101
|
Circular RNA PLEC acts as a sponge of microRNA-198 to promote gastric carcinoma cell resistance to paclitaxel and tumorigenesis. Pathol Res Pract 2021; 224:153487. [PMID: 34225215 DOI: 10.1016/j.prp.2021.153487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 01/07/2023]
Abstract
Gastric carcinoma (GC) is one of the most frequent types of malignancy worldwide. Resistance to paclitaxel (PTX) has become an obstacle to the prognosis of GC, and the underlying mechanism is not clear. A previous study identified GC-related circRNAs via microarray analysis and bioinformatics analysis, and we discovered that circPLEC (hsa_circ_104722) was markedly upregulated in GC tissues and cells. The molecular mechanism of circPLEC in PTX-resistant GC cells still needs to be explored. In the present study, qRT-PCR demonstrated that circPLEC was upregulated in PTX-resistant GC tissues and cells, indicating that circPLEC boosts the PTX resistance of GC. circPLEC downregulation weakened GC resistance to PTX and tumorigenesis, migration and invasion and promoted the apoptosis of PTX-resistant GC cells. MiR-198 inhibitor reversed the effect of circPLEC downreguAlation in PTX-resistant GC cells, and MUC19 downregulation weakened GC resistance to PTX and tumorigenesis and improved the apoptosis of PTX-resistant GC cells. In summary, circPLEC acts as a sponge of miR-198 to promote the PTX resistance and tumorigenesis of GC cells by regulating MUC19 expression.
Collapse
|
102
|
Buccarelli M, Lulli V, Giuliani A, Signore M, Martini M, D'Alessandris QG, Giannetti S, Novelli A, Ilari R, Giurato G, Boe A, Castellani G, Spartano S, Marangi G, Biffoni M, Genuardi M, Pallini R, Marziali G, Ricci-Vitiani L. Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of lncRNA MEG3. Neuro Oncol 2021; 22:1771-1784. [PMID: 32459347 PMCID: PMC7746944 DOI: 10.1093/neuonc/noaa127] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma (GBM) stemlike cells (GSCs) are thought to be responsible for the maintenance and aggressiveness of GBM, the most common primary brain tumor in adults. This study aims at elucidating the involvement of deregulations within the imprinted delta-like homolog 1 gene‒type III iodothyronine deiodinase gene (DLK-DIO3) region on chromosome 14q32 in GBM pathogenesis. Methods Real-time PCR analyses were performed on GSCs and GBM tissues. Methylation analyses, gene expression, and reverse-phase protein array profiles were used to investigate the tumor suppressor function of the maternally expressed 3 gene (MEG3). Results Loss of expression of genes and noncoding RNAs within the DLK1-DIO3 region was observed in GSCs and GBM tissues compared with normal brain. This downregulation is mainly mediated by epigenetic silencing. Kaplan–Meier analysis indicated that low expression of MEG3 and MEG8 long noncoding (lnc)RNAs significantly correlated with short survival in GBM patients. MEG3 restoration impairs tumorigenic abilities of GSCs in vitro by inhibiting cell growth, migration, and colony formation and decreases in vivo tumor growth, reducing infiltrative growth. These effects were associated with modulation of genes involved in cell adhesion and epithelial-to-mesenchymal transition (EMT). Conclusion In GBM, MEG3 acts as a tumor suppressor mainly regulating cell adhesion, EMT, and cell proliferation, thus providing a potential candidate for novel GBM therapies.
Collapse
Affiliation(s)
| | | | | | - Michele Signore
- Core Facilities, Higher Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| | - Maurizio Martini
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Institutes of Pathology, Catholic University School of Medicine, Rome, Italy
| | - Quintino G D'Alessandris
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Stefano Giannetti
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Human Anatomy, Catholic University School of Medicine, Rome, Italy
| | - Agnese Novelli
- Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Ramona Ilari
- Department of Oncology and Molecular Medicine Rome, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery, and Dentistry, "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy.,Genomix4Life Srl, University of Salerno, Baronissi, Salerno, Italy
| | - Alessandra Boe
- Core Facilities, Higher Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| | | | - Serena Spartano
- Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Giuseppe Marangi
- Department of Oncology and Molecular Medicine Rome, Italy.,Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine Rome, Italy
| | - Maurizio Genuardi
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Roberto Pallini
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine Rome, Italy.,Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | | |
Collapse
|
103
|
Lu Z, Wang C, Lv X, Dai W. Hsa_circ_0010220 regulates miR-198/Syntaxin 6 axis to promote osteosarcoma progression. J Bone Oncol 2021; 28:100360. [PMID: 33996428 PMCID: PMC8105664 DOI: 10.1016/j.jbo.2021.100360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
hsa_circ_0010220 expression is increased in osteosarcoma. hsa_circ_0010220 knockdown represses cell proliferation, migration and invasion. hsa_circ_0010220 regulates Syntaxin 6 via miR-198. hsa_circ_0010220 silence decreases xenograft tumor growth.
Background Circular RNAs (circRNAs) are a class of endogenous RNAs that are involved in osteosarcoma progression. Hsa_circ_0010220 (circ_0010220) is a circRNA generated by gene Rho Guanine Nucleotide Exchange Factor 10 Like (ARHGEF10L) and is upregulated in osteosarcoma, but its functional role in osteosarcoma is limited studied. This study aimed to illustrate the regulatory mechanism underlying circ_0010220 in osteosarcoma. Methods 51 paired tumor and normal tissues were obtained from osteosarcoma patients. circ_0010220, microRNA (miR)-198 and Syntaxin 6 (STX6) abundances were examined by quantitative reverse transcription polymerase chain reaction and western blot. Cell proliferation, cell cycle, apoptosis, migration and invasion were analyzed via Cell Counting Kits-8 (CCK-8), colony formation, flow cytometry and transwell analyses. Target relationship was verified via dual-luciferase reporter analysis, RNA immunoprecipitation and pull-down. The in vivo function was analyzed using a xenograft model. Results Circ_0010220 was elevated in osteosarcoma tissues and cells, and was related to the lower survival rate of osteosarcoma patients. Circ_0010220 knockdown inhibited cell proliferation, migration and invasion, but induced cell cycle arrest and apoptosis in vitro. Besides, circ_0010220 silence curbed the growth of xenograft osteosarcoma tumors in vivo. Mechanistic research revealed that miR-198 is a target of circ_0010220, and directly targets STX6. Moreover, circ_0010220 upregulated the expression of STX6 by sponging miR-198 to regulate cell proliferation, migration, invasion, cell cycle, and apoptosis. Conclusion Circ_0010220 contributes to osteosarcoma progression through mediating miR-198/STX6 axis, which might be a novel therapeutic target for osteosarcoma therapy.
Collapse
Affiliation(s)
- Zhaoan Lu
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| | - Chuanwen Wang
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| | - Xiaolong Lv
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| | - Wen Dai
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| |
Collapse
|
104
|
Lin J, Liao S, Liu Z, Li E, Wu X, Zeng W. LncRNA FGD5-AS1 accelerates cell proliferation in pancreatic cancer by regulating miR-520a-3p/KIAA1522 axis. Cancer Biol Ther 2021; 22:257-266. [PMID: 33794727 DOI: 10.1080/15384047.2021.1883184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent years, FGD5 antisense RNA 1 (FGD5-AS1) was confirmed to be the long non-coding RNAs (lncRNAs) that could accelerate the development of multiple cancers. Nevertheless, specific biological functions and latent mechanism of FGD5-AS1 were not yet clear in pancreatic cancer (PC). This research was aimed to search the functions of FGD5-AS1 on the PC progression. The expression of FGD5-AS1 in PC cells was tested by using RT-qPCR assay. Colony formation assay, EdU assay, flow cytometry assay and transwell assay as well as western blot were adopted to test the cell abilities of proliferation, apoptosis and migration, separately. Furthermore, RIP experiment and pull down assay were applied for validating the correlation FGD5-AS1, miR-520a-3p and KIAA1522. As a result, the abnormal high expression of FGD5-AS1 was observed in PC cells. And cell proliferative and migratory abilities could be restrained via FGD5-AS1 depletion. Moreover, FGD5-AS1 was proven to combine with miR-520a-3p directly. It was also confirmed that KIAA1522 could be targeted by miR-520a-3p. Rescue assay results indicated that overexpressed KIAA1522 could reverse the repressive function of silencing FGD5-AS1 on PC progression. Taken together, FGD5-AS1 accelerated cell proliferation and migration via sponging miR-520a-3p and upregulating KIAA1522.
Collapse
Affiliation(s)
- Jing Lin
- Department of Oncology, The First Affiliated Hospital of Shantou Univresity Medical College, Shantou, Shantou, Guangdong, China
| | - Shasha Liao
- Department of Oncology, Shantou Longhu people's Hospital, Shantou, Guangdong, China
| | - Zewa Liu
- Department of Oncology, The First Affiliated Hospital of Shantou Univresity Medical College, Shantou, Shantou, Guangdong, China
| | - E Li
- Department of Oncology, Shantou Longhu people's Hospital, Shantou, Guangdong, China
| | - Xiaohua Wu
- Department of Oncology, Shantou Longhu people's Hospital, Shantou, Guangdong, China
| | | |
Collapse
|
105
|
Micallef I, Baron B. The Mechanistic Roles of ncRNAs in Promoting and Supporting Chemoresistance of Colorectal Cancer. Noncoding RNA 2021; 7:24. [PMID: 33807355 PMCID: PMC8103280 DOI: 10.3390/ncrna7020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal malignancies which has quite a high mortality rate. Despite the advances made in CRC treatment, effective therapy is still quite challenging, particularly due to resistance arising throughout the treatment regimen. Several studies have been carried out to identify CRC chemoresistance mechanisms, with research showing different signalling pathways, certain ATP binding cassette (ABC) transporters and epithelial mesenchymal transition (EMT), among others to be responsible for the failure of CRC chemotherapies. In the last decade, it has become increasingly evident that certain non-coding RNA (ncRNA) families are involved in chemoresistance. Research investigations have demonstrated that dysregulation of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute towards promoting resistance in CRC via different mechanisms. Considering the currently available data on this phenomenon, a better understanding of how these ncRNAs participate in chemoresistance can lead to suitable solutions to overcome this problem in CRC. This review will first focus on discussing the different mechanisms of CRC resistance identified so far. The focus will then shift onto the roles of miRNAs, lncRNAs and circRNAs in promoting 5-fluorouracil (5-FU), oxaliplatin (OXA), cisplatin and doxorubicin (DOX) resistance in CRC, specifically using ncRNAs which have been recently identified and validated under in vivo or in vitro conditions.
Collapse
Affiliation(s)
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta;
| |
Collapse
|
106
|
Dias TR, Santos JMO, Gil da Costa RM, Medeiros R. Long non-coding RNAs regulate the hallmarks of cancer in HPV-induced malignancies. Crit Rev Oncol Hematol 2021; 161:103310. [PMID: 33781867 DOI: 10.1016/j.critrevonc.2021.103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the most frequent sexually transmitted agent worldwide and is responsible for approximately 5% of human cancers. Identifying novel biomarkers and therapeutic targets for these malignancies requires a deeper understanding of the mechanisms involved in the progression of HPV-induced cancers. Long non-coding RNAs (lncRNAs) are crucial in the regulation of biological processes. Importantly, these molecules are key players in the progression of multiple malignancies and are able to regulate the development of the different hallmarks of cancer. This review highlights the action of lncRNAs in the regulation of cellular processes leading to the typical hallmarks of cancer. The regulation of lncRNAs by HPV oncogenes, their targets and also their mechanisms of action are also discussed, in the context of HPV-induced malignancies. Overall, accumulating data indicates that lncRNAs may have a significant potential to become useful tools for clinical practice as disease biomarkers or therapy targets.
Collapse
Affiliation(s)
- Tânia R Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Tumour and DNA Biobank, Federal University of Maranhão (UFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
107
|
Liu Y, Fu X, Wang X, Liu Y, Song X. Long non‑coding RNA OIP5‑AS1 facilitates the progression of ovarian cancer via the miR‑128‑3p/CCNG1 axis. Mol Med Rep 2021; 23:388. [PMID: 33760168 PMCID: PMC8008222 DOI: 10.3892/mmr.2021.12027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Long non‑coding RNA (LncRNA) o‑phthalaldehyde-interacting protein 5 antisense transcript 1 (OIP5‑AS1) serves major roles in the progression of various types of cancer. The present study investigated its biological function in ovarian cancer (OC) and its mechanisms. The levels of OIP5‑AS1, microRNA‑128‑3p (miR‑128‑3p) and cyclin G1 (CCNG1) were examined by reverse transcription‑quantitative PCR. Cell viability, apoptosis, migration and invasion were detected to analyze cellular progression. Glycolytic metabolism was assessed by detecting the levels of glucose consumption and lactate production. CCNG1 and hexokinase 2 protein levels were measured by western blotting. Dual‑luciferase reporter assay, RNA immunoprecipitation and RNA pull‑down assays were performed to affirm the interaction between two molecules. OIP5‑AS1 was found to be upregulated in OC tissues and cells. Knockdown of OIP5‑AS1 suppressed cell viability, migration, invasion and glycolysis while promoting apoptosis in OC cells. OIP5‑AS1 interacted with miR‑128‑3p and functioned as an oncogene by sequestering miR‑128‑3p. In addition, CCNG1 was a target gene for miR‑128‑3p and miR‑128‑3p regulated the CCNG1‑induced effects on OC cells by downregulating CCNG1. OIP5‑AS1 upregulated the expression of CCNG1 via targeting miR‑128‑3p. OIP5‑AS1 knockdown also inhibited tumor growth of OC in vivo by modulating the expression of miR‑128‑3p and CCNG1. Collectively, these data illustrated that the oncogenic role of OIP5‑AS1 in OC was associated with the miR‑128‑3p/CCNG1 axis at least in part. OIP5‑AS1 might be a probable diagnostic and therapeutic biomarker for the treatment of OC patients.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Obstetrics and Gynecology, The Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Xiaomin Fu
- Department of Obstetrics and Gynecology, The Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Xiuyun Wang
- Department of Obstetrics and Gynecology, The Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Yanling Liu
- Ultrasound Department of Obstetrics and Gynecology, The Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Xiaoyan Song
- Ultrasound Department of Obstetrics and Gynecology, The Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| |
Collapse
|
108
|
Chen L, Xu JY, Tan HB. LncRNA TUG1 regulates the development of ischemia-reperfusion mediated acute kidney injury through miR-494-3p/E-cadherin axis. JOURNAL OF INFLAMMATION-LONDON 2021; 18:12. [PMID: 33663500 PMCID: PMC7934407 DOI: 10.1186/s12950-021-00278-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023]
Abstract
Background Acute kidney injury (AKI) results from renal dysfunction caused by various causes, resulting in high mortality. The underlying mechanisms of ischemia-reperfusion (I/R) induced AKI is very complicated and needed for further research. Here, we sought to found out the functions of lncRNA TUG1 in I/R-induced AKI. Methods In vivo model was constructed by I/R-induced mice and in vitro model was constructed by hypoxia/reoxygenation (H/R)-induced HK-2 cell. Kidney tissue damage was evaluated through H&E staining in mice. Cell flow cytometry was used to detect the degree of apoptosis. TUG1, miR-494-3p and E-cadherin were determined both by RT-PCR and western blot. Dual luciferase assay was employed to validate the relationships between TUG1, miR-494-3p and E-cadherin. Inflammatory factors including IL-1β, TNFɑ and IL-6 were evaluated by ELISA. Results lncRNA TUG1 was decreased while miR-494-3p was elevated in vivo and in vitro. Overexpression of TUG1 or transfection with miR-494-3p inhibitor significantly alleviated cell apoptosis. MiR-494-3p directly targeted E-cadherin and TUG1 suppressed cell apoptosis via serving as a miR-494-3p sponge to disinhibit E-cadherin. Conclusion lncRNA TUG1 alleviated I/R-induced AKI through targeting miR-494-3p/E-cadherin.
Collapse
Affiliation(s)
- Li Chen
- Department of Nephrology, Brain Hospital of Hunan Province, Changsha, 410007, Hunan Province, P.R. China
| | - Jun-Ying Xu
- Department of Nephrology, Brain Hospital of Hunan Province, Changsha, 410007, Hunan Province, P.R. China
| | - Hong-Bao Tan
- Department of Anesthesiology, The Fourth Hospital of Changsha, No.70, Lushan Road, Yuelu District, Changsha, 410006, Hunan Province, P.R. China.
| |
Collapse
|
109
|
Fu Y, Sun C, Li Q, Qian F, Li C, Xi X, Shang D, Wang C, Peng X, Piao M, Qu W, Tian J, Yu B, Gu X, Tian J. Differential RNA expression profiles and competing endogenous RNA-associated regulatory networks during the progression of atherosclerosis. Epigenomics 2021; 13:99-112. [PMID: 33406894 DOI: 10.2217/epi-2020-0252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To identify differential mRNA and ncRNA expression profiles and competing endogenous RNA-associated regulatory networks during the progression of atherosclerosis (AS). Materials & methods: We systematically analyzed whole-transcriptome sequencing of samples from different stages of AS to evaluate their long noncoding RNA (lncRNA), circular RNA (circRNA), miRNA and mRNA profiles. Results: We constructed three AS-related competing endogenous RNA regulatory networks of differentially expressed circRNAs, lncRNAs, miRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the circRNAs in the network were enriched in lipid metabolic processes and participated in the PPAR signaling pathway. Furthermore, lncRNAs were related to receptor activity, myofibrils and cardiovascular system development. Conclusion: The current findings further clarified the regulatory mechanisms at different stages of AS and may provide new ideas and targets for AS.
Collapse
Affiliation(s)
- Yahong Fu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, 541004, Guangxi, China
| | - Changbin Sun
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Qi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Fengcui Qian
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, Heilongjiang, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, Heilongjiang, China
| | - Xiangwen Xi
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Desi Shang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xiang Peng
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Minghui Piao
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Wenbo Qu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Jinwei Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, 541004, Guangxi, China
| | - Bo Yu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Xia Gu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China.,Heilongjiang Provincial Hospital, Harbin, 150030, Heilongjiang, China
| | - Jiangtian Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| |
Collapse
|
110
|
Liu Y, Wang X, Li P, Zhao Y, Yang L, Yu W, Xie H. Targeting MALAT1 and miRNA-181a-5p for the intervention of acute lung injury/acute respiratory distress syndrome. Respir Res 2021; 22:1. [PMID: 33407436 PMCID: PMC7789396 DOI: 10.1186/s12931-020-01578-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ALI/ARDS is a severe lung injury leading to refractory respiratory failure, accounting for high morbidity and mortality. However, therapeutic approaches are rather limited. Targeting long non-coding RNA MALAT1 and microRNA miR-181a-5p might be potential option for ALI/ARDS intervention. OBJECTIVE We aimed to investigate the role of MALAT and miR-181a-5p in the pathogenesis of ALI/ARDS, and test the therapeutic effects of targeting MALAT and miR-181a-5p for ALI/ARDS intervention in vitro. METHODS MALAT1 and miR-181a-5p levels were measured in plasma from ALI/ARDS patients. In vitro human pulmonary microvascular endothelial cell (HPMEC) injury was induced by LPS treatment, and molecular targets of MALAT1 and miR-181a-5p were explored by molecular biology approaches, mainly focusing on cell apoptosis and vascular inflammation. Interaction between MALAT1 and miR-181a-5p was also detected. Finally, the effects of targeting MALAT1 and miR-181a-5p for ALI/ARDS intervention were validated in a rat ALI/ARDS model. RESULTS MALAT1 upregulation and miR-181a-5p downregulation were observed in ALI/ARDS patients. Transfection of mimic miR-181a-5p into HPMECs revealed decreased Fas and apoptosis, along with reduced inflammatory factors. Fas was proved to be a direct target of miR-181a-5p. Similar effects were also present upon MALAT1 knockdown. As for the interaction between MALAT1 and miR-181a-5p, MALAT1 knockdown increased miR-181a-5p expression. Knocking down of MALAT1 and miR-181a-5p could both improve the outcome in ALI/ARDS rats. CONCLUSION MALAT1 antagonism or miR-181a-5p could both be potential therapeutic strategies for ALI/ARDS. Mechanistically, miR-181a-5p directly inhibits Fas and apoptosis, along with reduced inflammation. MALAT1 negatively regulates miR-181a-5p.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.,Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xiaodong Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yanhua Zhao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
111
|
Meng J, Ding T, Chen Y, Long T, Xu Q, Lian W, Liu W. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int Immunopharmacol 2021; 90:107141. [PMID: 33189612 DOI: 10.1016/j.intimp.2020.107141] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Recent studies have identified neuroinflammation as a significant contributor to the pathological process of traumatic brain injury (TBI) and as a potentially effective target for treatment. LncRNA maternally expressed gene 3 (Meg3) has further been observed to play a critical role in diverse biological processes, including microglial activation and the inflammatory response. However, its target gene and associated signaling pathway require further elucidation. This study found that lipopolysaccharide + ATP upregulated Meg3, promoted microglia activation, Nlrp3/caspase1 activation and inflammation, and markedly reduced miR-7a-5p. Overexpression of miR-7a-5p attenuated Meg3-induced microglial activation, but not Meg3 expression. Bioinformatic analysis and dual-luciferase assays indicated that Meg3 was a direct target of miR-7a-5p that negatively regulates miR-7a-5p expression. Further, we showed that Meg3 acted as a competing endogenous RNA for miR-7a-5p and induced microglial inflammation by regulating nod-like receptor protein 3 (Nlrp3) expression. Our study thus demonstrates Meg3 regulates microglia inflammation by targeting the miR-7a-5p /Nlrp3 pathway.
Collapse
Affiliation(s)
- Jiao Meng
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ting Ding
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yuhua Chen
- Department of Neurosurgery, Bijie First People's Hospital, Bijie 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie First People's Hospital, Bijie 551700, China
| | - Quanhua Xu
- Department of Neurosurgery, Bijie First People's Hospital, Bijie 551700, China
| | - Wenqing Lian
- Departmentof Critical Care Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wei Liu
- Department of Neurosurgery, Bijie First People's Hospital, Bijie 551700, China.
| |
Collapse
|
112
|
Feng H, Gui Q, Zhu W, Wu G, Dong X, Shen M, Luo H, Xue S, Cheng Q. Long-noncoding RNA Peg13 alleviates epilepsy progression in mice via the miR-490-3p/Psmd11 axis to inactivate the Wnt/β-catenin pathway. Am J Transl Res 2020; 12:7968-7981. [PMID: 33437373 PMCID: PMC7791504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Epilepsy, one of the most common neurological diseases with spontaneous recurrent seizures, is a severe health problem globally. The present study aimed to study the role and upstream mechanism of 26S proteasome non-ATPase regulatory subunit 11 (Psmd11) in epilepsy. In the current paper, epileptic mice models were successfully established. Hematoxylin and eosin (HE) staining was performed to reveal morphology of hippocampal tissues. Nissl's staining was performed for detection of neuron injury. Enzyme-linked immunosorbent assay (ELISA) was conducted to detect concentrations of pro-inflammatory cytokines. The expression of Psmd11 was downregulated in the hippocampal tissues of epileptic mice, and overexpression of Psmd11 improved the spatial learning and memory of epileptic mice. Further, upregulation of Psmd11 protected epileptic hippocampal neurons from injury. Moreover, Psmd11 overexpression inhibited cell apoptosis, suppressed the activities of microglia and astrocytes, as well as reduced inflammatory response in epileptic hippocampi. Psmd11 was a downstream target of miR-490-3p. Long noncoding RNA (lncRNA) Peg13 bound with miR-490-3p to upregulate Psmd11. Subsequently, rescue experiments revealed that Peg13 suppressed the progression of epilepsy via upregulating Psmd11. Furthermore, Psmd11 was verified to inactivate the Wnt/β-catenin pathway. Peg13 repressed the Wnt/β-catenin pathway via upregulation of Peg13. In conclusion, this paper illuminated the function and upstream mechanism of Psmd11 in epilepsy. Psmd11 was upregulated by Peg13 at a miR-490-3p dependent way, thus inactivating the Wnt/β-catenin pathway and alleviating epilepsy course in mice, which may be a promising approach for epilepsy treatment.
Collapse
Affiliation(s)
- Hongxuan Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital)Suzhou 215002, Jiangsu, China
| | - Qian Gui
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital)Suzhou 215002, Jiangsu, China
| | - Wei Zhu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital)Suzhou 215002, Jiangsu, China
| | - Guanhui Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital)Suzhou 215002, Jiangsu, China
| | - Xiaofeng Dong
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital)Suzhou 215002, Jiangsu, China
| | - Mingqiang Shen
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital)Suzhou 215002, Jiangsu, China
| | - Hailong Luo
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang 157011, Heilongjiang, China
| | - Shouru Xue
- Department of Neurology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Qingzhang Cheng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital)Suzhou 215002, Jiangsu, China
| |
Collapse
|
113
|
Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 Pseudogenes in Cancer and Cell Metabolism. Cells 2020; 9:E2554. [PMID: 33260500 PMCID: PMC7760355 DOI: 10.3390/cells9122554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ferritin, the principal intracellular iron-storage protein localized in the cytoplasm, nucleus, and mitochondria, plays a major role in iron metabolism. The encoding ferritin genes are members of a multigene family that includes some pseudogenes. Even though pseudogenes have been initially considered as relics of ancient genes or junk DNA devoid of function, their role in controlling gene expression in normal and transformed cells has recently been re-evaluated. Numerous studies have revealed that some pseudogenes compete with their parental gene for binding to the microRNAs (miRNAs), while others generate small interference RNAs (siRNAs) to decrease functional gene expression, and still others encode functional mutated proteins. Consequently, pseudogenes can be considered as actual master regulators of numerous biological processes. Here, we provide a detailed classification and description of the structural features of the ferritin pseudogenes known to date and review the recent evidence on their mutual interrelation within the complex regulatory network of the ferritin gene family.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
114
|
Li K, Chen Y. CYP2C8 regulated by GAS5/miR-382-3p exerts anti-cancerous properties in liver cancer. Cancer Biol Ther 2020; 21:1145-1153. [PMID: 33180658 DOI: 10.1080/15384047.2020.1840886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A cornucopia of literatures has characterized the involvement of a host of functional molecules in liver cancer. Herein, according to online datasets, we found that cytochrome P450 family 2 subfamily C member 8 (CYP2C8) was downregulated in liver cancer, and high CYP2C8 expression was associated with favorable overall survival. Lower levels of CYP2C8 were confirmed in liver cancer cells. CYP2C8 overexpression efficiently attenuated liver cancer cell proliferation and promoted apoptosis. We then discovered that miR-382-3p directly targeted CYP2C8 to inhibit its expression in liver cancer cells based on bioinformatic prediction and experimental confirmation. Moreover, a cytoplasmic long noncoding RNA (lncRNA), growth arrest-specific 5 (GAS5), sponged and down-regulated miR-382-3p, thus positively modulating CYP2C8 expression. Rescue assays indicated that GAS5 overexpression gave rise to decreased proliferation and increased apoptosis of liver cancer cells, while CYP2C8 knockdown counteracted GAS5-mediated anti-carcinogenic effects. In summary, our work offered a solid experimental foundation for understanding the functional role of CYP2C8 and the mechanism of GAS5/miR-382-3p/CYP2C8 axis in cell proliferation and apoptosis of liver cancer.
Collapse
Affiliation(s)
- Kezhi Li
- Department of General Surgery, The First People's Hospital of Qujing , Qujing, People's Republic of China
| | - Yonglun Chen
- Department of Anesthesiology, The First People's Hospital of Qujing , Qujing, People's Republic of China
| |
Collapse
|
115
|
Liu Y, Wang X, Li P, Zhao Y, Yang L, Yu W, Xie H. Targeting MALAT1 and miRNA-181a-5p for the intervention of acute lung injury/acute respiratory distress syndrome. Respir Med 2020; 175:106210. [PMID: 33197806 PMCID: PMC8375441 DOI: 10.1016/j.rmed.2020.106210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
This article has been retracted:
please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted
at the request of the authors due to a reported lack of agreement among
the authors. The usage of the image in E-b part of Figure 7 had not
received permission from the co-author. In order to resolve the issue,
the authors agreed to retract the article.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiaodong Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yanhua Zhao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
116
|
Shi J, Xu X, Zhang D, Zhang J, Yang H, Li C, Li R, Wei X, Luan W, Liu P. Long non-coding RNA PTPRG-AS1 promotes cell tumorigenicity in epithelial ovarian cancer by decoying microRNA-545-3p and consequently enhancing HDAC4 expression. J Ovarian Res 2020; 13:127. [PMID: 33099316 PMCID: PMC7585679 DOI: 10.1186/s13048-020-00723-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. METHODS Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. RESULTS Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. CONCLUSIONS PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.
Collapse
Affiliation(s)
- Juanjuan Shi
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599 Shandong China ,Department of Gynaecology, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Xijian Xu
- Department of Gynaecology, Rizhao Central Hospital, Rizhao, 276800 Shandong China
| | - Dan Zhang
- Department of TCM Pharmacy, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Jiuyan Zhang
- Department of Clinical Pharmacy, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Hui Yang
- Department of Gynaecology, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Chang Li
- Department of Pathology, Tengzhou Center People’s Hospital, Zaozhuang, 277500 Shandong China
| | - Rui Li
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599 Shandong China
| | - Xuan Wei
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599 Shandong China
| | - Wenqing Luan
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599 Shandong China
| | - Peishu Liu
- Department of Gynaecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, 277599, Shandong, China.
| |
Collapse
|
117
|
Peng W, Cao H, Liu K, Guo C, Sun Y, Qi H, Liu Z, Xie Y, Liu X, Li B, Zhang L. Identification of lncRNA-NR_104160 as a biomarker and construction of a lncRNA-related ceRNA network for essential hypertension. Am J Transl Res 2020; 12:6060-6075. [PMID: 33194014 PMCID: PMC7653565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES To identify long noncoding RNAs (lncRNAs) and construct a competing endogenous RNA (ceRNA) network for essential hypertension. METHODS An RNA microarray and two-step quantitative real-time PCR were applied to identify differentially expressed RNAs (DE-RNAs), and a luciferase assay was performed to explore the binding relationship between RNAs. A generalized linear model and logistic regression model were used to analyze the associations between different RNAs and of RNAs with hypertension. Receiver operating characteristic curve analysis was executed to evaluate the diagnostic performance. Bioinformatics analysis was applied for network construction. RESULTS In total, 439 DE-RNAs (387 lncRNAs and 52 mRNAs) were identified in the microarray, and 71 'lncRNA-miRNA-mRNA' loops formed the ceRNA network. The first validation confirmed that five RNAs (NR_104160, lnc-GPR63-8:1, lnc-HPRT1-9:1, ID1 and RSL24D1) were significantly upregulated in hypertensives (P < 0.05). NR_104160 was significantly associated with hypertension (OR = 2.863, 95% CI: 1.143-7.172; P = 0.025) after adjusting for confounding factors. NR_104160 was included in the hypertension diagnostic model, with an area under the curve of 0.852 (95% CI: 0.761-0.944). In the second validation, NR_104160 showed a constant significant difference (P = 0.001). An elevated expression level of NR_104160 was associated with the expression of ID1 (β = 0.2235, P = 0.005). Luciferase assays showed hsa-miR-101-3p stimulation significantly inhibited the reporter gene activation ability of the NR_104160 wild-type plasmid (P < 0.001). CONCLUSIONS Our study constructed a ceRNA network to provide hypotheses regarding the mechanism of hypertension development. lncRNA-NR_104160 was identified as a hub element that participates in hypertension transcriptional regulation and as a potential biomarker.
Collapse
Affiliation(s)
- Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing 100069, People’s Republic of China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing 100069, People’s Republic of China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing 100069, People’s Republic of China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing 100069, People’s Republic of China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing 100069, People’s Republic of China
| | - Han Qi
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and The Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical UniversityBeijing 100088, People’s Republic of China
| | - Zheng Liu
- Science Department, Peking University People’s HospitalBeijing 100044, People’s Republic of China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing 100069, People’s Republic of China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing 100069, People’s Republic of China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing 100069, People’s Republic of China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing 100069, People’s Republic of China
| |
Collapse
|
118
|
Wu G, Zhou H, Li D, Zhi Y, Liu Y, Li J, Wang F. LncRNA DANCR upregulation induced by TUFT1 promotes malignant progression in triple negative breast cancer via miR-874-3p-SOX2 axis. Exp Cell Res 2020; 396:112331. [PMID: 33058834 DOI: 10.1016/j.yexcr.2020.112331] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with poorest survival outcome and is prone to metastasis. TUFT1 and the long non-coding RNA (lncRNA), DANCR, play vital roles in metastasis and progression of various cancers. However, the correlation between TUFT1 and DANCR in TNBC and their downstream molecular mechanisms are still undetermined. We demonstrated that upregulation of TUFT1 in TNBC was related to a worse survival in TNBC patients. The TNBC cells invasiveness was augmented by TUFT1 in a dose-dependent manner, while inhibiting TUFT1 repressed the invasiveness. Particularly, the expression of TUFT1 was positively correlated with the expression of DANCR in TNBC tissues. In addition, TUFT1 increased DANCR expression, while silencing DANCR ameliorated the invasiveness of TNBC cells induced by TUFT1. As demonstrated, TUFT1 interacted with miR-874-3p. Subsequently, qRT-PCR together with luciferase reporter further demonstrated that DANCR acted as competing endogenous (ceRNA) for miR-874-3p, thereby regulating the de-repression of SOX2 and advancing epithelial-mesenchymal transition (EMT) in TNBC. The present research shows that TUFT1 promotes the malignant development in TNBC via enhancing the expression of DANCR. The upregulation of DANCR may contribute to the progression and tumor invasiveness of TNBC, considering that DANCR functions as a miR-874-3p sponge, thus modulating SOX2 positively. Collectively, the present study explored the molecular mechanism underlying TUFT1 in TNBC, raising a TUFT1-mediated therapy for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Guiyun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Huatao Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Danhua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yaowei Zhi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yafang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Junhua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Fei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
119
|
Mi X, Xu R, Hong S, Xu T, Zhang W, Liu M. M2 Macrophage-Derived Exosomal lncRNA AFAP1-AS1 and MicroRNA-26a Affect Cell Migration and Metastasis in Esophageal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:779-790. [PMID: 33230475 PMCID: PMC7595846 DOI: 10.1016/j.omtn.2020.09.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Exosomes from cancer cells or immune cells, carrying bio-macromolecules or long non-coding RNAs (lncRNAs), participate in tumor pathogenesis and progression by modulating the microenvironment. This study aims to explore the function of M2 macrophage-derived exosomes on the invasion and metastasis of esophageal cancer (EC) with the involvement of the lncRNA AFAP1-AS1/microRNA-26a (miR-26a)/activating transcription factor 2 (ATF2) axis. We found that lncRNA AFAP1-AS1 could specifically bind to miR-26a, thus affecting the expression of miR-26a, and ATF2 was the direct target of miR-26a. Compared with M1 macrophage-derived exosomes, M2 macrophage-derived exosomes exhibited higher AFAP1-AS1 and ATF2 expression and lower miR-26a expression. Moreover, extracellular AFAP1-AS1 could be moved to KYSE410 cells via being incorporated into M2 macrophage-derived exosomes. M2 macrophage-derived exosomes could downregulate miR-26a and promote the expression of ATF2 through high expression of AFAP1-AS1, thus promoting the migration, invasion, and lung metastasis of EC cells; M2-exosomes upregulating AFAP1-AS1 or downregulating miR-26a ameliorated this effect. In summary, M2 macrophage-derived exosomes transferred lncRNA AFAP1-AS1 to downregulate miR-26a and upregulate ATF2, thus promoting the invasion and metastasis of EC. Targeting M2 macrophages and the lncRNA AFAP1-AS1/miR-26a/ATF2 signaling axis represents a potential therapeutic strategy for EC.
Collapse
Affiliation(s)
- Xifeng Mi
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Rongyu Xu
- Department of Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Shunzhong Hong
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Tingting Xu
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Wanfei Zhang
- Department of Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Ming Liu
- Digestive Endoscopy Center of the First Affiliated Hospital of Xiamen University, Xiamen, 361000 Fujian, China
| |
Collapse
|
120
|
Cai Z, Li H. Circular RNAs and Bladder Cancer. Onco Targets Ther 2020; 13:9573-9586. [PMID: 33061440 PMCID: PMC7535116 DOI: 10.2147/ott.s268859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) is the most common urinary system malignancy and is a serious threat to human health. Circular RNAs (circRNAs) are members of a newly defined class of noncoding RNAs (ncRNAs) that can regulate gene expression at the transcriptional or posttranscriptional level. Studies have shown that circRNAs are related to the clinicopathological characteristics, prognosis, and chemosensitivity of BC, and basic research has further confirmed that changes in the expression of circRNAs in BC are closely related to various tumor biological functions. CircRNAs promote tumor development by interacting with miRNAs to regulate transcription factors and both classical and nonclassical tumor signaling pathways. The nonclassical signaling pathways are related to cell cycle progression, epithelial–mesenchymal transition (EMT), extracellular matrix maintenance, and tumor stem cell maintenance. In this article, the relationships between circRNAs and the clinical characteristics of BC are reviewed, and the molecular mechanisms by which circRNAs promote tumor development are explored.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
121
|
LINC00673 exerts oncogenic function in cervical cancer by negatively regulating miR-126-5p expression and activates PTEN/PI3K/AKT signaling pathway. Cytokine 2020; 136:155286. [PMID: 32950808 DOI: 10.1016/j.cyto.2020.155286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have indicated the crucial regulator roles of a long non-coding RNA (lncRNA) LINC00673 in cancer pathogenesis and development. However, the clinical significance and functional effects of LINC00673 in cervical cancer remains unknown. METHODS LINC00673 mRNA expression in cervical cancer tissues was measured by quantitative Real-time PCR (qRT-PCR), and the association between LINC00673 expression and the overall survival (OS) time of patients was analyzed by Kaplan-Meier survival plot. Cell proliferation was assessed using CCK8 assay, Flow cytometry analysis and cell colony formation assay. The association between miR-126-5p and LINC00673 was clarified by Luciferase activity assay. Furthermore, xenografts model in mice in vivo were used to evaluate the effects of LINC00673 expression on tumor growth of cervical cancer. RESULTS It was confirmed that the relative mRNA expression of LINC00673 was promoted in cervical cancer tissues and cancer cell lines compared with its corresponding normal tissues and cells (P < 0.05). Higher LINC00673 expression was associated with tumor size, lymph node metastasis, and International Federation of Gynecology and Obstetrics (FIGO) stage (P < 0.05). Survival analysis showed higher LINC00673 expression predicted poor OS of cervical cancer patients, and Multivariate Cox analysis demonstrated that higher LINC00673 expression was identified as an independent risk factor for OS. LINC00673 overexpression promoted cell proliferation and cell cycle progression, but LINC00673 knockdown inhibited cell proliferation and cell cycle progression significantly (P < 0.05). Besides, overexpression of LINC00673 was negatively correlated with lower miR-126-5p expression in cervical cancer tissues. In vivo xenograft tumor assay indicated that LINC00673 silencing reduced the tumor volume and weight. Bioinformatics analysis revealed that miR-126-5p targeted 3'-UTR of LINC00673, and LINC00673 promoted cell proliferation by sponging to miR-126-5p in cervical cancer cells. Additionally, it was demonstrated that LINC00673 significantly activated the PTEN/PI3K/AKT signaling pathway in cervical cancer cells. CONCLUSION These results provide the evidence that LINC00673 overexpression promotes cervical cancer cells progression through regulating miR-126-5p and activating the PTEN/PI3K/AKT signaling pathway, indicating that LINC00673 may be a potential therapeutic target for cervical cancer treatment.
Collapse
|
122
|
Circ_0010220-mediated miR-503-5p/CDCA4 axis contributes to osteosarcoma progression tumorigenesis. Gene 2020; 763:145068. [PMID: 32827680 DOI: 10.1016/j.gene.2020.145068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
CircRNAs are reported to exert a significant role in modulating genes in cancers, including osteosarcoma progression. Up to now, the function of circ_0010220 in osteosarcoma is still poorly known. The aim of our work was to figure out the potential mechanism of circ_0010220/miR-503-5p/CDCA4 axis in osteosarcoma progression. Firstly, quantitative RT-qPCR was utilized to measure the expression of circ_0010220 in osteosarcoma cells. Then, osteosarcoma cell proliferation, apoptosis, cell cycle, migration and invasion after loss of circ_0010220 were evaluated using CCK-8, flow cytometry, transwell migration, invasion and tumorigenesis experiments respectively. Circ_0010220 expression was markedly increased in osteosarcoma cells. Additionally, knockdown of circ_0010220 significantly depressed tumor growth. CCK-8 analysis indicated that down-regulation of circ_0010220 inhibited osteosarcoma cells proliferation. Flow cytometry assay showed that knockdown of circ_0010220 induced cell apoptosis and blocked cell cycle in the G1 phase. Meanwhile, cell migration an invasion was reduced by circ_0010220. Furthermore, miR-503-5p was predicted as the target for circ_0010220 and miR-503-5p inhibitors reversed cell growth suppressed through silencing circ_0010220. Then, our study demonstrated that Cell Division Cycle-Associated protein 4 (CDCA4) could be a downstream target of miR-503-5p. Additionally, circ_0010220 down-regulation reduced CDCA4 expression level and the inhibitors of miR-503-5p reversed that. In conclusion, we indicated circ_0010220 can be an important biomarker for osteosarcoma via regulating miR-503-5p and CDCA4.
Collapse
|
123
|
Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, Yang X. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer 2020; 20:749. [PMID: 32781986 PMCID: PMC7418399 DOI: 10.1186/s12885-020-07141-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Accumulating evidence has revealed the critical role of long non-coding RNAs (lncRNAs) in cellular processes during tumor progression. As documented in cancer-related literatures, LINC00992 expression is associated with cancer progression, whereas its function in tumors including prostate cancer has not been characterized yet. METHODS Data from GEPIA database suggested LINC00992 expression in prostate cancer tissues. The expression levels of RNAs were monitored via qRT-PCR. Western blot evaluated the levels of proteins. The proliferation, apoptosis and migration of prostate cancer cells were assessed by CCK-8, EdU, TUNEL, Transwell and wound healing assays. Luciferase reporter, RNA pull down and RIP assays were applied to detect the interplays among LINC00992, miR-3935 and GOLM1. RESULTS Elevated levels of LINC00992 and GOLM1 were detected in prostate cancer tissues and cells. LINC00992 exerted facilitating functions in prostate cancer cell proliferation and migration. Mechanically, LINC00992 interacted with and negatively regulated miR-3935 to elevate GOLM1 expression in prostate cancer cells. In addition, the in vitro suppressive effect of silenced LINC00992 on prostate cancer cell proliferation and migration was reversed by GOLM1 upregulation. Likewise, LINC00992 depletion restrained tumor growth in vivo was offset by enhanced GOLM1 expression. CONCLUSIONS LINC00992 competitively bound with miR-3935 to elevate GOLM1 expression and therefore facilitate the oncogenic phenotypes of prostate cancer cells, implying a potential LINC00992-targeted therapy for prostate cancer.
Collapse
Affiliation(s)
- Jianheng Chen
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiaodong Liu
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Kunbin Ke
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jianan Zou
- Department of Urology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Zhan Gao
- Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita, 010-8543, Japan
| | - Xuezhen Yang
- Department of Urology, the Second Affiliated Hospital of Bengbu Medical College, 220 Hongye Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
124
|
Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, Yang X. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer 2020. [PMID: 32781986 DOI: 10.1186/s12885-020-07141-4;(corresponding] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulating evidence has revealed the critical role of long non-coding RNAs (lncRNAs) in cellular processes during tumor progression. As documented in cancer-related literatures, LINC00992 expression is associated with cancer progression, whereas its function in tumors including prostate cancer has not been characterized yet. METHODS Data from GEPIA database suggested LINC00992 expression in prostate cancer tissues. The expression levels of RNAs were monitored via qRT-PCR. Western blot evaluated the levels of proteins. The proliferation, apoptosis and migration of prostate cancer cells were assessed by CCK-8, EdU, TUNEL, Transwell and wound healing assays. Luciferase reporter, RNA pull down and RIP assays were applied to detect the interplays among LINC00992, miR-3935 and GOLM1. RESULTS Elevated levels of LINC00992 and GOLM1 were detected in prostate cancer tissues and cells. LINC00992 exerted facilitating functions in prostate cancer cell proliferation and migration. Mechanically, LINC00992 interacted with and negatively regulated miR-3935 to elevate GOLM1 expression in prostate cancer cells. In addition, the in vitro suppressive effect of silenced LINC00992 on prostate cancer cell proliferation and migration was reversed by GOLM1 upregulation. Likewise, LINC00992 depletion restrained tumor growth in vivo was offset by enhanced GOLM1 expression. CONCLUSIONS LINC00992 competitively bound with miR-3935 to elevate GOLM1 expression and therefore facilitate the oncogenic phenotypes of prostate cancer cells, implying a potential LINC00992-targeted therapy for prostate cancer.
Collapse
Affiliation(s)
- Jianheng Chen
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiaodong Liu
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Kunbin Ke
- Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jianan Zou
- Department of Urology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Zhan Gao
- Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita, 010-8543, Japan
| | - Xuezhen Yang
- Department of Urology, the Second Affiliated Hospital of Bengbu Medical College, 220 Hongye Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
125
|
Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020; 26:4240-4260. [PMID: 32848331 PMCID: PMC7422540 DOI: 10.3748/wjg.v26.i29.4240] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are noncoding RNAs (ncRNAs) that occupy over 90% of the human genome, and their main function is to directly or indirectly regulate messenger RNA (mRNA) expression and participate in the tumorigenesis and progression of malignances. In particular, some lncRNAs can interact with miRNAs as competing endogenous RNAs (ceRNAs) to modulate mRNA expression. Accordingly, these RNA molecules are interrelated and coordinate to form a dynamic lncRNA-mediated ceRNA regulatory network. Mounting evidence has revealed that lncRNAs that act as ceRNAs are closely related to tumorigenesis. To date, numerous studies have established many different regulatory networks in hepatocellular carcinoma (HCC), and perturbations in these ceRNA interactions may result in the initiation and progression of HCC. Herein, we emphasize recent advances concerning the biological function of lncRNAs as ceRNAs in HCC, with the aim of elucidating the molecular mechanism underlying these HCC-related RNA molecules and providing novel insights into the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xian-Ning Dong
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong Province, China
| | - Li-Mei-Li Tian
- BGI Gene Innovation Class, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
126
|
Liu X, Zhang Y, Wang Y, Bian C, Wang F. Long non-coding RNA KCNQ1OT1 up-regulates CTNND1 by sponging miR-329-3p to induce the proliferation, migration, invasion, and inhibit apoptosis of colorectal cancer cells. Cancer Cell Int 2020; 20:340. [PMID: 32760218 PMCID: PMC7379774 DOI: 10.1186/s12935-020-01425-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been certified to be involved in the occurrence and growth of diverse cancers, including CRC. The purpose of the research was to explore the effects of lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) on proliferation, migration, invasion, and apoptosis in CRC cells and its mechanism. Methods The levels of KCNQ1OT1 and miR-329-3p were examined by quantitative real-time polymerase chain reaction (qRT-PCR) in CRC tissues and cells. The mRNA and protein levels of catenin delta-1 (CTNND1) were measured by qRT-PCR and western blot analysis, respectively. The targets of KCNQ1OT1 and miR-329-3p were predicted by online software and confirmed by luciferase reporter assay. The cell proliferation, migration, invasion, and apoptosis were examined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), transwell, and apoptosis assay. The expression levels of CyclinD1, Bcl-2, MMP9, Cleaved-casp-3, and E-cadherin in SW480 and LS1034 cells were gauged by western blot analysis. Xenograft tumor model was structured to prove the biological role of KCNQ1OT1 of CRC in vivo. Results The levels of KCNQ1OT1 and CTNND1 were significantly increased in CRC tissues and cells. Knockdown of KCNQ1OT1 suppressed proliferation, migration, invasion, and induced apoptosis in CRC cells. Conversely, CTNND1 overexpression reversed the impact of KCNQ1OT1 knockdown on CRC cells. Moreover, CTNND1 was verified as a direct target of miR-329-3p, and miR-329-3p could specially bind to KCNQ1OT1. Also, the down-regulation of KCNQ1OT1 triggered the CRC progress by up-regulating CTNND1 expression in CRC cells. Besides, KCNQ1OT1 knockdown inhibited CRC tumor growth through the miR-329-3p/CTNND1 axis in vivo. Conclusion Our results indicated that KCNQ1OT1 could positively regulate CTNND1 expression by sponging miR-329-3p, thereby boosting the progression of CRC. Our findings provided the underlying therapy targets for CRC.
Collapse
Affiliation(s)
- Xing Liu
- Department of Anorectal Surgery, Jining NO. 1 People's Hospital, Jining, 272000 Shandong China
| | - Yexiang Zhang
- Department of Surgery, Second People's Hospital, Rencheng District, Jining, 272061 Shandong China
| | - Yan Wang
- Department of Acupuncture and Physiotherapy, Jining NO. 1, People's Hospital, Jining, 272000 Shandong China
| | - Chao Bian
- Department of Acupuncture and Physiotherapy, Jining NO. 1, People's Hospital, Jining, 272000 Shandong China
| | - Fengji Wang
- Department of General Surgery, Shandong Institute of Parasitic Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 11 Taibaizhong Road, Jining, 272033 Shandong China
| |
Collapse
|
127
|
Wang D, Zhou X, Yin J, Zhou Y. Lnc-PICSAR contributes to cisplatin resistance by miR-485-5p/REV3L axis in cutaneous squamous cell carcinoma. Open Life Sci 2020; 15:488-500. [PMID: 33817237 PMCID: PMC7874590 DOI: 10.1515/biol-2020-0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Dysregulation of long noncoding RNAs (lncRNAs) is associated with drug resistance in multiple cancers. We explored the roles of lncRNA p38 inhibited cutaneous squamous cell carcinoma-associated lincRNA (PICSAR) in cisplatin (DDP) resistance of cutaneous squamous cell carcinoma (CSCC). Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure the expression of lnc-PICSAR, miR-485-5p and reversionless 3-like (REV3L) mRNA. The cell counting kit-8 (CCK-8) assay was conducted to evaluate DDP resistance and cell viability. The transwell assay was performed to determine cell migration and invasion. Western blot assay and immunohistochemistry (IHC) staining assay were carried out to measure protein levels. The dual-luciferase reporter assay was used to investigate the association between miR-485-5p and lnc-PICSAR or REV3L. Murine xenograft model was constructed to explore the function of lnc-PICSAR in vivo. The morphology of exosomes was analyzed by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Results Lnc-PICSAR was elevated in DDP-resistant CSCC cells. Lnc-PICSAR silencing suppressed cell viability, DDP resistance, migration and invasion in DDP-resistant CSCC cells. MiR-485-5p acted as a target of lnc-PICSAR, and miR-485-5p inhibition reversed the impacts of lnc-PICSAR silencing on DDP resistance and cell progression in DDP-resistant CSCC cells. Lnc-PICSAR promoted REV3L expression via sponging miR-485-5p. Moreover, REV3L overexpression overturned the effects of lnc-PICSAR on cell progression and DDP resistance. Lnc-PICSAR knockdown suppressed DDP resistance in vivo. In addition, lnc-PICSAR was increased in the exosomes derived from CSCC patients’ serum and CSCC cells. Conclusion Lnc-PICSAR enhanced DDP resistance via miR-485-5p/REV3L axis in DDP-resistant CSCC cells. Besides, exosome-mediated lnc-PICSAR might be involved in the regulation of drug resistance in CSCC.
Collapse
Affiliation(s)
- Dan Wang
- Plastic Surgery Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Xiaoqiang Zhou
- Department of Dermatology, Medical College of Shaoguan University, Shaoguan, 512026, China
| | - Jing Yin
- Department of Interventional Vascular, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Yang Zhou
- Department of Dermatology, Yancheng First People's Hospital, Jiangsu Province, No.166 yulong west road, Yancheng, Jiangsu, 224001, China
| |
Collapse
|
128
|
Han CL, Liu YP, Guo CJ, Du TT, Jiang Y, Wang KL, Shao XQ, Meng FG, Zhang JG. The lncRNA H19 binding to let-7b promotes hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy. Cell Prolif 2020; 53:e12856. [PMID: 32648622 PMCID: PMC7445408 DOI: 10.1111/cpr.12856] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives Glial cell activation contributes to the inflammatory response and occurrence of epilepsy. Our preliminary study demonstrated that the long non‐coding RNA, H19, promotes hippocampal glial cell activation during epileptogenesis. However, the precise mechanisms underlying this effect remain unclear. Materials and methods H19 and let‐7b were overexpressed or silenced using an adeno‐associated viral vector in vivo. Their expression in a kainic acid‐induced epilepsy model was evaluated by real‐time quantitative PCR, fluorescence in situ hybridization, and cytoplasmic and nuclear RNA isolation. A dual‐luciferase reporter assay was used to evaluate the direct binding of let‐7b to its target genes and H19. Western blot, video camera monitoring and Morris water maze were performed to confirm the role of H19 and let7b on epileptogenesis. Results H19 was increased in rat hippocampus neurons after status epilepticus, which might be due to epileptic seizure‐induced hypoxia. Increased H19 aggravated the epileptic seizures, memory impairment and mossy fibre sprouting of the epileptic rats. H19 could competitively bind to let‐7b to suppress its expression. Overexpression of let‐7b inhibited hippocampal glial cell activation, inflammatory response and epileptic seizures by targeting Stat3. Moreover, overexpressed H19 reversed the inhibitory effect of let‐7b on glial cell activation. Conclusions LncRNA H19 could competitively bind to let‐7b to promote hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Chun-Lei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun-Peng Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chen-Jia Guo
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Ting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Ying Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kai-Liang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
129
|
Wang X, Chen N, Du Z, Ling Z, Zhang P, Yang J, Khaleel M, Khoury AN, Li J, Li S, Huang H, Zhou X, Han Y, Wei F. Bioinformatics analysis integrating metabolomics of m 6A RNA microarray in intervertebral disc degeneration. Epigenomics 2020; 12:1419-1441. [PMID: 32627576 DOI: 10.2217/epi-2020-0101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To explore the potential functions and mechanism of N6.methyladenosine (m6A) abnormality of RNAs in nucleus pulposus from the intervertebral disc degeneration (IDD). Materials & methods: We performed rat model, m6A epitranscriptomic microarray, bioinformatics analysis and metabolomics. Results: In IDD, most of the differentially methylated RNAs showed a significant demethylation situation. The competing endogenous RNA network LOC102555094/miR-431/GSK-3β combining downstream Wnt pathway were identified in bioinformatics analysis. For metabolomics, activation of Wnt pathway led to reprogramming of glucose metabolism and enzyme activation of PKM2. Finally, quantitative real-time PCR and methylated RNA immunoprecipitation coupled with quantitative real-time PCR revealed the positive correlation between demethylation of LOC102555094 and expression of both FTO and ZFP217. Conclusion: LOC102555094 might be demethylated by ZFP217, activating FTO and LOC102555094/miR-431/GSK-3β/Wnt played a crucial role in IDD.
Collapse
Affiliation(s)
- Xiaoshuai Wang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Ningning Chen
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Zefeng Du
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Zemin Ling
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510030, China
| | - Penghui Zhang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Jiaming Yang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Mohammed Khaleel
- Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Anthony N Khoury
- Hip Preservation Center, Baylor University Medical Center at Dallas, TX 75390, USA
| | - Jianwen Li
- Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, 523000, China
| | - Songbo Li
- Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, 523000, China
| | - Haoyang Huang
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Xinwei Zhou
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Yueyin Han
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| |
Collapse
|
130
|
The LncRNA H19/miR-1-3p/CCL2 axis modulates lipopolysaccharide (LPS) stimulation-induced normal human astrocyte proliferation and activation. Cytokine 2020; 131:155106. [DOI: 10.1016/j.cyto.2020.155106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 11/21/2022]
|
131
|
Sun L, Chen X, Jin Z. Emerging roles of non‐coding RNAs in retinal diseases: A review. Clin Exp Ophthalmol 2020; 48:1085-1101. [PMID: 32519377 DOI: 10.1111/ceo.13806] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Lan‐Fang Sun
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Xue‐Jiao Chen
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Zi‐Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory Beijing China
| |
Collapse
|
132
|
Tu S, Wu J, Chen L, Tian Y, Qin W, Huang S, Wang R, Lin Z, Song Z. LncRNA CALB2 sponges miR-30b-3p to promote odontoblast differentiation of human dental pulp stem cells via up-regulating RUNX2. Cell Signal 2020; 73:109695. [PMID: 32565162 DOI: 10.1016/j.cellsig.2020.109695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022]
Abstract
Illuminating the mechanisms of odontoblast differentiation of human dental pulp stem cells (hDPSCs) is the key to find therapeutic clues to promote odontogenesis. LncRNAs play a regulatory role in odontoblast differentiation. Here, we identified a novel lncRNA, named lncRNA CALB2. It was up-regulated in odontoblast-differentiated hDPSCs and potentially interacted with miR-30b-3p and RUNX2. Via gain- and loss-of-function approaches, we found lncRNA CALB2 significantly promoted the odontoblast differentiation of hDPSCs. Then, dual luciferase reporter assay and RNA immunoprecipitation assay revealed that both lncRNA CALB2 and RUNX2 mRNA could directly bind to miR-30b-3p via the same binding sites. Interestingly, miR-30b-3p in hDPSCs was down-regulated and RUNX2 was up-regulated during odontoblast differentiation. Moreover, lncRNA CALB2 knockdown significantly reduced the protein level of RUNX2, DSPP and DMP-1, while miR-30b-3p inhibitor rescued the reduction. Furthermore, miR-30b-3p exerted an inhibitory effect on odontoblast differentiation, which could be reversed by lncRNA CALB2. Collectively, these findings indicate that the newly identified lncRNA CALB2 acts as a miR-30b-3p sponge to regulate RUNX2 expression, thus promoting the odontoblast differentiation of hDPSCs. LncRNA CALB2/miR-30b-3p/RUNX2 axis could be a novel therapeutic target for accelerating odontogenesis.
Collapse
Affiliation(s)
- Shaoqin Tu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Jinyan Wu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Lingling Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Yaguang Tian
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Wei Qin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Shuheng Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Runfu Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zhi Song
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| |
Collapse
|
133
|
Gao C, Zhang CC, Yang HX, Hao YN. MALAT1 Protected the Angiogenesis Function of Human Brain Microvascular Endothelial Cells (HBMECs) Under Oxygen Glucose Deprivation/re-oxygenation (OGD/R) Challenge by Interacting with miR-205-5p/VEGFA Pathway. Neuroscience 2020; 435:135-145. [DOI: 10.1016/j.neuroscience.2020.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
|
134
|
Zhou J, Li Z, Wu T, Zhao Q, Zhao Q, Cao Y. LncGBP9/miR-34a axis drives macrophages toward a phenotype conducive for spinal cord injury repair via STAT1/STAT6 and SOCS3. J Neuroinflammation 2020; 17:134. [PMID: 32345320 PMCID: PMC7187522 DOI: 10.1186/s12974-020-01805-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute spinal cord injury (SCI) could cause mainly two types of pathological sequelae, the primary mechanical injury, and the secondary injury. The macrophage in SCI are skewed toward the M1 phenotype that might cause the failure to post-SCI repair. Methods SCI model was established in Balb/c mice, and the changes in macrophage phenotypes after SCI were monitored. Bioinformatic analyses were performed to select factors that might regulate macrophage polarization after SCI. Mouse bone marrow-derived macrophages (BMDMs) were isolated, identified, and induced for M1 or M2 polarization; the effects of lncRNA guanylate binding protein-9 (lncGBP9) and suppressor of cytokine signaling 3 (SOCS3) on macrophages polarization were examined in vitro and in vivo. The predicted miR-34a binding to lncGBP9 and SOCS3 was validated; the dynamic effects of lncGBP9 and miR-34a on SOCS3, signal transducer and activator of transcription 1 (STAT1)/STAT6 signaling, and macrophage polarization were examined. Finally, we investigated whether STAT6 could bind the miR-34a promoter to activate its transcription. Results In SCI Balb/c mice, macrophage skewing toward M1 phenotypes was observed after SCI. In M1 macrophages, lncGBP9 silencing significantly decreased p-STAT1 and SOCS3 expression and protein levels, as well as the production of Interleukin (IL)-6 and IL-12; in M2 macrophages, lncGBP9 overexpression increased SOCS3 mRNA expression and protein levels while suppressed p-STAT6 levels and the production of IL-10 and transforming growth factor-beta 1 (TGF-β1), indicating that lncGBP9 overexpression promotes the M1 polarization of macrophages. In lncGBP9-silenced SCI mice, the M2 polarization was promoted on day 28 after the operation, further indicating that lncGBP9 silencing revised the predominance of M1 phenotype at the late stage of secondary injury after SCI, therefore improving the repair after SCI. IncGBP9 competed with SOCS3 for miR-34a binding to counteract miR-34a-mediated suppression on SOCS3 and then modulated STAT1/STAT6 signaling and the polarization of macrophages. STAT6 bound the promoter of miR-34a to activate its transcription. Conclusions In macrophages, lncGBP9 sponges miR-34a to rescue SOCS3 expression, therefore modulating macrophage polarization through STAT1/STAT6 signaling. STAT6 bound the promoter of miR-34a to activate its transcription, thus forming two different regulatory loops to modulate the phenotype of macrophages after SCI.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyue Li
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, 410008, PR of China
| | - Qun Zhao
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qiancheng Zhao
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, 410008, PR of China.
| |
Collapse
|
135
|
Bupivacaine-Induced Neurotoxicity Is Modulated by Epigenetic Axis of Long Noncoding RNA SNHG16 and Hsa-miR-132-3p. Neurotox Res 2020; 38:175-183. [PMID: 32335807 DOI: 10.1007/s12640-020-00202-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Clinical application of local anesthetic reagent, liposomal bupivacaine (BUP), may cause irreversible damage to human nerve system. In this study, we explored the functional role of long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in BUP-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were treated with BUP in vitro, whose dose-dependent effects on cell viability and SNHG16 expression were explored. SNHG16 was upregulated in SH-SY5Y cells. The protection of SNHG16 upregulation on BUP-induced neurotoxicity was examined by viability assay, apoptosis assay, and caspase activity assay, respectively. The endogenously competing target of SNHG16, human mature microRNA-132-3p (hsa-miR-132-3p), was explored by dual-luciferase assay and quantitative real-time PCR (qRT-PCR). Hsa-miR-132-3p was then further overexpressed in SNHG16-upregulated SH-SY5Y cells to explore its functional role in BUP-induced neurotoxicity. BUP induced dose-dependent cell death and SNHG16 downregulation in SH-SY5Y cells. Inversely, lentivirus-mediated SNHG16 upregulation mitigated cell death. In addition, SNHG16 upregulation rescued BUP-induced apoptosis and caspase 3/7 augmentation. Hsa-miR-132-3p was found to be reversely expressed with SNHG16 in BUP-treated SH-SY5Y cells. Overexpressing hsa-miR-132-3p reduced the protection of SNHG16 on BUP-induced neurotoxicity. We demonstrated that epigenetic axis of SNHG16/hsa-miR-132-3p had a functional role in regulating anesthesia-induced neurotoxicity in human lineage neural cells.
Collapse
|
136
|
Liu HT, Ma RR, Lv BB, Zhang H, Shi DB, Guo XY, Zhang GH, Gao P. LncRNA-HNF1A-AS1 functions as a competing endogenous RNA to activate PI3K/AKT signalling pathway by sponging miR-30b-3p in gastric cancer. Br J Cancer 2020; 122:1825-1836. [PMID: 32336754 PMCID: PMC7283217 DOI: 10.1038/s41416-020-0836-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/25/2020] [Accepted: 03/24/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Accumulating evidence demonstrated that long noncoding RNAs (lncRNAs) played important regulatory roles in many cancer types. However, the role of lncRNAs in gastric cancer (GC) progression remains unclear. METHODS RT-qPCR assay was performed to detect the expression of HNF1A-AS1 in gastric cancer tissues and the non-tumourous gastric mucosa. Overexpression and RNA interference approaches were used to investigate the effects of HNF1A-AS1 on GC cells. Insight into competitive endogenous RNA (ceRNA) mechanisms was gained via bioinformatics analysis, luciferase assays and an RNA-binding protein immunoprecipitation (RIP) assay, RNA-FISH co-localisation analysis combined with microRNA (miRNA)-pulldown assay. RESULTS This study displayed that revealed expression of HNF1A-AS1 was associated with positive lymph node metastasis in GC. Moreover, HNF1A-AS1 significantly promoted gastric cancer invasion, metastasis, angiogenesis and lymphangiogenesis in vitro and in vivo. In addition, HNF1A-AS1 was demonstrated to function as a ceRNA for miR-30b-3p. HNF1A-AS1 abolished the function of the miRNA-30b-3p and resulted in the derepression of its target, PIK3CD, which is a core oncogene involved in the progression of GC. CONCLUSION This study demonstrated that HNF1A-AS1 worked as a ceRNA and promoted PI3K/AKT signalling pathway-mediated GC metastasis by sponging miR-30b-3p, offering novel insights of the metastasis mechanism in GC.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, P. R. China
| | - Ran-Ran Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, P. R. China
| | - Bei-Bei Lv
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, P. R. China.,Department of Pathology, Shandong Provincial Hospital affiliated to Shandong university, Jinan, P. R. China
| | - Hui Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, P. R. China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Duan-Bo Shi
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, P. R. China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Xiang-Yu Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, P. R. China
| | - Guo-Hao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, P. R. China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, P. R. China. .,Department of Pathology, Qilu Hospital, Shandong University, Jinan, P. R. China.
| |
Collapse
|
137
|
Zhang X, Huang CR, Pan S, Pang Y, Chen YS, Zha GC, Guo KJ, Zheng X. Long non-coding RNA SNHG15 is a competing endogenous RNA of miR-141-3p that prevents osteoarthritis progression by upregulating BCL2L13 expression. Int Immunopharmacol 2020; 83:106425. [PMID: 32247266 DOI: 10.1016/j.intimp.2020.106425] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Increasing evidence has demonstrated that the dysregulated expression of long noncoding RNAs (lncRNAs) has important roles in the progression of osteoarthritis (OA), but the function of the lncRNA SNHG15 remains unclear. In the present study, we observed that SNHG15 was downregulated in OA cartilage tissues and IL-1β-induced chondrocytes. The lower expression of SNHG15 was negatively associated with the observed modified Mankin scale scores, extracellular matrix (ECM) degradation and chondrocyte apoptosis. Downregulated expression of SNHG15 increased chondrocyte viability and decreased chondrocyte apoptosis and ECM degradation in vitro and reduced damage to articular cartilage in vivo. Mechanistically, we demonstrated that SNHG15 overexpression promotes the expression of BCL2L13 by sponging miR-141-3p. The higher expression of miR-141-3p was negatively correlated with SNHG15 and BCL2L13 levels in OA cartilage tissues, and a positive correlation was also shown between SNHG15 and BCL2L13 levels. Furthermore, ectopic expression of miR-141-3p or knockdown of BCL2L13 expression could both reduce the effects of SNHG15 on chondrocyte proliferation, apoptosis and ECM degradation. Collectively, these findings reveal that SNHG15 inhibits OA progression by acting as an miR-141-3p sponge to promote BCL2L13 expression, suggesting that knockdown of SNHG15 expression in chondrocytes can be a potential therapeutic strategy to ameliorate OA progression.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Orthopaedics, Jintan Hospital Affiliated to Jiangsu University, No. 16 South Gate Street, Jintan, Jiangsu 213200, China
| | - Chao-Ran Huang
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road West, Xuzhou, Jiangsu 221006, China
| | - Sheng Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road West, Xuzhou, Jiangsu 221006, China
| | - Yong Pang
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road West, Xuzhou, Jiangsu 221006, China
| | - Ye-Shuai Chen
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road West, Xuzhou, Jiangsu 221006, China
| | - Guo-Chun Zha
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road West, Xuzhou, Jiangsu 221006, China
| | - Kai-Jin Guo
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road West, Xuzhou, Jiangsu 221006, China
| | - Xin Zheng
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road West, Xuzhou, Jiangsu 221006, China.
| |
Collapse
|
138
|
Yu Z, Zhang J, Han J. Silencing CASC11 curbs neonatal neuroblastoma progression through modulating microRNA-676-3p/nucleolar protein 4 like (NOL4L) axis. Pediatr Res 2020; 87:662-668. [PMID: 31645055 DOI: 10.1038/s41390-019-0625-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 10/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuroblastoma is the commonest extracranial solid cancer for neonates. Long non-coding RNA cancer susceptibility 11 (CASC11) is corroborated as carcinogen in several tumors. But its role in neonatal neuroblastoma is poorly defined. METHODS Expression levels of CASC11, miR-676-3p, and NOL4L mRNA were analyzed by qRT-PCR in cells and tissues. Kaplan-Meier analysis was used to measure and analyze the survival time of patients with high/low CASC11. Neonatal neuroblastoma cell proliferation was reflected through colony-formation assay and CCK-8. Transwell assay was designed for detection of migratory and invasive capacities of neonatal neuroblastoma cells. Wound-healing assay was used for monitoring neuroblastoma cell migration. RNA pull-down, luciferase reporter, and RIP assays were utilized to identify the relationship between CASC11, miR-676-3p, and NOL4L on the basis of bioinformatics tools. RESULTS Highly expressed CASC11 was observed in neonatal neuroblastoma tissues and cells. High level of CASC11 indicated unsatisfactory survival of neonatal neuroblastoma patients. CASC11 depletion inhibited cell proliferation and invasiveness. CASC11 was a molecular sponge to release NOL4L from miR-676-3p inhibition in tumor cells. Upregulation of NOL4L abated the suppressed cell proliferation and invasiveness due to CASC11 downregulation. CONCLUSION CASC11 sequestered miR-676-3p from NOL4L to facilitate neonatal neuroblastoma progression, hinting a CASC11-mediated therapeutic target for neonatal neuroblastoma.
Collapse
Affiliation(s)
- Zekun Yu
- Department of Neonatology, the First Hospital of Jilin University, No. 71, XinMin Street, Changchun, 130021, Jilin, China
| | - Jing Zhang
- Department of Neonatology, the First Hospital of Jilin University, No. 71, XinMin Street, Changchun, 130021, Jilin, China
| | - Jun Han
- Department of Neonatology, the First Hospital of Jilin University, No. 71, XinMin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
139
|
Cui J, Jiang N, Hou X, Wu S, Zhang Q, Meng J, Luan Y. Genome-Wide Identification of lncRNAs and Analysis of ceRNA Networks During Tomato Resistance to Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:456-464. [PMID: 31448997 DOI: 10.1094/phyto-04-19-0137-r] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our previous studies have revealed the function of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in tomato in response to Phytophthora infestans infection. However, the interaction relationships between lncRNAs and miRNAs during tomato resistance to P. infestans infection are unknown. In this study, 9,011 lncRNAs were identified from tomato plants, including 115 upregulated and 81 downregulated lncRNAs. Among these, 148 were found to be differentially expressed and might affect the expression of 771 genes, which are composed of 887 matched lncRNA-mRNA pairs. In total, 88 lncRNAs were identified as endogenous RNAs (ceRNAs) and predicted to decoy 46 miRNAs. Degradome sequencing revealed that 11 miRNAs that were decoyed by 20 lncRNAs could target 30 genes. These lncRNAs, miRNAs, and target genes were predicted to form 10 regulatory modules. Among them, lncRNA42705/lncRNA08711, lncRNA39896, and lncRNA11265/lncRNA15816 might modulate MYB, HD-Zip, and NAC transcription factors by decoying miR159, miR166b, and miR164a-5p, respectively. Upon P. infestans infection, the expression levels of lncRNA42705 and lncRNA08711 displayed a negative correlation with the expression level of miR159 and a positive correlation with the expression levels of MYB genes. Tomato plants in which lncRNA42705 and lncRNA08711 were silenced displayed increased levels of miR159 and decreased levels of MYB, respectively. The result demonstrated that lncRNAs might function as ceRNAs to decoy miRNAs and affect their target genes in tomato plants, increasing resistance to disease.
Collapse
Affiliation(s)
- Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Sihan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
140
|
Wang J, Yan S, Yang J, Lu H, Xu D, Wang Z. Non-coding RNAs in Rheumatoid Arthritis: From Bench to Bedside. Front Immunol 2020; 10:3129. [PMID: 32047497 PMCID: PMC6997467 DOI: 10.3389/fimmu.2019.03129] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis is a common systemic and autoimmune disease characterized by symmetrical and inflammatory destruction of distal joints. Its primary pathological characters are synovitis and vasculitis. Accumulating studies have implicated the critical role of non-coding RNAs (ncRNAs) in inflammation and autoimmune regulation, primarily including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). NcRNAs are significant regulators in distinct physiological and pathophysiological processes. Many validated non-coding RNAs have been identified as promising biomarkers for the diagnosis and treatment of RA. This review will shed some light on RA pathogenesis and be helpful for identifying potential ncRNA biomarkers for RA.
Collapse
Affiliation(s)
- Jinghua Wang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinghan Yang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongying Lu
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zengyan Wang
- Department of Operating Room, Zhucheng People's Hospital, Zhucheng, China
| |
Collapse
|
141
|
Hao Y, Li X, Chen H, Huo H, Liu Z, Chai E. Over-expression of long noncoding RNA HOTAIRM1 promotes cell proliferation and invasion in human glioblastoma by up-regulating SP1 via sponging miR-137. Neuroreport 2020; 31:109-117. [PMID: 31876683 DOI: 10.1097/wnr.0000000000001380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most aggressive malignant brain tumor in adults. Long noncoding RNA HOTAIRM1 (HOX antisense intergenic RNA myeloid 1) has been reported to participate in the progression of various cancers. However, the role of HOTAIRM1 in glioblastoma and its underlying mechanisms are largely unknown. The relative expression levels of HOTAIRM1, miR-137 and specificity protein 1 were detected by quantitative real-time PCR or western blot. The effects of HOTAIRM1 on cell proliferation and invasion were evaluated by Cell Counting Kit-8 assay and Transwell assay, respectively. The interactions among HOTAIRM1, miR-137 and specificity protein 1 were predicted by online softwares and confirmed by luciferase reporter assay and RNA immunoprecipitation assay. The levels of HOTAIRM1 and specificity protein 1 were significantly increased while miR-137 was significantly decreased in glioblastoma tissues and cells. Knockdown of HOTAIRM1 suppressed proliferation and invasion in glioblastoma cells. Moreover, miR-137 was bound to HOTAIRM1, and specificity protein 1 was identified as a target of miR-137. The protein level of specificity protein 1 was repressed by silencing the expression of HOTAIRM1, whereas the effect was restored by inhibiting the expression of miR-137. Downregulation of HOTAIRM1 expression suppressed the proliferation and invasion of glioblastoma cells by down-regulating specificity protein 1 expression via sponging miR-137, indicating a promising strategy for glioblastoma treatment.
Collapse
Affiliation(s)
- Yunfei Hao
- Cerebrovascular Disease Center, Gansu Provincial Hospital
| | - Xiaoli Li
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hecheng Chen
- Cerebrovascular Disease Center, Gansu Provincial Hospital
| | - Hongzhi Huo
- Cerebrovascular Disease Center, Gansu Provincial Hospital
| | - Zongbao Liu
- Cerebrovascular Disease Center, Gansu Provincial Hospital
| | - Erqing Chai
- Cerebrovascular Disease Center, Gansu Provincial Hospital
| |
Collapse
|
142
|
Yang L, Li L, Zhou Z, Liu Y, Sun J, Zhang X, Pan H, Liu S. SP1 induced long non-coding RNA LINC00958 overexpression facilitate cell proliferation, migration and invasion in lung adenocarcinoma via mediating miR-625-5p/CPSF7 axis. Cancer Cell Int 2020; 20:24. [PMID: 31997940 PMCID: PMC6979366 DOI: 10.1186/s12935-020-1099-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/04/2020] [Indexed: 01/30/2023] Open
Abstract
Background Increasing evidences have underlined the importance of long non-coding RNAs (lncRNAs) in human malignancies. LINC00958 has been found involved in some cancers. However, the underlying mechanical performance of LINC00958 in lung adenocarcinoma (LAD) has not been explored yet. Methods The expression of relevant mRNA and protein were measured by qRT-PCR and western blot assays. EdU, colony formation, TUNEL and transwell assays were performed to investigate the function of LINC00958 on LAD progression. Luciferase reporter, RNA pull down and RIP assays were conducted to investigate the molecular mechanism of relevant RNAs. Results LINC00958 was found notably overexpressed in LAD, which was associated with the stimulation of its promoter activity induced by SP1. LINC00958 depletion dramatically inhibited LAD cell proliferation, migration and invasion capacities by acting as a miR-625-5p sponge. MiR-625-5p curbed LAD progression via targeting CPSF7 and down-regulating its expression. Mechanically, LINC00958 was identified as a competing endogenous RNA (ceRNA) and positively regulated the expression of CPSF7 via sponging miR-625-5p. Conclusions LINC00958 might drive LAD progression via mediating miR-625-5p/CPSF7 axis, indicating the potential of targeting LINC00958 for the treatment of LAD.![]()
Collapse
Affiliation(s)
- Longhai Yang
- 1Department of Cardiothoracic Surgery, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, No. 1098 Xueyuan Road, Xili University Town, Shenzhen, 518055 Guangdong China
| | - Lili Li
- 2Respiratory Medicine, Liaocheng People's Hospital of Shandong Province, Liaocheng, 252000 Shandong China
| | - Zizi Zhou
- 1Department of Cardiothoracic Surgery, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, No. 1098 Xueyuan Road, Xili University Town, Shenzhen, 518055 Guangdong China
| | - Yi Liu
- 1Department of Cardiothoracic Surgery, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, No. 1098 Xueyuan Road, Xili University Town, Shenzhen, 518055 Guangdong China
| | - Jinyuan Sun
- 3Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, No. 1665 Kongjiang Road, Yangpu District, Shanghai, 200092 China
| | - Xiaoming Zhang
- 1Department of Cardiothoracic Surgery, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, No. 1098 Xueyuan Road, Xili University Town, Shenzhen, 518055 Guangdong China
| | - Huiyu Pan
- 1Department of Cardiothoracic Surgery, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, No. 1098 Xueyuan Road, Xili University Town, Shenzhen, 518055 Guangdong China
| | - Song Liu
- 3Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, No. 1665 Kongjiang Road, Yangpu District, Shanghai, 200092 China
| |
Collapse
|
143
|
Chen X, Sun R, Yang D, Jiang C, Liu Q. LINC00167 Regulates RPE Differentiation by Targeting the miR-203a-3p/SOCS3 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1015-1026. [PMID: 32044724 PMCID: PMC7015824 DOI: 10.1016/j.omtn.2019.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022]
Abstract
Increasing evidence has indicated that long non-coding RNAs (lncRNAs) play significant roles in various diseases; however, their roles in age-related macular degeneration (AMD) remain unclear. Dedifferentiation and dysfunction of retinal pigment epithelium (RPE) cells have been shown to contribute to AMD etiology in several studies. Herein, we found that lncRNA LINC00167 was downregulated in RPE-choroid samples of AMD patients and dysfunctional RPE cells, and it was consistently upregulated along with RPE differentiation. In vitro study indicated that reduced endogenous LINC00167 expression resulted in RPE dedifferentiation, which was typified by attenuated expression of RPE markers, reduced vascular endothelial growth factor A secretion, accumulation of mitochondrial reactive oxygen species, and interrupted phagocytic ability. Mechanistically, LINC00167 functioned as a sponge for microRNA miR-203a-3p to restore the expression of the suppressor of cytokine signaling 3 (SOCS3), which further inhibited the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. Taken together, our study demonstrated that LINC00167 showed a protective role in AMD by maintaining RPE differentiation through the LINC00167/miR-203a-3p/SOCS3 axis and might be a potential therapeutic target for AMD.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ruxu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Daidi Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
144
|
Hao T, Wang Z, Yang J, Zhang Y, Shang Y, Sun J. MALAT1 knockdown inhibits prostate cancer progression by regulating miR-140/BIRC6 axis. Biomed Pharmacother 2020; 123:109666. [PMID: 31935634 DOI: 10.1016/j.biopha.2019.109666] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most common cancer among men globally. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been reported to be implicated in tumorigenesis and progression of PCa. However, the pathogenesis of MALAT1 in PCa has not been thoroughly elaborated. METHODS RT-qPCR assay was conducted to measure expression of MALAT1, microRNA-140 (miR-140) and Baculoviral IAP repeat containing 6 (BIRC6) mRNA. Protein expression of BIRC6 was detected by western blot assay. Cell proliferative ability was assessed by MTS and Edu retention assays. Cell migratory and invasive abilities were evaluated by wound healing assay and Transwell invasion assay, respectively. Cell apoptotic rate was examined using a flow cytometry. The interaction between miR-140 and MALAT1 or BIRC6 3'UTR was explored by luciferase, RNA immunoprecipitation (RIP) and RNA pull down assays. Xenograft models of PCa were established to further explore the role and molecular mechanism of MALAT in PCa tumorigenesis in vivo. RESULTS MALAT1 and BIRC6 were highly expressed in human PCa tumor tissues and cell lines. MALAT1 or BIRC6 knockdown inhibited cell proliferation, migration and invasion and induced cell apoptosis in PCa. MiR-140 could directly bind with MALAT1 or BIRC6 3'UTR. Moreover, MALAT1 knockdown inhibited BIRC mRNA and protein expression through upregulating miR-140 in PCa cells. Additionally, MALAT1 knockdown inhibited PCa xenograft tumor growth by regulating miR-140/BIRC6 axis in vivo. CONCLUSION MALAT1 knockdown hindered PCa progression by regulating miR-140/BIRC6 axis in vitro and in vivo, hinting the potential value of MALAT1 in the management of PCa.
Collapse
Affiliation(s)
- Tongtong Hao
- Department of Urology Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, China
| | - Zhenghua Wang
- Department of Laboratory Medicine, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, China
| | - Jinhui Yang
- Department of Urology Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, China
| | - Yi Zhang
- Department of Urology Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, China
| | - Yafeng Shang
- Department of Urology Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, China
| | - Jiantao Sun
- Department of Urology Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, China.
| |
Collapse
|
145
|
Luo ZB, Lai GE, Jiang T, Cao CL, Peng T, Liu FE. A Competing Endogenous RNA Network Reveals Novel lncRNA, miRNA and mRNA Biomarkers With Diagnostic and Prognostic Value for Early Breast Cancer. Technol Cancer Res Treat 2020; 19:1533033820983293. [PMID: 33371806 PMCID: PMC7871288 DOI: 10.1177/1533033820983293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This study aims to reveal early breast cancer (BC) specific competing endogenous RNA (ceRNA) network through the expression profiles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and mRNAs. METHODS Based on The Cancer Genome Atlas (TCGA), we obtained the differentially expressed mRNAs, miRNAs, and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) between early BC and normal samples. The lncRNA-miRNA-mRNA interaction network was constructed using Cytoscape. Functional enrichment were performed using GeneCoDis3. The expression of selected genes were validated by qRT-PCR. Based on the published dataset, we validated the result of TCGA integration analysis. The diagnostic and prognostic value of candidate genes was evaluated by ROC curve analysis and survival analysis, respectively. RESULTS Totally, 1207 DEmRNAs, 194 DElncRNAs and 37 DEmiRNAs were obtained. Functional enrichment analysis results showed that all of DEmRNAs were enriched in pathway of cytokine-cytokine receptor interaction, PPAR signaling pathway and pathways in cancer. The DEmRNA-DEmiRNA-DElncRNA interaction network in early BC was consisted of 23 DEmiRNAs, 95 DElncRNAs and 309 DEmRNAs. Among ceRNA network, IL-6-hsa-miR-182-5p-ADAMTS9-AS1 interactions, LIFR-hsa-miR-21-5p-ADAMTS9-AS1 interactions and MMP1/MMP11-hsa-miR-145-5p-CDKN2B-AS1 interactions were speculated to involve in the development of early BC. The qRT-PCR results were consistent with our integrated analysis. Except for ADAMTS9-AS1 and CDKN2B-AS1, expression of the others results in the Gene Expression Omnibus (GEO) dataset were generally consistent with TCGA integrated analysis. The area under curve (AUC) of the ADAMTS9-AS1, CDKN2B-AS1, IL-6, MMP11, hsa-miR-145-5p and hsa-miR-182-5p were 0.947, 0.862, 0.842, 0.993, 0.960 and 0.944, and the specificity and sensitivity of the 6 biomarkers were 83.4% and 95.6%, 72.2% and 90.3%, 80.1% and 74.3%, 96.2% and 96.5%, 90.1% and 92.3%, and 88.7% and 90.4%, respectively. In addition, IL-6 had potential prognostic value for early BC. CONCLUSION These findings may provide novel insights into the lncRNA-miRNA-mRNA network and uncover potential therapeutic targets in early BC.
Collapse
Affiliation(s)
- Zhong-Bing Luo
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Gui-E Lai
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Tao Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Chuan-Lin Cao
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Tao Peng
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| | - Feng-En Liu
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou of Jiangxi Province, China
| |
Collapse
|
146
|
Wang Z, Wang L, Liang Z, Xi Y. Long Non-Coding RNA BCAR4 Promotes Growth, Invasion and Tumorigenicity by Targeting miR-2276 to Upregulate MMP7 Expression in Glioma. Onco Targets Ther 2019; 12:10963-10973. [PMID: 31849498 PMCID: PMC6913310 DOI: 10.2147/ott.s226026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
Objective Long non-coding RNA breast cancer anti-estrogen resistance 4 (BCAR4) has been recognized as a proto-oncogene in various malignancies. It has been reported to be highly expressed and promote cell proliferation in glioma. However, its additional roles in gliomagenesis remain largely unclear. This research intends to investigate the impact and internal molecular mechanism of BCAR4 on glioma cell growth, invasion and tumorigenesis. Methods BCAR4 expression was examined by qPCR in 30 cases of graded glioma specimens and 7 glioblastoma (GBM) cell lines compared with respective controls. Its potential prognostic value was evaluated by Kaplan-Meier survival analysis. The biological roles of BCAR4 in gliomagenesis were verified by CCK-8, transwell and intracranial xenograft assays successively. qPCR and RNA pull-down assays were applied to study the relationship between BCAR4 and miR-2276. Then, qPCR, Western blot and luciferase reporter assays were used to validate the targeting of matrix metallopeptidase 7 (MMP7) by miR-2276 and the regulation of MMP7 by BCAR4. Finally, MMP7 was restored in BCAR4-silenced GBM cells and the rescue effects were determined by CCK-8 and transwell assays. Results BCAR4 expression was increased in glioma tissues and GBM cell lines, and its high expression positively correlated with advanced grades and worse prognosis. Functional assays verified that knockdown of BCAR4-inhibited cell growth and invasion in vitro, and impaired tumor formation in vivo. Mechanistically, we found that BCAR4 could act as a competing endogenous RNA (ceRNA) by targeting miR-2276 to upregulate MMP7 expression. Importantly, MMP7 restoration effectively rescued the inhibitory modulations on GBM cell growth and invasion caused by BCAR4 knockdown. Conclusion Our findings identified the essential roles of the BCAR4/miR-2276/MMP7 axis in gliomagenesis and provided novel insights on glioma therapy.
Collapse
Affiliation(s)
- Zhifeng Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, People's Republic of China
| | - Longlong Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, People's Republic of China
| | - Zan Liang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, People's Republic of China
| | - Yanguo Xi
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, People's Republic of China
| |
Collapse
|
147
|
Li X, Zheng H. LncRNA SNHG1 influences cell proliferation, migration, invasion, and apoptosis of non-small cell lung cancer cells via the miR-361-3p/FRAT1 axis. Thorac Cancer 2019; 11:295-304. [PMID: 31788970 PMCID: PMC6997013 DOI: 10.1111/1759-7714.13256] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background Non‐small‐cell lung cancer (NSCLC) is the most lethal type of cancer. Long non‐coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified as crucial regulators in the development of NSCLC. The aim of our study was to explore the molecular mechanism of SNHG1 to enable better treatment for NSCLC patients. Methods Quantitative real‐time polymerase chain reaction (qRT‐PCR) was performed to detect the expression of Small nucleolar RNA host gene 1 (SNHG1), miR‐361‐3p and frequently rearranged in advanced T‐cell lymphomas 1 (FRAT1). The protein level of FRAT1 was measured by western blot assay. Cell proliferation was evaluated by methyl thiazolyl tetrazolium (MTT) assay. Cell apoptosis was assessed by flow cytometry assay. The number of migrated and invaded cells were counted by transwell assay. The relationship between miR‐361‐3p and SNHG1 or FRAT1 was confirmed by dual‐luciferase reporter assay. Results Our results indicated that SNHG1 and FRAT1 were highly expressed in NSCLC tissues and cells. SNHG1 silencing inhibited proliferation, induced apoptosis and blocked migration and invasion of NSCLC cells. Also, FRAT1 downregulation suppressed proliferation, promoted apoptosis and hindered migration and invasion of NSCLC cells. Further, FRAT1 could recover the effects of SNHG1 silencing on proliferation, apoptosis, migration and invasion of NSCLC cells. SNHG1 sponged miR‐361‐3p and negatively regulated miR‐361‐3p expression. Meanwhile, miR‐361‐3p targeted FRAT1 and inversely modulated FRAT1 expression. In addition, miR‐361‐3p inhibition abated the effect of SNHG1 knockdown on FRAT1 expression. Conclusion In conclusion, LncRNA SNHG1 promoted the proliferation, repressed apoptosis and enhanced migration and invasion of NSCLC cells by regulating FRAT1 expression via sponging miR‐361‐3p.
Collapse
Affiliation(s)
- Xiaomei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, (Xuhzou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University) Lianyungang, Jiangsu, China
| | - Hong Zheng
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, (Xuhzou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University) Lianyungang, Jiangsu, China
| |
Collapse
|
148
|
Chen L, Song Z, Wu J, Huang Q, Shen Z, Wei X, Lin Z. LncRNA DANCR sponges miR-216a to inhibit odontoblast differentiation through upregulating c-Cbl. Exp Cell Res 2019; 387:111751. [PMID: 31805275 DOI: 10.1016/j.yexcr.2019.111751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022]
Abstract
Enhanced odontoblast differentiation of human dental pulp cells (hDPCs) is considered a keystone in dentin-pulp complex formation. We have revealed lncRNA DANCR was implicated in this differentiation program, however, its mechanism in odontoblast differentiation of hDPCs remains further explored. In this study, by employing loss-of-function approach, we identified downregulation of DANCR drived odontoblast differentiaion of hDPCs. Bioinformatics analysis was utilized to show that DANCR contained binding site for miR-216a and an inverse correlation between DANCR and miR-216a was obtained. Dual luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) were applied to further confirm that DANCR conferred its functions by directly binding to miR-216a. Notably, miR-216a was able to bind to the 3'-UTR of c-Cbl and repressed its expression. In addition, the protein level of c-CBL was significantly downregulated during hDPCs differentiation, while c-Cbl overexpression inhibited odontoblast differentiation of hDPCs. Moreover, downregulation of miR-216a efficiently reversed the suppression of c-Cbl level and odontoblast differentiation induced by knockdown of DANCR. Taken together, these analyses indicated that DANCR positively regulated the expression of c-Cbl, through sponging miR-216a, and inhibited odontoblast differentiation of hDPCs. Our results will extend the field of clinical application for cell-based therapy in regenerative medicine.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zhi Song
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Jinyan Wu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Qiting Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zongshan Shen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zhengmei Lin
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| |
Collapse
|
149
|
Tao L, Yang L, Huang X, Hua F, Yang X. Reconstruction and Analysis of the lncRNA-miRNA-mRNA Network Based on Competitive Endogenous RNA Reveal Functional lncRNAs in Dilated Cardiomyopathy. Front Genet 2019; 10:1149. [PMID: 31803236 PMCID: PMC6873784 DOI: 10.3389/fgene.2019.01149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is an important cause of sudden death and heart failure with an unknown etiology. Recent studies have suggested that long non-coding RNA (lncRNA) can interact with microRNA (miRNA) and indirectly interact with mRNA through competitive endogenous RNA (ceRNA) activities. However, the mechanism of ceRNA in DCM remains unclear. In this study, a miRNA array was first performed using heart samples from DCM patients and healthy controls. For further validation, we conducted real-time quantitative reverse transcription (RT)-PCR using samples from DCM patients and a doxorubicin-induced rodent model of cardiomyopathy, revealing that miR-144-3p and miR-451a were down-regulated, and miR-21-5p was up-regulated. Based on the ceRNA theory, we constructed a global triple network using data from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) and our miRNA array. The lncRNA-miRNA-mRNA network comprised 22 lncRNA nodes, 32 mRNA nodes, and 11 miRNA nodes. Hub nodes and the number of relationship pairs were then analyzed, and the results showed that two lncRNAs (NONHSAT001691 and NONHSAT006358) targeting miR-144/451 were highly related to DCM. Then, cluster module and random walk with restart for the ceRNA network were analyzed and identified four lncRNAs (NONHSAT026953/NONHSAT006250/NONHSAT133928/NONHSAT041662) targeting miR-21 that were significantly related to DCM. This study provides a new strategy for research on DCM or other diseases. Furthermore, lncRNA-miRNA pairs may be regarded as candidate diagnostic biomarkers or potential therapeutic targets of DCM.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoli Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoyu Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
150
|
Long noncoding RNA DNM3OS promotes prostate stromal cells transformation via the miR-29a/29b/COL3A1 and miR-361/TGFβ1 axes. Aging (Albany NY) 2019; 11:9442-9460. [PMID: 31694982 PMCID: PMC6874426 DOI: 10.18632/aging.102395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-β1 (TGFβ1)-induced differentiation into and the activation of myofibroblasts have been regarded as critical events in benign prostatic hyperplasia (BPH); however, the underlying mechanisms of BPH pathogenesis remain unclear. Microarray profiling, STRING analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, and Gene Ontology (GO) enrichment analysis were performed to confirm the candidate genes and long non-coding RNA (lncRNAs) related to BPH. Collagen Type III (COL3A1) was significantly upregulated by TGFβ1 in prostate stromal cells (PrSCs) and might be involved in DNM3OS function in myofibroblasts upon TGFβ1 stimulation. Upon TGFβ1 stimulation, COL3A1 protein was decreased by DNM3OS silencing. miR-29a and miR-29b could directly bind to the DNM3OS and COL3A1 3' untranslated region (UTR)s to negatively regulate their expression, and by serving as a competing endogenous RNAs (ceRNA), DNM3OS competed with COL3A1 for miR-29a/29b binding, therefore counteracting miR-29a/29b-mediated COL3A1 suppression. The effect of DNM3OS silencing on ECM components and TGFβ1 downstream signaling was similar to that of the TGFβ1 inhibitor SB431542. miR-361 could target DNM3OS and TGFβ1; DNM3OS competed for miR-361 binding to counteract miR-361-mediated TGFβ1 suppression. In conclusion, we identified DNM3OS as a specifically-upregulated lncRNA upon TGFβ1 stimulation in PrSCs; by serving as a ceRNA for the miR-29a/29b cluster and miR-361, DNM3OS eliminated miRNA-mediated suppression of COL3A1 and TGFβ1, thereby promoting TGFβ1-induced PrSC transformation into myofibroblasts.
Collapse
|