices (0.0119 m(2)) and tested for esterase activity and CO2 removal under various flow rates with PBS, whole blood, and solutions containing individual blood components (plasma albumin, red blood cells or free carbonic anhydrase). Results demonstrated that increasing the immobilized enzyme activity did not significantly impact CO2 removal rate, as the diffusional resistance from the liquid boundary layer is the primary impediment to CO2 transport by both unmodified and bioactive HFMs under clinically relevant conditions. Furthermore, endogenous CA within red blood cells competes with HFM immobilized CA to increase CO2 removal. Based on our findings, we propose a bicarbonate/CO2 disequilibrium hypothesis to describe performance of CA-modified devices in both buffer and blood. Improvement in CO2 removal rates using CA-modified devices in blood may be realized by maximizing bicarbonate/CO2 disequilibrium at the fiber surface via strategies such as blood acidification and active mixing within the device.
Collapse
Affiliation(s)
- D T Arazawa
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Pittsburgh, PA, 15203, USA
| | | | | |
Collapse
|
138
|
Guo C, Gynn M, Chang TMS. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin–superoxide dismutase–catalase–carbonic anhydrase. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 43:157-62. [DOI: 10.3109/21691401.2015.1035479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
139
|
Tamura J, Itami T, Ishizuka T, Fukui S, Miyoshi K, Sano T, Yamashita K. Central venous blood gas and acid-base status in conscious dogs and cats. J Vet Med Sci 2015; 77:865-9. [PMID: 25754649 PMCID: PMC4527512 DOI: 10.1292/jvms.14-0503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To determine the reference level of central venous oxygen saturation (ScvO2)
and clinical efficacy of central venous blood gas analysis, partial pressures of oxygen
and carbon dioxide, pH, oxygen saturation, base excess (B.E.) and HCO3
concentration were compared between simultaneously obtained central venous and arterial
blood samples from conscious healthy 6 dogs and 5 cats. Comparisons between arteriovenous
samples were performed by a paired t-test and Bland-Altman analysis.
Between arteriovenous samples, B.E. showed good agreement, but there were significant
differences in other parameters in the dogs, and no good agreement was detected in cats.
The ScvO2 in dogs and cats were 82.3 ± 3.5 and 62.4 ± 13.5%, respectively.
Central venous blood gas analysis is indispensable, especially in cats.
Collapse
Affiliation(s)
- Jun Tamura
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
140
|
Wichert M, Krall N. Targeting carbonic anhydrase IX with small organic ligands. Curr Opin Chem Biol 2015; 26:48-54. [PMID: 25721398 DOI: 10.1016/j.cbpa.2015.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrase IX (CAIX) is expressed in many solid tumors in response to hypoxia and plays an important role in tumor acid-base homeostasis under these conditions. It is also constitutively expressed in the majority of renal cell carcinoma. Its functional inhibition with small molecules has recently been shown to retard tumor growth in murine models of cancer, reduce metastasis and tumor stem cell expansion. Additionally, CAIX is a promising antigen for targeted drug delivery approaches. Initially validated with anti-CAIX antibodies, the tumor-homing capacity of high-affinity small-molecule ligands of CAIX has recently been demonstrated. Indeed, conjugates formed of CAIX ligands and potent cytotoxic drugs could eradicate CAIX-expressing solid tumors in mice. These results suggest that CAIX is a promising target for the development of novel therapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Moreno Wichert
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zurich, Switzerland
| | - Nikolaus Krall
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zurich, Switzerland.
| |
Collapse
|
141
|
Bian Y, Chang TMS. A novel nanobiotherapeutic poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] with no cardiac toxicity for the resuscitation of a rat model with 90 minutes of sustained severe hemorrhagic shock with loss of 2/3 blood volume. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2015; 43:1-9. [PMID: 25297052 PMCID: PMC4268802 DOI: 10.3109/21691401.2014.964554] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
We crosslink hemoglobin (Hb), superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) to form a soluble polyHb-SOD-CAT-CA nanobiotechnological complex. The obtained product is a soluble complex with three enhanced red blood cell (RBC) functions and without blood group antigens. In the present study, 2/3 of blood volume was removed to result in 90-min hemorrhagic shock at mean arterial blood pressure (MAP) of 30 mmHg. This was followed by the reinfusion of different resuscitation fluids, then followed for another 60 min. PolyHb-SOD-CAT-CA maintained the MAP at 87.5 ± 5 mmHg as compared with 3 volumes of lactated Ringer's solution, 43.3 ± 2.8 mmHg; blood, 91.3 ± 3.6 mmHg; polyHb-SOD-CAT, 86.0 ± 4.6 mmHg; poly stroma-free hemolysate (polySFHb), 85.0 ± 2.5 mmHg; and polyHb, 82.6 ± 3.5 mmHg. PolyHb-SOD-CAT-CA was superior to the blood and other fluids based on the following criteria. PolyHb-SOD-CAT-CA reduced tissue pCO2 from 98 ± 4.5 mmHg to 68.6 ± 3 mmHg. This was significantly (p < 0.05) more effective than lactated Ringer's solution (98 ± 4.5 mmHg), polyHb (90.1 ± 4.0 mmHg), polyHb-SOD-CAT (90.9 ± 1.4 mmHg), blood (79.1 ± 4.7 mmHg), and polySFHb (77 ± 5 mmHg). PolyHb-SOD-CAT-CA reduced the elevated ST level to 21.7 ± 6.7% and is significantly (< 0.05) better than polyHb (57.7 ± 8.7%), blood (39.1 ± 1.5%), polySFHb (38.3% ± 2.1%), polyHb-SOD-CAT (27.8 ± 5.6%), and lactated Ringer's solution (106 ± 3.1%). The plasma cardiac troponin T (cTnT) level of polyHb-SOD-CAT-CA group was significantly (P < 0.05) lower than that of all the other groups. PolyHb-SOD-CAT-CA reduced plasma lactate level from 18 ± 2.3 mM/L to 6.9 ± 0.3 mM/L. It was significantly more effective (P < 0.05) than lactated Ringer's solution (12.4 ± 0.6 mM/L), polyHb (9.6 ± 0.7 mM/L), blood (8.1 ± 0.2 mM/L), polySFHb (8.4 ± 0.1 mM/L), and polyHb-SOD-CAT (7.6 ± 0.3 mM/L). PolyHb-SOD-CAT-CA can be stored for 320 days at room temperature. Lyophilized poly-Hb-SOD-CAT-CA can be heat pasteurized at 68F for 2 h. This can be important if there is a need to inactivate human immunodeficiency virus, Ebola virus, and other infectious organisms.
Collapse
Affiliation(s)
- Yuzhu Bian
- Artificial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Thomas Ming Swi Chang
- Artificial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
142
|
Randall DJ, Rummer JL, Wilson JM, Wang S, Brauner CJ. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes. ACTA ACUST UNITED AC 2015; 217:1205-14. [PMID: 24744420 DOI: 10.1242/jeb.093526] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Teleost fishes constitute 95% of extant aquatic vertebrates, and we suggest that this is related in part to their unique mode of tissue oxygenation. We propose the following sequence of events in the evolution of their oxygen delivery system. First, loss of plasma-accessible carbonic anhydrase (CA) in the gill and venous circulations slowed the Jacobs-Stewart cycle and the transfer of acid between the plasma and the red blood cells (RBCs). This ameliorated the effects of a generalised acidosis (associated with an increased capacity for burst swimming) on haemoglobin (Hb)-O2 binding. Because RBC pH was uncoupled from plasma pH, the importance of Hb as a buffer was reduced. The decrease in buffering was mediated by a reduction in the number of histidine residues on the Hb molecule and resulted in enhanced coupling of O2 and CO2 transfer through the RBCs. In the absence of plasma CA, nearly all plasma bicarbonate ultimately dehydrated to CO2 occurred via the RBCs, and chloride/bicarbonate exchange was the rate-limiting step in CO2 excretion. This pattern of CO2 excretion across the gills resulted in disequilibrium states for CO2 hydration/dehydration reactions and thus elevated arterial and venous plasma bicarbonate levels. Plasma-accessible CA embedded in arterial endothelia was retained, which eliminated the localized bicarbonate disequilibrium forming CO2 that then moved into the RBCs. Consequently, RBC pH decreased which, in conjunction with pH-sensitive Bohr/Root Hbs, elevated arterial oxygen tensions and thus enhanced tissue oxygenation. Counter-current arrangement of capillaries (retia) at the eye and later the swim bladder evolved along with the gas gland at the swim bladder. Both arrangements enhanced and magnified CO2 and acid production and, therefore, oxygen secretion to those specialised tissues. The evolution of β-adrenergically stimulated RBC Na(+)/H(+) exchange protected gill O2 uptake during stress and further augmented plasma disequilibrium states for CO2 hydration/dehydration. Finally, RBC organophosphates (e.g. NTP) could be reduced during hypoxia to further increase Hb-O2 affinity without compromising tissue O2 delivery because high-affinity Hbs could still adequately deliver O2 to the tissues via Bohr/Root shifts. We suggest that the evolution of this unique mode of tissue O2 transfer evolved in the Triassic/Jurassic Period, when O2 levels were low, ultimately giving rise to the most extensive adaptive radiation of extant vertebrates, the teleost fishes.
Collapse
Affiliation(s)
- D J Randall
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
143
|
Vallet JL, McNeel AK, Miles JR, Freking BA. Placental accommodations for transport and metabolism during intra-uterine crowding in pigs. J Anim Sci Biotechnol 2014; 5:55. [PMID: 25937925 PMCID: PMC4416243 DOI: 10.1186/2049-1891-5-55] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/19/2014] [Indexed: 01/05/2023] Open
Abstract
Litter size and birth weights are limited by uterine capacity, defined as the ability of the uterus to maintain the appropriate development of some number of conceptuses. Uterine capacity is the result of the combined effects of uterine, placental and embryo/fetal function. The number of living conceptuses that the uterus is capable of supporting is greater during early gestation compared to later gestation. Plots of log fetal weight versus log placental weight also indicate that fetal weights are less sensitive to reduced placental weight (and therefore reduced intrauterine space) in early gestation compared to late gestation. However, even in late gestation, mechanisms still exist that maintain fetal growth when the size of the placenta is reduced. One such mechanism is likely to be improved development of the folded placental-epithelial/maternal-epithelial bilayer. Fold depth, and therefore the maternal fetal interactive surface, increases as gestation advances and is greater in placenta from small fetuses. On the fetal side of the placenta, the epithelial bilayer is embedded in stromal tissue. Glycosaminoglycans are major components of stroma, including hyaluronan and heparan sulfate. Hyaluronidases and heparanases are present within placental tissues, and likely play roles in modification of stromal components to facilitate fold development. Glycosaminoglycans are polymers of forms of glucose (glucosamine, glucuronic acid, iduronic acid) suggesting that glycosaminoglycan synthesis may compete with the glucose needs of the developing fetus. Pig conceptuses are fructogenic, such that a substantial portion of glucose transferred from mother to fetus is converted to fructose. Fructose is an intermediate product in the synthesis of glucosamine from glucose, and glucosamine is linked to regulation of trophoblast cell proliferation through regulation of mTOR. These findings suggest a link between glucose, fructose, glucosamine synthesis, GAG production, and placental morphogenesis, but the details of these interactions remain unclear. In addition, recent placental epithelial transcriptome analysis identified several glucose, amino acid, lipid, vitamin, mineral and hormone transporter mechanisms within the placenta. Further elucidation of mechanisms of placental morphogenesis and solute transport could provide clues to improving nutrient transport to the pig fetus, potentially increasing litter size and piglet birth weights.
Collapse
Affiliation(s)
- Jeffrey L Vallet
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, State Spur 18D, Clay Center, NE 68933 USA
| | - Anthony K McNeel
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, State Spur 18D, Clay Center, NE 68933 USA
| | - Jeremy R Miles
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, State Spur 18D, Clay Center, NE 68933 USA
| | - Bradley A Freking
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, State Spur 18D, Clay Center, NE 68933 USA
| |
Collapse
|
144
|
Hulikova A, Aveyard N, Harris AL, Vaughan-Jones RD, Swietach P. Intracellular carbonic anhydrase activity sensitizes cancer cell pH signaling to dynamic changes in CO2 partial pressure. J Biol Chem 2014; 289:25418-30. [PMID: 25059669 PMCID: PMC4162147 DOI: 10.1074/jbc.m114.547844] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/21/2014] [Indexed: 12/11/2022] Open
Abstract
Carbonic anhydrase (CA) enzymes catalyze the chemical equilibration among CO2, HCO3(-) and H(+). Intracellular CA (CAi) isoforms are present in certain types of cancer, and growing evidence suggests that low levels correlate with disease severity. However, their physiological role remains unclear. Cancer cell CAi activity, measured as cytoplasmic CO2 hydration rate (kf), ranged from high in colorectal HCT116 (∼2 s(-1)), bladder RT112 and colorectal HT29, moderate in fibrosarcoma HT1080 to negligible (i.e. spontaneous kf = 0.18 s(-1)) in cervical HeLa and breast MDA-MB-468 cells. CAi activity in cells correlated with CAII immunoreactivity and enzymatic activity in membrane-free lysates, suggesting that soluble CAII is an important intracellular isoform. CAi catalysis was not obligatory for supporting acid extrusion by H(+) efflux or HCO3(-) influx, nor for maintaining intracellular pH (pHi) uniformity. However, in the absence of CAi activity, acid loading from a highly alkaline pHi was rate-limited by HCO3(-) supply from spontaneous CO2 hydration. In solid tumors, time-dependence of blood flow can result in fluctuations of CO2 partial pressure (pCO2) that disturb cytoplasmic CO2-HCO3(-)-H(+) equilibrium. In cancer cells with high CAi activity, extracellular pCO2 fluctuations evoked faster and larger pHi oscillations. Functionally, these resulted in larger pH-dependent intracellular [Ca(2+)] oscillations and stronger inhibition of the mTORC1 pathway reported by S6 kinase phosphorylation. In contrast, the pHi of cells with low CAi activity was less responsive to pCO2 fluctuations. Such low pass filtering would "buffer" cancer cell pHi from non-steady-state extracellular pCO2. Thus, CAi activity determines the coupling between pCO2 (a function of tumor perfusion) and pHi (a potent modulator of cancer cell physiology).
Collapse
Affiliation(s)
- Alzbeta Hulikova
- From the Department of Physiology, Anatomy and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom and
| | - Nicholas Aveyard
- From the Department of Physiology, Anatomy and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom and
| | - Adrian L Harris
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Richard D Vaughan-Jones
- From the Department of Physiology, Anatomy and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom and
| | - Pawel Swietach
- From the Department of Physiology, Anatomy and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom and
| |
Collapse
|
145
|
Kocsi S, Demeter G, Érces D, Kaszaki J, Molnár Z. Central venous-to-arterial CO2-gap may increase in severe isovolemic anemia. PLoS One 2014; 9:e105148. [PMID: 25137377 PMCID: PMC4138121 DOI: 10.1371/journal.pone.0105148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Despite blood transfusions are administered to restore adequate tissue oxygenation, transfusion guidelines consider only hemoglobin as trigger value, which gives little information about the balance between oxygen delivery and consumption. Central venous oxygen saturation is an alternative, however its changes reflect systemic metabolism and fail to detect regional hypoxia. A complementary parameter to ScvO2 may be central venous-to-arterial carbon dioxide difference (CO2-gap). Our aim was to investigate the change of alternative transfusion trigger values in experimental isovolemic anemia. After splenectomy, anesthetized Vietnamese mini pigs (n = 13, weight range: 18–30 kg) underwent controlled bleeding in five stages (T1–T5). During each stage approximately 10% of the estimated starting total blood volume was removed and immediately replaced with an equal volume of colloid. Hemodynamic measurements and blood gas analysis were then performed. Each stage of bleeding resulted in a significant fall in hemoglobin, the O2-extraction increased significantly from T3 and ScvO2 showed a similar pattern and dropped below the physiological threshold of 70% at T4. By T4 CO2-gap increased significantly and well correlated with VO2/DO2 and ScvO2. To our knowledge, this is the first study to show that anemia caused altered oxygen extraction may have an effect on CO2-gap.
Collapse
Affiliation(s)
- Szilvia Kocsi
- Department of Anaesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
- Department of Anaesthesiology and Intensive Therapy, Hungarian Defence Forces Military Hospital, Budapest, Hungary
- * E-mail:
| | - Gábor Demeter
- Department of Anaesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - József Kaszaki
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Zsolt Molnár
- Department of Anaesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
146
|
Hulikova A, Swietach P. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue. FASEB J 2014; 28:2762-74. [PMID: 24652949 DOI: 10.1096/fj.13-241752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The degree to which cell membranes are barriers to CO2 transport remains controversial. Proteins, such as aquaporins and Rh complex, have been proposed to facilitate CO2 transport, implying that the nonchannel component of membranes must have greatly reduced CO2 permeability. To determine whether membrane CO2 permeation is rate limiting for gas transport, the spread of CO2 across multicellular tissue growths (spheroids) was measured using intracellular pH as a spatial readout. Colorectal HCT116 cells have basal water and NH3 permeability, indicating the functional absence of aquaporins and gas channels. However, CO2 diffusivity in HCT116 spheroids was only 24 ± 4% lower than in pure water, which can be accounted for fully by volume exclusion due to proteins. Diffusivity was unaffected by blockers of aquaporins and Rh complex (Hg(2+), p-chloromercuribenzoic acid, and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid) but decreased under hypertonic conditions (by addition of 300 mOsm mannitol), which increases intracellular protein crowding. Similar CO2 diffusivity was measured in spheroids of T47D breast cells (basal water permeability) and NHDF-Ad fibroblasts (aquaporin-facilitated water permeability). In contrast, diffusivity of NH3, a smaller but less lipophilic gas, was considerably slower than in pure water, as expected from rate-limiting membrane permeation. In conclusion, membranes, even in the functional absence of proposed gas channels, do not restrict CO2 venting from tissue growths.-Hulikova, A., Swietach, P. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue.
Collapse
Affiliation(s)
- Alzbeta Hulikova
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
147
|
Occhipinti R, Musa-Aziz R, Boron WF. Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes. Am J Physiol Cell Physiol 2014; 307:C841-58. [PMID: 24965589 DOI: 10.1152/ajpcell.00049.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exposing an oocyte to CO2/HCO3 (-) causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3 (-) solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3 (-) (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3 (-) or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive.
Collapse
Affiliation(s)
- Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio;
| | - Raif Musa-Aziz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; Department of Physiology and Biophysics, University of Sao Paulo, Institute of Biomedical Sciences, Sao Paulo, Brazil
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio; and
| |
Collapse
|
148
|
Thanh NM, Jung H, Lyons RE, Chand V, Tuan NV, Thu VTM, Mather P. A transcriptomic analysis of striped catfish (Pangasianodon hypophthalmus) in response to salinity adaptation: De novo assembly, gene annotation and marker discovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 10:52-63. [PMID: 24841517 DOI: 10.1016/j.cbd.2014.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 01/25/2023]
Abstract
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9ppt which showed best growth performance. Total sequence data generated was 467.8Mbp, consisting of 4,116,424 reads with an average length of 112bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.
Collapse
Affiliation(s)
- Nguyen Minh Thanh
- International University, VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Hyungtaek Jung
- Institute for Future Environment, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell E Lyons
- CSIRO Livestock Industries, Queensland Biosciences Precinct, QLD 4057, Australia.
| | - Vincent Chand
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Nguyen Viet Tuan
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Vo Thi Minh Thu
- International University, VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Peter Mather
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
149
|
Adeva-Andany MM, Carneiro-Freire N, Donapetry-García C, Rañal-Muíño E, López-Pereiro Y. The importance of the ionic product for water to understand the physiology of the acid-base balance in humans. BIOMED RESEARCH INTERNATIONAL 2014; 2014:695281. [PMID: 24877130 PMCID: PMC4022011 DOI: 10.1155/2014/695281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 12/13/2022]
Abstract
Human plasma is an aqueous solution that has to abide by chemical rules such as the principle of electrical neutrality and the constancy of the ionic product for water. These rules define the acid-base balance in the human body. According to the electroneutrality principle, plasma has to be electrically neutral and the sum of its cations equals the sum of its anions. In addition, the ionic product for water has to be constant. Therefore, the plasma concentration of hydrogen ions depends on the plasma ionic composition. Variations in the concentration of plasma ions that alter the relative proportion of anions and cations predictably lead to a change in the plasma concentration of hydrogen ions by driving adaptive adjustments in water ionization that allow plasma electroneutrality while maintaining constant the ionic product for water. The accumulation of plasma anions out of proportion of cations induces an electrical imbalance compensated by a fall of hydroxide ions that brings about a rise in hydrogen ions (acidosis). By contrast, the deficiency of chloride relative to sodium generates plasma alkalosis by increasing hydroxide ions. The adjustment of plasma bicarbonate concentration to these changes is an important compensatory mechanism that protects plasma pH from severe deviations.
Collapse
Affiliation(s)
| | | | | | - Eva Rañal-Muíño
- Hospital General Juan Cardona, C/ Pardo Bazán s/n, Ferrol, 15406 La Coruña, Spain
| | - Yosua López-Pereiro
- Hospital General Juan Cardona, C/ Pardo Bazán s/n, Ferrol, 15406 La Coruña, Spain
| |
Collapse
|
150
|
Chaix E, Guillaume C, Guillard V. Oxygen and Carbon Dioxide Solubility and Diffusivity in Solid Food Matrices: A Review of Past and Current Knowledge. Compr Rev Food Sci Food Saf 2014; 13:261-286. [DOI: 10.1111/1541-4337.12058] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/20/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Estelle Chaix
- UMR 1208 IATE Agropolymers Engineering and Emerging Technologies; Univ. Montpellier 2, CIRAD, INRA, Montpellier Supagro; CC 023 Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Carole Guillaume
- UMR 1208 IATE Agropolymers Engineering and Emerging Technologies; Univ. Montpellier 2, CIRAD, INRA, Montpellier Supagro; CC 023 Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Valérie Guillard
- UMR 1208 IATE Agropolymers Engineering and Emerging Technologies; Univ. Montpellier 2, CIRAD, INRA, Montpellier Supagro; CC 023 Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|